Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ehv_bytechan.c
Go to the documentation of this file.
1 /* ePAPR hypervisor byte channel device driver
2  *
3  * Copyright 2009-2011 Freescale Semiconductor, Inc.
4  *
5  * Author: Timur Tabi <[email protected]>
6  *
7  * This file is licensed under the terms of the GNU General Public License
8  * version 2. This program is licensed "as is" without any warranty of any
9  * kind, whether express or implied.
10  *
11  * This driver support three distinct interfaces, all of which are related to
12  * ePAPR hypervisor byte channels.
13  *
14  * 1) An early-console (udbg) driver. This provides early console output
15  * through a byte channel. The byte channel handle must be specified in a
16  * Kconfig option.
17  *
18  * 2) A normal console driver. Output is sent to the byte channel designated
19  * for stdout in the device tree. The console driver is for handling kernel
20  * printk calls.
21  *
22  * 3) A tty driver, which is used to handle user-space input and output. The
23  * byte channel used for the console is designated as the default tty.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/slab.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
31 #include <linux/fs.h>
32 #include <linux/poll.h>
33 #include <asm/epapr_hcalls.h>
34 #include <linux/of.h>
35 #include <linux/platform_device.h>
36 #include <linux/cdev.h>
37 #include <linux/console.h>
38 #include <linux/tty.h>
39 #include <linux/tty_flip.h>
40 #include <linux/circ_buf.h>
41 #include <asm/udbg.h>
42 
43 /* The size of the transmit circular buffer. This must be a power of two. */
44 #define BUF_SIZE 2048
45 
46 /* Per-byte channel private data */
47 struct ehv_bc_data {
48  struct device *dev;
49  struct tty_port port;
51  unsigned int rx_irq;
52  unsigned int tx_irq;
53 
54  spinlock_t lock; /* lock for transmit buffer */
55  unsigned char buf[BUF_SIZE]; /* transmit circular buffer */
56  unsigned int head; /* circular buffer head */
57  unsigned int tail; /* circular buffer tail */
58 
59  int tx_irq_enabled; /* true == TX interrupt is enabled */
60 };
61 
62 /* Array of byte channel objects */
63 static struct ehv_bc_data *bcs;
64 
65 /* Byte channel handle for stdout (and stdin), taken from device tree */
66 static unsigned int stdout_bc;
67 
68 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
69 static unsigned int stdout_irq;
70 
71 /**************************** SUPPORT FUNCTIONS ****************************/
72 
73 /*
74  * Enable the transmit interrupt
75  *
76  * Unlike a serial device, byte channels have no mechanism for disabling their
77  * own receive or transmit interrupts. To emulate that feature, we toggle
78  * the IRQ in the kernel.
79  *
80  * We cannot just blindly call enable_irq() or disable_irq(), because these
81  * calls are reference counted. This means that we cannot call enable_irq()
82  * if interrupts are already enabled. This can happen in two situations:
83  *
84  * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
85  * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
86  *
87  * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
88  */
89 static void enable_tx_interrupt(struct ehv_bc_data *bc)
90 {
91  if (!bc->tx_irq_enabled) {
92  enable_irq(bc->tx_irq);
93  bc->tx_irq_enabled = 1;
94  }
95 }
96 
97 static void disable_tx_interrupt(struct ehv_bc_data *bc)
98 {
99  if (bc->tx_irq_enabled) {
101  bc->tx_irq_enabled = 0;
102  }
103 }
104 
105 /*
106  * find the byte channel handle to use for the console
107  *
108  * The byte channel to be used for the console is specified via a "stdout"
109  * property in the /chosen node.
110  *
111  * For compatible with legacy device trees, we also look for a "stdout" alias.
112  */
113 static int find_console_handle(void)
114 {
115  struct device_node *np, *np2;
116  const char *sprop = NULL;
117  const uint32_t *iprop;
118 
119  np = of_find_node_by_path("/chosen");
120  if (np)
121  sprop = of_get_property(np, "stdout-path", NULL);
122 
123  if (!np || !sprop) {
124  of_node_put(np);
125  np = of_find_node_by_name(NULL, "aliases");
126  if (np)
127  sprop = of_get_property(np, "stdout", NULL);
128  }
129 
130  if (!sprop) {
131  of_node_put(np);
132  return 0;
133  }
134 
135  /* We don't care what the aliased node is actually called. We only
136  * care if it's compatible with "epapr,hv-byte-channel", because that
137  * indicates that it's a byte channel node. We use a temporary
138  * variable, 'np2', because we can't release 'np' until we're done with
139  * 'sprop'.
