Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
efuse.c
Go to the documentation of this file.
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012 Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * tmis program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * Tme full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <[email protected]>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <[email protected]>
27  *
28  *****************************************************************************/
29 
30 #include <linux/export.h>
31 #include "wifi.h"
32 #include "efuse.h"
33 
34 static const u8 MAX_PGPKT_SIZE = 9;
35 static const u8 PGPKT_DATA_SIZE = 8;
36 static const int EFUSE_MAX_SIZE = 512;
37 
38 static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
39 
40 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
41  {0, 0, 0, 2},
42  {0, 1, 0, 2},
43  {0, 2, 0, 2},
44  {1, 0, 0, 1},
45  {1, 0, 1, 1},
46  {1, 1, 0, 1},
47  {1, 1, 1, 3},
48  {1, 3, 0, 17},
49  {3, 3, 1, 48},
50  {10, 0, 0, 6},
51  {10, 3, 0, 1},
52  {10, 3, 1, 1},
53  {11, 0, 0, 28}
54 };
55 
56 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
57  u8 *value);
58 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
59  u16 *value);
60 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
61  u32 *value);
62 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
63  u8 value);
64 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
65  u16 value);
66 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
67  u32 value);
68 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
69  u8 *data);
70 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
71  u8 data);
72 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
73 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
74  u8 *data);
75 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
76  u8 word_en, u8 *data);
77 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
78  u8 *targetdata);
79 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
80  u16 efuse_addr, u8 word_en, u8 *data);
81 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
82  u8 pwrstate);
83 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
84 static u8 efuse_calculate_word_cnts(u8 word_en);
85 
87 {
88  struct rtl_priv *rtlpriv = rtl_priv(hw);
89  u8 bytetemp;
90  u8 temp;
91 
92  bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
93  temp = bytetemp | 0x20;
94  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
95 
96  bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
97  temp = bytetemp & 0xFE;
98  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
99 
100  bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
101  temp = bytetemp | 0x80;
102  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
103 
104  rtl_write_byte(rtlpriv, 0x2F8, 0x3);
105 
106  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
107 
108 }
109 
111 {
112  struct rtl_priv *rtlpriv = rtl_priv(hw);
113  u8 data;
114  u8 bytetemp;
115  u8 temp;
116  u32 k = 0;
117  const u32 efuse_len =
118  rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
119 
120  if (address < efuse_len) {
121  temp = address & 0xFF;
122  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
123  temp);
124  bytetemp = rtl_read_byte(rtlpriv,
125  rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
126  temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
127  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
128  temp);
129 
130  bytetemp = rtl_read_byte(rtlpriv,
131  rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
132  temp = bytetemp & 0x7F;
133  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
134  temp);
135 
136  bytetemp = rtl_read_byte(rtlpriv,
137  rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
138  while (!(bytetemp & 0x80)) {
139  bytetemp = rtl_read_byte(rtlpriv,
140  rtlpriv->cfg->
141  maps[EFUSE_CTRL] + 3);
142  k++;
143  if (k == 1000) {
144  k = 0;
145  break;
146  }
147  }
148  data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
149  return data;
150  } else
151  return 0xFF;
152 
153 }
155 
157 {
158  struct rtl_priv *rtlpriv = rtl_priv(hw);
159  u8 bytetemp;
160  u8 temp;
161  u32 k = 0;
162  const u32 efuse_len =
163  rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
164 
