Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
extents.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, [email protected]
3  * Written by Alex Tomas <[email protected]>
4  *
5  * Architecture independence:
6  * Copyright (c) 2005, Bull S.A.
7  * Written by Pierre Peiffer <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  * - ext4*_error() should be used in some situations
28  * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  * - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 
45 #include <trace/events/ext4.h>
46 
47 /*
48  * used by extent splitting.
49  */
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
51  due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
54 
55 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
56 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
57 
58 static __le32 ext4_extent_block_csum(struct inode *inode,
59  struct ext4_extent_header *eh)
60 {
61  struct ext4_inode_info *ei = EXT4_I(inode);
62  struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
63  __u32 csum;
64 
65  csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67  return cpu_to_le32(csum);
68 }
69 
70 static int ext4_extent_block_csum_verify(struct inode *inode,
71  struct ext4_extent_header *eh)
72 {
73  struct ext4_extent_tail *et;
74 
75  if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
77  return 1;
78 
79  et = find_ext4_extent_tail(eh);
80  if (et->et_checksum != ext4_extent_block_csum(inode, eh))
81  return 0;
82  return 1;
83 }
84 
85 static void ext4_extent_block_csum_set(struct inode *inode,
86  struct ext4_extent_header *eh)
87 {
88  struct ext4_extent_tail *et;
89 
90  if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
92  return;
93 
94  et = find_ext4_extent_tail(eh);
95  et->et_checksum = ext4_extent_block_csum(inode, eh);
96 }
97 
98 static int ext4_split_extent(handle_t *handle,
99  struct inode *inode,
100  struct ext4_ext_path *path,
101  struct ext4_map_blocks *map,
102  int split_flag,
103  int flags);
104 
105 static int ext4_split_extent_at(handle_t *handle,
106  struct inode *inode,
107  struct ext4_ext_path *path,
109  int split_flag,
110  int flags);
111 
112 static int ext4_ext_truncate_extend_restart(handle_t *handle,
113  struct inode *inode,
114  int needed)
115 {
116  int err;
117 
118  if (!ext4_handle_valid(handle))
119  return 0;
120  if (handle->h_buffer_credits > needed)
121  return 0;
122  err = ext4_journal_extend(handle, needed);
123  if (err <= 0)
124  return err;
125  err = ext4_truncate_restart_trans(handle, inode, needed);
126  if (err == 0)
127  err = -EAGAIN;
128 
129  return err;
130 }
131 
132 /*
133  * could return:
134  * - EROFS
135  * - ENOMEM
136  */
137 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
138  struct ext4_ext_path *path)
139 {
140  if (path->p_bh) {
141  /* path points to block */
142  return ext4_journal_get_write_access(handle, path->p_bh);
143  }
144  /* path points to leaf/index in inode body */
145  /* we use in-core data, no need to protect them */
146  return 0;
147 }
148 
149 /*
150  * could return:
151  * - EROFS
152  * - ENOMEM
153  * - EIO
154  */
155 #define ext4_ext_dirty(handle, inode, path) \
156  __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
157 static int __ext4_ext_dirty(const char *where, unsigned int line,
158  handle_t *handle, struct inode *inode,
159  struct ext4_ext_path *path)
160 {
161  int err;
162  if (path->p_bh) {
163  ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
164  /* path points to block */
165  err = __ext4_handle_dirty_metadata(where, line, handle,
166  inode, path->p_bh);
167  } else {
168  /* path points to leaf/index in inode body */
169  err = ext4_mark_inode_dirty(handle, inode);
170  }
171  return err;
172 }
173 
174 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
175  struct ext4_ext_path *path,
177 {
178  if (path) {
179  int depth = path->p_depth;
180  struct ext4_extent *ex;
181 
182  /*
183  * Try to predict block placement assuming that we are
184  * filling in a file which will eventually be
185  * non-sparse --- i.e., in the case of libbfd writing
186  * an ELF object sections out-of-order but in a way
187  * the eventually results in a contiguous object or
188  * executable file, or some database extending a table
189  * space file. However, this is actually somewhat
190  * non-ideal if we are writing a sparse file such as
191  * qemu or KVM writing a raw image file that is going
192  * to stay fairly sparse, since it will end up
193  * fragmenting the file system's free space. Maybe we
194  * should have some hueristics or some way to allow
195  * userspace to pass a hint to file system,
196  * especially if the latter case turns out to be
197  * common.
198  */
199  ex = path[depth].p_ext;
200  if (ex) {
201  ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
202  ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
203 
204  if (block > ext_block)
205  return ext_pblk + (block - ext_block);
206  else
207  return ext_pblk - (ext_block - block);
208  }
209 
210  /* it looks like index is empty;
211  * try to find starting block from index itself */
212  if (path[depth].p_bh)
213  return path[depth].p_bh->b_blocknr;
214  }
215 
216  /* OK. use inode's group */
217  return ext4_inode_to_goal_block(inode);
218 }
219 
220 /*
221  * Allocation for a meta data block
222  */
223 static ext4_fsblk_t
224 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
225  struct ext4_ext_path *path,
226  struct ext4_extent *ex, int *err, unsigned int flags)
227 {
228  ext4_fsblk_t goal, newblock;
229 
230  goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
231  newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
232  NULL, err);
233  return newblock;
234 }
235 
236 static inline int ext4_ext_space_block(struct inode *inode, int check)
237 {
238  int size;
239 
240  size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
242 #ifdef AGGRESSIVE_TEST
243  if (!check && size > 6)
244  size = 6;
245 #endif
246  return size;
247 }
248 
249 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
250 {
251  int size;
252 
253  size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
255 #ifdef AGGRESSIVE_TEST
256  if (!check && size > 5)
257  size = 5;
258 #endif
259  return size;
260 }
261 
262 static inline int ext4_ext_space_root(struct inode *inode, int check)
263 {
264  int size;
265 
266  size = sizeof(EXT4_I(inode)->i_data);
267  size -= sizeof(struct ext4_extent_header);
268  size /= sizeof(struct ext4_extent);
269 #ifdef AGGRESSIVE_TEST
270  if (!check && size > 3)
271  size = 3;
272 #endif
273  return size;
274 }
275 
276 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
277 {
278  int size;
279 
280  size = sizeof(EXT4_I(inode)->i_data);
281  size -= sizeof(struct ext4_extent_header);
282  size /= sizeof(struct ext4_extent_idx);
283 #ifdef AGGRESSIVE_TEST
284  if (!check && size > 4)
285  size = 4;
286 #endif
287  return size;
288 }
289 
290 /*
291  * Calculate the number of metadata blocks needed
292  * to allocate @blocks
293  * Worse case is one block per extent
294  */
295 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
296 {
297  struct ext4_inode_info *ei = EXT4_I(inode);
298  int idxs;
299 
300  idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
301  / sizeof(struct ext4_extent_idx));
302 
303  /*
304  * If the new delayed allocation block is contiguous with the
305  * previous da block, it can share index blocks with the
306  * previous block, so we only need to allocate a new index
307  * block every idxs leaf blocks. At ldxs**2 blocks, we need
308  * an additional index block, and at ldxs**3 blocks, yet
309  * another index blocks.
310  */
311  if (ei->i_da_metadata_calc_len &&
312  ei->i_da_metadata_calc_last_lblock+1 == lblock) {
313  int num = 0;
314 
315  if ((ei->i_da_metadata_calc_len % idxs) == 0)
316  num++;
317  if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
318  num++;
319  if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
320  num++;
321  ei->i_da_metadata_calc_len = 0;
322  } else
325  return num;
326  }
327 
328  /*
329  * In the worst case we need a new set of index blocks at
330  * every level of the inode's extent tree.
331  */
332  ei->i_da_metadata_calc_len = 1;
333  ei->i_da_metadata_calc_last_lblock = lblock;
334  return ext_depth(inode) + 1;
335 }
336 
337 static int
338 ext4_ext_max_entries(struct inode *inode, int depth)
339 {
340  int max;
341 
342  if (depth == ext_depth(inode)) {
343  if (depth == 0)
344  max = ext4_ext_space_root(inode, 1);
345  else
346  max = ext4_ext_space_root_idx(inode, 1);
347  } else {
348  if (depth == 0)
349  max = ext4_ext_space_block(inode, 1);
350  else
351  max = ext4_ext_space_block_idx(inode, 1);
352  }
353 
354  return max;
355 }
356 
357 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
358 {
359  ext4_fsblk_t block = ext4_ext_pblock(ext);
360  int len = ext4_ext_get_actual_len(ext);
361 
362  if (len == 0)
363  return 0;
364  return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
365 }
366 
367 static int ext4_valid_extent_idx(struct inode *inode,
368  struct ext4_extent_idx *ext_idx)
369 {
370  ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
371 
372  return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
373 }
374 
375 static int ext4_valid_extent_entries(struct inode *inode,
376  struct ext4_extent_header *eh,
377  int depth)
378 {
379  unsigned short entries;
380  if (eh->eh_entries == 0)
381  return 1;
382 
383  entries = le16_to_cpu(eh->eh_entries);
384 
385  if (depth == 0) {
386  /* leaf entries */
387  struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
388  while (entries) {
389  if (!ext4_valid_extent(inode, ext))
390  return 0;
391  ext++;
392  entries--;
393  }
394  } else {
395  struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
396  while (entries) {
397  if (!ext4_valid_extent_idx(inode, ext_idx))
398  return 0;
399  ext_idx++;
400  entries--;
401  }
402  }
403  return 1;
404 }
405 
406 static int __ext4_ext_check(const char *function, unsigned int line,
407  struct inode *inode, struct ext4_extent_header *eh,
408  int depth)
409 {
410  const char *error_msg;
411  int max = 0;
412 
413  if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
414  error_msg = "invalid magic";
415  goto corrupted;
416  }
417  if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
418  error_msg = "unexpected eh_depth";
419  goto corrupted;
420  }
421  if (unlikely(eh->eh_max == 0)) {
422  error_msg = "invalid eh_max";
423  goto corrupted;
424  }
425  max = ext4_ext_max_entries(inode, depth);
426  if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
427  error_msg = "too large eh_max";
428  goto corrupted;
429  }
430  if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
431  error_msg = "invalid eh_entries";
432  goto corrupted;
433  }
434  if (!ext4_valid_extent_entries(inode, eh, depth)) {
435  error_msg = "invalid extent entries";
436  goto corrupted;
437  }
438  /* Verify checksum on non-root extent tree nodes */
439  if (ext_depth(inode) != depth &&
440  !ext4_extent_block_csum_verify(inode, eh)) {
441  error_msg = "extent tree corrupted";
442  goto corrupted;
443  }
444  return 0;
445 
446 corrupted:
447  ext4_error_inode(inode, function, line, 0,
448  "bad header/extent: %s - magic %x, "
449  "entries %u, max %u(%u), depth %u(%u)",
450  error_msg, le16_to_cpu(eh->eh_magic),
452  max, le16_to_cpu(eh->eh_depth), depth);
453 
454  return -EIO;
455 }
457 #define ext4_ext_check(inode, eh, depth) \
458  __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
460 int ext4_ext_check_inode(struct inode *inode)
461 {
462  return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
463 }
464 
465 static int __ext4_ext_check_block(const char *function, unsigned int line,
466  struct inode *inode,
467  struct ext4_extent_header *eh,
468  int depth,
469  struct buffer_head *bh)
470 {
471  int ret;
472 
473  if (buffer_verified(bh))
474  return 0;
475  ret = ext4_ext_check(inode, eh, depth);
476  if (ret)
477  return ret;
478  set_buffer_verified(bh);
479  return ret;
480 }
482 #define ext4_ext_check_block(inode, eh, depth, bh) \
483  __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
484 
485 #ifdef EXT_DEBUG
486 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
487 {
488  int k, l = path->p_depth;
489 
490  ext_debug("path:");
491  for (k = 0; k <= l; k++, path++) {
492  if (path->p_idx) {
493  ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
494  ext4_idx_pblock(path->p_idx));
495  } else if (path->p_ext) {
496  ext_debug(" %d:[%d]%d:%llu ",
497  le32_to_cpu(path->p_ext->ee_block),
498  ext4_ext_is_uninitialized(path->p_ext),
499  ext4_ext_get_actual_len(path->p_ext),
500  ext4_ext_pblock(path->p_ext));
501  } else
502  ext_debug(" []");
503  }
504  ext_debug("\n");
505 }
506 
507 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
508 {
509  int depth = ext_depth(inode);
510  struct ext4_extent_header *eh;
511  struct ext4_extent *ex;
512  int i;
513 
514  if (!path)
515  return;
516 
517  eh = path[depth].p_hdr;
518  ex = EXT_FIRST_EXTENT(eh);
519 
520  ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
521 
522  for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
523  ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
524  ext4_ext_is_uninitialized(ex),
525  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
526  }
527  ext_debug("\n");
528 }
529 
530 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
531  ext4_fsblk_t newblock, int level)
532 {
533  int depth = ext_depth(inode);
534  struct ext4_extent *ex;
535 
536  if (depth != level) {
537  struct ext4_extent_idx *idx;
538  idx = path[level].p_idx;
539  while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
540  ext_debug("%d: move %d:%llu in new index %llu\n", level,
541  le32_to_cpu(idx->ei_block),
542  ext4_idx_pblock(idx),
543  newblock);
544  idx++;
545  }
546 
547  return;
548  }
549 
550  ex = path[depth].p_ext;
551  while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
552  ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
553  le32_to_cpu(ex->ee_block),
554  ext4_ext_pblock(ex),
555  ext4_ext_is_uninitialized(ex),
556  ext4_ext_get_actual_len(ex),
557  newblock);
558  ex++;
559  }
560 }
561 
562 #else
563 #define ext4_ext_show_path(inode, path)
564 #define ext4_ext_show_leaf(inode, path)
565 #define ext4_ext_show_move(inode, path, newblock, level)
566 #endif
568 void ext4_ext_drop_refs(struct ext4_ext_path *path)
569 {
570  int depth = path->p_depth;
571  int i;
572 
573  for (i = 0; i <= depth; i++, path++)
574  if (path->p_bh) {
575  brelse(path->p_bh);
576  path->p_bh = NULL;
577  }
578 }
579 
580 /*
581  * ext4_ext_binsearch_idx:
582  * binary search for the closest index of the given block
583  * the header must be checked before calling this
584  */
585 static void
586 ext4_ext_binsearch_idx(struct inode *inode,
587  struct ext4_ext_path *path, ext4_lblk_t block)
588 {
589  struct ext4_extent_header *eh = path->p_hdr;
590  struct ext4_extent_idx *r, *l, *m;
591 
592 
593  ext_debug("binsearch for %u(idx): ", block);
594 
595  l = EXT_FIRST_INDEX(eh) + 1;
596  r = EXT_LAST_INDEX(eh);
597  while (l <= r) {
598  m = l + (r - l) / 2;
599  if (block < le32_to_cpu(m->ei_block))
600  r = m - 1;
601  else
602  l = m + 1;
603  ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
604  m, le32_to_cpu(m->ei_block),
605  r, le32_to_cpu(r->ei_block));
606  }
607 
608  path->p_idx = l - 1;
609  ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
610  ext4_idx_pblock(path->p_idx));
611 
612 #ifdef CHECK_BINSEARCH
613  {
614  struct ext4_extent_idx *chix, *ix;
615  int k;
616 
617  chix = ix = EXT_FIRST_INDEX(eh);
618  for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
619  if (k != 0 &&
620  le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
621  printk(KERN_DEBUG "k=%d, ix=0x%p, "
622  "first=0x%p\n", k,
623  ix, EXT_FIRST_INDEX(eh));
624  printk(KERN_DEBUG "%u <= %u\n",
625  le32_to_cpu(ix->ei_block),
626  le32_to_cpu(ix[-1].ei_block));
627  }
628  BUG_ON(k && le32_to_cpu(ix->ei_block)
629  <= le32_to_cpu(ix[-1].ei_block));
630  if (block < le32_to_cpu(ix->ei_block))
631  break;
632  chix = ix;
633  }
634  BUG_ON(chix != path->p_idx);
635  }
636 #endif
637 
638 }
639 
640 /*
641  * ext4_ext_binsearch:
642  * binary search for closest extent of the given block
643  * the header must be checked before calling this
644  */
645 static void
646 ext4_ext_binsearch(struct inode *inode,
647  struct ext4_ext_path *path, ext4_lblk_t block)
648 {
649  struct ext4_extent_header *eh = path->p_hdr;
650  struct ext4_extent *r, *l, *m;
651 
652  if (eh->eh_entries == 0) {
653  /*
654  * this leaf is empty:
655  * we get such a leaf in split/add case
656  */
657  return;
658  }
659 
660  ext_debug("binsearch for %u: ", block);
661 
662  l = EXT_FIRST_EXTENT(eh) + 1;
663  r = EXT_LAST_EXTENT(eh);
664 
665  while (l <= r) {
666  m = l + (r - l) / 2;
667  if (block < le32_to_cpu(m->ee_block))
668  r = m - 1;
669  else
670  l = m + 1;
671  ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
672  m, le32_to_cpu(m->ee_block),
673  r, le32_to_cpu(r->ee_block));
674  }
675 
676  path->p_ext = l - 1;
677  ext_debug(" -> %d:%llu:[%d]%d ",
678  le32_to_cpu(path->p_ext->ee_block),
679  ext4_ext_pblock(path->p_ext),
680  ext4_ext_is_uninitialized(path->p_ext),
681  ext4_ext_get_actual_len(path->p_ext));
682 
683 #ifdef CHECK_BINSEARCH
684  {
685  struct ext4_extent *chex, *ex;
686  int k;
687 
688  chex = ex = EXT_FIRST_EXTENT(eh);
689  for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
690  BUG_ON(k && le32_to_cpu(ex->ee_block)
691  <= le32_to_cpu(ex[-1].ee_block));
692  if (block < le32_to_cpu(ex->ee_block))
693  break;
694  chex = ex;
695  }
696  BUG_ON(chex != path->p_ext);
697  }
698 #endif
699 
700 }
702 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
703 {
704  struct ext4_extent_header *eh;
705 
706  eh = ext_inode_hdr(inode);
707  eh->eh_depth = 0;
708  eh->eh_entries = 0;
709  eh->eh_magic = EXT4_EXT_MAGIC;
710  eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
711  ext4_mark_inode_dirty(handle, inode);
712  ext4_ext_invalidate_cache(inode);
713  return 0;
714 }
715 
717 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
718  struct ext4_ext_path *path)
719 {
720  struct ext4_extent_header *eh;
721  struct buffer_head *bh;
722  short int depth, i, ppos = 0, alloc = 0;
723 
724  eh = ext_inode_hdr(inode);
725  depth = ext_depth(inode);
726 
727  /* account possible depth increase */
728  if (!path) {
729  path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
730  GFP_NOFS);
731  if (!path)
732  return ERR_PTR(-ENOMEM);
733  alloc = 1;
734  }
735  path[0].p_hdr = eh;
736  path[0].p_bh = NULL;
737 
738  i = depth;
739  /* walk through the tree */
740  while (i) {
741  ext_debug("depth %d: num %d, max %d\n",
742  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
743 
744  ext4_ext_binsearch_idx(inode, path + ppos, block);
745  path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
746  path[ppos].p_depth = i;
747  path[ppos].p_ext = NULL;
748 
749  bh = sb_getblk(inode->i_sb, path[ppos].p_block);
750  if (unlikely(!bh))
751  goto err;
752  if (!bh_uptodate_or_lock(bh)) {
753  trace_ext4_ext_load_extent(inode, block,
754  path[ppos].p_block);
755  if (bh_submit_read(bh) < 0) {
756  put_bh(bh);
757  goto err;
758  }
759  }
760  eh = ext_block_hdr(bh);
761  ppos++;
762  if (unlikely(ppos > depth)) {
763  put_bh(bh);
764  EXT4_ERROR_INODE(inode,
765  "ppos %d > depth %d", ppos, depth);
766  goto err;
767  }
768  path[ppos].p_bh = bh;
769  path[ppos].p_hdr = eh;
770  i--;
771 
772  if (ext4_ext_check_block(inode, eh, i, bh))
773  goto err;
774  }
775 
776  path[ppos].p_depth = i;
777  path[ppos].p_ext = NULL;
778  path[ppos].p_idx = NULL;
779 
780  /* find extent */
781  ext4_ext_binsearch(inode, path + ppos, block);
782  /* if not an empty leaf */
783  if (path[ppos].p_ext)
784  path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
785 
786  ext4_ext_show_path(inode, path);
787 
788  return path;
789 
790 err:
791  ext4_ext_drop_refs(path);
792  if (alloc)
793  kfree(path);
794  return ERR_PTR(-EIO);
795 }
796 
797 /*
798  * ext4_ext_insert_index:
799  * insert new index [@logical;@ptr] into the block at @curp;
800  * check where to insert: before @curp or after @curp
801  */
802 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
803  struct ext4_ext_path *curp,
804  int logical, ext4_fsblk_t ptr)
805 {
806  struct ext4_extent_idx *ix;
807  int len, err;
808 
809  err = ext4_ext_get_access(handle, inode, curp);
810  if (err)
811  return err;
812 
813  if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
814  EXT4_ERROR_INODE(inode,
815  "logical %d == ei_block %d!",
816  logical, le32_to_cpu(curp->p_idx->ei_block));
817  return -EIO;
818  }
819 
820  if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
821  >= le16_to_cpu(curp->p_hdr->eh_max))) {
822  EXT4_ERROR_INODE(inode,
823  "eh_entries %d >= eh_max %d!",
824  le16_to_cpu(curp->p_hdr->eh_entries),
825  le16_to_cpu(curp->p_hdr->eh_max));
826  return -EIO;
827  }
828 
829  if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
830  /* insert after */
831  ext_debug("insert new index %d after: %llu\n", logical, ptr);
832  ix = curp->p_idx + 1;
833  } else {
834  /* insert before */
835  ext_debug("insert new index %d before: %llu\n", logical, ptr);
836  ix = curp->p_idx;
837  }
838 
839  len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
840  BUG_ON(len < 0);
841  if (len > 0) {
842  ext_debug("insert new index %d: "
843  "move %d indices from 0x%p to 0x%p\n",
844  logical, len, ix, ix + 1);
845  memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
846  }
847 
848  if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
849  EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
850  return -EIO;
851  }
852 
853  ix->ei_block = cpu_to_le32(logical);
854  ext4_idx_store_pblock(ix, ptr);
855  le16_add_cpu(&curp->p_hdr->eh_entries, 1);
856 
857  if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
858  EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
859  return -EIO;
860  }
861 
862  err = ext4_ext_dirty(handle, inode, curp);
863  ext4_std_error(inode->i_sb, err);
864 
865  return err;
866 }
867 
868 /*
869  * ext4_ext_split:
870  * inserts new subtree into the path, using free index entry
871  * at depth @at:
872  * - allocates all needed blocks (new leaf and all intermediate index blocks)
873  * - makes decision where to split
874  * - moves remaining extents and index entries (right to the split point)
875  * into the newly allocated blocks
876  * - initializes subtree
877  */
878 static int ext4_ext_split(handle_t *handle, struct inode *inode,
879  unsigned int flags,
880  struct ext4_ext_path *path,
881  struct ext4_extent *newext, int at)
882 {
883  struct buffer_head *bh = NULL;
884  int depth = ext_depth(inode);
885  struct ext4_extent_header *neh;
886  struct ext4_extent_idx *fidx;
887  int i = at, k, m, a;
888  ext4_fsblk_t newblock, oldblock;
889  __le32 border;
890  ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
891  int err = 0;
892 
893  /* make decision: where to split? */
894  /* FIXME: now decision is simplest: at current extent */
895 
896  /* if current leaf will be split, then we should use
897  * border from split point */
898  if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
899  EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
900  return -EIO;
901  }
902  if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
903  border = path[depth].p_ext[1].ee_block;
904  ext_debug("leaf will be split."