140  */
141  np2 = of_find_node_by_path(sprop);
142  of_node_put(np);
143  np = np2;
144  if (!np) {
145  pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop);
146  return 0;
147  }
148 
149  /* Is it a byte channel? */
150  if (!of_device_is_compatible(np, "epapr,hv-byte-channel")) {
151  of_node_put(np);
152  return 0;
153  }
154 
155  stdout_irq = irq_of_parse_and_map(np, 0);
156  if (stdout_irq == NO_IRQ) {
157  pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop);
158  of_node_put(np);
159  return 0;
160  }
161 
162  /*
163  * The 'hv-handle' property contains the handle for this byte channel.
164  */
165  iprop = of_get_property(np, "hv-handle", NULL);
166  if (!iprop) {
167  pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
168  np->name);
169  of_node_put(np);
170  return 0;
171  }
172  stdout_bc = be32_to_cpu(*iprop);
173 
174  of_node_put(np);
175  return 1;
176 }
177 
178 /*************************** EARLY CONSOLE DRIVER ***************************/
179 
180 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
181 
182 /*
183  * send a byte to a byte channel, wait if necessary
184  *
185  * This function sends a byte to a byte channel, and it waits and
186  * retries if the byte channel is full. It returns if the character
187  * has been sent, or if some error has occurred.
188  *
189  */
190 static void byte_channel_spin_send(const char data)
191 {
192  int ret, count;
193 
194  do {
195  count = 1;
196  ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
197  &count, &data);
198  } while (ret == EV_EAGAIN);
199 }
200 
201 /*
202  * The udbg subsystem calls this function to display a single character.
203  * We convert CR to a CR/LF.
204  */
205 static void ehv_bc_udbg_putc(char c)
206 {
207  if (c == '\n')
208  byte_channel_spin_send('\r');
209 
210  byte_channel_spin_send(c);
211 }
212 
213 /*
214  * early console initialization
215  *
216  * PowerPC kernels support an early printk console, also known as udbg.
217  * This function must be called via the ppc_md.init_early function pointer.
218  * At this point, the device tree has been unflattened, so we can obtain the
219  * byte channel handle for stdout.
220  *
221  * We only support displaying of characters (putc). We do not support
222  * keyboard input.
223  */
224 void __init udbg_init_ehv_bc(void)
225 {
226  unsigned int rx_count, tx_count;
227  unsigned int ret;
228 
229  /* Verify the byte channel handle */
230  ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
231  &rx_count, &tx_count);
232  if (ret)
233  return;
234 
235  udbg_putc = ehv_bc_udbg_putc;
237 
238  udbg_printf("ehv-bc: early console using byte channel handle %u\n",
239  CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
240 }
241 
242 #endif
243 
244 /****************************** CONSOLE DRIVER ******************************/
245 
246 static struct tty_driver *ehv_bc_driver;
247 
248 /*
249  * Byte channel console sending worker function.
250  *
251  * For consoles, if the output buffer is full, we should just spin until it
252  * clears.
253  */
254 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
255  unsigned int count)
256 {
257  unsigned int len;
258  int ret = 0;
259 
260  while (count) {
261  len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
262  do {
263  ret = ev_byte_channel_send(handle, &len, s);
264  } while (ret == EV_EAGAIN);
265  count -= len;
266  s += len;
267  }
268 
269  return ret;
270 }
271 
272 /*
273  * write a string to the console
274  *
275  * This function gets called to write a string from the kernel, typically from
276  * a printk(). This function spins until all data is written.
277  *
278  * We copy the data to a temporary buffer because we need to insert a \r in
279  * front of every \n. It's more efficient to copy the data to the buffer than
280  * it is to make multiple hcalls for each character or each newline.