165  RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
166  address, value);
167 
168  if (address < efuse_len) {
169  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
170 
171  temp = address & 0xFF;
172  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
173  temp);
174  bytetemp = rtl_read_byte(rtlpriv,
175  rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
176 
177  temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
178  rtl_write_byte(rtlpriv,
179  rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
180 
181  bytetemp = rtl_read_byte(rtlpriv,
182  rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
183  temp = bytetemp | 0x80;
184  rtl_write_byte(rtlpriv,
185  rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
186 
187  bytetemp = rtl_read_byte(rtlpriv,
188  rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
189 
190  while (bytetemp & 0x80) {
191  bytetemp = rtl_read_byte(rtlpriv,
192  rtlpriv->cfg->
193  maps[EFUSE_CTRL] + 3);
194  k++;
195  if (k == 100) {
196  k = 0;
197  break;
198  }
199  }
200  }
201 
202 }
203 
204 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
205 {
206  struct rtl_priv *rtlpriv = rtl_priv(hw);
207  u32 value32;
208  u8 readbyte;
209  u16 retry;
210 
211  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
212  (_offset & 0xff));
213  readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
214  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
215  ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
216 
217  readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
218  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
219  (readbyte & 0x7f));
220 
221  retry = 0;
222  value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
223  while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
224  value32 = rtl_read_dword(rtlpriv,
225  rtlpriv->cfg->maps[EFUSE_CTRL]);
226  retry++;
227  }
228 
229  udelay(50);
230  value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
231 
232  *pbuf = (u8) (value32 & 0xff);
233 }
234 
235 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
236 {
237  struct rtl_priv *rtlpriv = rtl_priv(hw);
238  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
239  u8 *efuse_tbl;
240  u8 rtemp8[1];
241  u16 efuse_addr = 0;
242  u8 offset, wren;
243  u16 i;
244  u16 j;
245  const u16 efuse_max_section =
246  rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
247  const u32 efuse_len =
248  rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
249  u16 **efuse_word;
250  u16 efuse_utilized = 0;
251  u8 efuse_usage;
252 
253  if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
254  RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
255  "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
256  _offset, _size_byte);
257  return;
258  }
259 
260  /* allocate memory for efuse_tbl and efuse_word */
261  efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
262  sizeof(u8), GFP_ATOMIC);
263  if (!efuse_tbl)
264  return;
265  efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
266  if (!efuse_word)
267  goto done;
268  for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
269  efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
270  GFP_ATOMIC);
271  if (!efuse_word[i])
272  goto done;
273  }
274 
275  for (i = 0; i < efuse_max_section; i++)
276  for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
277  efuse_word[j][i] = 0xFFFF;
278 
279  read_efuse_byte(hw, efuse_addr, rtemp8);
280  if (*rtemp8 != 0xFF) {
281  efuse_utilized++;
282  RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
283  "Addr=%d\n", efuse_addr);
284  efuse_addr++;
285  }
286 
287  while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
288  offset = ((*rtemp8 >> 4) & 0x0f);
289 
290  if (offset < efuse_max_section) {
291  wren = (*rtemp8 & 0x0f);
292  RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
293  "offset-%d Worden=%x\n", offset, wren);
294 
295  for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
296  if (!(wren & 0x01)) {
297  RTPRINT(rtlpriv, FEEPROM,
299  "Addr=%d\n", efuse_addr);
300 
301  read_efuse_byte(hw, efuse_addr, rtemp8);
302  efuse_addr++;
303  efuse_utilized++;
304  efuse_word[i][offset] =
305  (*rtemp8 & 0xff);
306 
307  if (efuse_addr >= efuse_len)
308  break;
309 
310  RTPRINT(rtlpriv, FEEPROM,