905  " next leaf starts at %d\n",
906  le32_to_cpu(border));
907  } else {
908  border = newext->ee_block;
909  ext_debug("leaf will be added."
910  " next leaf starts at %d\n",
911  le32_to_cpu(border));
912  }
913 
914  /*
915  * If error occurs, then we break processing
916  * and mark filesystem read-only. index won't
917  * be inserted and tree will be in consistent
918  * state. Next mount will repair buffers too.
919  */
920 
921  /*
922  * Get array to track all allocated blocks.
923  * We need this to handle errors and free blocks
924  * upon them.
925  */
926  ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
927  if (!ablocks)
928  return -ENOMEM;
929 
930  /* allocate all needed blocks */
931  ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
932  for (a = 0; a < depth - at; a++) {
933  newblock = ext4_ext_new_meta_block(handle, inode, path,
934  newext, &err, flags);
935  if (newblock == 0)
936  goto cleanup;
937  ablocks[a] = newblock;
938  }
939 
940  /* initialize new leaf */
941  newblock = ablocks[--a];
942  if (unlikely(newblock == 0)) {
943  EXT4_ERROR_INODE(inode, "newblock == 0!");
944  err = -EIO;
945  goto cleanup;
946  }
947  bh = sb_getblk(inode->i_sb, newblock);
948  if (!bh) {
949  err = -EIO;
950  goto cleanup;
951  }
952  lock_buffer(bh);
953 
954  err = ext4_journal_get_create_access(handle, bh);
955  if (err)
956  goto cleanup;
957 
958  neh = ext_block_hdr(bh);
959  neh->eh_entries = 0;
960  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
961  neh->eh_magic = EXT4_EXT_MAGIC;
962  neh->eh_depth = 0;
963 
964  /* move remainder of path[depth] to the new leaf */
965  if (unlikely(path[depth].p_hdr->eh_entries !=
966  path[depth].p_hdr->eh_max)) {
967  EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
968  path[depth].p_hdr->eh_entries,
969  path[depth].p_hdr->eh_max);
970  err = -EIO;
971  goto cleanup;
972  }
973  /* start copy from next extent */
974  m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
975  ext4_ext_show_move(inode, path, newblock, depth);
976  if (m) {
977  struct ext4_extent *ex;
978  ex = EXT_FIRST_EXTENT(neh);
979  memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
980  le16_add_cpu(&neh->eh_entries, m);
981  }
982 
983  ext4_extent_block_csum_set(inode, neh);
984  set_buffer_uptodate(bh);
985  unlock_buffer(bh);
986 
987  err = ext4_handle_dirty_metadata(handle, inode, bh);
988  if (err)
989  goto cleanup;
990  brelse(bh);
991  bh = NULL;
992 
993  /* correct old leaf */
994  if (m) {
995  err = ext4_ext_get_access(handle, inode, path + depth);
996  if (err)
997  goto cleanup;
998  le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
999  err = ext4_ext_dirty(handle, inode, path + depth);
1000  if (err)
1001  goto cleanup;
1002 
1003  }
1004 
1005  /* create intermediate indexes */
1006  k = depth - at - 1;
1007  if (unlikely(k < 0)) {
1008  EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1009  err = -EIO;
1010  goto cleanup;
1011  }
1012  if (k)
1013  ext_debug("create %d intermediate indices\n", k);
1014  /* insert new index into current index block */
1015  /* current depth stored in i var */
1016  i = depth - 1;
1017  while (k--) {
1018  oldblock = newblock;
1019  newblock = ablocks[--a];
1020  bh = sb_getblk(inode->i_sb, newblock);
1021  if (!bh) {
1022  err = -EIO;
1023  goto cleanup;
1024  }
1025  lock_buffer(bh);
1026 
1027  err = ext4_journal_get_create_access(handle, bh);
1028  if (err)
1029  goto cleanup;
1030 
1031  neh = ext_block_hdr(bh);
1032  neh->eh_entries = cpu_to_le16(1);
1033  neh->eh_magic = EXT4_EXT_MAGIC;
1034  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1035  neh->eh_depth = cpu_to_le16(depth - i);
1036  fidx = EXT_FIRST_INDEX(neh);
1037  fidx->ei_block = border;
1038  ext4_idx_store_pblock(fidx, oldblock);
1039 
1040  ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1041  i, newblock, le32_to_cpu(border), oldblock);
1042 
1043  /* move remainder of path[i] to the new index block */
1044  if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1045  EXT_LAST_INDEX(path[i].p_hdr))) {
1046  EXT4_ERROR_INODE(inode,
1047  "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1048  le32_to_cpu(path[i].p_ext->ee_block));
1049  err = -EIO;
1050  goto cleanup;
1051  }
1052  /* start copy indexes */
1053  m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1054  ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1055  EXT_MAX_INDEX(path[i].p_hdr));
1056  ext4_ext_show_move(inode, path, newblock, i);
1057  if (m) {
1058  memmove(++fidx, path[i].p_idx,
1059  sizeof(struct ext4_extent_idx) * m);
1060  le16_add_cpu(&neh->eh_entries, m);
1061  }
1062  ext4_extent_block_csum_set(inode, neh);
1063  set_buffer_uptodate(bh);
1064  unlock_buffer(bh);
1065 
1066  err = ext4_handle_dirty_metadata(handle, inode, bh);
1067  if (err)
1068  goto cleanup;
1069  brelse(bh);
1070  bh = NULL;
1071 
1072  /* correct old index */
1073  if (m) {
1074  err = ext4_ext_get_access(handle, inode, path + i);
1075  if (err)
1076  goto cleanup;
1077  le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1078  err = ext4_ext_dirty(handle, inode, path + i);
1079  if (err)
1080  goto cleanup;
1081  }
1082 
1083  i--;
1084  }
1085 
1086  /* insert new index */
1087  err = ext4_ext_insert_index(handle, inode, path + at,
1088  le32_to_cpu(border), newblock);
1089 
1090 cleanup:
1091  if (bh) {
1092  if (buffer_locked(bh))
1093  unlock_buffer(bh);
1094  brelse(bh);
1095  }
1096 
1097  if (err) {
1098  /* free all allocated blocks in error case */
1099  for (i = 0; i < depth; i++) {
1100  if (!ablocks[i])
1101  continue;
1102  ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1104  }
1105  }
1106  kfree(ablocks);
1107 
1108  return err;
1109 }
1110 
1111 /*
1112  * ext4_ext_grow_indepth:
1113  * implements tree growing procedure:
1114  * - allocates new block
1115  * - moves top-level data (index block or leaf) into the new block
1116  * - initializes new top-level, creating index that points to the
1117  * just created block
1118  */
1119 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1120  unsigned int flags,
1121  struct ext4_extent *newext)
1122 {
1123  struct ext4_extent_header *neh;
1124  struct buffer_head *bh;
1125  ext4_fsblk_t newblock;
1126  int err = 0;
1127 
1128  newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1129  newext, &err, flags);
1130  if (newblock == 0)
1131  return err;
1132 
1133  bh = sb_getblk(inode->i_sb, newblock);
1134  if (!bh) {
1135  err = -EIO;
1136  ext4_std_error(inode->i_sb, err);
1137  return err;
1138  }
1139  lock_buffer(bh);
1140 
1141  err = ext4_journal_get_create_access(handle, bh);
1142  if (err) {
1143  unlock_buffer(bh);
1144  goto out;
1145  }
1146 
1147  /* move top-level index/leaf into new block */
1148  memmove(bh->b_data, EXT4_I(inode)->i_data,
1149  sizeof(EXT4_I(inode)->i_data));
1150 
1151  /* set size of new block */
1152  neh = ext_block_hdr(bh);
1153  /* old root could have indexes or leaves
1154  * so calculate e_max right way */
1155  if (ext_depth(inode))
1156  neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1157  else
1158  neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1159  neh->eh_magic = EXT4_EXT_MAGIC;
1160  ext4_extent_block_csum_set(inode, neh);
1161  set_buffer_uptodate(bh);
1162  unlock_buffer(bh);
1163 
1164  err = ext4_handle_dirty_metadata(handle, inode, bh);
1165  if (err)
1166  goto out;
1167 
1168  /* Update top-level index: num,max,pointer */
1169  neh = ext_inode_hdr(inode);
1170  neh->eh_entries = cpu_to_le16(1);
1171  ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1172  if (neh->eh_depth == 0) {
1173  /* Root extent block becomes index block */
1174  neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1175  EXT_FIRST_INDEX(neh)->ei_block =
1176  EXT_FIRST_EXTENT(neh)->ee_block;
1177  }
1178  ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1180  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1181  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1182 
1183  le16_add_cpu(&neh->eh_depth, 1);
1184  ext4_mark_inode_dirty(handle, inode);
1185 out:
1186  brelse(bh);
1187 
1188  return err;
1189 }
1190 
1191 /*
1192  * ext4_ext_create_new_leaf:
1193  * finds empty index and adds new leaf.
1194  * if no free index is found, then it requests in-depth growing.
1195  */
1196 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1197  unsigned int flags,
1198  struct ext4_ext_path *path,
1199  struct ext4_extent *newext)
1200 {
1201  struct ext4_ext_path *curp;
1202  int depth, i, err = 0;
1203 
1204 repeat:
1205  i = depth = ext_depth(inode);
1206 
1207  /* walk up to the tree and look for free index entry */
1208  curp = path + depth;
1209  while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1210  i--;
1211  curp--;
1212  }
1213 
1214  /* we use already allocated block for index block,
1215  * so subsequent data blocks should be contiguous */
1216  if (EXT_HAS_FREE_INDEX(curp)) {
1217  /* if we found index with free entry, then use that
1218  * entry: create all needed subtree and add new leaf */
1219  err = ext4_ext_split(handle, inode, flags, path, newext, i);
1220  if (err)
1221  goto out;
1222 
1223  /* refill path */
1224  ext4_ext_drop_refs(path);
1225  path = ext4_ext_find_extent(inode,
1226  (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1227  path);
1228  if (IS_ERR(path))
1229  err = PTR_ERR(path);
1230  } else {
1231  /* tree is full, time to grow in depth */
1232  err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1233  if (err)
1234  goto out;
1235 
1236  /* refill path */
1237  ext4_ext_drop_refs(path);
1238  path = ext4_ext_find_extent(inode,
1239  (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1240  path);
1241  if (IS_ERR(path)) {
1242  err = PTR_ERR(path);
1243  goto out;
1244  }
1245 
1246  /*
1247  * only first (depth 0 -> 1) produces free space;
1248  * in all other cases we have to split the grown tree
1249  */
1250  depth = ext_depth(inode);
1251  if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1252  /* now we need to split */
1253  goto repeat;
1254  }
1255  }
1256 
1257 out:
1258  return err;
1259 }
1260 
1261 /*
1262  * search the closest allocated block to the left for *logical
1263  * and returns it at @logical + it's physical address at @phys
1264  * if *logical is the smallest allocated block, the function
1265  * returns 0 at @phys
1266  * return value contains 0 (success) or error code
1267  */
1268 static int ext4_ext_search_left(struct inode *inode,
1269  struct ext4_ext_path *path,
1270  ext4_lblk_t *logical, ext4_fsblk_t *phys)
1271 {
1272  struct ext4_extent_idx *ix;
1273  struct ext4_extent *ex;
1274  int depth, ee_len;
1275 
1276  if (unlikely(path == NULL)) {
1277  EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1278  return -EIO;
1279  }
1280  depth = path->p_depth;
1281  *phys = 0;
1282 
1283  if (depth == 0 && path->p_ext == NULL)
1284  return 0;
1285 
1286  /* usually extent in the path covers blocks smaller
1287  * then *logical, but it can be that extent is the
1288  * first one in the file */
1289 
1290  ex = path[depth].p_ext;
1291  ee_len = ext4_ext_get_actual_len(ex);
1292  if (*logical < le32_to_cpu(ex->ee_block)) {
1293  if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1294  EXT4_ERROR_INODE(inode,
1295  "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1296  *logical, le32_to_cpu(ex->ee_block));
1297  return -EIO;
1298  }
1299  while (--depth >= 0) {
1300  ix = path[depth].p_idx;
1301  if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1302  EXT4_ERROR_INODE(inode,
1303  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1304  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1305  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1306  le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1307  depth);
1308  return -EIO;
1309  }
1310  }
1311  return 0;
1312  }
1313 
1314  if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1315  EXT4_ERROR_INODE(inode,
1316  "logical %d < ee_block %d + ee_len %d!",
1317  *logical, le32_to_cpu(ex->ee_block), ee_len);
1318  return -EIO;
1319  }
1320 
1321  *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1322  *phys = ext4_ext_pblock(ex) + ee_len - 1;
1323  return 0;
1324 }
1325 
1326 /*
1327  * search the closest allocated block to the right for *logical
1328  * and returns it at @logical + it's physical address at @phys
1329  * if *logical is the largest allocated block, the function
1330  * returns 0 at @phys
1331  * return value contains 0 (success) or error code
1332  */
1333 static int ext4_ext_search_right(struct inode *inode,
1334  struct ext4_ext_path *path,
1335  ext4_lblk_t *logical, ext4_fsblk_t *phys,
1336  struct ext4_extent **ret_ex)
1337 {
1338  struct buffer_head *bh = NULL;
1339  struct ext4_extent_header *eh;
1340  struct ext4_extent_idx *ix;
1341  struct ext4_extent *ex;
1343  int depth; /* Note, NOT eh_depth; depth from top of tree */
1344  int ee_len;
1345 
1346  if (unlikely(path == NULL)) {
1347  EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1348  return -EIO;
1349  }
1350  depth = path->p_depth;
1351  *phys = 0;
1352 
1353  if (depth == 0 && path->p_ext == NULL)
1354  return 0;
1355 
1356  /* usually extent in the path covers blocks smaller
1357  * then *logical, but it can be that extent is the
1358  * first one in the file */
1359 
1360  ex = path[depth].p_ext;
1361  ee_len = ext4_ext_get_actual_len(ex);
1362  if (*logical < le32_to_cpu(ex->ee_block)) {
1363  if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1364  EXT4_ERROR_INODE(inode,
1365  "first_extent(path[%d].p_hdr) != ex",
1366  depth);
1367  return -EIO;
1368  }
1369  while (--depth >= 0) {
1370  ix = path[depth].p_idx;
1371  if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1372  EXT4_ERROR_INODE(inode,
1373  "ix != EXT_FIRST_INDEX *logical %d!",
1374  *logical);
1375  return -EIO;
1376  }
1377  }
1378  goto found_extent;
1379  }
1380 
1381  if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1382  EXT4_ERROR_INODE(inode,
1383  "logical %d < ee_block %d + ee_len %d!",
1384  *logical, le32_to_cpu(ex->ee_block), ee_len);
1385  return -EIO;
1386  }
1387 
1388  if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1389  /* next allocated block in this leaf */
1390  ex++;
1391  goto found_extent;
1392  }
1393 
1394  /* go up and search for index to the right */
1395  while (--depth >= 0) {
1396  ix = path[depth].p_idx;
1397  if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1398  goto got_index;
1399  }
1400 
1401  /* we've gone up to the root and found no index to the right */
1402  return 0;
1403 
1404 got_index:
1405  /* we've found index to the right, let's
1406  * follow it and find the closest allocated
1407  * block to the right */
1408  ix++;
1409  block = ext4_idx_pblock(ix);
1410  while (++depth < path->p_depth) {
1411  bh = sb_bread(inode->i_sb, block);
1412  if (bh == NULL)
1413  return -EIO;
1414  eh = ext_block_hdr(bh);
1415  /* subtract from p_depth to get proper eh_depth */
1416  if (ext4_ext_check_block(inode, eh,
1417  path->p_depth - depth, bh)) {
1418  put_bh(bh);
1419  return -EIO;
1420  }
1421  ix = EXT_FIRST_INDEX(eh);
1422  block = ext4_idx_pblock(ix);
1423  put_bh(bh);
1424  }
1425 
1426  bh = sb_bread(inode->i_sb, block);
1427  if (bh == NULL)
1428  return -EIO;
1429  eh = ext_block_hdr(bh);
1430  if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1431  put_bh(bh);
1432  return -EIO;
1433  }
1434  ex = EXT_FIRST_EXTENT(eh);
1435 found_extent:
1436  *logical = le32_to_cpu(ex->ee_block);
1437  *phys = ext4_ext_pblock(ex);
1438  *ret_ex = ex;
1439  if (bh)
1440  put_bh(bh);
1441  return 0;
1442 }
1443 
1444 /*
1445  * ext4_ext_next_allocated_block:
1446  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1447  * NOTE: it considers block number from index entry as
1448  * allocated block. Thus, index entries have to be consistent
1449  * with leaves.