281  */
282 static void ehv_bc_console_write(struct console *co, const char *s,
283  unsigned int count)
284 {
286  unsigned int i, j = 0;
287  char c;
288 
289  for (i = 0; i < count; i++) {
290  c = *s++;
291 
292  if (c == '\n')
293  s2[j++] = '\r';
294 
295  s2[j++] = c;
296  if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
297  if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
298  return;
299  j = 0;
300  }
301  }
302 
303  if (j)
304  ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
305 }
306 
307 /*
308  * When /dev/console is opened, the kernel iterates the console list looking
309  * for one with ->device and then calls that method. On success, it expects
310  * the passed-in int* to contain the minor number to use.
311  */
312 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
313 {
314  *index = co->index;
315 
316  return ehv_bc_driver;
317 }
318 
319 static struct console ehv_bc_console = {
320  .name = "ttyEHV",
321  .write = ehv_bc_console_write,
322  .device = ehv_bc_console_device,
323  .flags = CON_PRINTBUFFER | CON_ENABLED,
324 };
325 
326 /*
327  * Console initialization
328  *
329  * This is the first function that is called after the device tree is
330  * available, so here is where we determine the byte channel handle and IRQ for
331  * stdout/stdin, even though that information is used by the tty and character
332  * drivers.
333  */
334 static int __init ehv_bc_console_init(void)
335 {
336  if (!find_console_handle()) {
337  pr_debug("ehv-bc: stdout is not a byte channel\n");
338  return -ENODEV;
339  }
340 
341 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
342  /* Print a friendly warning if the user chose the wrong byte channel
343  * handle for udbg.
344  */
345  if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
346  pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n",
347  CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
348 #endif
349 
350  /* add_preferred_console() must be called before register_console(),
351  otherwise it won't work. However, we don't want to enumerate all the
352  byte channels here, either, since we only care about one. */
353 
354  add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
355  register_console(&ehv_bc_console);
356 
357  pr_info("ehv-bc: registered console driver for byte channel %u\n",
358  stdout_bc);
359 
360  return 0;
361 }
362 console_initcall(ehv_bc_console_init);
363 
364 /******************************** TTY DRIVER ********************************/
365 
366 /*
367  * byte channel receive interupt handler
368  *
369  * This ISR is called whenever data is available on a byte channel.
370  */
371 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
372 {
373  struct ehv_bc_data *bc = data;
374  struct tty_struct *ttys = tty_port_tty_get(&bc->port);
375  unsigned int rx_count, tx_count, len;
376  int count;
378  int ret;
379 
380  /* ttys could be NULL during a hangup */
381  if (!ttys)
382  return IRQ_HANDLED;
383 
384  /* Find out how much data needs to be read, and then ask the TTY layer
385  * if it can handle that much. We want to ensure that every byte we
386  * read from the byte channel will be accepted by the TTY layer.
387  */
388  ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
389  count = tty_buffer_request_room(ttys, rx_count);
390 
391  /* 'count' is the maximum amount of data the TTY layer can accept at
392  * this time. However, during testing, I was never able to get 'count'
393  * to be less than 'rx_count'. I'm not sure whether I'm calling it
394  * correctly.
395  */
396 
397  while (count > 0) {
398  len = min_t(unsigned int, count, sizeof(buffer));
399 
400  /* Read some data from the byte channel. This function will
401  * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
402  */
403  ev_byte_channel_receive(bc->handle, &len, buffer);
404 
405  /* 'len' is now the amount of data that's been received. 'len'
406  * can't be zero, and most likely it's equal to one.
407  */
408 
409  /* Pass the received data to the tty layer. */
410  ret = tty_insert_flip_string(ttys, buffer, len);
411 
412  /* 'ret' is the number of bytes that the TTY layer accepted.
413  * If it's not equal to 'len', then it means the buffer is
414  * full, which should never happen. If it does happen, we can
415  * exit gracefully, but we drop the last 'len - ret' characters
416  * that we read from the byte channel.
417  */
418  if (ret != len)
419  break;
420 
421  count -= len;
422  }
423 
424  /* Tell the tty layer that we're done. */
425  tty_flip_buffer_push(ttys);
426 
427  tty_kref_put(ttys);
428 
429  return IRQ_HANDLED;
430 }
431 
432 /*
433  * dequeue the transmit buffer to the hypervisor
434  *
435  * This function, which can be called in interrupt context, dequeues as much
436  * data as possible from the transmit buffer to the byte channel.