312  "Addr=%d\n", efuse_addr);
313 
314  read_efuse_byte(hw, efuse_addr, rtemp8);
315  efuse_addr++;
316  efuse_utilized++;
317  efuse_word[i][offset] |=
318  (((u16)*rtemp8 << 8) & 0xff00);
319 
320  if (efuse_addr >= efuse_len)
321  break;
322  }
323 
324  wren >>= 1;
325  }
326  }
327 
328  RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
329  "Addr=%d\n", efuse_addr);
330  read_efuse_byte(hw, efuse_addr, rtemp8);
331  if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
332  efuse_utilized++;
333  efuse_addr++;
334  }
335  }
336 
337  for (i = 0; i < efuse_max_section; i++) {
338  for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
339  efuse_tbl[(i * 8) + (j * 2)] =
340  (efuse_word[j][i] & 0xff);
341  efuse_tbl[(i * 8) + ((j * 2) + 1)] =
342  ((efuse_word[j][i] >> 8) & 0xff);
343  }
344  }
345 
346  for (i = 0; i < _size_byte; i++)
347  pbuf[i] = efuse_tbl[_offset + i];
348 
349  rtlefuse->efuse_usedbytes = efuse_utilized;
350  efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
351  rtlefuse->efuse_usedpercentage = efuse_usage;
352  rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
353  (u8 *)&efuse_utilized);
354  rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
355  &efuse_usage);
356 done:
357  for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
358  kfree(efuse_word[i]);
359  kfree(efuse_word);
360  kfree(efuse_tbl);
361 }
362 
364 {
365  struct rtl_priv *rtlpriv = rtl_priv(hw);
366  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
367  u8 section_idx, i, Base;
368  u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
369  bool wordchanged, result = true;
370 
371  for (section_idx = 0; section_idx < 16; section_idx++) {
372  Base = section_idx * 8;
373  wordchanged = false;
374 
375  for (i = 0; i < 8; i = i + 2) {
376  if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
377  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
378  (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
379  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
380  1])) {
381  words_need++;
382  wordchanged = true;
383  }
384  }
385 
386  if (wordchanged)
387  hdr_num++;
388  }
389 
390  totalbytes = hdr_num + words_need * 2;
391  efuse_used = rtlefuse->efuse_usedbytes;
392 
393  if ((totalbytes + efuse_used) >=
395  result = false;
396 
397  RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
398  "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
399  totalbytes, hdr_num, words_need, efuse_used);
400 
401  return result;
402 }
403 
405  u16 offset, u32 *value)
406 {
407  if (type == 1)
408  efuse_shadow_read_1byte(hw, offset, (u8 *) value);
409  else if (type == 2)
410  efuse_shadow_read_2byte(hw, offset, (u16 *) value);
411  else if (type == 4)
412  efuse_shadow_read_4byte(hw, offset, value);
413 
414 }
415 
417  u32 value)
418 {
419  if (type == 1)
420  efuse_shadow_write_1byte(hw, offset, (u8) value);
421  else if (type == 2)
422  efuse_shadow_write_2byte(hw, offset, (u16) value);
423  else if (type == 4)
424  efuse_shadow_write_4byte(hw, offset, value);
425 
426 }
427 
429 {
430  struct rtl_priv *rtlpriv = rtl_priv(hw);
431  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
432  u16 i, offset, base;
433  u8 word_en = 0x0F;
434  u8 first_pg = false;
435 
436  RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "--->\n");
437 
438  if (!efuse_shadow_update_chk(hw)) {
439  efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
440  memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
441  &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
442  rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
443 
444  RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
445  "<---efuse out of capacity!!\n");
446  return false;
447  }
448  efuse_power_switch(hw, true, true);
449 
450  for (offset = 0; offset < 16; offset++) {
451 
452  word_en = 0x0F;
453  base = offset * 8;
454 
455  for (i = 0; i < 8; i++) {
456  if (first_pg) {
457 
458  word_en &= ~(BIT(i / 2));
459 
460  rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
461  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
462  } else {
463 
464  if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
465  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
466  word_en &= ~(BIT(i / 2));
467 
