Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fork.c
Go to the documentation of this file.
1 /*
2  * linux/kernel/fork.c
3  *
4  * Copyright (C) 1991, 1992 Linus Torvalds
5  */
6 
7 /*
8  * 'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80 
81 #include <trace/events/sched.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85 
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks; /* Handle normal Linux uptimes. */
90 int nr_threads; /* The idle threads do not count.. */
91 
92 int max_threads; /* tunable limit on nr_threads */
93 
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95 
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
97 
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101  return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105 
106 int nr_processes(void)
107 {
108  int cpu;
109  int total = 0;
110 
112  total += per_cpu(process_counts, cpu);
113 
114  return total;
115 }
116 
118 {
119 }
120 
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123 
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126  return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128 
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131  kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134 
136 {
137 }
138 
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140 
141 /*
142  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143  * kmemcache based allocator.
144  */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147  int node)
148 {
149  struct page *page = alloc_pages_node(node, THREADINFO_GFP,
151 
152  return page ? page_address(page) : NULL;
153 }
154 
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157  free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161 
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163  int node)
164 {
165  return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167 
168 static void free_thread_info(struct thread_info *ti)
169 {
170  kmem_cache_free(thread_info_cache, ti);
171 }
172 
173 void thread_info_cache_init(void)
174 {
175  thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176  THREAD_SIZE, 0, NULL);
177  BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181 
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184 
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 
188 /* SLAB cache for files_struct structures (tsk->files) */
190 
191 /* SLAB cache for fs_struct structures (tsk->fs) */
193 
194 /* SLAB cache for vm_area_struct structures */
196 
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199 
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202  struct zone *zone = page_zone(virt_to_page(ti));
203 
204  mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206 
207 void free_task(struct task_struct *tsk)
208 {
209  account_kernel_stack(tsk->stack, -1);
211  free_thread_info(tsk->stack);
213  ftrace_graph_exit_task(tsk);
214  put_seccomp_filter(tsk);
216  free_task_struct(tsk);
217 }
219 
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222  taskstats_tgid_free(sig);
223  sched_autogroup_exit(sig);
224  kmem_cache_free(signal_cachep, sig);
225 }
226 
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229  if (atomic_dec_and_test(&sig->sigcnt))
230  free_signal_struct(sig);
231 }
232 
234 {
235  WARN_ON(!tsk->exit_state);
236  WARN_ON(atomic_read(&tsk->usage));
237  WARN_ON(tsk == current);
238 
239  security_task_free(tsk);
240  exit_creds(tsk);
241  delayacct_tsk_free(tsk);
242  put_signal_struct(tsk->signal);
243 
244  if (!profile_handoff_task(tsk))
245  free_task(tsk);
246 }
248 
250 
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
256 #endif
257  /* create a slab on which task_structs can be allocated */
258  task_struct_cachep =
259  kmem_cache_create("task_struct", sizeof(struct task_struct),
261 #endif
262 
263  /* do the arch specific task caches init */
265 
266  /*
267  * The default maximum number of threads is set to a safe
268  * value: the thread structures can take up at most half
269  * of memory.
270  */
271  max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272 
273  /*
274  * we need to allow at least 20 threads to boot a system
275  */
276  if (max_threads < 20)
277  max_threads = 20;
278 
279  init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280  init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281  init_task.signal->rlim[RLIMIT_SIGPENDING] =
282  init_task.signal->rlim[RLIMIT_NPROC];
283 }
284 
287 {
288  *dst = *src;
289  return 0;
290 }
291 
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294  struct task_struct *tsk;
295  struct thread_info *ti;
296  unsigned long *stackend;
297  int node = tsk_fork_get_node(orig);
298  int err;
299 
300  tsk = alloc_task_struct_node(node);
301  if (!tsk)
302  return NULL;
303 
304  ti = alloc_thread_info_node(tsk, node);
305  if (!ti)
306  goto free_tsk;
307 
308  err = arch_dup_task_struct(tsk, orig);
309  if (err)
310  goto free_ti;
311 
312  tsk->stack = ti;
313 
314  setup_thread_stack(tsk, orig);
315  clear_user_return_notifier(tsk);
316  clear_tsk_need_resched(tsk);
317  stackend = end_of_stack(tsk);
318  *stackend = STACK_END_MAGIC; /* for overflow detection */
319 
320 #ifdef CONFIG_CC_STACKPROTECTOR
321  tsk->stack_canary = get_random_int();
322 #endif
323 
324  /*
325  * One for us, one for whoever does the "release_task()" (usually