1450  */
1451 static ext4_lblk_t
1452 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1453 {
1454  int depth;
1455 
1456  BUG_ON(path == NULL);
1457  depth = path->p_depth;
1458 
1459  if (depth == 0 && path->p_ext == NULL)
1460  return EXT_MAX_BLOCKS;
1461 
1462  while (depth >= 0) {
1463  if (depth == path->p_depth) {
1464  /* leaf */
1465  if (path[depth].p_ext &&
1466  path[depth].p_ext !=
1467  EXT_LAST_EXTENT(path[depth].p_hdr))
1468  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1469  } else {
1470  /* index */
1471  if (path[depth].p_idx !=
1472  EXT_LAST_INDEX(path[depth].p_hdr))
1473  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1474  }
1475  depth--;
1476  }
1477 
1478  return EXT_MAX_BLOCKS;
1479 }
1480 
1481 /*
1482  * ext4_ext_next_leaf_block:
1483  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1484  */
1485 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1486 {
1487  int depth;
1488 
1489  BUG_ON(path == NULL);
1490  depth = path->p_depth;
1491 
1492  /* zero-tree has no leaf blocks at all */
1493  if (depth == 0)
1494  return EXT_MAX_BLOCKS;
1495 
1496  /* go to index block */
1497  depth--;
1498 
1499  while (depth >= 0) {
1500  if (path[depth].p_idx !=
1501  EXT_LAST_INDEX(path[depth].p_hdr))
1502  return (ext4_lblk_t)
1503  le32_to_cpu(path[depth].p_idx[1].ei_block);
1504  depth--;
1505  }
1506 
1507  return EXT_MAX_BLOCKS;
1508 }
1509 
1510 /*
1511  * ext4_ext_correct_indexes:
1512  * if leaf gets modified and modified extent is first in the leaf,
1513  * then we have to correct all indexes above.
1514  * TODO: do we need to correct tree in all cases?
1515  */
1516 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1517  struct ext4_ext_path *path)
1518 {
1519  struct ext4_extent_header *eh;
1520  int depth = ext_depth(inode);
1521  struct ext4_extent *ex;
1522  __le32 border;
1523  int k, err = 0;
1524 
1525  eh = path[depth].p_hdr;
1526  ex = path[depth].p_ext;
1527 
1528  if (unlikely(ex == NULL || eh == NULL)) {
1529  EXT4_ERROR_INODE(inode,
1530  "ex %p == NULL or eh %p == NULL", ex, eh);
1531  return -EIO;
1532  }
1533 
1534  if (depth == 0) {
1535  /* there is no tree at all */
1536  return 0;
1537  }
1538 
1539  if (ex != EXT_FIRST_EXTENT(eh)) {
1540  /* we correct tree if first leaf got modified only */
1541  return 0;
1542  }
1543 
1544  /*
1545  * TODO: we need correction if border is smaller than current one
1546  */
1547  k = depth - 1;
1548  border = path[depth].p_ext->ee_block;
1549  err = ext4_ext_get_access(handle, inode, path + k);
1550  if (err)
1551  return err;
1552  path[k].p_idx->ei_block = border;
1553  err = ext4_ext_dirty(handle, inode, path + k);
1554  if (err)
1555  return err;
1556 
1557  while (k--) {
1558  /* change all left-side indexes */
1559  if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1560  break;
1561  err = ext4_ext_get_access(handle, inode, path + k);
1562  if (err)
1563  break;
1564  path[k].p_idx->ei_block = border;
1565  err = ext4_ext_dirty(handle, inode, path + k);
1566  if (err)
1567  break;
1568  }
1569 
1570  return err;
1571 }
1572 
1573 int
1574 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1575  struct ext4_extent *ex2)
1576 {
1577  unsigned short ext1_ee_len, ext2_ee_len, max_len;
1578 
1579  /*
1580  * Make sure that either both extents are uninitialized, or
1581  * both are _not_.
1582  */
1583  if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1584  return 0;
1585 
1586  if (ext4_ext_is_uninitialized(ex1))
1587  max_len = EXT_UNINIT_MAX_LEN;
1588  else
1589  max_len = EXT_INIT_MAX_LEN;
1590 
1591  ext1_ee_len = ext4_ext_get_actual_len(ex1);
1592  ext2_ee_len = ext4_ext_get_actual_len(ex2);
1593 
1594  if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1595  le32_to_cpu(ex2->ee_block))
1596  return 0;
1597 
1598  /*
1599  * To allow future support for preallocated extents to be added
1600  * as an RO_COMPAT feature, refuse to merge to extents if
1601  * this can result in the top bit of ee_len being set.
1602  */
1603  if (ext1_ee_len + ext2_ee_len > max_len)
1604  return 0;
1605 #ifdef AGGRESSIVE_TEST
1606  if (ext1_ee_len >= 4)
1607  return 0;
1608 #endif
1609 
1610  if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1611  return 1;
1612  return 0;
1613 }
1614 
1615 /*
1616  * This function tries to merge the "ex" extent to the next extent in the tree.
1617  * It always tries to merge towards right. If you want to merge towards
1618  * left, pass "ex - 1" as argument instead of "ex".
1619  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1620  * 1 if they got merged.
1621  */
1622 static int ext4_ext_try_to_merge_right(struct inode *inode,
1623  struct ext4_ext_path *path,
1624  struct ext4_extent *ex)
1625 {
1626  struct ext4_extent_header *eh;
1627  unsigned int depth, len;
1628  int merge_done = 0;
1629  int uninitialized = 0;
1630 
1631  depth = ext_depth(inode);
1632  BUG_ON(path[depth].p_hdr == NULL);
1633  eh = path[depth].p_hdr;
1634 
1635  while (ex < EXT_LAST_EXTENT(eh)) {
1636  if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1637  break;
1638  /* merge with next extent! */
1639  if (ext4_ext_is_uninitialized(ex))
1640  uninitialized = 1;
1641  ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1642  + ext4_ext_get_actual_len(ex + 1));
1643  if (uninitialized)
1644  ext4_ext_mark_uninitialized(ex);
1645 
1646  if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1647  len = (EXT_LAST_EXTENT(eh) - ex - 1)
1648  * sizeof(struct ext4_extent);
1649  memmove(ex + 1, ex + 2, len);
1650  }
1651  le16_add_cpu(&eh->eh_entries, -1);
1652  merge_done = 1;
1653  WARN_ON(eh->eh_entries == 0);
1654  if (!eh->eh_entries)
1655  EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1656  }
1657 
1658  return merge_done;
1659 }
1660 
1661 /*
1662  * This function does a very simple check to see if we can collapse
1663  * an extent tree with a single extent tree leaf block into the inode.
1664  */
1665 static void ext4_ext_try_to_merge_up(handle_t *handle,
1666  struct inode *inode,
1667  struct ext4_ext_path *path)
1668 {
1669  size_t s;
1670  unsigned max_root = ext4_ext_space_root(inode, 0);
1671  ext4_fsblk_t blk;
1672 
1673  if ((path[0].p_depth != 1) ||
1674  (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1675  (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1676  return;
1677 
1678  /*
1679  * We need to modify the block allocation bitmap and the block
1680  * group descriptor to release the extent tree block. If we
1681  * can't get the journal credits, give up.
1682  */
1683  if (ext4_journal_extend(handle, 2))
1684  return;
1685 
1686  /*
1687  * Copy the extent data up to the inode
1688  */
1689  blk = ext4_idx_pblock(path[0].p_idx);
1690  s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1691  sizeof(struct ext4_extent_idx);
1692  s += sizeof(struct ext4_extent_header);
1693 
1694  memcpy(path[0].p_hdr, path[1].p_hdr, s);
1695  path[0].p_depth = 0;
1696  path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1697  (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1698  path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1699 
1700  brelse(path[1].p_bh);
1701  ext4_free_blocks(handle, inode, NULL, blk, 1,
1703 }
1704 
1705 /*
1706  * This function tries to merge the @ex extent to neighbours in the tree.
1707  * return 1 if merge left else 0.
1708  */
1709 static void ext4_ext_try_to_merge(handle_t *handle,
1710  struct inode *inode,
1711  struct ext4_ext_path *path,
1712  struct ext4_extent *ex) {
1713  struct ext4_extent_header *eh;
1714  unsigned int depth;
1715  int merge_done = 0;
1716 
1717  depth = ext_depth(inode);
1718  BUG_ON(path[depth].p_hdr == NULL);
1719  eh = path[depth].p_hdr;
1720 
1721  if (ex > EXT_FIRST_EXTENT(eh))
1722  merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1723 
1724  if (!merge_done)
1725  (void) ext4_ext_try_to_merge_right(inode, path, ex);
1726 
1727  ext4_ext_try_to_merge_up(handle, inode, path);
1728 }
1729 
1730 /*
1731  * check if a portion of the "newext" extent overlaps with an
1732  * existing extent.
1733  *
1734  * If there is an overlap discovered, it updates the length of the newext
1735  * such that there will be no overlap, and then returns 1.
1736  * If there is no overlap found, it returns 0.
1737  */
1738 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1739  struct inode *inode,
1740  struct ext4_extent *newext,
1741  struct ext4_ext_path *path)
1742 {
1743  ext4_lblk_t b1, b2;
1744  unsigned int depth, len1;
1745  unsigned int ret = 0;
1746 
1747  b1 = le32_to_cpu(newext->ee_block);
1748  len1 = ext4_ext_get_actual_len(newext);
1749  depth = ext_depth(inode);
1750  if (!path[depth].p_ext)
1751  goto out;
1752  b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1753  b2 &= ~(sbi->s_cluster_ratio - 1);
1754 
1755  /*
1756  * get the next allocated block if the extent in the path
1757  * is before the requested block(s)
1758  */
1759  if (b2 < b1) {
1760  b2 = ext4_ext_next_allocated_block(path);
1761  if (b2 == EXT_MAX_BLOCKS)
1762  goto out;
1763  b2 &= ~(sbi->s_cluster_ratio - 1);
1764  }
1765 
1766  /* check for wrap through zero on extent logical start block*/
1767  if (b1 + len1 < b1) {
1768  len1 = EXT_MAX_BLOCKS - b1;
1769  newext->ee_len = cpu_to_le16(len1);
1770  ret = 1;
1771  }
1772 
1773  /* check for overlap */
1774  if (b1 + len1 > b2) {
1775  newext->ee_len = cpu_to_le16(b2 - b1);
1776  ret = 1;
1777  }
1778 out:
1779  return ret;
1780 }
1781 
1782 /*
1783  * ext4_ext_insert_extent:
1784  * tries to merge requsted extent into the existing extent or
1785  * inserts requested extent as new one into the tree,
1786  * creating new leaf in the no-space case.
1787  */
1788 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1789  struct ext4_ext_path *path,
1790  struct ext4_extent *newext, int flag)
1791 {
1792  struct ext4_extent_header *eh;
1793  struct ext4_extent *ex, *fex;
1794  struct ext4_extent *nearex; /* nearest extent */
1795  struct ext4_ext_path *npath = NULL;
1796  int depth, len, err;
1797  ext4_lblk_t next;
1798  unsigned uninitialized = 0;
1799  int flags = 0;
1800 
1801  if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1802  EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1803  return -EIO;
1804  }
1805  depth = ext_depth(inode);
1806  ex = path[depth].p_ext;
1807  if (unlikely(path[depth].p_hdr == NULL)) {
1808  EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1809  return -EIO;
1810  }
1811 
1812  /* try to insert block into found extent and return */
1813  if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1814  && ext4_can_extents_be_merged(inode, ex, newext)) {
1815  ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1816  ext4_ext_is_uninitialized(newext),
1817  ext4_ext_get_actual_len(newext),
1818  le32_to_cpu(ex->ee_block),
1819  ext4_ext_is_uninitialized(ex),
1820  ext4_ext_get_actual_len(ex),
1821  ext4_ext_pblock(ex));
1822  err = ext4_ext_get_access(handle, inode, path + depth);
1823  if (err)
1824  return err;
1825 
1826  /*
1827  * ext4_can_extents_be_merged should have checked that either
1828  * both extents are uninitialized, or both aren't. Thus we
1829  * need to check only one of them here.
1830  */
1831  if (ext4_ext_is_uninitialized(ex))
1832  uninitialized = 1;
1833  ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1834  + ext4_ext_get_actual_len(newext));
1835  if (uninitialized)
1836  ext4_ext_mark_uninitialized(ex);
1837  eh = path[depth].p_hdr;
1838  nearex = ex;
1839  goto merge;
1840  }
1841 
1842  depth = ext_depth(inode);
1843  eh = path[depth].p_hdr;
1844  if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1845  goto has_space;
1846 
1847  /* probably next leaf has space for us? */
1848  fex = EXT_LAST_EXTENT(eh);
1849  next = EXT_MAX_BLOCKS;
1850  if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1851  next = ext4_ext_next_leaf_block(path);
1852  if (next != EXT_MAX_BLOCKS) {
1853  ext_debug("next leaf block - %u\n", next);
1854  BUG_ON(npath != NULL);
1855  npath = ext4_ext_find_extent(inode, next, NULL);
1856  if (IS_ERR(npath))
1857  return PTR_ERR(npath);
1858  BUG_ON(npath->p_depth != path->p_depth);
1859  eh = npath[depth].p_hdr;
1860  if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1861  ext_debug("next leaf isn't full(%d)\n",
1862  le16_to_cpu(eh->eh_entries));
1863  path = npath;
1864  goto has_space;
1865  }
1866  ext_debug("next leaf has no free space(%d,%d)\n",
1868  }
1869 
1870  /*
1871  * There is no free space in the found leaf.
1872  * We're gonna add a new leaf in the tree.