468  rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
469  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
470  }
471  }
472  }
473 
474  if (word_en != 0x0F) {
475  u8 tmpdata[8];
476  memcpy(tmpdata,
477  &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
478  8);
479  RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
480  "U-efuse", tmpdata, 8);
481 
482  if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
483  tmpdata)) {
484  RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
485  "PG section(%#x) fail!!\n", offset);
486  break;
487  }
488  }
489 
490  }
491 
492  efuse_power_switch(hw, true, false);
493  efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
494 
495  memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
496  &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
497  rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
498 
499  RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "<---\n");
500  return true;
501 }
502 
504 {
505  struct rtl_priv *rtlpriv = rtl_priv(hw);
506  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
507 
508  if (rtlefuse->autoload_failflag)
509  memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
510  rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
511  else
512  efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
513 
514  memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
515  &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
516  rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
517 
518 }
520 
522 {
523  u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
524 
525  efuse_power_switch(hw, true, true);
526 
527  efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
528 
529  efuse_power_switch(hw, true, false);
530 
531 }
532 
533 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
534 {
535 }
536 
537 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
538  u16 offset, u8 *value)
539 {
540  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
541  *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
542 }
543 
544 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
545  u16 offset, u16 *value)
546 {
547  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
548 
549  *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
550  *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
551 
552 }
553 
554 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
555  u16 offset, u32 *value)
556 {
557  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
558 
559  *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
560  *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
561  *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
562  *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
563 }
564 
565 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
566  u16 offset, u8 value)
567 {
568  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
569 
570  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
571 }
572 
573 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
574  u16 offset, u16 value)
575 {
576  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
577 
578  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
579  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
580 
581 }
582 
583 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
584  u16 offset, u32 value)
585 {
586  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
587 
588  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
589  (u8) (value & 0x000000FF);
590  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
591  (u8) ((value >> 8) & 0x0000FF);
592  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
593  (u8) ((value >> 16) & 0x00FF);
594  rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
595  (u8) ((value >> 24) & 0xFF);
596 
597 }
598 
599 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
600 {
601  struct rtl_priv *rtlpriv = rtl_priv(hw);
602  u8 tmpidx = 0;
603  int result;
604 
605  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
606  (u8) (addr & 0xff));
607  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
608  ((u8) ((addr >> 8) & 0x03)) |
609  (rtl_read_byte(rtlpriv,
610  rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
611  0xFC));
612 