326  * parent)
327  */
328  atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330  tsk->btrace_seq = 0;
331 #endif
332  tsk->splice_pipe = NULL;
333  tsk->task_frag.page = NULL;
334 
335  account_kernel_stack(ti, 1);
336 
337  return tsk;
338 
339 free_ti:
340  free_thread_info(ti);
341 free_tsk:
342  free_task_struct(tsk);
343  return NULL;
344 }
345 
346 #ifdef CONFIG_MMU
347 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
348 {
349  struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
350  struct rb_node **rb_link, *rb_parent;
351  int retval;
352  unsigned long charge;
353  struct mempolicy *pol;
354 
355  down_write(&oldmm->mmap_sem);
356  flush_cache_dup_mm(oldmm);
357  uprobe_dup_mmap(oldmm, mm);
358  /*
359  * Not linked in yet - no deadlock potential:
360  */
362 
363  mm->locked_vm = 0;
364  mm->mmap = NULL;
365  mm->mmap_cache = NULL;
366  mm->free_area_cache = oldmm->mmap_base;
367  mm->cached_hole_size = ~0UL;
368  mm->map_count = 0;
369  cpumask_clear(mm_cpumask(mm));
370  mm->mm_rb = RB_ROOT;
371  rb_link = &mm->mm_rb.rb_node;
372  rb_parent = NULL;
373  pprev = &mm->mmap;
374  retval = ksm_fork(mm, oldmm);
375  if (retval)
376  goto out;
377  retval = khugepaged_fork(mm, oldmm);
378  if (retval)
379  goto out;
380 
381  prev = NULL;
382  for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383  struct file *file;
384 
385  if (mpnt->vm_flags & VM_DONTCOPY) {
386  vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
387  -vma_pages(mpnt));
388  continue;
389  }
390  charge = 0;
391  if (mpnt->vm_flags & VM_ACCOUNT) {
392  unsigned long len = vma_pages(mpnt);
393 
394  if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
395  goto fail_nomem;
396  charge = len;
397  }
398  tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
399  if (!tmp)
400  goto fail_nomem;
401  *tmp = *mpnt;
402  INIT_LIST_HEAD(&tmp->anon_vma_chain);
403  pol = mpol_dup(vma_policy(mpnt));
404  retval = PTR_ERR(pol);
405  if (IS_ERR(pol))
406  goto fail_nomem_policy;
407  vma_set_policy(tmp, pol);
408  tmp->vm_mm = mm;
409  if (anon_vma_fork(tmp, mpnt))
410  goto fail_nomem_anon_vma_fork;
411  tmp->vm_flags &= ~VM_LOCKED;
412  tmp->vm_next = tmp->vm_prev = NULL;
413  file = tmp->vm_file;
414  if (file) {
415  struct inode *inode = file->f_path.dentry->d_inode;
416  struct address_space *mapping = file->f_mapping;
417 
418  get_file(file);
419  if (tmp->vm_flags & VM_DENYWRITE)
420  atomic_dec(&inode->i_writecount);
421  mutex_lock(&mapping->i_mmap_mutex);
422  if (tmp->vm_flags & VM_SHARED)
423  mapping->i_mmap_writable++;
424  flush_dcache_mmap_lock(mapping);
425  /* insert tmp into the share list, just after mpnt */
426  if (unlikely(tmp->vm_flags & VM_NONLINEAR))
427  vma_nonlinear_insert(tmp,
428  &mapping->i_mmap_nonlinear);
429  else
430  vma_interval_tree_insert_after(tmp, mpnt,
431  &mapping->i_mmap);
432  flush_dcache_mmap_unlock(mapping);
433  mutex_unlock(&mapping->i_mmap_mutex);
434  }
435 
436  /*
437  * Clear hugetlb-related page reserves for children. This only
438  * affects MAP_PRIVATE mappings. Faults generated by the child
439  * are not guaranteed to succeed, even if read-only
440  */
441  if (is_vm_hugetlb_page(tmp))
443 
444  /*
445  * Link in the new vma and copy the page table entries.
446  */
447  *pprev = tmp;
448  pprev = &tmp->vm_next;
449  tmp->vm_prev = prev;
450  prev = tmp;
451 
452  __vma_link_rb(mm, tmp, rb_link, rb_parent);
453  rb_link = &tmp->vm_rb.rb_right;
454  rb_parent = &tmp->vm_rb;
455 
456  mm->map_count++;
457  retval = copy_page_range(mm, oldmm, mpnt);
458 
459  if (tmp->vm_ops && tmp->vm_ops->open)
460  tmp->vm_ops->open(tmp);
461 
462  if (retval)
463  goto out;
464  }
465  /* a new mm has just been created */
466  arch_dup_mmap(oldmm, mm);
467  retval = 0;
468 out:
469  up_write(&mm->mmap_sem);
470  flush_tlb_mm(oldmm);
471  up_write(&oldmm->mmap_sem);
472  return retval;
473 fail_nomem_anon_vma_fork:
474  mpol_put(pol);
475 fail_nomem_policy:
476  kmem_cache_free(vm_area_cachep, tmp);
477 fail_nomem:
478  retval = -ENOMEM;
479  vm_unacct_memory(charge);
480  goto out;
481 }
482 
483 static inline int mm_alloc_pgd(struct mm_struct *mm)
484 {
485  mm->pgd = pgd_alloc(mm);
486  if (unlikely(!mm->pgd))
487  return -ENOMEM;
488  return 0;
489 }
490 
491 static inline void mm_free_pgd(struct mm_struct *mm)
492 {
493  pgd_free(mm, mm->pgd);
494 }
495 #else
496 #define dup_mmap(mm, oldmm) (0)
497 #define mm_alloc_pgd(mm) (0)
498 #define mm_free_pgd(mm)
499 #endif /* CONFIG_MMU */
500 
502 
503 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
504 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
505 
506 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
507 
508 static int __init coredump_filter_setup(char *s)
509 {
510  default_dump_filter =
513  return 1;
514 }
515 
516 __setup("coredump_filter=", coredump_filter_setup);
517 
518 #include <linux/init_task.h>
519 
520 static void mm_init_aio(struct mm_struct *mm)
521 {
522 #ifdef CONFIG_AIO
523  spin_lock_init(&mm->ioctx_lock);
524  INIT_HLIST_HEAD(&mm->ioctx_list);
525 #endif
526 }
527 
528 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
529 {
530  atomic_set(&mm->mm_users, 1);
531  atomic_set(&mm->mm_count, 1);
532  init_rwsem(&mm->mmap_sem);
533  INIT_LIST_HEAD(&mm->mmlist);
534  mm->flags = (current->mm) ?