1873  */
1874  if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1875  flags = EXT4_MB_USE_ROOT_BLOCKS;
1876  err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1877  if (err)
1878  goto cleanup;
1879  depth = ext_depth(inode);
1880  eh = path[depth].p_hdr;
1881 
1882 has_space:
1883  nearex = path[depth].p_ext;
1884 
1885  err = ext4_ext_get_access(handle, inode, path + depth);
1886  if (err)
1887  goto cleanup;
1888 
1889  if (!nearex) {
1890  /* there is no extent in this leaf, create first one */
1891  ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1892  le32_to_cpu(newext->ee_block),
1893  ext4_ext_pblock(newext),
1894  ext4_ext_is_uninitialized(newext),
1895  ext4_ext_get_actual_len(newext));
1896  nearex = EXT_FIRST_EXTENT(eh);
1897  } else {
1898  if (le32_to_cpu(newext->ee_block)
1899  > le32_to_cpu(nearex->ee_block)) {
1900  /* Insert after */
1901  ext_debug("insert %u:%llu:[%d]%d before: "
1902  "nearest %p\n",
1903  le32_to_cpu(newext->ee_block),
1904  ext4_ext_pblock(newext),
1905  ext4_ext_is_uninitialized(newext),
1906  ext4_ext_get_actual_len(newext),
1907  nearex);
1908  nearex++;
1909  } else {
1910  /* Insert before */
1911  BUG_ON(newext->ee_block == nearex->ee_block);
1912  ext_debug("insert %u:%llu:[%d]%d after: "
1913  "nearest %p\n",
1914  le32_to_cpu(newext->ee_block),
1915  ext4_ext_pblock(newext),
1916  ext4_ext_is_uninitialized(newext),
1917  ext4_ext_get_actual_len(newext),
1918  nearex);
1919  }
1920  len = EXT_LAST_EXTENT(eh) - nearex + 1;
1921  if (len > 0) {
1922  ext_debug("insert %u:%llu:[%d]%d: "
1923  "move %d extents from 0x%p to 0x%p\n",
1924  le32_to_cpu(newext->ee_block),
1925  ext4_ext_pblock(newext),
1926  ext4_ext_is_uninitialized(newext),
1927  ext4_ext_get_actual_len(newext),
1928  len, nearex, nearex + 1);
1929  memmove(nearex + 1, nearex,
1930  len * sizeof(struct ext4_extent));
1931  }
1932  }
1933 
1934  le16_add_cpu(&eh->eh_entries, 1);
1935  path[depth].p_ext = nearex;
1936  nearex->ee_block = newext->ee_block;
1937  ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1938  nearex->ee_len = newext->ee_len;
1939 
1940 merge:
1941  /* try to merge extents */
1942  if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1943  ext4_ext_try_to_merge(handle, inode, path, nearex);
1944 
1945 
1946  /* time to correct all indexes above */
1947  err = ext4_ext_correct_indexes(handle, inode, path);
1948  if (err)
1949  goto cleanup;
1950 
1951  err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1952 
1953 cleanup:
1954  if (npath) {
1955  ext4_ext_drop_refs(npath);
1956  kfree(npath);
1957  }
1958  ext4_ext_invalidate_cache(inode);
1959  return err;
1960 }
1961 
1962 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1964  void *cbdata)
1965 {
1966  struct ext4_ext_path *path = NULL;
1967  struct ext4_ext_cache cbex;
1968  struct ext4_extent *ex;
1969  ext4_lblk_t next, start = 0, end = 0;
1970  ext4_lblk_t last = block + num;
1971  int depth, exists, err = 0;
1972 
1973  BUG_ON(func == NULL);
1974  BUG_ON(inode == NULL);
1975 
1976  while (block < last && block != EXT_MAX_BLOCKS) {
1977  num = last - block;
1978  /* find extent for this block */
1979  down_read(&EXT4_I(inode)->i_data_sem);
1980  path = ext4_ext_find_extent(inode, block, path);
1981  up_read(&EXT4_I(inode)->i_data_sem);
1982  if (IS_ERR(path)) {
1983  err = PTR_ERR(path);
1984  path = NULL;
1985  break;
1986  }
1987 
1988  depth = ext_depth(inode);
1989  if (unlikely(path[depth].p_hdr == NULL)) {
1990  EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1991  err = -EIO;
1992  break;
1993  }
1994  ex = path[depth].p_ext;
1995  next = ext4_ext_next_allocated_block(path);
1996 
1997  exists = 0;
1998  if (!ex) {
1999  /* there is no extent yet, so try to allocate
2000  * all requested space */
2001  start = block;
2002  end = block + num;
2003  } else if (le32_to_cpu(ex->ee_block) > block) {
2004  /* need to allocate space before found extent */
2005  start = block;
2006  end = le32_to_cpu(ex->ee_block);
2007  if (block + num < end)
2008  end = block + num;
2009  } else if (block >= le32_to_cpu(ex->ee_block)
2010  + ext4_ext_get_actual_len(ex)) {
2011  /* need to allocate space after found extent */
2012  start = block;
2013  end = block + num;
2014  if (end >= next)
2015  end = next;
2016  } else if (block >= le32_to_cpu(ex->ee_block)) {
2017  /*
2018  * some part of requested space is covered
2019  * by found extent
2020  */
2021  start = block;
2022  end = le32_to_cpu(ex->ee_block)
2023  + ext4_ext_get_actual_len(ex);
2024  if (block + num < end)
2025  end = block + num;
2026  exists = 1;
2027  } else {
2028  BUG();
2029  }
2030  BUG_ON(end <= start);
2031 
2032  if (!exists) {
2033  cbex.ec_block = start;
2034  cbex.ec_len = end - start;
2035  cbex.ec_start = 0;
2036  } else {
2037  cbex.ec_block = le32_to_cpu(ex->ee_block);
2038  cbex.ec_len = ext4_ext_get_actual_len(ex);
2039  cbex.ec_start = ext4_ext_pblock(ex);
2040  }
2041 
2042  if (unlikely(cbex.ec_len == 0)) {
2043  EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
2044  err = -EIO;
2045  break;
2046  }
2047  err = func(inode, next, &cbex, ex, cbdata);
2048  ext4_ext_drop_refs(path);
2049 
2050  if (err < 0)
2051  break;
2052 
2053  if (err == EXT_REPEAT)
2054  continue;
2055  else if (err == EXT_BREAK) {
2056  err = 0;
2057  break;
2058  }
2059 
2060  if (ext_depth(inode) != depth) {
2061  /* depth was changed. we have to realloc path */
2062  kfree(path);
2063  path = NULL;
2064  }
2065 
2066  block = cbex.ec_block + cbex.ec_len;
2067  }
2068 
2069  if (path) {
2070  ext4_ext_drop_refs(path);
2071  kfree(path);
2072  }
2073 
2074  return err;
2075 }
2076 
2077 static void
2078 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2079  __u32 len, ext4_fsblk_t start)
2080 {
2081  struct ext4_ext_cache *cex;
2082  BUG_ON(len == 0);
2083  spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2084  trace_ext4_ext_put_in_cache(inode, block, len, start);
2085  cex = &EXT4_I(inode)->i_cached_extent;
2086  cex->ec_block = block;
2087  cex->ec_len = len;
2088  cex->ec_start = start;
2089  spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2090 }
2091 
2092 /*
2093  * ext4_ext_put_gap_in_cache:
2094  * calculate boundaries of the gap that the requested block fits into
2095  * and cache this gap
2096  */
2097 static void
2098 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2099  ext4_lblk_t block)
2100 {
2101  int depth = ext_depth(inode);
2102  unsigned long len;
2103  ext4_lblk_t lblock;
2104  struct ext4_extent *ex;
2105 
2106  ex = path[depth].p_ext;
2107  if (ex == NULL) {
2108  /* there is no extent yet, so gap is [0;-] */
2109  lblock = 0;
2110  len = EXT_MAX_BLOCKS;
2111  ext_debug("cache gap(whole file):");
2112  } else if (block < le32_to_cpu(ex->ee_block)) {
2113  lblock = block;
2114  len = le32_to_cpu(ex->ee_block) - block;
2115  ext_debug("cache gap(before): %u [%u:%u]",
2116  block,
2117  le32_to_cpu(ex->ee_block),
2118  ext4_ext_get_actual_len(ex));
2119  } else if (block >= le32_to_cpu(ex->ee_block)
2120  + ext4_ext_get_actual_len(ex)) {
2121  ext4_lblk_t next;
2122  lblock = le32_to_cpu(ex->ee_block)
2123  + ext4_ext_get_actual_len(ex);
2124 
2125  next = ext4_ext_next_allocated_block(path);
2126  ext_debug("cache gap(after): [%u:%u] %u",
2127  le32_to_cpu(ex->ee_block),
2128  ext4_ext_get_actual_len(ex),
2129  block);
2130  BUG_ON(next == lblock);
2131  len = next - lblock;
2132  } else {
2133  lblock = len = 0;
2134  BUG();
2135  }
2136 
2137  ext_debug(" -> %u:%lu\n", lblock, len);
2138  ext4_ext_put_in_cache(inode, lblock, len, 0);
2139 }
2140 
2141 /*
2142  * ext4_ext_in_cache()
2143  * Checks to see if the given block is in the cache.
2144  * If it is, the cached extent is stored in the given
2145  * cache extent pointer.
2146  *
2147  * @inode: The files inode
2148  * @block: The block to look for in the cache
2149  * @ex: Pointer where the cached extent will be stored
2150  * if it contains block
2151  *
2152  * Return 0 if cache is invalid; 1 if the cache is valid
2153  */
2154 static int
2155 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2156  struct ext4_extent *ex)
2157 {
2158  struct ext4_ext_cache *cex;
2159  struct ext4_sb_info *sbi;
2160  int ret = 0;
2161 
2162  /*
2163  * We borrow i_block_reservation_lock to protect i_cached_extent
2164  */
2165  spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2166  cex = &EXT4_I(inode)->i_cached_extent;
2167  sbi = EXT4_SB(inode->i_sb);
2168 
2169  /* has cache valid data? */
2170  if (cex->ec_len == 0)
2171  goto errout;
2172 
2173  if (in_range(block, cex->ec_block, cex->ec_len)) {
2174  ex->ee_block = cpu_to_le32(cex->ec_block);
2175  ext4_ext_store_pblock(ex, cex->ec_start);
2176  ex->ee_len = cpu_to_le16(cex->ec_len);
2177  ext_debug("%u cached by %u:%u:%llu\n",
2178  block,
2179  cex->ec_block, cex->ec_len, cex->ec_start);
2180  ret = 1;
2181  }
2182 errout:
2183  trace_ext4_ext_in_cache(inode, block, ret);
2184  spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2185  return ret;
2186 }
2187 
2188 /*
2189  * ext4_ext_rm_idx:
2190  * removes index from the index block.
2191  */
2192 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2193  struct ext4_ext_path *path)
2194 {
2195  int err;
2197 
2198  /* free index block */
2199  path--;
2200  leaf = ext4_idx_pblock(path->p_idx);
2201  if (unlikely(path->p_hdr->eh_entries == 0)) {
2202  EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2203  return -EIO;
2204  }
2205  err = ext4_ext_get_access(handle, inode, path);
2206  if (err)
2207  return err;
2208 
2209  if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2210  int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2211  len *= sizeof(struct ext4_extent_idx);
2212  memmove(path->p_idx, path->p_idx + 1, len);
2213  }
2214 
2215  le16_add_cpu(&path->p_hdr->eh_entries, -1);
2216  err = ext4_ext_dirty(handle, inode, path);
2217  if (err)
2218  return err;
2219  ext_debug("index is empty, remove it, free block %llu\n", leaf);
2220  trace_ext4_ext_rm_idx(inode, leaf);
2221 
2222  ext4_free_blocks(handle, inode, NULL, leaf, 1,
2224  return err;
2225 }
2226 
2227 /*
2228  * ext4_ext_calc_credits_for_single_extent:
2229  * This routine returns max. credits that needed to insert an extent
2230  * to the extent tree.
2231  * When pass the actual path, the caller should calculate credits
2232  * under i_data_sem.
2233  */
2234 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2235  struct ext4_ext_path *path)
2236 {
2237  if (path) {
2238  int depth = ext_depth(inode);
2239  int ret = 0;
2240 
2241  /* probably there is space in leaf? */
2242  if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2243  < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2244 
2245  /*
2246  * There are some space in the leaf tree, no
2247  * need to account for leaf block credit
2248  *
2249  * bitmaps and block group descriptor blocks
2250  * and other metadata blocks still need to be
2251  * accounted.
2252  */
2253  /* 1 bitmap, 1 block group descriptor */
2254  ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2255  return ret;
2256  }
2257  }
2258 
2259  return ext4_chunk_trans_blocks(inode, nrblocks);
2260 }
2261 
2262 /*
2263  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2264  *
2265  * if nrblocks are fit in a single extent (chunk flag is 1), then
2266  * in the worse case, each tree level index/leaf need to be changed
2267  * if the tree split due to insert a new extent, then the old tree
2268  * index/leaf need to be updated too
2269  *
2270  * If the nrblocks are discontiguous, they could cause
2271  * the whole tree split more than once, but this is really rare.
2272  */
2273 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2274 {
2275  int index;
2276  int depth = ext_depth(inode);
2277 
2278  if (chunk)
2279  index = depth * 2;
2280  else
2281  index = depth * 3;
2282 
2283  return index;
2284 }
2285 
2286 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2287  struct ext4_extent *ex,
2288  ext4_fsblk_t *partial_cluster,
2290 {
2291  struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2292  unsigned short ee_len = ext4_ext_get_actual_len(ex);
2293  ext4_fsblk_t pblk;
2294  int flags = 0;
2295 
2296  if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2298  else if (ext4_should_journal_data(inode))
2299  flags |= EXT4_FREE_BLOCKS_FORGET;
2300 
2301  /*
2302  * For bigalloc file systems, we never free a partial cluster
2303  * at the beginning of the extent. Instead, we make a note
2304  * that we tried freeing the cluster, and check to see if we
2305  * need to free it on a subsequent call to ext4_remove_blocks,
2306  * or at the end of the ext4_truncate() operation.
2307  */
2309 
2310  trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2311  /*
2312  * If we have a partial cluster, and it's different from the
2313  * cluster of the last block, we need to explicitly free the
2314  * partial cluster here.
2315  */
2316  pblk = ext4_ext_pblock(ex) + ee_len - 1;
2317  if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2318  ext4_free_blocks(handle, inode, NULL,
2319  EXT4_C2B(sbi, *partial_cluster),
2320  sbi->s_cluster_ratio, flags);
2321  *partial_cluster = 0;
2322  }
2323 
2324 #ifdef EXTENTS_STATS
2325  {
2326  struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2327  spin_lock(&sbi->s_ext_stats_lock);
2328  sbi->s_ext_blocks += ee_len;
2329  sbi->s_ext_extents++;
2330  if (ee_len < sbi->s_ext_min)
2331  sbi->s_ext_min = ee_len;
2332  if (ee_len > sbi->s_ext_max)
2333  sbi->s_ext_max = ee_len;
2334  if (ext_depth(inode) > sbi->s_depth_max)
2335  sbi->s_depth_max = ext_depth(inode);
2336  spin_unlock(&sbi->s_ext_stats_lock);
2337  }
2338 #endif
2339  if (from >= le32_to_cpu(ex->ee_block)
2340  && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2341  /* tail removal */
2342  ext4_lblk_t num;
2343 
2344  num = le32_to_cpu(ex->ee_block) + ee_len - from;
2345  pblk = ext4_ext_pblock(ex) + ee_len - num;
2346  ext_debug("free last %u blocks starting %llu\n", num, pblk);
2347  ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2348  /*
2349  * If the block range to be freed didn't start at the
2350  * beginning of a cluster, and we removed the entire
2351  * extent, save the partial cluster here, since we
2352  * might need to delete if we determine that the
2353  * truncate operation has removed all of the blocks in
2354  * the cluster.
2355  */
2356  if (pblk & (sbi->s_cluster_ratio - 1) &&
2357  (ee_len == num))
2358  *partial_cluster = EXT4_B2C(sbi, pblk);
2359  else
2360  *partial_cluster = 0;
2361  } else if (from == le32_to_cpu(ex->ee_block)
2362  && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2363  /* head removal */
2364  ext4_lblk_t num;
2366 
2367  num = to - from;
2368  start = ext4_ext_pblock(ex);
2369 
2370  ext_debug("free first %u blocks starting %llu\n", num, start);
2371  ext4_free_blocks(handle, inode, NULL, start, num, flags);
2372 
2373  } else {
2374  printk(KERN_INFO "strange request: removal(2) "
2375  "%u-%u from %u:%u\n",
2376  from, to, le32_to_cpu(ex->ee_block), ee_len);
2377  }
2378  return 0;
2379 }
2380 
2381 
2382 /*
2383  * ext4_ext_rm_leaf() Removes the extents associated with the
2384  * blocks appearing between "start" and "end", and splits the extents
2385  * if "start" and "end" appear in the same extent
2386  *
2387  * @handle: The journal handle
2388  * @inode: The files inode
2389  * @path: The path to the leaf
2390  * @start: The first block to remove
2391  * @end: The last block to remove
2392  */
2393 static int
2394 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2395  struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2396  ext4_lblk_t start, ext4_lblk_t end)
2397 {
2398  struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2399  int err = 0, correct_index = 0;
2400  int depth = ext_depth(inode), credits;
2401  struct ext4_extent_header *eh;
2402  ext4_lblk_t a, b;
2403  unsigned num;
2404  ext4_lblk_t ex_ee_block;
2405  unsigned short ex_ee_len;
2406  unsigned uninitialized = 0;
2407  struct ext4_extent *ex;
2408 
2409  /* the header must be checked already in ext4_ext_remove_space() */
2410  ext_debug("truncate since %u in leaf to %u\n", start, end);
2411  if (!path[depth].p_hdr)
2412  path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2413  eh = path[depth].p_hdr;
2414  if (unlikely(path[depth].p_hdr == NULL)) {
2415  EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2416  return -EIO;
2417  }
2418  /* find where to start removing */
2419  ex = EXT_LAST_EXTENT(eh);
2420 
2421  ex_ee_block = le32_to_cpu(ex->ee_block);
2422  ex_ee_len = ext4_ext_get_actual_len(ex);
2423 
2424  trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2425 
2426  while (ex >= EXT_FIRST_EXTENT(eh) &&
2427  ex_ee_block + ex_ee_len > start) {
2428 
2429  if (ext4_ext_is_uninitialized(ex))
2430  uninitialized = 1;
2431  else
2432  uninitialized = 0;
2433 
2434  ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2435  uninitialized, ex_ee_len);
2436  path[depth].p_ext = ex;
2437 
2438  a = ex_ee_block > start ? ex_ee_block : start;
2439  b = ex_ee_block+ex_ee_len - 1 < end ?
2440  ex_ee_block+ex_ee_len - 1 : end;
2441 
2442  ext_debug(" border %u:%u\n", a, b);
2443 
2444  /* If this extent is beyond the end of the hole, skip it */
2445  if (end < ex_ee_block) {
2446  ex--;
2447  ex_ee_block = le32_to_cpu(ex->ee_block);
2448  ex_ee_len = ext4_ext_get_actual_len(ex);
2449  continue;
2450  } else if (b != ex_ee_block + ex_ee_len - 1) {
2451  EXT4_ERROR_INODE(inode,
2452  "can not handle truncate %u:%u "
2453  "on extent %u:%u",
2454  start, end, ex_ee_block,
2455  ex_ee_block + ex_ee_len - 1);
2456  err = -EIO;
2457  goto out;
2458  } else if (a != ex_ee_block) {
2459  /* remove tail of the extent */
2460  num = a - ex_ee_block;
2461  } else {
2462  /* remove whole extent: excellent! */
2463  num = 0;
2464  }
2465  /*
2466  * 3 for leaf, sb, and inode plus 2 (bmap and group
2467  * descriptor) for each block group; assume two block
2468  * groups plus ex_ee_len/blocks_per_block_group for
2469  * the worst case
2470  */
2471  credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2472  if (ex == EXT_FIRST_EXTENT(eh)) {
2473  correct_index = 1;
2474  credits += (ext_depth(inode)) + 1;
2475  }
2476  credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2477 
2478  err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2479  if (err)
2480  goto out;
2481 
2482  err = ext4_ext_get_access(handle, inode, path + depth);
2483  if (err)
2484  goto out;
2485 
2486  err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2487  a, b);
2488  if (err)
2489  goto out;
2490 
2491  if (num == 0)
2492  /* this extent is removed; mark slot entirely unused */
2493  ext4_ext_store_pblock(ex, 0);
2494 
2495  ex->ee_len = cpu_to_le16(num);
2496  /*
2497  * Do not mark uninitialized if all the blocks in the
2498  * extent have been removed.
2499  */
2500  if (uninitialized && num)
2501  ext4_ext_mark_uninitialized(ex);
2502  /*
2503  * If the extent was completely released,
2504  * we need to remove it from the leaf
2505  */
2506  if (num == 0) {
2507  if (end != EXT_MAX_BLOCKS - 1) {
2508  /*
2509  * For hole punching, we need to scoot all the
2510  * extents up when an extent is removed so that
2511  * we dont have blank extents in the middle
2512  */
2513  memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2514  sizeof(struct ext4_extent));
2515 
2516  /* Now get rid of the one at the end */
2517  memset(EXT_LAST_EXTENT(eh), 0,
2518  sizeof(struct ext4_extent));
2519  }
2520  le16_add_cpu(&eh->eh_entries, -1);
2521  } else
2522  *partial_cluster = 0;
2523 
2524  err = ext4_ext_dirty(handle, inode, path + depth);
2525  if (err)
2526  goto out;
2527 
2528  ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2529  ext4_ext_pblock(ex));
2530  ex--;
2531  ex_ee_block = le32_to_cpu(ex->ee_block);
2532  ex_ee_len = ext4_ext_get_actual_len(ex);
2533  }
2534 
2535  if (correct_index && eh->eh_entries)
2536  err = ext4_ext_correct_indexes(handle, inode, path);
2537 
2538  /*
2539  * If there is still a entry in the leaf node, check to see if
2540  * it references the partial cluster. This is the only place
2541  * where it could; if it doesn't, we can free the cluster.
2542  */
2543  if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2544  (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2545  *partial_cluster)) {
2546  int flags = EXT4_FREE_BLOCKS_FORGET;
2547 
2548  if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2549  flags |= EXT4_FREE_BLOCKS_METADATA;
2550 
2551  ext4_free_blocks(handle, inode, NULL,
2552  EXT4_C2B(sbi, *partial_cluster),
2553  sbi->s_cluster_ratio, flags);
2554  *partial_cluster = 0;
2555  }
2556 
2557  /* if this leaf is free, then we should
2558  * remove it from index block above */
2559  if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2560  err = ext4_ext_rm_idx(handle, inode, path + depth);
2561 
2562 out:
2563  return err;
2564 }
2565 
2566 /*
2567  * ext4_ext_more_to_rm:
2568  * returns 1 if current index has to be freed (even partial)
2569  */
2570 static int
2571 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2572 {
2573  BUG_ON(path->p_idx == NULL);
2574 
2575  if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2576  return 0;
2577 
2578  /*
2579  * if truncate on deeper level happened, it wasn't partial,
2580  * so we have to consider current index for truncation
2581  */
2582  if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2583  return 0;
2584  return 1;
2585 }
2586 
2587 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2588  ext4_lblk_t end)
2589 {
2590  struct super_block *sb = inode->i_sb;
2591  int depth = ext_depth(inode);
2592  struct ext4_ext_path *path = NULL;
2593  ext4_fsblk_t partial_cluster = 0;
2594  handle_t *handle;
2595  int i = 0, err = 0;
2596 
2597  ext_debug("truncate since %u to %u\n", start, end);
2598 
2599  /* probably first extent we're gonna free will be last in block */
2600  handle = ext4_journal_start(inode, depth + 1);
2601  if (IS_ERR(handle))
2602  return PTR_ERR(handle);
2603 
2604 again:
2605  ext4_ext_invalidate_cache(inode);
2606 
2607  trace_ext4_ext_remove_space(inode, start, depth);
2608 
2609  /*
2610  * Check if we are removing extents inside the extent tree. If that
2611  * is the case, we are going to punch a hole inside the extent tree
2612  * so we have to check whether we need to split the extent covering
2613  * the last block to remove so we can easily remove the part of it
2614  * in ext4_ext_rm_leaf().