613  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
614 
615  while (!(0x80 & rtl_read_byte(rtlpriv,
616  rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
617  && (tmpidx < 100)) {
618  tmpidx++;
619  }
620 
621  if (tmpidx < 100) {
622  *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
623  result = true;
624  } else {
625  *data = 0xff;
626  result = false;
627  }
628  return result;
629 }
630 
631 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
632 {
633  struct rtl_priv *rtlpriv = rtl_priv(hw);
634  u8 tmpidx = 0;
635 
636  RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr = %x Data=%x\n",
637  addr, data);
638 
639  rtl_write_byte(rtlpriv,
640  rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
641  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
642  (rtl_read_byte(rtlpriv,
643  rtlpriv->cfg->maps[EFUSE_CTRL] +
644  2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
645 
646  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
647  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
648 
649  while ((0x80 & rtl_read_byte(rtlpriv,
650  rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
651  && (tmpidx < 100)) {
652  tmpidx++;
653  }
654 
655  if (tmpidx < 100)
656  return true;
657 
658  return false;
659 }
660 
661 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
662 {
663  struct rtl_priv *rtlpriv = rtl_priv(hw);
664  efuse_power_switch(hw, false, true);
665  read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
666  efuse_power_switch(hw, false, false);
667 }
668 
669 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
670  u8 efuse_data, u8 offset, u8 *tmpdata,
671  u8 *readstate)
672 {
673  bool dataempty = true;
674  u8 hoffset;
675  u8 tmpidx;
676  u8 hworden;
677  u8 word_cnts;
678 
679  hoffset = (efuse_data >> 4) & 0x0F;
680  hworden = efuse_data & 0x0F;
681  word_cnts = efuse_calculate_word_cnts(hworden);
682 
683  if (hoffset == offset) {
684  for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
685  if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
686  &efuse_data)) {
687  tmpdata[tmpidx] = efuse_data;
688  if (efuse_data != 0xff)
689  dataempty = true;
690  }
691  }
692 
693  if (dataempty) {
694  *readstate = PG_STATE_DATA;
695  } else {
696  *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
697  *readstate = PG_STATE_HEADER;
698  }
699 
700  } else {
701  *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
702  *readstate = PG_STATE_HEADER;
703  }
704 }
705 
706 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
707 {
708  u8 readstate = PG_STATE_HEADER;
709  bool continual = true;
710  u8 efuse_data, word_cnts = 0;
711  u16 efuse_addr = 0;
712  u8 tmpdata[8];
713 
714  if (data == NULL)
715  return false;
716  if (offset > 15)
717  return false;
718 
719  memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
720  memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
721 
722  while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
723  if (readstate & PG_STATE_HEADER) {
724  if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
725  && (efuse_data != 0xFF))
726  efuse_read_data_case1(hw, &efuse_addr,
727  efuse_data,
728  offset, tmpdata,
729  &readstate);
730  else
731  continual = false;
732  } else if (readstate & PG_STATE_DATA) {
733  efuse_word_enable_data_read(0, tmpdata, data);
734  efuse_addr = efuse_addr + (word_cnts * 2) + 1;
735  readstate = PG_STATE_HEADER;
736  }
737 
738  }
739 
740  if ((data[0] == 0xff) && (data[1] == 0xff) &&
741  (data[2] == 0xff) && (data[3] == 0xff) &&
742  (data[4] == 0xff) && (data[5] == 0xff) &&
743  (data[6] == 0xff) && (data[7] == 0xff))
744  return false;
745  else
746  return true;
747 
748 }
749 
750 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
751  u8 efuse_data, u8 offset, int *continual,
752  u8 *write_state, struct pgpkt_struct *target_pkt,
753  int *repeat_times, int *result, u8 word_en)
754 {
755  struct rtl_priv *rtlpriv = rtl_priv(hw);
756  struct pgpkt_struct tmp_pkt;
757  bool dataempty = true;
758  u8 originaldata[8 * sizeof(u8)];
759  u8 badworden = 0x0F;
760  u8 match_word_en, tmp_word_en;
761  u8 tmpindex;
762  u8 tmp_header = efuse_data;
763  u8 tmp_word_cnts;
764 
765  tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
766  tmp_pkt.word_en = tmp_header & 0x0F;