437  */
438 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
439 {
440  unsigned int count;
441  unsigned int len, ret;
442  unsigned long flags;
443 
444  do {
445  spin_lock_irqsave(&bc->lock, flags);
446  len = min_t(unsigned int,
447  CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
449 
450  ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
451 
452  /* 'len' is valid only if the return code is 0 or EV_EAGAIN */
453  if (!ret || (ret == EV_EAGAIN))
454  bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
455 
456  count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
457  spin_unlock_irqrestore(&bc->lock, flags);
458  } while (count && !ret);
459 
460  spin_lock_irqsave(&bc->lock, flags);
461  if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
462  /*
463  * If we haven't emptied the buffer, then enable the TX IRQ.
464  * We'll get an interrupt when there's more room in the
465  * hypervisor's output buffer.
466  */
467  enable_tx_interrupt(bc);
468  else
469  disable_tx_interrupt(bc);
470  spin_unlock_irqrestore(&bc->lock, flags);
471 }
472 
473 /*
474  * byte channel transmit interupt handler
475  *
476  * This ISR is called whenever space becomes available for transmitting
477  * characters on a byte channel.
478  */
479 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
480 {
481  struct ehv_bc_data *bc = data;
482  struct tty_struct *ttys = tty_port_tty_get(&bc->port);
483 
484  ehv_bc_tx_dequeue(bc);
485  if (ttys) {
486  tty_wakeup(ttys);
487  tty_kref_put(ttys);
488  }
489 
490  return IRQ_HANDLED;
491 }
492 
493 /*
494  * This function is called when the tty layer has data for us send. We store
495  * the data first in a circular buffer, and then dequeue as much of that data
496  * as possible.
497  *
498  * We don't need to worry about whether there is enough room in the buffer for
499  * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty
500  * layer how much data it can safely send to us. We guarantee that
501  * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
502  * too much data.
503  */
504 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
505  int count)
506 {
507  struct ehv_bc_data *bc = ttys->driver_data;
508  unsigned long flags;
509  unsigned int len;
510  unsigned int written = 0;
511 
512  while (1) {
513  spin_lock_irqsave(&bc->lock, flags);
514  len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
515  if (count < len)
516  len = count;
517  if (len) {
518  memcpy(bc->buf + bc->head, s, len);
519  bc->head = (bc->head + len) & (BUF_SIZE - 1);
520  }
521  spin_unlock_irqrestore(&bc->lock, flags);
522  if (!len)
523  break;
524 
525  s += len;
526  count -= len;
527  written += len;
528  }
529 
530  ehv_bc_tx_dequeue(bc);
531 
532  return written;
533 }
534 
535 /*
536  * This function can be called multiple times for a given tty_struct, which is
537  * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
538  *
539  * The tty layer will still call this function even if the device was not
540  * registered (i.e. tty_register_device() was not called). This happens
541  * because tty_register_device() is optional and some legacy drivers don't
542  * use it. So we need to check for that.
543  */
544 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
545 {
546  struct ehv_bc_data *bc = &bcs[ttys->index];
547 
548  if (!bc->dev)
549  return -ENODEV;
550 
551  return tty_port_open(&bc->port, ttys, filp);
552 }
553 
554 /*
555  * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
556  * still call this function to close the tty device. So we can't assume that
557  * the tty port has been initialized.
558  */
559 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
560 {
561  struct ehv_bc_data *bc = &bcs[ttys->index];
562 
563  if (bc->dev)
564  tty_port_close(&bc->port, ttys, filp);
565 }
566 
567 /*
568  * Return the amount of space in the output buffer
569  *
570  * This is actually a contract between the driver and the tty layer outlining
571  * how much write room the driver can guarantee will be sent OR BUFFERED. This
572  * driver MUST honor the return value.