535  (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
536  mm->core_state = NULL;
537  mm->nr_ptes = 0;
538  memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
541  mm->cached_hole_size = ~0UL;
542  mm_init_aio(mm);
543  mm_init_owner(mm, p);
544 
545  if (likely(!mm_alloc_pgd(mm))) {
546  mm->def_flags = 0;
547  mmu_notifier_mm_init(mm);
548  return mm;
549  }
550 
551  free_mm(mm);
552  return NULL;
553 }
554 
555 static void check_mm(struct mm_struct *mm)
556 {
557  int i;
558 
559  for (i = 0; i < NR_MM_COUNTERS; i++) {
560  long x = atomic_long_read(&mm->rss_stat.count[i]);
561 
562  if (unlikely(x))
563  printk(KERN_ALERT "BUG: Bad rss-counter state "
564  "mm:%p idx:%d val:%ld\n", mm, i, x);
565  }
566 
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568  VM_BUG_ON(mm->pmd_huge_pte);
569 #endif
570 }
571 
572 /*
573  * Allocate and initialize an mm_struct.
574  */
575 struct mm_struct *mm_alloc(void)
576 {
577  struct mm_struct *mm;
578 
579  mm = allocate_mm();
580  if (!mm)
581  return NULL;
582 
583  memset(mm, 0, sizeof(*mm));
584  mm_init_cpumask(mm);
585  return mm_init(mm, current);
586 }
587 
588 /*
589  * Called when the last reference to the mm
590  * is dropped: either by a lazy thread or by
591  * mmput. Free the page directory and the mm.
592  */
593 void __mmdrop(struct mm_struct *mm)
594 {
595  BUG_ON(mm == &init_mm);
596  mm_free_pgd(mm);
597  destroy_context(mm);
598  mmu_notifier_mm_destroy(mm);
599  check_mm(mm);
600  free_mm(mm);
601 }
603 
604 /*
605  * Decrement the use count and release all resources for an mm.
606  */
607 void mmput(struct mm_struct *mm)
608 {
609  might_sleep();
610 
611  if (atomic_dec_and_test(&mm->mm_users)) {
612  uprobe_clear_state(mm);
613  exit_aio(mm);
614  ksm_exit(mm);
615  khugepaged_exit(mm); /* must run before exit_mmap */
616  exit_mmap(mm);
617  set_mm_exe_file(mm, NULL);
618  if (!list_empty(&mm->mmlist)) {
619  spin_lock(&mmlist_lock);
620  list_del(&mm->mmlist);
621  spin_unlock(&mmlist_lock);
622  }
623  if (mm->binfmt)
624  module_put(mm->binfmt->module);
625  mmdrop(mm);
626  }
627 }
629 
630 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
631 {
632  if (new_exe_file)
633  get_file(new_exe_file);
634  if (mm->exe_file)
635  fput(mm->exe_file);
636  mm->exe_file = new_exe_file;
637 }
638 
639 struct file *get_mm_exe_file(struct mm_struct *mm)
640 {
641  struct file *exe_file;
642 
643  /* We need mmap_sem to protect against races with removal of exe_file */
644  down_read(&mm->mmap_sem);
645  exe_file = mm->exe_file;
646  if (exe_file)
647  get_file(exe_file);
648  up_read(&mm->mmap_sem);
649  return exe_file;
650 }
651 
652 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
653 {
654  /* It's safe to write the exe_file pointer without exe_file_lock because
655  * this is called during fork when the task is not yet in /proc */
656  newmm->exe_file = get_mm_exe_file(oldmm);
657 }
658 
669 {
670  struct mm_struct *mm;
671 
672  task_lock(task);
673  mm = task->mm;
674  if (mm) {
675  if (task->flags & PF_KTHREAD)
676  mm = NULL;
677  else
678  atomic_inc(&mm->mm_users);
679  }
680  task_unlock(task);
681  return mm;
682 }
684 
685 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
686 {
687  struct mm_struct *mm;
688  int err;
689 
690  err = mutex_lock_killable(&task->signal->cred_guard_mutex);
691  if (err)
692  return ERR_PTR(err);
693 
694  mm = get_task_mm(task);
695  if (mm && mm != current->mm &&
696  !ptrace_may_access(task, mode)) {
697  mmput(mm);
698  mm = ERR_PTR(-EACCES);
699  }
700  mutex_unlock(&task->signal->cred_guard_mutex);
701 
702  return mm;
703 }
704 
705 static void complete_vfork_done(struct task_struct *tsk)
706 {
707  struct completion *vfork;
708 
709  task_lock(tsk);
710  vfork = tsk->vfork_done;
711  if (likely(vfork)) {
712  tsk->vfork_done = NULL;
713  complete(vfork);
714  }
715  task_unlock(tsk);
716 }
717 
718 static int wait_for_vfork_done(struct task_struct *child,
719  struct completion *vfork)
720 {
721  int killed;
722 
723  freezer_do_not_count();