767  tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
768 
769  if (tmp_pkt.offset != target_pkt->offset) {
770  *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
771  *write_state = PG_STATE_HEADER;
772  } else {
773  for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
774  u16 address = *efuse_addr + 1 + tmpindex;
775  if (efuse_one_byte_read(hw, address,
776  &efuse_data) && (efuse_data != 0xFF))
777  dataempty = false;
778  }
779 
780  if (!dataempty) {
781  *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
782  *write_state = PG_STATE_HEADER;
783  } else {
784  match_word_en = 0x0F;
785  if (!((target_pkt->word_en & BIT(0)) |
786  (tmp_pkt.word_en & BIT(0))))
787  match_word_en &= (~BIT(0));
788 
789  if (!((target_pkt->word_en & BIT(1)) |
790  (tmp_pkt.word_en & BIT(1))))
791  match_word_en &= (~BIT(1));
792 
793  if (!((target_pkt->word_en & BIT(2)) |
794  (tmp_pkt.word_en & BIT(2))))
795  match_word_en &= (~BIT(2));
796 
797  if (!((target_pkt->word_en & BIT(3)) |
798  (tmp_pkt.word_en & BIT(3))))
799  match_word_en &= (~BIT(3));
800 
801  if ((match_word_en & 0x0F) != 0x0F) {
802  badworden = efuse_word_enable_data_write(
803  hw, *efuse_addr + 1,
804  tmp_pkt.word_en,
805  target_pkt->data);
806 
807  if (0x0F != (badworden & 0x0F)) {
808  u8 reorg_offset = offset;
809  u8 reorg_worden = badworden;
810  efuse_pg_packet_write(hw, reorg_offset,
811  reorg_worden,
812  originaldata);
813  }
814 
815  tmp_word_en = 0x0F;
816  if ((target_pkt->word_en & BIT(0)) ^
817  (match_word_en & BIT(0)))
818  tmp_word_en &= (~BIT(0));
819 
820  if ((target_pkt->word_en & BIT(1)) ^
821  (match_word_en & BIT(1)))
822  tmp_word_en &= (~BIT(1));
823 
824  if ((target_pkt->word_en & BIT(2)) ^
825  (match_word_en & BIT(2)))
826  tmp_word_en &= (~BIT(2));
827 
828  if ((target_pkt->word_en & BIT(3)) ^
829  (match_word_en & BIT(3)))
830  tmp_word_en &= (~BIT(3));
831 
832  if ((tmp_word_en & 0x0F) != 0x0F) {
833  *efuse_addr = efuse_get_current_size(hw);
834  target_pkt->offset = offset;
835  target_pkt->word_en = tmp_word_en;
836  } else {
837  *continual = false;
838  }
839  *write_state = PG_STATE_HEADER;
840  *repeat_times += 1;
841  if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
842  *continual = false;
843  *result = false;
844  }
845  } else {
846  *efuse_addr += (2 * tmp_word_cnts) + 1;
847  target_pkt->offset = offset;
848  target_pkt->word_en = word_en;
849  *write_state = PG_STATE_HEADER;
850  }
851  }
852  }
853  RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
854 }
855 
856 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
857  int *continual, u8 *write_state,
858  struct pgpkt_struct target_pkt,
859  int *repeat_times, int *result)
860 {
861  struct rtl_priv *rtlpriv = rtl_priv(hw);
862  struct pgpkt_struct tmp_pkt;
863  u8 pg_header;
864  u8 tmp_header;
865  u8 originaldata[8 * sizeof(u8)];
866  u8 tmp_word_cnts;
867  u8 badworden = 0x0F;
868 
869  pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
870  efuse_one_byte_write(hw, *efuse_addr, pg_header);
871  efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
872 
873  if (tmp_header == pg_header) {
874  *write_state = PG_STATE_DATA;
875  } else if (tmp_header == 0xFF) {
876  *write_state = PG_STATE_HEADER;
877  *repeat_times += 1;
878  if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
879  *continual = false;
880  *result = false;
881  }
882  } else {
883  tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
884  tmp_pkt.word_en = tmp_header & 0x0F;
885 
886  tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
887 
888  memset(originaldata, 0xff, 8 * sizeof(u8));
889 
890  if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
891  badworden = efuse_word_enable_data_write(hw,
892  *efuse_addr + 1, tmp_pkt.word_en,
893  originaldata);
894 
895  if (0x0F != (badworden & 0x0F)) {
896  u8 reorg_offset = tmp_pkt.offset;
897  u8 reorg_worden = badworden;
898  efuse_pg_packet_write(hw, reorg_offset,
899  reorg_worden,
900  originaldata);
901  *efuse_addr = efuse_get_current_size(hw);
902  } else {
903  *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
904  + 1;
905  }
906  } else {
907  *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
908  }
909 
910  *write_state = PG_STATE_HEADER;
911  *repeat_times += 1;