2615  */
2616  if (end < EXT_MAX_BLOCKS - 1) {
2617  struct ext4_extent *ex;
2619 
2620  /* find extent for this block */
2621  path = ext4_ext_find_extent(inode, end, NULL);
2622  if (IS_ERR(path)) {
2623  ext4_journal_stop(handle);
2624  return PTR_ERR(path);
2625  }
2626  depth = ext_depth(inode);
2627  /* Leaf not may not exist only if inode has no blocks at all */
2628  ex = path[depth].p_ext;
2629  if (!ex) {
2630  if (depth) {
2631  EXT4_ERROR_INODE(inode,
2632  "path[%d].p_hdr == NULL",
2633  depth);
2634  err = -EIO;
2635  }
2636  goto out;
2637  }
2638 
2639  ee_block = le32_to_cpu(ex->ee_block);
2640 
2641  /*
2642  * See if the last block is inside the extent, if so split
2643  * the extent at 'end' block so we can easily remove the
2644  * tail of the first part of the split extent in
2645  * ext4_ext_rm_leaf().
2646  */
2647  if (end >= ee_block &&
2648  end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2649  int split_flag = 0;
2650 
2651  if (ext4_ext_is_uninitialized(ex))
2652  split_flag = EXT4_EXT_MARK_UNINIT1 |
2654 
2655  /*
2656  * Split the extent in two so that 'end' is the last
2657  * block in the first new extent
2658  */
2659  err = ext4_split_extent_at(handle, inode, path,
2660  end + 1, split_flag,
2663 
2664  if (err < 0)
2665  goto out;
2666  }
2667  }
2668  /*
2669  * We start scanning from right side, freeing all the blocks
2670  * after i_size and walking into the tree depth-wise.
2671  */
2672  depth = ext_depth(inode);
2673  if (path) {
2674  int k = i = depth;
2675  while (--k > 0)
2676  path[k].p_block =
2677  le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2678  } else {
2679  path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2680  GFP_NOFS);
2681  if (path == NULL) {
2682  ext4_journal_stop(handle);
2683  return -ENOMEM;
2684  }
2685  path[0].p_depth = depth;
2686  path[0].p_hdr = ext_inode_hdr(inode);
2687  i = 0;
2688 
2689  if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2690  err = -EIO;
2691  goto out;
2692  }
2693  }
2694  err = 0;
2695 
2696  while (i >= 0 && err == 0) {
2697  if (i == depth) {
2698  /* this is leaf block */
2699  err = ext4_ext_rm_leaf(handle, inode, path,
2700  &partial_cluster, start,
2701  end);
2702  /* root level has p_bh == NULL, brelse() eats this */
2703  brelse(path[i].p_bh);
2704  path[i].p_bh = NULL;
2705  i--;
2706  continue;
2707  }
2708 
2709  /* this is index block */
2710  if (!path[i].p_hdr) {
2711  ext_debug("initialize header\n");
2712  path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2713  }
2714 
2715  if (!path[i].p_idx) {
2716  /* this level hasn't been touched yet */
2717  path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2718  path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2719  ext_debug("init index ptr: hdr 0x%p, num %d\n",
2720  path[i].p_hdr,
2721  le16_to_cpu(path[i].p_hdr->eh_entries));
2722  } else {
2723  /* we were already here, see at next index */
2724  path[i].p_idx--;
2725  }
2726 
2727  ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2728  i, EXT_FIRST_INDEX(path[i].p_hdr),
2729  path[i].p_idx);
2730  if (ext4_ext_more_to_rm(path + i)) {
2731  struct buffer_head *bh;
2732  /* go to the next level */
2733  ext_debug("move to level %d (block %llu)\n",
2734  i + 1, ext4_idx_pblock(path[i].p_idx));
2735  memset(path + i + 1, 0, sizeof(*path));
2736  bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2737  if (!bh) {
2738  /* should we reset i_size? */
2739  err = -EIO;
2740  break;
2741  }
2742  if (WARN_ON(i + 1 > depth)) {
2743  err = -EIO;
2744  break;
2745  }
2746  if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2747  depth - i - 1, bh)) {
2748  err = -EIO;
2749  break;
2750  }
2751  path[i + 1].p_bh = bh;
2752 
2753  /* save actual number of indexes since this
2754  * number is changed at the next iteration */
2755  path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2756  i++;
2757  } else {
2758  /* we finished processing this index, go up */
2759  if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2760  /* index is empty, remove it;
2761  * handle must be already prepared by the
2762  * truncatei_leaf() */
2763  err = ext4_ext_rm_idx(handle, inode, path + i);
2764  }
2765  /* root level has p_bh == NULL, brelse() eats this */
2766  brelse(path[i].p_bh);
2767  path[i].p_bh = NULL;
2768  i--;
2769  ext_debug("return to level %d\n", i);
2770  }
2771  }
2772 
2773  trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2774  path->p_hdr->eh_entries);
2775 
2776  /* If we still have something in the partial cluster and we have removed
2777  * even the first extent, then we should free the blocks in the partial
2778  * cluster as well. */
2779  if (partial_cluster && path->p_hdr->eh_entries == 0) {
2780  int flags = EXT4_FREE_BLOCKS_FORGET;
2781 
2782  if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2783  flags |= EXT4_FREE_BLOCKS_METADATA;
2784 
2785  ext4_free_blocks(handle, inode, NULL,
2786  EXT4_C2B(EXT4_SB(sb), partial_cluster),
2787  EXT4_SB(sb)->s_cluster_ratio, flags);
2788  partial_cluster = 0;
2789  }
2790 
2791  /* TODO: flexible tree reduction should be here */
2792  if (path->p_hdr->eh_entries == 0) {
2793  /*
2794  * truncate to zero freed all the tree,
2795  * so we need to correct eh_depth
2796  */
2797  err = ext4_ext_get_access(handle, inode, path);
2798  if (err == 0) {
2799  ext_inode_hdr(inode)->eh_depth = 0;
2800  ext_inode_hdr(inode)->eh_max =
2801  cpu_to_le16(ext4_ext_space_root(inode, 0));
2802  err = ext4_ext_dirty(handle, inode, path);
2803  }
2804  }
2805 out:
2806  ext4_ext_drop_refs(path);
2807  kfree(path);
2808  if (err == -EAGAIN) {
2809  path = NULL;
2810  goto again;
2811  }
2812  ext4_journal_stop(handle);
2813 
2814  return err;
2815 }
2816 
2817 /*
2818  * called at mount time
2819  */
2820 void ext4_ext_init(struct super_block *sb)
2821 {
2822  /*
2823  * possible initialization would be here
2824  */
2825 
2827 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2828  printk(KERN_INFO "EXT4-fs: file extents enabled"
2829 #ifdef AGGRESSIVE_TEST
2830  ", aggressive tests"
2831 #endif
2832 #ifdef CHECK_BINSEARCH
2833  ", check binsearch"
2834 #endif
2835 #ifdef EXTENTS_STATS
2836  ", stats"
2837 #endif
2838  "\n");
2839 #endif
2840 #ifdef EXTENTS_STATS
2841  spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2842  EXT4_SB(sb)->s_ext_min = 1 << 30;
2843  EXT4_SB(sb)->s_ext_max = 0;
2844 #endif
2845  }
2846 }
2847 
2848 /*
2849  * called at umount time
2850  */
2851 void ext4_ext_release(struct super_block *sb)
2852 {
2854  return;
2855 
2856 #ifdef EXTENTS_STATS
2857  if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2858  struct ext4_sb_info *sbi = EXT4_SB(sb);
2859  printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2860  sbi->s_ext_blocks, sbi->s_ext_extents,
2861  sbi->s_ext_blocks / sbi->s_ext_extents);
2862  printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2863  sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2864  }
2865 #endif
2866 }
2867 
2868 /* FIXME!! we need to try to merge to left or right after zero-out */
2869 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2870 {
2871  ext4_fsblk_t ee_pblock;
2872  unsigned int ee_len;
2873  int ret;
2874 
2875  ee_len = ext4_ext_get_actual_len(ex);
2876  ee_pblock = ext4_ext_pblock(ex);
2877 
2878  ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2879  if (ret > 0)
2880  ret = 0;
2881 
2882  return ret;
2883 }
2884 
2885 /*
2886  * ext4_split_extent_at() splits an extent at given block.
2887  *
2888  * @handle: the journal handle
2889  * @inode: the file inode
2890  * @path: the path to the extent
2891  * @split: the logical block where the extent is splitted.
2892  * @split_flags: indicates if the extent could be zeroout if split fails, and
2893  * the states(init or uninit) of new extents.
2894  * @flags: flags used to insert new extent to extent tree.
2895  *
2896  *
2897  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2898  * of which are deterimined by split_flag.
2899  *
2900  * There are two cases:
2901  * a> the extent are splitted into two extent.
2902  * b> split is not needed, and just mark the extent.
2903  *
2904  * return 0 on success.
2905  */
2906 static int ext4_split_extent_at(handle_t *handle,
2907  struct inode *inode,
2908  struct ext4_ext_path *path,
2910  int split_flag,
2911  int flags)
2912 {
2913  ext4_fsblk_t newblock;
2914  ext4_lblk_t ee_block;
2915  struct ext4_extent *ex, newex, orig_ex;
2916  struct ext4_extent *ex2 = NULL;
2917  unsigned int ee_len, depth;
2918  int err = 0;
2919 
2920  BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2922 
2923  ext_debug("ext4_split_extents_at: inode %lu, logical"
2924  "block %llu\n", inode->i_ino, (unsigned long long)split);
2925 
2926  ext4_ext_show_leaf(inode, path);
2927 
2928  depth = ext_depth(inode);
2929  ex = path[depth].p_ext;
2930  ee_block = le32_to_cpu(ex->ee_block);
2931  ee_len = ext4_ext_get_actual_len(ex);
2932  newblock = split - ee_block + ext4_ext_pblock(ex);
2933 
2934  BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2935 
2936  err = ext4_ext_get_access(handle, inode, path + depth);
2937  if (err)
2938  goto out;
2939 
2940  if (split == ee_block) {
2941  /*
2942  * case b: block @split is the block that the extent begins with
2943  * then we just change the state of the extent, and splitting
2944  * is not needed.
2945  */
2946  if (split_flag & EXT4_EXT_MARK_UNINIT2)
2947  ext4_ext_mark_uninitialized(ex);
2948  else
2949  ext4_ext_mark_initialized(ex);
2950 
2951  if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2952  ext4_ext_try_to_merge(handle, inode, path, ex);
2953 
2954  err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2955  goto out;
2956  }
2957 
2958  /* case a */
2959  memcpy(&orig_ex, ex, sizeof(orig_ex));
2960  ex->ee_len = cpu_to_le16(split - ee_block);
2961  if (split_flag & EXT4_EXT_MARK_UNINIT1)
2962  ext4_ext_mark_uninitialized(ex);
2963 
2964  /*
2965  * path may lead to new leaf, not to original leaf any more
2966  * after ext4_ext_insert_extent() returns,
2967  */
2968  err = ext4_ext_dirty(handle, inode, path + depth);
2969  if (err)
2970  goto fix_extent_len;
2971 
2972  ex2 = &newex;
2973  ex2->ee_block = cpu_to_le32(split);
2974  ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2975  ext4_ext_store_pblock(ex2, newblock);
2976  if (split_flag & EXT4_EXT_MARK_UNINIT2)
2977  ext4_ext_mark_uninitialized(ex2);
2978 
2979  err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2980  if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2981  if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2982  if (split_flag & EXT4_EXT_DATA_VALID1)
2983  err = ext4_ext_zeroout(inode, ex2);
2984  else
2985  err = ext4_ext_zeroout(inode, ex);
2986  } else
2987  err = ext4_ext_zeroout(inode, &orig_ex);
2988 
2989  if (err)
2990  goto fix_extent_len;
2991  /* update the extent length and mark as initialized */
2992  ex->ee_len = cpu_to_le16(ee_len);
2993  ext4_ext_try_to_merge(handle, inode, path, ex);
2994  err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2995  goto out;
2996  } else if (err)
2997  goto fix_extent_len;
2998 
2999 out:
3000  ext4_ext_show_leaf(inode, path);
3001  return err;
3002 
3003 fix_extent_len:
3004  ex->ee_len = orig_ex.ee_len;
3005  ext4_ext_dirty(handle, inode, path + depth);
3006  return err;
3007 }
3008 
3009 /*
3010  * ext4_split_extents() splits an extent and mark extent which is covered
3011  * by @map as split_flags indicates
3012  *
3013  * It may result in splitting the extent into multiple extents (upto three)
3014  * There are three possibilities:
3015  * a> There is no split required
3016  * b> Splits in two extents: Split is happening at either end of the extent
3017  * c> Splits in three extents: Somone is splitting in middle of the extent
3018  *
3019  */
3020 static int ext4_split_extent(handle_t *handle,
3021  struct inode *inode,
3022  struct ext4_ext_path *path,
3023  struct ext4_map_blocks *map,
3024  int split_flag,
3025  int flags)
3026 {
3028  struct ext4_extent *ex;
3029  unsigned int ee_len, depth;
3030  int err = 0;
3031  int uninitialized;
3032  int split_flag1, flags1;
3033 
3034  depth = ext_depth(inode);
3035  ex = path[depth].p_ext;
3036  ee_block = le32_to_cpu(ex->ee_block);
3037  ee_len = ext4_ext_get_actual_len(ex);
3038  uninitialized = ext4_ext_is_uninitialized(ex);
3039 
3040  if (map->m_lblk + map->m_len < ee_block + ee_len) {
3041  split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3042  flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3043  if (uninitialized)
3044  split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3046  if (split_flag & EXT4_EXT_DATA_VALID2)
3047  split_flag1 |= EXT4_EXT_DATA_VALID1;
3048  err = ext4_split_extent_at(handle, inode, path,
3049  map->m_lblk + map->m_len, split_flag1, flags1);
3050  if (err)
3051  goto out;
3052  }
3053 
3054  ext4_ext_drop_refs(path);
3055  path = ext4_ext_find_extent(inode, map->m_lblk, path);
3056  if (IS_ERR(path))
3057  return PTR_ERR(path);
3058 
3059  if (map->m_lblk >= ee_block) {
3060  split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3062  if (uninitialized)
3063  split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3064  if (split_flag & EXT4_EXT_MARK_UNINIT2)
3065  split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3066  err = ext4_split_extent_at(handle, inode, path,
3067  map->m_lblk, split_flag1, flags);
3068  if (err)
3069  goto out;
3070  }
3071 
3072  ext4_ext_show_leaf(inode, path);
3073 out:
3074  return err ? err : map->m_len;
3075 }
3076 
3077 /*
3078  * This function is called by ext4_ext_map_blocks() if someone tries to write
3079  * to an uninitialized extent. It may result in splitting the uninitialized
3080  * extent into multiple extents (up to three - one initialized and two
3081  * uninitialized).
3082  * There are three possibilities:
3083  * a> There is no split required: Entire extent should be initialized
3084  * b> Splits in two extents: Write is happening at either end of the extent
3085  * c> Splits in three extents: Somone is writing in middle of the extent
3086  *
3087  * Pre-conditions:
3088  * - The extent pointed to by 'path' is uninitialized.
3089  * - The extent pointed to by 'path' contains a superset
3090  * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3091  *
3092  * Post-conditions on success:
3093  * - the returned value is the number of blocks beyond map->l_lblk
3094  * that are allocated and initialized.
3095  * It is guaranteed to be >= map->m_len.
3096  */
3097 static int ext4_ext_convert_to_initialized(handle_t *handle,
3098  struct inode *inode,
3099  struct ext4_map_blocks *map,
3100  struct ext4_ext_path *path)
3101 {
3102  struct ext4_sb_info *sbi;
3103  struct ext4_extent_header *eh;
3104  struct ext4_map_blocks split_map;
3105  struct ext4_extent zero_ex;
3106  struct ext4_extent *ex;
3107  ext4_lblk_t ee_block, eof_block;
3108  unsigned int ee_len, depth;
3109  int allocated, max_zeroout = 0;
3110  int err = 0;
3111  int split_flag = 0;
3112 
3113  ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3114  "block %llu, max_blocks %u\n", inode->i_ino,
3115  (unsigned long long)map->m_lblk, map->m_len);
3116 
3117  sbi = EXT4_SB(inode->i_sb);
3118  eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3119  inode->i_sb->s_blocksize_bits;
3120  if (eof_block < map->m_lblk + map->m_len)
3121  eof_block = map->m_lblk + map->m_len;
3122 
3123  depth = ext_depth(inode);
3124  eh = path[depth].p_hdr;
3125  ex = path[depth].p_ext;
3126  ee_block = le32_to_cpu(ex->ee_block);
3127  ee_len = ext4_ext_get_actual_len(ex);
3128  allocated = ee_len - (map->m_lblk - ee_block);
3129 
3130  trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3131 
3132  /* Pre-conditions */
3133  BUG_ON(!ext4_ext_is_uninitialized(ex));
3134  BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3135 
3136  /*
3137  * Attempt to transfer newly initialized blocks from the currently
3138  * uninitialized extent to its left neighbor. This is much cheaper
3139  * than an insertion followed by a merge as those involve costly
3140  * memmove() calls. This is the common case in steady state for
3141  * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3142  * writes.
3143  *
3144  * Limitations of the current logic:
3145  * - L1: we only deal with writes at the start of the extent.
3146  * The approach could be extended to writes at the end
3147  * of the extent but this scenario was deemed less common.
3148  * - L2: we do not deal with writes covering the whole extent.
3149  * This would require removing the extent if the transfer
3150  * is possible.
3151  * - L3: we only attempt to merge with an extent stored in the
3152  * same extent tree node.
3153  */
3154  if ((map->m_lblk == ee_block) && /*L1*/
3155  (map->m_len < ee_len) && /*L2*/
3156  (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3157  struct ext4_extent *prev_ex;
3158  ext4_lblk_t prev_lblk;
3159  ext4_fsblk_t prev_pblk, ee_pblk;
3160  unsigned int prev_len, write_len;
3161 
3162  prev_ex = ex - 1;
3163  prev_lblk = le32_to_cpu(prev_ex->ee_block);
3164  prev_len = ext4_ext_get_actual_len(prev_ex);
3165  prev_pblk = ext4_ext_pblock(prev_ex);
3166  ee_pblk = ext4_ext_pblock(ex);
3167  write_len = map->m_len;
3168 
3169  /*
3170  * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3171  * upon those conditions:
3172  * - C1: prev_ex is initialized,
3173  * - C2: prev_ex is logically abutting ex,
3174  * - C3: prev_ex is physically abutting ex,
3175  * - C4: prev_ex can receive the additional blocks without
3176  * overflowing the (initialized) length limit.