724  killed = wait_for_completion_killable(vfork);
725  freezer_count();
726 
727  if (killed) {
728  task_lock(child);
729  child->vfork_done = NULL;
730  task_unlock(child);
731  }
732 
733  put_task_struct(child);
734  return killed;
735 }
736 
737 /* Please note the differences between mmput and mm_release.
738  * mmput is called whenever we stop holding onto a mm_struct,
739  * error success whatever.
740  *
741  * mm_release is called after a mm_struct has been removed
742  * from the current process.
743  *
744  * This difference is important for error handling, when we
745  * only half set up a mm_struct for a new process and need to restore
746  * the old one. Because we mmput the new mm_struct before
747  * restoring the old one. . .
748  * Eric Biederman 10 January 1998
749  */
750 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
751 {
752  /* Get rid of any futexes when releasing the mm */
753 #ifdef CONFIG_FUTEX
754  if (unlikely(tsk->robust_list)) {
755  exit_robust_list(tsk);
756  tsk->robust_list = NULL;
757  }
758 #ifdef CONFIG_COMPAT
759  if (unlikely(tsk->compat_robust_list)) {
761  tsk->compat_robust_list = NULL;
762  }
763 #endif
764  if (unlikely(!list_empty(&tsk->pi_state_list)))
765  exit_pi_state_list(tsk);
766 #endif
767 
768  uprobe_free_utask(tsk);
769 
770  /* Get rid of any cached register state */
771  deactivate_mm(tsk, mm);
772 
773  /*
774  * If we're exiting normally, clear a user-space tid field if
775  * requested. We leave this alone when dying by signal, to leave
776  * the value intact in a core dump, and to save the unnecessary
777  * trouble, say, a killed vfork parent shouldn't touch this mm.
778  * Userland only wants this done for a sys_exit.
779  */
780  if (tsk->clear_child_tid) {
781  if (!(tsk->flags & PF_SIGNALED) &&
782  atomic_read(&mm->mm_users) > 1) {
783  /*
784  * We don't check the error code - if userspace has
785  * not set up a proper pointer then tough luck.
786  */
787  put_user(0, tsk->clear_child_tid);
789  1, NULL, NULL, 0);
790  }
791  tsk->clear_child_tid = NULL;
792  }
793 
794  /*
795  * All done, finally we can wake up parent and return this mm to him.
796  * Also kthread_stop() uses this completion for synchronization.
797  */
798  if (tsk->vfork_done)
799  complete_vfork_done(tsk);
800 }
801 
802 /*
803  * Allocate a new mm structure and copy contents from the
804  * mm structure of the passed in task structure.
805  */
806 struct mm_struct *dup_mm(struct task_struct *tsk)
807 {
808  struct mm_struct *mm, *oldmm = current->mm;
809  int err;
810 
811  if (!oldmm)
812  return NULL;
813 
814  mm = allocate_mm();
815  if (!mm)
816  goto fail_nomem;
817 
818  memcpy(mm, oldmm, sizeof(*mm));
819  mm_init_cpumask(mm);
820 
821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
822  mm->pmd_huge_pte = NULL;
823 #endif
824  if (!mm_init(mm, tsk))
825  goto fail_nomem;
826 
827  if (init_new_context(tsk, mm))
828  goto fail_nocontext;
829 
830  dup_mm_exe_file(oldmm, mm);
831 
832  err = dup_mmap(mm, oldmm);
833  if (err)
834  goto free_pt;
835 
836  mm->hiwater_rss = get_mm_rss(mm);
837  mm->hiwater_vm = mm->total_vm;
838 
839  if (mm->binfmt && !try_module_get(mm->binfmt->module))
840  goto free_pt;
841 
842  return mm;
843 
844 free_pt:
845  /* don't put binfmt in mmput, we haven't got module yet */
846  mm->binfmt = NULL;
847  mmput(mm);
848 
849 fail_nomem:
850  return NULL;
851 
852 fail_nocontext:
853  /*
854  * If init_new_context() failed, we cannot use mmput() to free the mm
855  * because it calls destroy_context()
856  */
857  mm_free_pgd(mm);
858  free_mm(mm);
859  return NULL;
860 }
861 
862 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
863 {
864  struct mm_struct *mm, *oldmm;
865  int retval;
866 
867  tsk->min_flt = tsk->maj_flt = 0;
868  tsk->nvcsw = tsk->nivcsw = 0;
869 #ifdef CONFIG_DETECT_HUNG_TASK
870  tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
871 #endif
872 
873  tsk->mm = NULL;
874  tsk->active_mm = NULL;
875 
876  /*
877  * Are we cloning a kernel thread?