573  */
574 static int ehv_bc_tty_write_room(struct tty_struct *ttys)
575 {
576  struct ehv_bc_data *bc = ttys->driver_data;
577  unsigned long flags;
578  int count;
579 
580  spin_lock_irqsave(&bc->lock, flags);
581  count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
582  spin_unlock_irqrestore(&bc->lock, flags);
583 
584  return count;
585 }
586 
587 /*
588  * Stop sending data to the tty layer
589  *
590  * This function is called when the tty layer's input buffers are getting full,
591  * so the driver should stop sending it data. The easiest way to do this is to
592  * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
593  * called.
594  *
595  * The hypervisor will continue to queue up any incoming data. If there is any
596  * data in the queue when the RX interrupt is enabled, we'll immediately get an
597  * RX interrupt.
598  */
599 static void ehv_bc_tty_throttle(struct tty_struct *ttys)
600 {
601  struct ehv_bc_data *bc = ttys->driver_data;
602 
603  disable_irq(bc->rx_irq);
604 }
605 
606 /*
607  * Resume sending data to the tty layer
608  *
609  * This function is called after previously calling ehv_bc_tty_throttle(). The
610  * tty layer's input buffers now have more room, so the driver can resume
611  * sending it data.
612  */
613 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
614 {
615  struct ehv_bc_data *bc = ttys->driver_data;
616 
617  /* If there is any data in the queue when the RX interrupt is enabled,
618  * we'll immediately get an RX interrupt.
619  */
620  enable_irq(bc->rx_irq);
621 }
622 
623 static void ehv_bc_tty_hangup(struct tty_struct *ttys)
624 {
625  struct ehv_bc_data *bc = ttys->driver_data;
626 
627  ehv_bc_tx_dequeue(bc);
628  tty_port_hangup(&bc->port);
629 }
630 
631 /*
632  * TTY driver operations
633  *
634  * If we could ask the hypervisor how much data is still in the TX buffer, or
635  * at least how big the TX buffers are, then we could implement the
636  * .wait_until_sent and .chars_in_buffer functions.
637  */
638 static const struct tty_operations ehv_bc_ops = {
639  .open = ehv_bc_tty_open,
640  .close = ehv_bc_tty_close,
641  .write = ehv_bc_tty_write,
642  .write_room = ehv_bc_tty_write_room,
643  .throttle = ehv_bc_tty_throttle,
644  .unthrottle = ehv_bc_tty_unthrottle,
645  .hangup = ehv_bc_tty_hangup,
646 };
647 
648 /*
649  * initialize the TTY port
650  *
651  * This function will only be called once, no matter how many times
652  * ehv_bc_tty_open() is called. That's why we register the ISR here, and also
653  * why we initialize tty_struct-related variables here.
654  */
655 static int ehv_bc_tty_port_activate(struct tty_port *port,
656  struct tty_struct *ttys)
657 {
658  struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
659  int ret;
660 
661  ttys->driver_data = bc;
662 
663  ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
664  if (ret < 0) {
665  dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
666  bc->rx_irq, ret);
667  return ret;
668  }
669 
670  /* request_irq also enables the IRQ */
671  bc->tx_irq_enabled = 1;
672 
673  ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
674  if (ret < 0) {
675  dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
676  bc->tx_irq, ret);
677  free_irq(bc->rx_irq, bc);
678  return ret;
679  }
680 
681  /* The TX IRQ is enabled only when we can't write all the data to the
682  * byte channel at once, so by default it's disabled.
683  */
684  disable_tx_interrupt(bc);
685 
686  return 0;
687 }
688 
689 static void ehv_bc_tty_port_shutdown(struct tty_port *port)
690 {
691  struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
692 
693  free_irq(bc->tx_irq, bc);
694  free_irq(bc->rx_irq, bc);
695 }
696 
697 static const struct tty_port_operations ehv_bc_tty_port_ops = {
698  .activate = ehv_bc_tty_port_activate,
699  .shutdown = ehv_bc_tty_port_shutdown,
700 };
701 
702 static int __devinit ehv_bc_tty_probe(struct platform_device *pdev)
703 {
704  struct device_node *np = pdev->dev.of_node;
705  struct ehv_bc_data *bc;
706  const uint32_t *iprop;
707  unsigned int handle;
708  int ret;
709  static unsigned int index = 1;
710  unsigned int i;
711 
712  iprop = of_get_property(np, "hv-handle", NULL);
713  if (!iprop) {
714  dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
715  np->name);
716  return -ENODEV;
717  }
718 
719  /* We already told the console layer that the index for the console
720  * device is zero, so we need to make sure that we use that index when
721  * we probe the console byte channel node.