3177  */
3178  if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3179  ((prev_lblk + prev_len) == ee_block) && /*C2*/
3180  ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3181  (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3182  err = ext4_ext_get_access(handle, inode, path + depth);
3183  if (err)
3184  goto out;
3185 
3186  trace_ext4_ext_convert_to_initialized_fastpath(inode,
3187  map, ex, prev_ex);
3188 
3189  /* Shift the start of ex by 'write_len' blocks */
3190  ex->ee_block = cpu_to_le32(ee_block + write_len);
3191  ext4_ext_store_pblock(ex, ee_pblk + write_len);
3192  ex->ee_len = cpu_to_le16(ee_len - write_len);
3193  ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3194 
3195  /* Extend prev_ex by 'write_len' blocks */
3196  prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3197 
3198  /* Mark the block containing both extents as dirty */
3199  ext4_ext_dirty(handle, inode, path + depth);
3200 
3201  /* Update path to point to the right extent */
3202  path[depth].p_ext = prev_ex;
3203 
3204  /* Result: number of initialized blocks past m_lblk */
3205  allocated = write_len;
3206  goto out;
3207  }
3208  }
3209 
3210  WARN_ON(map->m_lblk < ee_block);
3211  /*
3212  * It is safe to convert extent to initialized via explicit
3213  * zeroout only if extent is fully insde i_size or new_size.
3214  */
3215  split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3216 
3217  if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3218  max_zeroout = sbi->s_extent_max_zeroout_kb >>
3219  inode->i_sb->s_blocksize_bits;
3220 
3221  /* If extent is less than s_max_zeroout_kb, zeroout directly */
3222  if (max_zeroout && (ee_len <= max_zeroout)) {
3223  err = ext4_ext_zeroout(inode, ex);
3224  if (err)
3225  goto out;
3226 
3227  err = ext4_ext_get_access(handle, inode, path + depth);
3228  if (err)
3229  goto out;
3230  ext4_ext_mark_initialized(ex);
3231  ext4_ext_try_to_merge(handle, inode, path, ex);
3232  err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3233  goto out;
3234  }
3235 
3236  /*
3237  * four cases:
3238  * 1. split the extent into three extents.
3239  * 2. split the extent into two extents, zeroout the first half.
3240  * 3. split the extent into two extents, zeroout the second half.
3241  * 4. split the extent into two extents with out zeroout.
3242  */
3243  split_map.m_lblk = map->m_lblk;
3244  split_map.m_len = map->m_len;
3245 
3246  if (max_zeroout && (allocated > map->m_len)) {
3247  if (allocated <= max_zeroout) {
3248  /* case 3 */
3249  zero_ex.ee_block =
3250  cpu_to_le32(map->m_lblk);
3251  zero_ex.ee_len = cpu_to_le16(allocated);
3252  ext4_ext_store_pblock(&zero_ex,
3253  ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3254  err = ext4_ext_zeroout(inode, &zero_ex);
3255  if (err)
3256  goto out;
3257  split_map.m_lblk = map->m_lblk;
3258  split_map.m_len = allocated;
3259  } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3260  /* case 2 */
3261  if (map->m_lblk != ee_block) {
3262  zero_ex.ee_block = ex->ee_block;
3263  zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3264  ee_block);
3265  ext4_ext_store_pblock(&zero_ex,
3266  ext4_ext_pblock(ex));
3267  err = ext4_ext_zeroout(inode, &zero_ex);
3268  if (err)
3269  goto out;
3270  }
3271 
3272  split_map.m_lblk = ee_block;
3273  split_map.m_len = map->m_lblk - ee_block + map->m_len;
3274  allocated = map->m_len;
3275  }
3276  }
3277 
3278  allocated = ext4_split_extent(handle, inode, path,
3279  &split_map, split_flag, 0);
3280  if (allocated < 0)
3281  err = allocated;
3282 
3283 out:
3284  return err ? err : allocated;
3285 }
3286 
3287 /*
3288  * This function is called by ext4_ext_map_blocks() from
3289  * ext4_get_blocks_dio_write() when DIO to write
3290  * to an uninitialized extent.
3291  *
3292  * Writing to an uninitialized extent may result in splitting the uninitialized
3293  * extent into multiple initialized/uninitialized extents (up to three)
3294  * There are three possibilities:
3295  * a> There is no split required: Entire extent should be uninitialized
3296  * b> Splits in two extents: Write is happening at either end of the extent
3297  * c> Splits in three extents: Somone is writing in middle of the extent
3298  *
3299  * One of more index blocks maybe needed if the extent tree grow after
3300  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3301  * complete, we need to split the uninitialized extent before DIO submit
3302  * the IO. The uninitialized extent called at this time will be split
3303  * into three uninitialized extent(at most). After IO complete, the part
3304  * being filled will be convert to initialized by the end_io callback function
3305  * via ext4_convert_unwritten_extents().
3306  *
3307  * Returns the size of uninitialized extent to be written on success.
3308  */
3309 static int ext4_split_unwritten_extents(handle_t *handle,
3310  struct inode *inode,
3311  struct ext4_map_blocks *map,
3312  struct ext4_ext_path *path,
3313  int flags)
3314 {
3315  ext4_lblk_t eof_block;
3317  struct ext4_extent *ex;
3318  unsigned int ee_len;
3319  int split_flag = 0, depth;
3320 
3321  ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3322  "block %llu, max_blocks %u\n", inode->i_ino,
3323  (unsigned long long)map->m_lblk, map->m_len);
3324 
3325  eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3326  inode->i_sb->s_blocksize_bits;
3327  if (eof_block < map->m_lblk + map->m_len)
3328  eof_block = map->m_lblk + map->m_len;
3329  /*
3330  * It is safe to convert extent to initialized via explicit
3331  * zeroout only if extent is fully insde i_size or new_size.
3332  */
3333  depth = ext_depth(inode);
3334  ex = path[depth].p_ext;
3335  ee_block = le32_to_cpu(ex->ee_block);
3336  ee_len = ext4_ext_get_actual_len(ex);
3337 
3338  split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3339  split_flag |= EXT4_EXT_MARK_UNINIT2;
3340  if (flags & EXT4_GET_BLOCKS_CONVERT)
3341  split_flag |= EXT4_EXT_DATA_VALID2;
3342  flags |= EXT4_GET_BLOCKS_PRE_IO;
3343  return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3344 }
3345 
3346 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3347  struct inode *inode,
3348  struct ext4_map_blocks *map,
3349  struct ext4_ext_path *path)
3350 {
3351  struct ext4_extent *ex;
3353  unsigned int ee_len;
3354  int depth;
3355  int err = 0;
3356 
3357  depth = ext_depth(inode);
3358  ex = path[depth].p_ext;
3359  ee_block = le32_to_cpu(ex->ee_block);
3360  ee_len = ext4_ext_get_actual_len(ex);
3361 
3362  ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3363  "block %llu, max_blocks %u\n", inode->i_ino,
3364  (unsigned long long)ee_block, ee_len);
3365 
3366  /* If extent is larger than requested then split is required */
3367  if (ee_block != map->m_lblk || ee_len > map->m_len) {
3368  err = ext4_split_unwritten_extents(handle, inode, map, path,
3370  if (err < 0)
3371  goto out;
3372  ext4_ext_drop_refs(path);
3373  path = ext4_ext_find_extent(inode, map->m_lblk, path);
3374  if (IS_ERR(path)) {
3375  err = PTR_ERR(path);
3376  goto out;
3377  }
3378  depth = ext_depth(inode);
3379  ex = path[depth].p_ext;
3380  }
3381 
3382  err = ext4_ext_get_access(handle, inode, path + depth);
3383  if (err)
3384  goto out;
3385  /* first mark the extent as initialized */
3386  ext4_ext_mark_initialized(ex);
3387 
3388  /* note: ext4_ext_correct_indexes() isn't needed here because
3389  * borders are not changed
3390  */
3391  ext4_ext_try_to_merge(handle, inode, path, ex);
3392 
3393  /* Mark modified extent as dirty */
3394  err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3395 out:
3396  ext4_ext_show_leaf(inode, path);
3397  return err;
3398 }
3399 
3400 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3401  sector_t block, int count)
3402 {
3403  int i;
3404  for (i = 0; i < count; i++)
3405  unmap_underlying_metadata(bdev, block + i);
3406 }
3407 
3408 /*
3409  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3410  */
3411 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3412  ext4_lblk_t lblk,
3413  struct ext4_ext_path *path,
3414  unsigned int len)
3415 {
3416  int i, depth;
3417  struct ext4_extent_header *eh;
3418  struct ext4_extent *last_ex;
3419 
3420  if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3421  return 0;
3422 
3423  depth = ext_depth(inode);
3424  eh = path[depth].p_hdr;
3425 
3426  /*
3427  * We're going to remove EOFBLOCKS_FL entirely in future so we
3428  * do not care for this case anymore. Simply remove the flag
3429  * if there are no extents.
3430  */
3431  if (unlikely(!eh->eh_entries))
3432  goto out;
3433  last_ex = EXT_LAST_EXTENT(eh);
3434  /*
3435  * We should clear the EOFBLOCKS_FL flag if we are writing the
3436  * last block in the last extent in the file. We test this by
3437  * first checking to see if the caller to
3438  * ext4_ext_get_blocks() was interested in the last block (or
3439  * a block beyond the last block) in the current extent. If
3440  * this turns out to be false, we can bail out from this
3441  * function immediately.
3442  */
3443  if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3444  ext4_ext_get_actual_len(last_ex))
3445  return 0;
3446  /*
3447  * If the caller does appear to be planning to write at or
3448  * beyond the end of the current extent, we then test to see
3449  * if the current extent is the last extent in the file, by
3450  * checking to make sure it was reached via the rightmost node
3451  * at each level of the tree.
3452  */
3453  for (i = depth-1; i >= 0; i--)
3454  if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3455  return 0;
3456 out:
3457  ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3458  return ext4_mark_inode_dirty(handle, inode);
3459 }
3460 
3474 static int ext4_find_delalloc_range(struct inode *inode,
3475  ext4_lblk_t lblk_start,
3476  ext4_lblk_t lblk_end,
3477  int search_hint_reverse)
3478 {
3479  struct address_space *mapping = inode->i_mapping;
3480  struct buffer_head *head, *bh = NULL;
3481  struct page *page;
3482  ext4_lblk_t i, pg_lblk;
3483  pgoff_t index;
3484 
3485  if (!test_opt(inode->i_sb, DELALLOC))
3486  return 0;
3487 
3488  /* reverse search wont work if fs block size is less than page size */
3489  if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3490  search_hint_reverse = 0;
3491 
3492  if (search_hint_reverse)
3493  i = lblk_end;
3494  else
3495  i = lblk_start;
3496 
3497  index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3498 
3499  while ((i >= lblk_start) && (i <= lblk_end)) {
3500  page = find_get_page(mapping, index);
3501  if (!page)
3502  goto nextpage;
3503 
3504  if (!page_has_buffers(page))
3505  goto nextpage;
3506 
3507  head = page_buffers(page);
3508  if (!head)
3509  goto nextpage;
3510 
3511  bh = head;
3512  pg_lblk = index << (PAGE_CACHE_SHIFT -
3513  inode->i_blkbits);
3514  do {
3515  if (unlikely(pg_lblk < lblk_start)) {
3516  /*
3517  * This is possible when fs block size is less
3518  * than page size and our cluster starts/ends in
3519  * middle of the page. So we need to skip the
3520  * initial few blocks till we reach the 'lblk'
3521  */
3522  pg_lblk++;
3523  continue;
3524  }
3525 
3526  /* Check if the buffer is delayed allocated and that it
3527  * is not yet mapped. (when da-buffers are mapped during
3528  * their writeout, their da_mapped bit is set.)
3529  */
3530  if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3531  page_cache_release(page);
3532  trace_ext4_find_delalloc_range(inode,
3533  lblk_start, lblk_end,
3534  search_hint_reverse,
3535  1, i);
3536  return 1;
3537  }
3538  if (search_hint_reverse)
3539  i--;
3540  else
3541  i++;
3542  } while ((i >= lblk_start) && (i <= lblk_end) &&
3543  ((bh = bh->b_this_page) != head));
3544 nextpage:
3545  if (page)
3546  page_cache_release(page);
3547  /*
3548  * Move to next page. 'i' will be the first lblk in the next
3549  * page.
3550  */
3551  if (search_hint_reverse)
3552  index--;
3553  else
3554  index++;
3555  i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3556  }
3557 
3558  trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3559  search_hint_reverse, 0, 0);
3560  return 0;
3561 }
3563 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3564  int search_hint_reverse)
3565 {
3566  struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3567  ext4_lblk_t lblk_start, lblk_end;
3568  lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3569  lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3570 
3571  return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3572  search_hint_reverse);
3573 }
3574 
3610 static unsigned int
3611 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3612  unsigned int num_blks)
3613 {
3614  struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3615  ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3616  ext4_lblk_t lblk_from, lblk_to, c_offset;
3617  unsigned int allocated_clusters = 0;
3618 
3619  alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3620  alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3621 
3622  /* max possible clusters for this allocation */
3623  allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3624 
3625  trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3626 
3627  /* Check towards left side */
3628  c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3629  if (c_offset) {
3630  lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3631  lblk_to = lblk_from + c_offset - 1;
3632 
3633  if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3634  allocated_clusters--;
3635  }
3636 
3637  /* Now check towards right. */
3638  c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3639  if (allocated_clusters && c_offset) {
3640  lblk_from = lblk_start + num_blks;
3641  lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3642 
3643  if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3644  allocated_clusters--;
3645  }
3646 
3647  return allocated_clusters;
3648 }
3649 
3650 static int
3651 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3652  struct ext4_map_blocks *map,
3653  struct ext4_ext_path *path, int flags,
3654  unsigned int allocated, ext4_fsblk_t newblock)
3655 {
3656  int ret = 0;
3657  int err = 0;
3658  ext4_io_end_t *io = ext4_inode_aio(inode);
3659 
3660  ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3661  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3662  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3663  flags, allocated);
3664  ext4_ext_show_leaf(inode, path);
3665 
3666  trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3667  newblock);
3668 
3669  /* get_block() before submit the IO, split the extent */
3670  if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3671  ret = ext4_split_unwritten_extents(handle, inode, map,
3672  path, flags);
3673  if (ret <= 0)
3674  goto out;
3675  /*
3676  * Flag the inode(non aio case) or end_io struct (aio case)
3677  * that this IO needs to conversion to written when IO is
3678  * completed
3679  */
3680  if (io)
3681  ext4_set_io_unwritten_flag(inode, io);
3682  else
3683  ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3684  if (ext4_should_dioread_nolock(inode))
3685  map->m_flags |= EXT4_MAP_UNINIT;
3686  goto out;
3687  }
3688  /* IO end_io complete, convert the filled extent to written */
3689  if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3690  ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3691  path);
3692  if (ret >= 0) {
3693  ext4_update_inode_fsync_trans(handle, inode, 1);
3694  err = check_eofblocks_fl(handle, inode, map->m_lblk,
3695  path, map->m_len);
3696  } else
3697  err = ret;
3698  goto out2;
3699  }
3700  /* buffered IO case */
3701  /*
3702  * repeat fallocate creation request
3703  * we already have an unwritten extent
3704  */
3705  if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3706  goto map_out;
3707 
3708  /* buffered READ or buffered write_begin() lookup */
3709  if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3710  /*
3711  * We have blocks reserved already. We
3712  * return allocated blocks so that delalloc
3713  * won't do block reservation for us. But
3714  * the buffer head will be unmapped so that
3715  * a read from the block returns 0s.
3716  */
3717  map->m_flags |= EXT4_MAP_UNWRITTEN;
3718  goto out1;
3719  }
3720 
3721  /* buffered write, writepage time, convert*/
3722  ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3723  if (ret >= 0)
3724  ext4_update_inode_fsync_trans(handle, inode, 1);
3725 out:
3726  if (ret <= 0) {
3727  err = ret;
3728  goto out2;
3729  } else
3730  allocated = ret;
3731  map->m_flags |= EXT4_MAP_NEW;
3732  /*
3733  * if we allocated more blocks than requested
3734  * we need to make sure we unmap the extra block
3735  * allocated. The actual needed block will get
3736  * unmapped later when we find the buffer_head marked
3737  * new.
3738  */
3739  if (allocated > map->m_len) {
3740  unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3741  newblock + map->m_len,
3742  allocated - map->m_len);
3743  allocated = map->m_len;
3744  }
3745 
3746  /*
3747  * If we have done fallocate with the offset that is already
3748  * delayed allocated, we would have block reservation
3749  * and quota reservation done in the delayed write path.
3750  * But fallocate would have already updated quota and block
3751  * count for this offset. So cancel these reservation
3752  */
3753  if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3754  unsigned int reserved_clusters;
3755  reserved_clusters = get_reserved_cluster_alloc(inode,
3756  map->m_lblk, map->m_len);
3757  if (reserved_clusters)
3759  reserved_clusters,
3760  0);
3761  }
3762 
3763 map_out:
3764  map->m_flags |= EXT4_MAP_MAPPED;
3765  if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3766  err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3767  map->m_len);
3768  if (err < 0)
3769  goto out2;
3770  }
3771 out1:
3772  if (allocated > map->m_len)
3773  allocated = map->m_len;
3774  ext4_ext_show_leaf(inode, path);
3775  map->m_pblk = newblock;
3776  map->m_len = allocated;
3777 out2:
3778  if (path) {
3779  ext4_ext_drop_refs(path);
3780  kfree(path);
3781  }
3782  return err ? err : allocated;
3783 }
3784 
3785 /*
3786  * get_implied_cluster_alloc - check to see if the requested
3787  * allocation (in the map structure) overlaps with a cluster already
3788  * allocated in an extent.
3789  * @sb The filesystem superblock structure
3790  * @map The requested lblk->pblk mapping
3791  * @ex The extent structure which might contain an implied
3792  * cluster allocation
3793  *
3794  * This function is called by ext4_ext_map_blocks() after we failed to
3795  * find blocks that were already in the inode's extent tree. Hence,
3796  * we know that the beginning of the requested region cannot overlap
3797  * the extent from the inode's extent tree. There are three cases we
3798  * want to catch. The first is this case:
3799  *
3800  * |--- cluster # N--|
3801  * |--- extent ---| |---- requested region ---|
3802  * |==========|
3803  *
3804  * The second case that we need to test for is this one:
3805  *
3806  * |--------- cluster # N ----------------|
3807  * |--- requested region --| |------- extent ----|
3808  * |=======================|
3809  *
3810  * The third case is when the requested region lies between two extents
3811  * within the same cluster:
3812  * |------------- cluster # N-------------|
3813  * |----- ex -----| |---- ex_right ----|
3814  * |------ requested region ------|
3815  * |================|
3816  *
3817  * In each of the above cases, we need to set the map->m_pblk and
3818  * map->m_len so it corresponds to the return the extent labelled as
3819  * "|====|" from cluster #N, since it is already in use for data in
3820  * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3821  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3822  * as a new "allocated" block region. Otherwise, we will return 0 and
3823  * ext4_ext_map_blocks() will then allocate one or more new clusters
3824  * by calling ext4_mb_new_blocks().