912  if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
913  *continual = false;
914  *result = false;
915  }
916 
917  RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
918  "efuse PG_STATE_HEADER-2\n");
919  }
920 }
921 
922 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
923  u8 offset, u8 word_en, u8 *data)
924 {
925  struct rtl_priv *rtlpriv = rtl_priv(hw);
926  struct pgpkt_struct target_pkt;
927  u8 write_state = PG_STATE_HEADER;
928  int continual = true, result = true;
929  u16 efuse_addr = 0;
930  u8 efuse_data;
931  u8 target_word_cnts = 0;
932  u8 badworden = 0x0F;
933  static int repeat_times;
934 
935  if (efuse_get_current_size(hw) >=
937  RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
938  "efuse_pg_packet_write error\n");
939  return false;
940  }
941 
942  target_pkt.offset = offset;
943  target_pkt.word_en = word_en;
944 
945  memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
946 
947  efuse_word_enable_data_read(word_en, data, target_pkt.data);
948  target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
949 
950  RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
951 
952  while (continual && (efuse_addr <
954 
955  if (write_state == PG_STATE_HEADER) {
956  badworden = 0x0F;
957  RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
958  "efuse PG_STATE_HEADER\n");
959 
960  if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
961  (efuse_data != 0xFF))
962  efuse_write_data_case1(hw, &efuse_addr,
963  efuse_data, offset,
964  &continual,
965  &write_state, &target_pkt,
966  &repeat_times, &result,
967  word_en);
968  else
969  efuse_write_data_case2(hw, &efuse_addr,
970  &continual,
971  &write_state,
972  target_pkt,
973  &repeat_times,
974  &result);
975 
976  } else if (write_state == PG_STATE_DATA) {
977  RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
978  "efuse PG_STATE_DATA\n");
979  badworden =
980  efuse_word_enable_data_write(hw, efuse_addr + 1,
981  target_pkt.word_en,
982  target_pkt.data);
983 
984  if ((badworden & 0x0F) == 0x0F) {
985  continual = false;
986  } else {
987  efuse_addr += (2 * target_word_cnts) + 1;
988 
989  target_pkt.offset = offset;
990  target_pkt.word_en = badworden;
991  target_word_cnts =
992  efuse_calculate_word_cnts(target_pkt.
993  word_en);
994  write_state = PG_STATE_HEADER;
995  repeat_times++;
996  if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
997  continual = false;
998  result = false;
999  }
1000  RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1001  "efuse PG_STATE_HEADER-3\n");
1002  }
1003  }
1004  }
1005 
1006  if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
1007  RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1008  "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1009  }
1010 
1011  return true;
1012 }
1013 
1014 static void efuse_word_enable_data_read(u8 word_en,
1015  u8 *sourdata, u8 *targetdata)
1016 {
1017  if (!(word_en & BIT(0))) {
1018  targetdata[0] = sourdata[0];
1019  targetdata[1] = sourdata[1];
1020  }
1021 
1022  if (!(word_en & BIT(1))) {
1023  targetdata[2] = sourdata[2];
1024  targetdata[3] = sourdata[3];
1025  }
1026 
1027  if (!(word_en & BIT(2))) {
1028  targetdata[4] = sourdata[4];
1029  targetdata[5] = sourdata[5];
1030  }
1031 
1032  if (!(word_en & BIT(3))) {
1033  targetdata[6] = sourdata[6];
1034  targetdata[7] = sourdata[7];
1035  }
1036 }
1037 
1038 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1039  u16 efuse_addr, u8 word_en, u8 *data)
1040 {
1041  struct rtl_priv *rtlpriv = rtl_priv(hw);
1042  u16 tmpaddr;
1043  u16 start_addr = efuse_addr;
1044  u8 badworden = 0x0F;
1045  u8 tmpdata[8];
1046 
1047  memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1048  RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "word_en = %x efuse_addr=%x\n",
1049  word_en, efuse_addr);
1050 
1051  if (!(word_en & BIT(0))) {
1052  tmpaddr = start_addr;
1053  efuse_one_byte_write(hw, start_addr++, data[0]);
1054  efuse_one_byte_write(hw, start_addr++, data[1]);
1055 
1056  efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1057  efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1058  if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1059  badworden &= (~BIT(0));
1060  }
1061 
1062  if (!(word_en & BIT(1))) {
1063  tmpaddr = start_addr;