878  *
879  * We need to steal a active VM for that..
880  */
881  oldmm = current->mm;
882  if (!oldmm)
883  return 0;
884 
885  if (clone_flags & CLONE_VM) {
886  atomic_inc(&oldmm->mm_users);
887  mm = oldmm;
888  goto good_mm;
889  }
890 
891  retval = -ENOMEM;
892  mm = dup_mm(tsk);
893  if (!mm)
894  goto fail_nomem;
895 
896 good_mm:
897  tsk->mm = mm;
898  tsk->active_mm = mm;
899  return 0;
900 
901 fail_nomem:
902  return retval;
903 }
904 
905 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
906 {
907  struct fs_struct *fs = current->fs;
908  if (clone_flags & CLONE_FS) {
909  /* tsk->fs is already what we want */
910  spin_lock(&fs->lock);
911  if (fs->in_exec) {
912  spin_unlock(&fs->lock);
913  return -EAGAIN;
914  }
915  fs->users++;
916  spin_unlock(&fs->lock);
917  return 0;
918  }
919  tsk->fs = copy_fs_struct(fs);
920  if (!tsk->fs)
921  return -ENOMEM;
922  return 0;
923 }
924 
925 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
926 {
927  struct files_struct *oldf, *newf;
928  int error = 0;
929 
930  /*
931  * A background process may not have any files ...
932  */
933  oldf = current->files;
934  if (!oldf)
935  goto out;
936 
937  if (clone_flags & CLONE_FILES) {
938  atomic_inc(&oldf->count);
939  goto out;
940  }
941 
942  newf = dup_fd(oldf, &error);
943  if (!newf)
944  goto out;
945 
946  tsk->files = newf;
947  error = 0;
948 out:
949  return error;
950 }
951 
952 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
953 {
954 #ifdef CONFIG_BLOCK
955  struct io_context *ioc = current->io_context;
956  struct io_context *new_ioc;
957 
958  if (!ioc)
959  return 0;
960  /*
961  * Share io context with parent, if CLONE_IO is set
962  */
963  if (clone_flags & CLONE_IO) {
964  ioc_task_link(ioc);
965  tsk->io_context = ioc;
966  } else if (ioprio_valid(ioc->ioprio)) {
968  if (unlikely(!new_ioc))
969  return -ENOMEM;
970 
971  new_ioc->ioprio = ioc->ioprio;
972  put_io_context(new_ioc);
973  }
974 #endif
975  return 0;
976 }
977 
978 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
979 {
980  struct sighand_struct *sig;
981 
982  if (clone_flags & CLONE_SIGHAND) {
983  atomic_inc(&current->sighand->count);
984  return 0;
985  }
986  sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
987  rcu_assign_pointer(tsk->sighand, sig);
988  if (!sig)
989  return -ENOMEM;
990  atomic_set(&sig->count, 1);
991  memcpy(sig->action, current->sighand->action, sizeof(sig->action));
992  return 0;
993 }
994 
995 void __cleanup_sighand(struct sighand_struct *sighand)
996 {
997  if (atomic_dec_and_test(&sighand->count)) {
998  signalfd_cleanup(sighand);
999  kmem_cache_free(sighand_cachep, sighand);
1000  }
1001 }
1002 
1003 
1004 /*
1005  * Initialize POSIX timer handling for a thread group.