3825  */
3826 static int get_implied_cluster_alloc(struct super_block *sb,
3827  struct ext4_map_blocks *map,
3828  struct ext4_extent *ex,
3829  struct ext4_ext_path *path)
3830 {
3831  struct ext4_sb_info *sbi = EXT4_SB(sb);
3832  ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3833  ext4_lblk_t ex_cluster_start, ex_cluster_end;
3834  ext4_lblk_t rr_cluster_start;
3835  ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3836  ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3837  unsigned short ee_len = ext4_ext_get_actual_len(ex);
3838 
3839  /* The extent passed in that we are trying to match */
3840  ex_cluster_start = EXT4_B2C(sbi, ee_block);
3841  ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3842 
3843  /* The requested region passed into ext4_map_blocks() */
3844  rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3845 
3846  if ((rr_cluster_start == ex_cluster_end) ||
3847  (rr_cluster_start == ex_cluster_start)) {
3848  if (rr_cluster_start == ex_cluster_end)
3849  ee_start += ee_len - 1;
3850  map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3851  c_offset;
3852  map->m_len = min(map->m_len,
3853  (unsigned) sbi->s_cluster_ratio - c_offset);
3854  /*
3855  * Check for and handle this case:
3856  *
3857  * |--------- cluster # N-------------|
3858  * |------- extent ----|
3859  * |--- requested region ---|
3860  * |===========|
3861  */
3862 
3863  if (map->m_lblk < ee_block)
3864  map->m_len = min(map->m_len, ee_block - map->m_lblk);
3865 
3866  /*
3867  * Check for the case where there is already another allocated
3868  * block to the right of 'ex' but before the end of the cluster.
3869  *
3870  * |------------- cluster # N-------------|
3871  * |----- ex -----| |---- ex_right ----|
3872  * |------ requested region ------|
3873  * |================|
3874  */
3875  if (map->m_lblk > ee_block) {
3876  ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3877  map->m_len = min(map->m_len, next - map->m_lblk);
3878  }
3879 
3880  trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3881  return 1;
3882  }
3883 
3884  trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3885  return 0;
3886 }
3887 
3888 
3889 /*
3890  * Block allocation/map/preallocation routine for extents based files
3891  *
3892  *
3893  * Need to be called with
3894  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3895  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3896  *
3897  * return > 0, number of of blocks already mapped/allocated
3898  * if create == 0 and these are pre-allocated blocks
3899  * buffer head is unmapped
3900  * otherwise blocks are mapped
3901  *
3902  * return = 0, if plain look up failed (blocks have not been allocated)
3903  * buffer head is unmapped
3904  *
3905  * return < 0, error case.
3906  */
3907 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3908  struct ext4_map_blocks *map, int flags)
3909 {
3910  struct ext4_ext_path *path = NULL;
3911  struct ext4_extent newex, *ex, *ex2;
3912  struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3913  ext4_fsblk_t newblock = 0;
3914  int free_on_err = 0, err = 0, depth, ret;
3915  unsigned int allocated = 0, offset = 0;
3916  unsigned int allocated_clusters = 0;
3917  struct ext4_allocation_request ar;
3918  ext4_io_end_t *io = ext4_inode_aio(inode);
3919  ext4_lblk_t cluster_offset;
3920  int set_unwritten = 0;
3921 
3922  ext_debug("blocks %u/%u requested for inode %lu\n",
3923  map->m_lblk, map->m_len, inode->i_ino);
3924  trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3925 
3926  /* check in cache */
3927  if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3928  if (!newex.ee_start_lo && !newex.ee_start_hi) {
3929  if ((sbi->s_cluster_ratio > 1) &&
3930  ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3932 
3933  if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3934  /*
3935  * block isn't allocated yet and
3936  * user doesn't want to allocate it
3937  */
3938  goto out2;
3939  }
3940  /* we should allocate requested block */
3941  } else {
3942  /* block is already allocated */
3943  if (sbi->s_cluster_ratio > 1)
3945  newblock = map->m_lblk
3946  - le32_to_cpu(newex.ee_block)
3947  + ext4_ext_pblock(&newex);
3948  /* number of remaining blocks in the extent */
3949  allocated = ext4_ext_get_actual_len(&newex) -
3950  (map->m_lblk - le32_to_cpu(newex.ee_block));
3951  goto out;
3952  }
3953  }
3954 
3955  /* find extent for this block */
3956  path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3957  if (IS_ERR(path)) {
3958  err = PTR_ERR(path);
3959  path = NULL;
3960  goto out2;
3961  }
3962 
3963  depth = ext_depth(inode);
3964 
3965  /*
3966  * consistent leaf must not be empty;
3967  * this situation is possible, though, _during_ tree modification;
3968  * this is why assert can't be put in ext4_ext_find_extent()
3969  */
3970  if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3971  EXT4_ERROR_INODE(inode, "bad extent address "
3972  "lblock: %lu, depth: %d pblock %lld",
3973  (unsigned long) map->m_lblk, depth,
3974  path[depth].p_block);
3975  err = -EIO;
3976  goto out2;
3977  }
3978 
3979  ex = path[depth].p_ext;
3980  if (ex) {
3981  ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3982  ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3983  unsigned short ee_len;
3984 
3985  /*
3986  * Uninitialized extents are treated as holes, except that
3987  * we split out initialized portions during a write.
3988  */
3989  ee_len = ext4_ext_get_actual_len(ex);
3990 
3991  trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3992 
3993  /* if found extent covers block, simply return it */
3994  if (in_range(map->m_lblk, ee_block, ee_len)) {
3995  newblock = map->m_lblk - ee_block + ee_start;
3996  /* number of remaining blocks in the extent */
3997  allocated = ee_len - (map->m_lblk - ee_block);
3998  ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3999  ee_block, ee_len, newblock);
4000 
4001  /*
4002  * Do not put uninitialized extent
4003  * in the cache
4004  */
4005  if (!ext4_ext_is_uninitialized(ex)) {
4006  ext4_ext_put_in_cache(inode, ee_block,
4007  ee_len, ee_start);
4008  goto out;
4009  }
4010  ret = ext4_ext_handle_uninitialized_extents(
4011  handle, inode, map, path, flags,
4012  allocated, newblock);
4013  return ret;
4014  }
4015  }
4016 
4017  if ((sbi->s_cluster_ratio > 1) &&
4018  ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
4020 
4021  /*
4022  * requested block isn't allocated yet;
4023  * we couldn't try to create block if create flag is zero
4024  */
4025  if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4026  /*
4027  * put just found gap into cache to speed up
4028  * subsequent requests
4029  */
4030  ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4031  goto out2;
4032  }
4033 
4034  /*
4035  * Okay, we need to do block allocation.
4036  */
4037  map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4038  newex.ee_block = cpu_to_le32(map->m_lblk);
4039  cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4040 
4041  /*
4042  * If we are doing bigalloc, check to see if the extent returned
4043  * by ext4_ext_find_extent() implies a cluster we can use.
4044  */
4045  if (cluster_offset && ex &&
4046  get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4047  ar.len = allocated = map->m_len;
4048  newblock = map->m_pblk;
4050  goto got_allocated_blocks;
4051  }
4052 
4053  /* find neighbour allocated blocks */
4054  ar.lleft = map->m_lblk;
4055  err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4056  if (err)
4057  goto out2;
4058  ar.lright = map->m_lblk;
4059  ex2 = NULL;
4060  err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4061  if (err)
4062  goto out2;
4063 
4064  /* Check if the extent after searching to the right implies a
4065  * cluster we can use. */
4066  if ((sbi->s_cluster_ratio > 1) && ex2 &&
4067  get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4068  ar.len = allocated = map->m_len;
4069  newblock = map->m_pblk;
4071  goto got_allocated_blocks;
4072  }
4073 
4074  /*
4075  * See if request is beyond maximum number of blocks we can have in
4076  * a single extent. For an initialized extent this limit is
4077  * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4078  * EXT_UNINIT_MAX_LEN.
4079  */
4080  if (map->m_len > EXT_INIT_MAX_LEN &&
4081  !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4082  map->m_len = EXT_INIT_MAX_LEN;
4083  else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4084  (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4085  map->m_len = EXT_UNINIT_MAX_LEN;
4086 
4087  /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4088  newex.ee_len = cpu_to_le16(map->m_len);
4089  err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4090  if (err)
4091  allocated = ext4_ext_get_actual_len(&newex);
4092  else
4093  allocated = map->m_len;
4094 
4095  /* allocate new block */
4096  ar.inode = inode;
4097  ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4098  ar.logical = map->m_lblk;
4099  /*
4100  * We calculate the offset from the beginning of the cluster
4101  * for the logical block number, since when we allocate a
4102  * physical cluster, the physical block should start at the
4103  * same offset from the beginning of the cluster. This is
4104  * needed so that future calls to get_implied_cluster_alloc()
4105  * work correctly.
4106  */
4107  offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4108  ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4109  ar.goal -= offset;
4110  ar.logical -= offset;
4111  if (S_ISREG(inode->i_mode))
4112  ar.flags = EXT4_MB_HINT_DATA;
4113  else
4114  /* disable in-core preallocation for non-regular files */
4115  ar.flags = 0;
4116  if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4118  newblock = ext4_mb_new_blocks(handle, &ar, &err);
4119  if (!newblock)
4120  goto out2;
4121  ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4122  ar.goal, newblock, allocated);
4123  free_on_err = 1;
4124  allocated_clusters = ar.len;
4125  ar.len = EXT4_C2B(sbi, ar.len) - offset;
4126  if (ar.len > allocated)
4127  ar.len = allocated;
4128 
4129 got_allocated_blocks:
4130  /* try to insert new extent into found leaf and return */
4131  ext4_ext_store_pblock(&newex, newblock + offset);
4132  newex.ee_len = cpu_to_le16(ar.len);
4133  /* Mark uninitialized */
4134  if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4135  ext4_ext_mark_uninitialized(&newex);
4136  /*
4137  * io_end structure was created for every IO write to an
4138  * uninitialized extent. To avoid unnecessary conversion,
4139  * here we flag the IO that really needs the conversion.
4140  * For non asycn direct IO case, flag the inode state
4141  * that we need to perform conversion when IO is done.
4142  */
4143  if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4144  set_unwritten = 1;
4145  if (ext4_should_dioread_nolock(inode))
4146  map->m_flags |= EXT4_MAP_UNINIT;
4147  }
4148 
4149  err = 0;
4150  if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4151  err = check_eofblocks_fl(handle, inode, map->m_lblk,
4152  path, ar.len);
4153  if (!err)
4154  err = ext4_ext_insert_extent(handle, inode, path,
4155  &newex, flags);
4156 
4157  if (!err && set_unwritten) {
4158  if (io)
4159  ext4_set_io_unwritten_flag(inode, io);
4160  else
4161  ext4_set_inode_state(inode,
4162  EXT4_STATE_DIO_UNWRITTEN);
4163  }
4164 
4165  if (err && free_on_err) {
4166  int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4168  /* free data blocks we just allocated */
4169  /* not a good idea to call discard here directly,
4170  * but otherwise we'd need to call it every free() */
4172  ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4173  ext4_ext_get_actual_len(&newex), fb_flags);
4174  goto out2;
4175  }
4176 
4177  /* previous routine could use block we allocated */
4178  newblock = ext4_ext_pblock(&newex);
4179  allocated = ext4_ext_get_actual_len(&newex);
4180  if (allocated > map->m_len)
4181  allocated = map->m_len;
4182  map->m_flags |= EXT4_MAP_NEW;
4183 
4184  /*
4185  * Update reserved blocks/metadata blocks after successful
4186  * block allocation which had been deferred till now.
4187  */
4188  if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4189  unsigned int reserved_clusters;
4190  /*
4191  * Check how many clusters we had reserved this allocated range
4192  */
4193  reserved_clusters = get_reserved_cluster_alloc(inode,
4194  map->m_lblk, allocated);
4195  if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4196  if (reserved_clusters) {
4197  /*
4198  * We have clusters reserved for this range.
4199  * But since we are not doing actual allocation
4200  * and are simply using blocks from previously
4201  * allocated cluster, we should release the
4202  * reservation and not claim quota.
4203  */
4205  reserved_clusters, 0);
4206  }
4207  } else {
4208  BUG_ON(allocated_clusters < reserved_clusters);
4209  /* We will claim quota for all newly allocated blocks.*/
4210  ext4_da_update_reserve_space(inode, allocated_clusters,
4211  1);
4212  if (reserved_clusters < allocated_clusters) {
4213  struct ext4_inode_info *ei = EXT4_I(inode);
4214  int reservation = allocated_clusters -
4215  reserved_clusters;
4216  /*
4217  * It seems we claimed few clusters outside of
4218  * the range of this allocation. We should give
4219  * it back to the reservation pool. This can
4220  * happen in the following case:
4221  *
4222  * * Suppose s_cluster_ratio is 4 (i.e., each
4223  * cluster has 4 blocks. Thus, the clusters
4224  * are [0-3],[4-7],[8-11]...
4225  * * First comes delayed allocation write for
4226  * logical blocks 10 & 11. Since there were no
4227  * previous delayed allocated blocks in the
4228  * range [8-11], we would reserve 1 cluster
4229  * for this write.
4230  * * Next comes write for logical blocks 3 to 8.
4231  * In this case, we will reserve 2 clusters
4232  * (for [0-3] and [4-7]; and not for [8-11] as
4233  * that range has a delayed allocated blocks.
4234  * Thus total reserved clusters now becomes 3.
4235  * * Now, during the delayed allocation writeout
4236  * time, we will first write blocks [3-8] and
4237  * allocate 3 clusters for writing these
4238  * blocks. Also, we would claim all these
4239  * three clusters above.
4240  * * Now when we come here to writeout the
4241  * blocks [10-11], we would expect to claim
4242  * the reservation of 1 cluster we had made
4243  * (and we would claim it since there are no
4244  * more delayed allocated blocks in the range
4245  * [8-11]. But our reserved cluster count had
4246  * already gone to 0.
4247  *
4248  * Thus, at the step 4 above when we determine
4249  * that there are still some unwritten delayed
4250  * allocated blocks outside of our current
4251  * block range, we should increment the
4252  * reserved clusters count so that when the
4253  * remaining blocks finally gets written, we
4254  * could claim them.
4255  */
4256  dquot_reserve_block(inode,
4257  EXT4_C2B(sbi, reservation));
4258  spin_lock(&ei->i_block_reservation_lock);
4259  ei->i_reserved_data_blocks += reservation;
4260  spin_unlock(&ei->i_block_reservation_lock);
4261  }
4262  }
4263  }
4264 
4265  /*
4266  * Cache the extent and update transaction to commit on fdatasync only
4267  * when it is _not_ an uninitialized extent.
4268  */
4269  if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4270  ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4271  ext4_update_inode_fsync_trans(handle, inode, 1);
4272  } else
4273  ext4_update_inode_fsync_trans(handle, inode, 0);
4274 out:
4275  if (allocated > map->m_len)
4276  allocated = map->m_len;
4277  ext4_ext_show_leaf(inode, path);
4278  map->m_flags |= EXT4_MAP_MAPPED;
4279  map->m_pblk = newblock;
4280  map->m_len = allocated;
4281 out2:
4282  if (path) {
4283  ext4_ext_drop_refs(path);
4284  kfree(path);
4285  }
4286 
4287  trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4288  newblock, map->m_len, err ? err : allocated);
4289 
4290  return err ? err : allocated;
4291 }
4293 void ext4_ext_truncate(struct inode *inode)
4294 {
4295  struct address_space *mapping = inode->i_mapping;
4296  struct super_block *sb = inode->i_sb;
4297  ext4_lblk_t last_block;
4298  handle_t *handle;
4299  loff_t page_len;
4300  int err = 0;
4301 
4302  /*
4303  * finish any pending end_io work so we won't run the risk of
4304  * converting any truncated blocks to initialized later
4305  */
4306  ext4_flush_unwritten_io(inode);
4307 
4308  /*
4309  * probably first extent we're gonna free will be last in block
4310  */
4311  err = ext4_writepage_trans_blocks(inode);
4312  handle = ext4_journal_start(inode, err);
4313  if (IS_ERR(handle))
4314  return;
4315 
4316  if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4317  page_len = PAGE_CACHE_SIZE -
4318  (inode->i_size & (PAGE_CACHE_SIZE - 1));
4319 
4320  err = ext4_discard_partial_page_buffers(handle,
4321  mapping, inode->i_size, page_len, 0);
4322 
4323  if (err)
4324  goto out_stop;
4325  }
4326 
4327  if (ext4_orphan_add(handle, inode))
4328  goto out_stop;
4329 
4330  down_write(&EXT4_I(inode)->i_data_sem);
4331  ext4_ext_invalidate_cache(inode);
4332 
4334 
4335  /*
4336  * TODO: optimization is possible here.
4337  * Probably we need not scan at all,
4338  * because page truncation is enough.
4339  */
4340 
4341  /* we have to know where to truncate from in crash case */
4342  EXT4_I(inode)->i_disksize = inode->i_size;
4343  ext4_mark_inode_dirty(handle, inode);
4344 
4345  last_block = (inode->i_size + sb->s_blocksize - 1)
4346  >> EXT4_BLOCK_SIZE_BITS(sb);
4347  err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4348 
4349  /* In a multi-transaction truncate, we only make the final
4350  * transaction synchronous.
4351  */
4352  if (IS_SYNC(inode))
4353  ext4_handle_sync(handle);
4354 
4355  up_write(&EXT4_I(inode)->i_data_sem);
4356 
4357 out_stop:
4358  /*
4359  * If this was a simple ftruncate() and the file will remain alive,
4360  * then we need to clear up the orphan record which we created above.
4361  * However, if this was a real unlink then we were called by
4362  * ext4_delete_inode(), and we allow that function to clean up the
4363  * orphan info for us.
4364  */
4365  if (inode->i_nlink)
4366  ext4_orphan_del(handle, inode);
4367 
4368  inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4369  ext4_mark_inode_dirty(handle, inode);
4370  ext4_journal_stop(handle);
4371 }
4372 
4373 static void ext4_falloc_update_inode(struct inode *inode,
4374  int mode, loff_t new_size, int update_ctime)
4375 {
4376  struct timespec now;
4377 
4378  if (update_ctime) {
4379  now = current_fs_time(inode->i_sb);
4380  if (!timespec_equal(&inode->i_ctime, &now))
4381  inode->i_ctime = now;
4382  }
4383  /*
4384  * Update only when preallocation was requested beyond
4385  * the file size.
4386  */
4387  if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4388  if (new_size > i_size_read(inode))
4389  i_size_write(inode, new_size);
4390  if (new_size > EXT4_I(inode)->i_disksize)
4391  ext4_update_i_disksize(inode, new_size);
4392  } else {
4393  /*
4394  * Mark that we allocate beyond EOF so the subsequent truncate
4395  * can proceed even if the new size is the same as i_size.
4396  */
4397  if (new_size > i_size_read(inode))
4398  ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4399  }
4400 
4401 }
4402 
4403 /*
4404  * preallocate space for a file. This implements ext4's fallocate file
4405  * operation, which gets called from sys_fallocate system call.
4406  * For block-mapped files, posix_fallocate should fall back to the method
4407  * of writing zeroes to the required new blocks (the same behavior which is
4408  * expected for file systems which do not support fallocate() system call).