722  */
723  handle = be32_to_cpu(*iprop);
724  i = (handle == stdout_bc) ? 0 : index++;
725  bc = &bcs[i];
726 
727  bc->handle = handle;
728  bc->head = 0;
729  bc->tail = 0;
730  spin_lock_init(&bc->lock);
731 
732  bc->rx_irq = irq_of_parse_and_map(np, 0);
733  bc->tx_irq = irq_of_parse_and_map(np, 1);
734  if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
735  dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
736  np->name);
737  ret = -ENODEV;
738  goto error;
739  }
740 
741  tty_port_init(&bc->port);
742  bc->port.ops = &ehv_bc_tty_port_ops;
743 
744  bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
745  &pdev->dev);
746  if (IS_ERR(bc->dev)) {
747  ret = PTR_ERR(bc->dev);
748  dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
749  goto error;
750  }
751 
752  dev_set_drvdata(&pdev->dev, bc);
753 
754  dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
755  ehv_bc_driver->name, i, bc->handle);
756 
757  return 0;
758 
759 error:
762 
763  memset(bc, 0, sizeof(struct ehv_bc_data));
764  return ret;
765 }
766 
767 static int ehv_bc_tty_remove(struct platform_device *pdev)
768 {
769  struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev);
770 
771  tty_unregister_device(ehv_bc_driver, bc - bcs);
772 
775 
776  return 0;
777 }
778 
779 static const struct of_device_id ehv_bc_tty_of_ids[] = {
780  { .compatible = "epapr,hv-byte-channel" },
781  {}
782 };
783 
784 static struct platform_driver ehv_bc_tty_driver = {
785  .driver = {
786  .owner = THIS_MODULE,
787  .name = "ehv-bc",
788  .of_match_table = ehv_bc_tty_of_ids,
789  },
790  .probe = ehv_bc_tty_probe,
791  .remove = ehv_bc_tty_remove,
792 };
793 
799 static int __init ehv_bc_init(void)
800 {
801  struct device_node *np;
802  unsigned int count = 0; /* Number of elements in bcs[] */
803  int ret;
804 
805  pr_info("ePAPR hypervisor byte channel driver\n");
806 
807  /* Count the number of byte channels */
808  for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
809  count++;
810 
811  if (!count)
812  return -ENODEV;
813 
814  /* The array index of an element in bcs[] is the same as the tty index
815  * for that element. If you know the address of an element in the
816  * array, then you can use pointer math (e.g. "bc - bcs") to get its
817  * tty index.
818  */
819  bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
820  if (!bcs)
821  return -ENOMEM;
822 
823  ehv_bc_driver = alloc_tty_driver(count);
824  if (!ehv_bc_driver) {
825  ret = -ENOMEM;
826  goto error;
827  }
828 
829  ehv_bc_driver->driver_name = "ehv-bc";
830  ehv_bc_driver->name = ehv_bc_console.name;
831  ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
832  ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
833  ehv_bc_driver->init_termios = tty_std_termios;
835  tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
836 
837  ret = tty_register_driver(ehv_bc_driver);
838  if (ret) {
839  pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
840  goto error;
841  }
842 
843  ret = platform_driver_register(&ehv_bc_tty_driver);
844  if (ret) {
845  pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
846  ret);
847  goto error;
848  }
849 
850  return 0;
851 
852 error:
853  if (ehv_bc_driver) {
854  tty_unregister_driver(ehv_bc_driver);
855  put_tty_driver(ehv_bc_driver);
856  }
857 
858  kfree(bcs);
859 
860  return ret;
861 }
862 
863 
869 static void __exit ehv_bc_exit(void)
870 {
871  tty_unregister_driver(ehv_bc_driver);
872  put_tty_driver(ehv_bc_driver);
873  kfree(bcs);
874 }
875 
876 module_init(ehv_bc_init);
877 module_exit(ehv_bc_exit);
878 
879 MODULE_AUTHOR("Timur Tabi <[email protected]>");
880 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
881 MODULE_LICENSE("GPL v2");