1006  */
1007 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1008 {
1009  unsigned long cpu_limit;
1010 
1011  /* Thread group counters. */
1012  thread_group_cputime_init(sig);
1013 
1014  cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1015  if (cpu_limit != RLIM_INFINITY) {
1016  sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1017  sig->cputimer.running = 1;
1018  }
1019 
1020  /* The timer lists. */
1021  INIT_LIST_HEAD(&sig->cpu_timers[0]);
1022  INIT_LIST_HEAD(&sig->cpu_timers[1]);
1023  INIT_LIST_HEAD(&sig->cpu_timers[2]);
1024 }
1025 
1026 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1027 {
1028  struct signal_struct *sig;
1029 
1030  if (clone_flags & CLONE_THREAD)
1031  return 0;
1032 
1033  sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1034  tsk->signal = sig;
1035  if (!sig)
1036  return -ENOMEM;
1037 
1038  sig->nr_threads = 1;
1039  atomic_set(&sig->live, 1);
1040  atomic_set(&sig->sigcnt, 1);
1042  if (clone_flags & CLONE_NEWPID)
1043  sig->flags |= SIGNAL_UNKILLABLE;
1044  sig->curr_target = tsk;
1045  init_sigpending(&sig->shared_pending);
1046  INIT_LIST_HEAD(&sig->posix_timers);
1047 
1049  sig->real_timer.function = it_real_fn;
1050 
1051  task_lock(current->group_leader);
1052  memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1053  task_unlock(current->group_leader);
1054 
1055  posix_cpu_timers_init_group(sig);
1056 
1057  tty_audit_fork(sig);
1058  sched_autogroup_fork(sig);
1059 
1060 #ifdef CONFIG_CGROUPS
1061  init_rwsem(&sig->group_rwsem);
1062 #endif
1063 
1064  sig->oom_score_adj = current->signal->oom_score_adj;
1065  sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1066 
1067  sig->has_child_subreaper = current->signal->has_child_subreaper ||
1068  current->signal->is_child_subreaper;
1069 
1071 
1072  return 0;
1073 }
1074 
1075 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1076 {
1077  unsigned long new_flags = p->flags;
1078 
1079  new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1080  new_flags |= PF_FORKNOEXEC;
1081  p->flags = new_flags;
1082 }
1083 
1084 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1085 {
1086  current->clear_child_tid = tidptr;
1087 
1088  return task_pid_vnr(current);
1089 }
1090 
1091 static void rt_mutex_init_task(struct task_struct *p)
1092 {
1094 #ifdef CONFIG_RT_MUTEXES
1095  plist_head_init(&p->pi_waiters);
1096  p->pi_blocked_on = NULL;
1097 #endif
1098 }
1099 
1100 #ifdef CONFIG_MM_OWNER
1101 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1102 {
1103  mm->owner = p;
1104 }
1105 #endif /* CONFIG_MM_OWNER */
1106 
1107 /*
1108  * Initialize POSIX timer handling for a single task.
1109  */
1110 static void posix_cpu_timers_init(struct task_struct *tsk)
1111 {
1112  tsk->cputime_expires.prof_exp = 0;
1113  tsk->cputime_expires.virt_exp = 0;
1114  tsk->cputime_expires.sched_exp = 0;
1115  INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1116  INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1117  INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1118 }
1119 
1120 /*
1121  * This creates a new process as a copy of the old one,
1122  * but does not actually start it yet.
1123  *
1124  * It copies the registers, and all the appropriate
1125  * parts of the process environment (as per the clone
1126  * flags). The actual kick-off is left to the caller.
1127  */
1128 static struct task_struct *copy_process(unsigned long clone_flags,
1129  unsigned long stack_start,
1130  struct pt_regs *regs,
1131  unsigned long stack_size,
1132  int __user *child_tidptr,
1133  struct pid *pid,
1134  int trace)
1135 {
1136  int retval;
1137  struct task_struct *p;
1138  int cgroup_callbacks_done = 0;
1139 
1140  if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1141  return ERR_PTR(-EINVAL);
1142 
1143  /*
1144  * Thread groups must share signals as well, and detached threads
1145  * can only be started up within the thread group.
1146  */
1147  if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1148  return ERR_PTR(-EINVAL);
1149 
1150  /*
1151  * Shared signal handlers imply shared VM. By way of the above,
1152  * thread groups also imply shared VM. Blocking this case allows
1153  * for various simplifications in other code.
1154  */
1155  if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1156  return ERR_PTR(-EINVAL);
1157 
1158  /*
1159  * Siblings of global init remain as zombies on exit since they are
1160  * not reaped by their parent (swapper). To solve this and to avoid
1161  * multi-rooted process trees, prevent global and container-inits
1162  * from creating siblings.
1163  */
1164  if ((clone_flags & CLONE_PARENT) &&
1165  current->signal->flags & SIGNAL_UNKILLABLE)
1166  return ERR_PTR(-EINVAL);
1167 
1168  retval = security_task_create(clone_flags);
1169  if (retval)
1170  goto fork_out;
1171 
1172  retval = -ENOMEM;
1173  p = dup_task_struct(current);
1174  if (!p)
1175  goto fork_out;
1176 
1177  ftrace_graph_init_task(p);
1178  get_seccomp_filter(p);
1179 
1180  rt_mutex_init_task(p);
1181 
1182 #ifdef CONFIG_PROVE_LOCKING
1183  DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1184  DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1185 #endif
1186  retval = -EAGAIN;
1187  if (atomic_read(&p->real_cred->user->processes) >=
1188  task_rlimit(p, RLIMIT_NPROC)) {
1190  p->real_cred->user != INIT_USER)
1191  goto bad_fork_free;
1192  }
1193  current->flags &= ~PF_NPROC_EXCEEDED;
1194 
1195  retval = copy_creds(p, clone_flags);
1196  if (retval < 0)
1197  goto bad_fork_free;
1198 
1199  /*
1200  * If multiple threads are within copy_process(), then this check
1201  * triggers too late. This doesn't hurt, the check is only there
1202  * to stop root fork bombs.