4409  */
4410 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4411 {
4412  struct inode *inode = file->f_path.dentry->d_inode;
4413  handle_t *handle;
4414  loff_t new_size;
4415  unsigned int max_blocks;
4416  int ret = 0;
4417  int ret2 = 0;
4418  int retries = 0;
4419  int flags;
4420  struct ext4_map_blocks map;
4421  unsigned int credits, blkbits = inode->i_blkbits;
4422 
4423  /*
4424  * currently supporting (pre)allocate mode for extent-based
4425  * files _only_
4426  */
4427  if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4428  return -EOPNOTSUPP;
4429 
4430  /* Return error if mode is not supported */
4431  if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4432  return -EOPNOTSUPP;
4433 
4434  if (mode & FALLOC_FL_PUNCH_HOLE)
4435  return ext4_punch_hole(file, offset, len);
4436 
4437  trace_ext4_fallocate_enter(inode, offset, len, mode);
4438  map.m_lblk = offset >> blkbits;
4439  /*
4440  * We can't just convert len to max_blocks because
4441  * If blocksize = 4096 offset = 3072 and len = 2048
4442  */
4443  max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4444  - map.m_lblk;
4445  /*
4446  * credits to insert 1 extent into extent tree
4447  */
4448  credits = ext4_chunk_trans_blocks(inode, max_blocks);
4449  mutex_lock(&inode->i_mutex);
4450  ret = inode_newsize_ok(inode, (len + offset));
4451  if (ret) {
4452  mutex_unlock(&inode->i_mutex);
4453  trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4454  return ret;
4455  }
4457  if (mode & FALLOC_FL_KEEP_SIZE)
4458  flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4459  /*
4460  * Don't normalize the request if it can fit in one extent so
4461  * that it doesn't get unnecessarily split into multiple
4462  * extents.
4463  */
4464  if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4466 
4467  /* Prevent race condition between unwritten */
4468  ext4_flush_unwritten_io(inode);
4469 retry:
4470  while (ret >= 0 && ret < max_blocks) {
4471  map.m_lblk = map.m_lblk + ret;
4472  map.m_len = max_blocks = max_blocks - ret;
4473  handle = ext4_journal_start(inode, credits);
4474  if (IS_ERR(handle)) {
4475  ret = PTR_ERR(handle);
4476  break;
4477  }
4478  ret = ext4_map_blocks(handle, inode, &map, flags);
4479  if (ret <= 0) {
4480 #ifdef EXT4FS_DEBUG
4481  WARN_ON(ret <= 0);
4482  printk(KERN_ERR "%s: ext4_ext_map_blocks "
4483  "returned error inode#%lu, block=%u, "
4484  "max_blocks=%u", __func__,
4485  inode->i_ino, map.m_lblk, max_blocks);
4486 #endif
4487  ext4_mark_inode_dirty(handle, inode);
4488  ret2 = ext4_journal_stop(handle);
4489  break;
4490  }
4491  if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4492  blkbits) >> blkbits))
4493  new_size = offset + len;
4494  else
4495  new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4496 
4497  ext4_falloc_update_inode(inode, mode, new_size,
4498  (map.m_flags & EXT4_MAP_NEW));
4499  ext4_mark_inode_dirty(handle, inode);
4500  if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4501  ext4_handle_sync(handle);
4502  ret2 = ext4_journal_stop(handle);
4503  if (ret2)
4504  break;
4505  }
4506  if (ret == -ENOSPC &&
4507  ext4_should_retry_alloc(inode->i_sb, &retries)) {
4508  ret = 0;
4509  goto retry;
4510  }
4511  mutex_unlock(&inode->i_mutex);
4512  trace_ext4_fallocate_exit(inode, offset, max_blocks,
4513  ret > 0 ? ret2 : ret);
4514  return ret > 0 ? ret2 : ret;
4515 }
4516 
4517 /*
4518  * This function convert a range of blocks to written extents
4519  * The caller of this function will pass the start offset and the size.
4520  * all unwritten extents within this range will be converted to
4521  * written extents.
4522  *
4523  * This function is called from the direct IO end io call back
4524  * function, to convert the fallocated extents after IO is completed.
4525  * Returns 0 on success.
4526  */
4527 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4528  ssize_t len)
4529 {
4530  handle_t *handle;
4531  unsigned int max_blocks;
4532  int ret = 0;
4533  int ret2 = 0;
4534  struct ext4_map_blocks map;
4535  unsigned int credits, blkbits = inode->i_blkbits;
4536 
4537  map.m_lblk = offset >> blkbits;
4538  /*
4539  * We can't just convert len to max_blocks because
4540  * If blocksize = 4096 offset = 3072 and len = 2048
4541  */
4542  max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4543  map.m_lblk);
4544  /*
4545  * credits to insert 1 extent into extent tree
4546  */
4547  credits = ext4_chunk_trans_blocks(inode, max_blocks);
4548  while (ret >= 0 && ret < max_blocks) {
4549  map.m_lblk += ret;
4550  map.m_len = (max_blocks -= ret);
4551  handle = ext4_journal_start(inode, credits);
4552  if (IS_ERR(handle)) {
4553  ret = PTR_ERR(handle);
4554  break;
4555  }
4556  ret = ext4_map_blocks(handle, inode, &map,
4558  if (ret <= 0) {
4559  WARN_ON(ret <= 0);
4560  ext4_msg(inode->i_sb, KERN_ERR,
4561  "%s:%d: inode #%lu: block %u: len %u: "
4562  "ext4_ext_map_blocks returned %d",
4563  __func__, __LINE__, inode->i_ino, map.m_lblk,
4564  map.m_len, ret);
4565  }
4566  ext4_mark_inode_dirty(handle, inode);
4567  ret2 = ext4_journal_stop(handle);
4568  if (ret <= 0 || ret2 )
4569  break;
4570  }
4571  return ret > 0 ? ret2 : ret;
4572 }
4573 
4574 /*
4575  * Callback function called for each extent to gather FIEMAP information.
4576  */
4577 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4578  struct ext4_ext_cache *newex, struct ext4_extent *ex,
4579  void *data)
4580 {
4581  __u64 logical;
4582  __u64 physical;
4583  __u64 length;
4584  __u32 flags = 0;
4585  int ret = 0;
4586  struct fiemap_extent_info *fieinfo = data;
4587  unsigned char blksize_bits;
4588 
4589  blksize_bits = inode->i_sb->s_blocksize_bits;
4590  logical = (__u64)newex->ec_block << blksize_bits;
4591 
4592  if (newex->ec_start == 0) {
4593  /*
4594  * No extent in extent-tree contains block @newex->ec_start,
4595  * then the block may stay in 1)a hole or 2)delayed-extent.
4596  *
4597  * Holes or delayed-extents are processed as follows.
4598  * 1. lookup dirty pages with specified range in pagecache.
4599  * If no page is got, then there is no delayed-extent and
4600  * return with EXT_CONTINUE.
4601  * 2. find the 1st mapped buffer,
4602  * 3. check if the mapped buffer is both in the request range
4603  * and a delayed buffer. If not, there is no delayed-extent,
4604  * then return.
4605  * 4. a delayed-extent is found, the extent will be collected.
4606  */
4607  ext4_lblk_t end = 0;
4608  pgoff_t last_offset;
4609  pgoff_t offset;
4610  pgoff_t index;
4611  pgoff_t start_index = 0;
4612  struct page **pages = NULL;
4613  struct buffer_head *bh = NULL;
4614  struct buffer_head *head = NULL;
4615  unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4616 
4617  pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4618  if (pages == NULL)
4619  return -ENOMEM;
4620 
4621  offset = logical >> PAGE_SHIFT;
4622 repeat:
4623  last_offset = offset;
4624  head = NULL;
4625  ret = find_get_pages_tag(inode->i_mapping, &offset,
4626  PAGECACHE_TAG_DIRTY, nr_pages, pages);
4627 
4628  if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4629  /* First time, try to find a mapped buffer. */
4630  if (ret == 0) {
4631 out:
4632  for (index = 0; index < ret; index++)
4633  page_cache_release(pages[index]);
4634  /* just a hole. */
4635  kfree(pages);
4636  return EXT_CONTINUE;
4637  }
4638  index = 0;
4639 
4640 next_page:
4641  /* Try to find the 1st mapped buffer. */
4642  end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4643  blksize_bits;
4644  if (!page_has_buffers(pages[index]))
4645  goto out;
4646  head = page_buffers(pages[index]);
4647  if (!head)
4648  goto out;
4649 
4650  index++;
4651  bh = head;
4652  do {
4653  if (end >= newex->ec_block +
4654  newex->ec_len)
4655  /* The buffer is out of
4656  * the request range.
4657  */
4658  goto out;
4659 
4660  if (buffer_mapped(bh) &&
4661  end >= newex->ec_block) {
4662  start_index = index - 1;
4663  /* get the 1st mapped buffer. */
4664  goto found_mapped_buffer;
4665  }
4666 
4667  bh = bh->b_this_page;
4668  end++;
4669  } while (bh != head);
4670 
4671  /* No mapped buffer in the range found in this page,
4672  * We need to look up next page.
4673  */
4674  if (index >= ret) {
4675  /* There is no page left, but we need to limit
4676  * newex->ec_len.
4677  */
4678  newex->ec_len = end - newex->ec_block;
4679  goto out;
4680  }
4681  goto next_page;
4682  } else {
4683  /*Find contiguous delayed buffers. */
4684  if (ret > 0 && pages[0]->index == last_offset)
4685  head = page_buffers(pages[0]);
4686  bh = head;
4687  index = 1;
4688  start_index = 0;
4689  }
4690 
4691 found_mapped_buffer:
4692  if (bh != NULL && buffer_delay(bh)) {
4693  /* 1st or contiguous delayed buffer found. */
4694  if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4695  /*
4696  * 1st delayed buffer found, record
4697  * the start of extent.
4698  */
4699  flags |= FIEMAP_EXTENT_DELALLOC;
4700  newex->ec_block = end;
4701  logical = (__u64)end << blksize_bits;
4702  }
4703  /* Find contiguous delayed buffers. */
4704  do {
4705  if (!buffer_delay(bh))
4706  goto found_delayed_extent;
4707  bh = bh->b_this_page;
4708  end++;
4709  } while (bh != head);
4710 
4711  for (; index < ret; index++) {
4712  if (!page_has_buffers(pages[index])) {
4713  bh = NULL;
4714  break;
4715  }
4716  head = page_buffers(pages[index]);
4717  if (!head) {
4718  bh = NULL;
4719  break;
4720  }
4721 
4722  if (pages[index]->index !=
4723  pages[start_index]->index + index
4724  - start_index) {
4725  /* Blocks are not contiguous. */
4726  bh = NULL;
4727  break;
4728  }
4729  bh = head;
4730  do {
4731  if (!buffer_delay(bh))
4732  /* Delayed-extent ends. */
4733  goto found_delayed_extent;
4734  bh = bh->b_this_page;
4735  end++;
4736  } while (bh != head);
4737  }
4738  } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4739  /* a hole found. */
4740  goto out;
4741 
4742 found_delayed_extent:
4743  newex->ec_len = min(end - newex->ec_block,
4745  if (ret == nr_pages && bh != NULL &&
4746  newex->ec_len < EXT_INIT_MAX_LEN &&
4747  buffer_delay(bh)) {
4748  /* Have not collected an extent and continue. */
4749  for (index = 0; index < ret; index++)
4750  page_cache_release(pages[index]);
4751  goto repeat;
4752  }
4753 
4754  for (index = 0; index < ret; index++)
4755  page_cache_release(pages[index]);
4756  kfree(pages);
4757  }
4758 
4759  physical = (__u64)newex->ec_start << blksize_bits;
4760  length = (__u64)newex->ec_len << blksize_bits;
4761 
4762  if (ex && ext4_ext_is_uninitialized(ex))
4763  flags |= FIEMAP_EXTENT_UNWRITTEN;
4764 
4765  if (next == EXT_MAX_BLOCKS)
4766  flags |= FIEMAP_EXTENT_LAST;
4767 
4768  ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4769  length, flags);
4770  if (ret < 0)
4771  return ret;
4772  if (ret == 1)
4773  return EXT_BREAK;
4774  return EXT_CONTINUE;
4775 }
4776 /* fiemap flags we can handle specified here */
4777 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4778 
4779 static int ext4_xattr_fiemap(struct inode *inode,
4780  struct fiemap_extent_info *fieinfo)
4781 {
4782  __u64 physical = 0;
4783  __u64 length;
4784  __u32 flags = FIEMAP_EXTENT_LAST;
4785  int blockbits = inode->i_sb->s_blocksize_bits;
4786  int error = 0;
4787 
4788  /* in-inode? */
4789  if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4790  struct ext4_iloc iloc;
4791  int offset; /* offset of xattr in inode */
4792 
4793  error = ext4_get_inode_loc(inode, &iloc);
4794  if (error)
4795  return error;
4796  physical = iloc.bh->b_blocknr << blockbits;
4797  offset = EXT4_GOOD_OLD_INODE_SIZE +
4798  EXT4_I(inode)->i_extra_isize;
4799  physical += offset;
4800  length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4801  flags |= FIEMAP_EXTENT_DATA_INLINE;
4802  brelse(iloc.bh);
4803  } else { /* external block */
4804  physical = EXT4_I(inode)->i_file_acl << blockbits;
4805  length = inode->i_sb->s_blocksize;
4806  }
4807 
4808  if (physical)
4809  error = fiemap_fill_next_extent(fieinfo, 0, physical,
4810  length, flags);
4811  return (error < 0 ? error : 0);
4812 }
4813 
4814 /*
4815  * ext4_ext_punch_hole
4816  *
4817  * Punches a hole of "length" bytes in a file starting
4818  * at byte "offset"
4819  *
4820  * @inode: The inode of the file to punch a hole in
4821  * @offset: The starting byte offset of the hole
4822  * @length: The length of the hole
4823  *
4824  * Returns the number of blocks removed or negative on err
4825  */
4826 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4827 {
4828  struct inode *inode = file->f_path.dentry->d_inode;
4829  struct super_block *sb = inode->i_sb;
4830  ext4_lblk_t first_block, stop_block;
4831  struct address_space *mapping = inode->i_mapping;
4832  handle_t *handle;
4833  loff_t first_page, last_page, page_len;
4834  loff_t first_page_offset, last_page_offset;
4835  int credits, err = 0;
4836 
4837  /*
4838  * Write out all dirty pages to avoid race conditions
4839  * Then release them.
4840  */
4841  if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4842  err = filemap_write_and_wait_range(mapping,
4843  offset, offset + length - 1);
4844 
4845  if (err)
4846  return err;
4847  }
4848 
4849  mutex_lock(&inode->i_mutex);
4850  /* It's not possible punch hole on append only file */
4851  if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4852  err = -EPERM;
4853  goto out_mutex;
4854  }
4855  if (IS_SWAPFILE(inode)) {
4856  err = -ETXTBSY;
4857  goto out_mutex;
4858  }
4859 
4860  /* No need to punch hole beyond i_size */
4861  if (offset >= inode->i_size)
4862  goto out_mutex;
4863 
4864  /*
4865  * If the hole extends beyond i_size, set the hole
4866  * to end after the page that contains i_size
4867  */
4868  if (offset + length > inode->i_size) {
4869  length = inode->i_size +
4870  PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4871  offset;
4872  }
4873 
4874  first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4875  last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4876 
4877  first_page_offset = first_page << PAGE_CACHE_SHIFT;
4878  last_page_offset = last_page << PAGE_CACHE_SHIFT;
4879 
4880  /* Now release the pages */
4881  if (last_page_offset > first_page_offset) {
4882  truncate_pagecache_range(inode, first_page_offset,
4883  last_page_offset - 1);
4884  }
4885 
4886  /* Wait all existing dio workers, newcomers will block on i_mutex */
4887  ext4_inode_block_unlocked_dio(inode);
4888  err = ext4_flush_unwritten_io(inode);
4889  if (err)
4890  goto out_dio;
4891  inode_dio_wait(inode);
4892 
4893  credits = ext4_writepage_trans_blocks(inode);
4894  handle = ext4_journal_start(inode, credits);
4895  if (IS_ERR(handle)) {
4896  err = PTR_ERR(handle);
4897  goto out_dio;
4898  }
4899 
4900 
4901  /*
4902  * Now we need to zero out the non-page-aligned data in the
4903  * pages at the start and tail of the hole, and unmap the buffer
4904  * heads for the block aligned regions of the page that were
4905  * completely zeroed.
4906  */
4907  if (first_page > last_page) {
4908  /*
4909  * If the file space being truncated is contained within a page
4910  * just zero out and unmap the middle of that page
4911  */
4912  err = ext4_discard_partial_page_buffers(handle,
4913  mapping, offset, length, 0);
4914 
4915  if (err)
4916  goto out;
4917  } else {
4918  /*
4919  * zero out and unmap the partial page that contains
4920  * the start of the hole
4921  */
4922  page_len = first_page_offset - offset;
4923  if (page_len > 0) {
4924  err = ext4_discard_partial_page_buffers(handle, mapping,
4925  offset, page_len, 0);
4926  if (err)
4927  goto out;
4928  }
4929 
4930  /*
4931  * zero out and unmap the partial page that contains
4932  * the end of the hole
4933  */
4934  page_len = offset + length - last_page_offset;
4935  if (page_len > 0) {
4936  err = ext4_discard_partial_page_buffers(handle, mapping,
4937  last_page_offset, page_len, 0);
4938  if (err)
4939  goto out;
4940  }
4941  }
4942 
4943  /*
4944  * If i_size is contained in the last page, we need to
4945  * unmap and zero the partial page after i_size
4946  */
4947  if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4948  inode->i_size % PAGE_CACHE_SIZE != 0) {
4949 
4950  page_len = PAGE_CACHE_SIZE -
4951  (inode->i_size & (PAGE_CACHE_SIZE - 1));
4952 
4953  if (page_len > 0) {
4954  err = ext4_discard_partial_page_buffers(handle,
4955  mapping, inode->i_size, page_len, 0);
4956 
4957  if (err)
4958  goto out;
4959  }
4960  }
4961 
4962  first_block = (offset + sb->s_blocksize - 1) >>
4964  stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4965 
4966  /* If there are no blocks to remove, return now */
4967  if (first_block >= stop_block)
4968  goto out;
4969 
4970  down_write(&EXT4_I(inode)->i_data_sem);
4971  ext4_ext_invalidate_cache(inode);
4973 
4974  err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4975 
4976  ext4_ext_invalidate_cache(inode);
4978 
4979  if (IS_SYNC(inode))
4980  ext4_handle_sync(handle);
4981 
4982  up_write(&EXT4_I(inode)->i_data_sem);
4983 
4984 out:
4985  inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4986  ext4_mark_inode_dirty(handle, inode);
4987  ext4_journal_stop(handle);
4988 out_dio:
4989  ext4_inode_resume_unlocked_dio(inode);
4990 out_mutex:
4991  mutex_unlock(&inode->i_mutex);
4992  return err;
4994 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4995  __u64 start, __u64 len)
4996 {
4997  ext4_lblk_t start_blk;
4998  int error = 0;
4999 
5000  /* fallback to generic here if not in extents fmt */
5001  if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5002  return generic_block_fiemap(inode, fieinfo, start, len,
5003  ext4_get_block);
5004 
5005  if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5006  return -EBADR;
5007 
5008  if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5009  error = ext4_xattr_fiemap(inode, fieinfo);
5010  } else {
5011  ext4_lblk_t len_blks;
5012  __u64 last_blk;
5013 
5014  start_blk = start >> inode->i_sb->s_blocksize_bits;
5015  last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5016  if (last_blk >= EXT_MAX_BLOCKS)
5017  last_blk = EXT_MAX_BLOCKS-1;
5018  len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5019 
5020  /*
5021  * Walk the extent tree gathering extent information.
5022  * ext4_ext_fiemap_cb will push extents back to user.
5023  */
5024  error = ext4_ext_walk_space(inode, start_blk, len_blks,
5025  ext4_ext_fiemap_cb, fieinfo);
5026  }
5027 
5028  return error;
5029 }