1064  efuse_one_byte_write(hw, start_addr++, data[2]);
1065  efuse_one_byte_write(hw, start_addr++, data[3]);
1066 
1067  efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1068  efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1069  if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1070  badworden &= (~BIT(1));
1071  }
1072 
1073  if (!(word_en & BIT(2))) {
1074  tmpaddr = start_addr;
1075  efuse_one_byte_write(hw, start_addr++, data[4]);
1076  efuse_one_byte_write(hw, start_addr++, data[5]);
1077 
1078  efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1079  efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1080  if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1081  badworden &= (~BIT(2));
1082  }
1083 
1084  if (!(word_en & BIT(3))) {
1085  tmpaddr = start_addr;
1086  efuse_one_byte_write(hw, start_addr++, data[6]);
1087  efuse_one_byte_write(hw, start_addr++, data[7]);
1088 
1089  efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1090  efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1091  if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1092  badworden &= (~BIT(3));
1093  }
1094 
1095  return badworden;
1096 }
1097 
1098 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1099 {
1100  struct rtl_priv *rtlpriv = rtl_priv(hw);
1101  struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1102  u8 tempval;
1103  u16 tmpV16;
1104 
1105  if (pwrstate && (rtlhal->hw_type !=
1107  tmpV16 = rtl_read_word(rtlpriv,
1108  rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1109  if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1110  tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1111  rtl_write_word(rtlpriv,
1112  rtlpriv->cfg->maps[SYS_ISO_CTRL],
1113  tmpV16);
1114  }
1115 
1116  tmpV16 = rtl_read_word(rtlpriv,
1117  rtlpriv->cfg->maps[SYS_FUNC_EN]);
1118  if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1119  tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1120  rtl_write_word(rtlpriv,
1121  rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1122  }
1123 
1124  tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1125  if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1126  (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1127  tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1128  rtlpriv->cfg->maps[EFUSE_ANA8M]);
1129  rtl_write_word(rtlpriv,
1130  rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1131  }
1132  }
1133 
1134  if (pwrstate) {
1135  if (write) {
1136  tempval = rtl_read_byte(rtlpriv,
1137  rtlpriv->cfg->maps[EFUSE_TEST] +
1138  3);
1139 
1140  if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1141  tempval &= 0x0F;
1142  tempval |= (VOLTAGE_V25 << 4);
1143  }
1144 
1145  rtl_write_byte(rtlpriv,
1146  rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1147  (tempval | 0x80));
1148  }
1149 
1150  if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1151  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1152  0x03);
1153  }
1154 
1155  } else {
1156  if (write) {
1157  tempval = rtl_read_byte(rtlpriv,
1158  rtlpriv->cfg->maps[EFUSE_TEST] +
1159  3);
1160  rtl_write_byte(rtlpriv,
1161  rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1162  (tempval & 0x7F));
1163  }
1164 
1165  if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1166  rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1167  0x02);
1168  }
1169 
1170  }
1171 
1172 }
1173 
1174 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1175 {
1176  int continual = true;
1177  u16 efuse_addr = 0;
1178  u8 hworden;
1179  u8 efuse_data, word_cnts;
1180 
1181  while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
1182  && (efuse_addr < EFUSE_MAX_SIZE)) {
1183  if (efuse_data != 0xFF) {
1184  hworden = efuse_data & 0x0F;
1185  word_cnts = efuse_calculate_word_cnts(hworden);
1186  efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1187  } else {
1188  continual = false;
1189  }
1190  }
1191 
1192  return efuse_addr;
1193 }
1194 
1195 static u8 efuse_calculate_word_cnts(u8 word_en)
1196 {
1197  u8 word_cnts = 0;
1198  if (!(word_en & BIT(0)))
1199  word_cnts++;
1200  if (!(word_en & BIT(1)))
1201  word_cnts++;
1202  if (!(word_en & BIT(2)))
1203  word_cnts++;
1204  if (!(word_en & BIT(3)))
1205  word_cnts++;
1206  return word_cnts;
1207 }
1208