1203  */
1204  retval = -EAGAIN;
1205  if (nr_threads >= max_threads)
1206  goto bad_fork_cleanup_count;
1207 
1208  if (!try_module_get(task_thread_info(p)->exec_domain->module))
1209  goto bad_fork_cleanup_count;
1210 
1211  p->did_exec = 0;
1212  delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1213  copy_flags(clone_flags, p);
1214  INIT_LIST_HEAD(&p->children);
1215  INIT_LIST_HEAD(&p->sibling);
1216  rcu_copy_process(p);
1217  p->vfork_done = NULL;
1219 
1220  init_sigpending(&p->pending);
1221 
1222  p->utime = p->stime = p->gtime = 0;
1223  p->utimescaled = p->stimescaled = 0;
1224 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1225  p->prev_utime = p->prev_stime = 0;
1226 #endif
1227 #if defined(SPLIT_RSS_COUNTING)
1228  memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1229 #endif
1230 
1231  p->default_timer_slack_ns = current->timer_slack_ns;
1232 
1233  task_io_accounting_init(&p->ioac);
1234  acct_clear_integrals(p);
1235 
1236  posix_cpu_timers_init(p);
1237 
1239  p->real_start_time = p->start_time;
1241  p->io_context = NULL;
1242  p->audit_context = NULL;
1243  if (clone_flags & CLONE_THREAD)
1244  threadgroup_change_begin(current);
1245  cgroup_fork(p);
1246 #ifdef CONFIG_NUMA
1247  p->mempolicy = mpol_dup(p->mempolicy);
1248  if (IS_ERR(p->mempolicy)) {
1249  retval = PTR_ERR(p->mempolicy);
1250  p->mempolicy = NULL;
1251  goto bad_fork_cleanup_cgroup;
1252  }
1254 #endif
1255 #ifdef CONFIG_CPUSETS
1256  p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1257  p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1258  seqcount_init(&p->mems_allowed_seq);
1259 #endif
1260 #ifdef CONFIG_TRACE_IRQFLAGS
1261  p->irq_events = 0;
1262  p->hardirqs_enabled = 0;
1263  p->hardirq_enable_ip = 0;
1264  p->hardirq_enable_event = 0;
1265  p->hardirq_disable_ip = _THIS_IP_;
1266  p->hardirq_disable_event = 0;
1267  p->softirqs_enabled = 1;
1268  p->softirq_enable_ip = _THIS_IP_;
1269  p->softirq_enable_event = 0;
1270  p->softirq_disable_ip = 0;
1271  p->softirq_disable_event = 0;
1272  p->hardirq_context = 0;
1273  p->softirq_context = 0;
1274 #endif
1275 #ifdef CONFIG_LOCKDEP
1276  p->lockdep_depth = 0; /* no locks held yet */
1277  p->curr_chain_key = 0;
1278  p->lockdep_recursion = 0;
1279 #endif
1280 
1281 #ifdef CONFIG_DEBUG_MUTEXES
1282  p->blocked_on = NULL; /* not blocked yet */
1283 #endif
1284 #ifdef CONFIG_MEMCG
1285  p->memcg_batch.do_batch = 0;
1286  p->memcg_batch.memcg = NULL;
1287 #endif
1288 
1289  /* Perform scheduler related setup. Assign this task to a CPU. */
1290  sched_fork(p);
1291 
1292  retval = perf_event_init_task(p);
1293  if (retval)
1294  goto bad_fork_cleanup_policy;
1295  retval = audit_alloc(p);
1296  if (retval)
1297  goto bad_fork_cleanup_policy;
1298  /* copy all the process information */
1299  retval = copy_semundo(clone_flags, p);
1300  if (retval)
1301  goto bad_fork_cleanup_audit;
1302  retval = copy_files(clone_flags, p);
1303  if (retval)
1304  goto bad_fork_cleanup_semundo;
1305  retval = copy_fs(clone_flags, p);
1306  if (retval)
1307  goto bad_fork_cleanup_files;
1308  retval = copy_sighand(clone_flags, p);
1309  if (retval)
1310  goto bad_fork_cleanup_fs;
1311  retval = copy_signal(clone_flags, p);
1312  if (retval)
1313  goto bad_fork_cleanup_sighand;
1314  retval = copy_mm(clone_flags, p);
1315  if (retval)
1316  goto bad_fork_cleanup_signal;
1317  retval = copy_namespaces(clone_flags, p);
1318  if (retval)
1319  goto bad_fork_cleanup_mm;
1320  retval = copy_io(clone_flags, p);
1321  if (retval)
1322  goto bad_fork_cleanup_namespaces;
1323  retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1324  if (retval)
1325  goto bad_fork_cleanup_io;
1326 
1327  if (pid != &init_struct_pid) {
1328  retval = -ENOMEM;
1329  pid = alloc_pid(p->nsproxy->pid_ns);
1330  if (!pid)
1331  goto bad_fork_cleanup_io;
1332  }
1333 
1334  p->pid = pid_nr(pid);
1335  p->tgid = p->pid;
1336  if (clone_flags & CLONE_THREAD)
1337  p->tgid = current->tgid;
1338 
1339  p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1340  /*
1341  * Clear TID on mm_release()?
1342  */
1343  p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1344 #ifdef CONFIG_BLOCK
1345  p->plug = NULL;
1346 #endif
1347 #ifdef CONFIG_FUTEX
1348  p->robust_list = NULL;
1349 #ifdef CONFIG_COMPAT
1350  p->compat_robust_list = NULL;
1351 #endif
1352  INIT_LIST_HEAD(&p->pi_state_list);
1353  p->pi_state_cache = NULL;
1354 #endif
1356  /*
1357  * sigaltstack should be cleared when sharing the same VM
1358  */
1359  if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1360  p->sas_ss_sp = p->sas_ss_size = 0;
1361 
1362  /*
1363  * Syscall tracing and stepping should be turned off in the
1364  * child regardless of CLONE_PTRACE.
1365  */
1367  clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1368 #ifdef TIF_SYSCALL_EMU
1369  clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1370 #endif
1372 
1373  /* ok, now we should be set up.. */
1374  if (clone_flags & CLONE_THREAD)
1375  p->exit_signal = -1;
1376  else if (clone_flags & CLONE_PARENT)
1377  p->exit_signal = current->group_leader->exit_signal;
1378  else
1379  p->exit_signal = (clone_flags & CSIGNAL);
1380 
1381  p->pdeath_signal = 0;
1382  p->exit_state = 0;
1383 
1384  p->nr_dirtied = 0;
1385  p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1386  p->dirty_paused_when = 0;
1387 
1388  /*
1389  * Ok, make it visible to the rest of the system.
1390  * We dont wake it up yet.
1391  */
1392  p->group_leader = p;
1393  INIT_LIST_HEAD(&p->thread_group);
1394  p->task_works = NULL;
1395 
1396  /* Now that the task is set up, run cgroup callbacks if
1397  * necessary. We need to run them before the task is visible
1398  * on the tasklist. */
1400  cgroup_callbacks_done = 1;
1401 
1402  /* Need tasklist lock for parent etc handling! */
1403  write_lock_irq(&tasklist_lock);
1404 
1405  /* CLONE_PARENT re-uses the old parent */
1406  if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1407  p->real_parent = current->real_parent;
1408  p->parent_exec_id = current->parent_exec_id;
1409  } else {
1410  p->real_parent = current;
1411  p->parent_exec_id = current->self_exec_id;
1412  }
1413 
1414  spin_lock(&current->sighand->siglock);
1415 
1416  /*
1417  * Process group and session signals need to be delivered to just the
1418  * parent before the fork or both the parent and the child after the
1419  * fork. Restart if a signal comes in before we add the new process to
1420  * it's process group.
1421  * A fatal signal pending means that current will exit, so the new
1422  * thread can't slip out of an OOM kill (or normal SIGKILL).
1423  */
1425  if (signal_pending(current)) {
1426  spin_unlock(&current->sighand->siglock);
1427  write_unlock_irq(&tasklist_lock);
1428  retval = -ERESTARTNOINTR;
1429  goto bad_fork_free_pid;
1430  }
1431 
1432  if (clone_flags & CLONE_THREAD) {
1433  current->signal->nr_threads++;
1434  atomic_inc(&current->signal->live);
1435  atomic_inc(&current->signal->sigcnt);
1436  p->group_leader = current->group_leader;
1437  list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1438  }
1439 
1440  if (likely(p->pid)) {
1441  ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1442 
1443  if (thread_group_leader(p)) {
1444  if (is_child_reaper(pid))
1445  p->nsproxy->pid_ns->child_reaper = p;
1446 
1447  p->signal->leader_pid = pid;
1448  p->signal->tty = tty_kref_get(current->signal->tty);
1449  attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1450  attach_pid(p, PIDTYPE_SID, task_session(current));
1451  list_add_tail(&p->sibling, &p->real_parent->children);
1452  list_add_tail_rcu(&p->tasks, &init_task.tasks);
1453  __this_cpu_inc(process_counts);
1454  }
1455  attach_pid(p, PIDTYPE_PID, pid);
1456  nr_threads++;
1457  }
1458 
1459  total_forks++;
1460  spin_unlock(&current->sighand->siglock);
1461  write_unlock_irq(&tasklist_lock);
1463  cgroup_post_fork(p);
1464  if (clone_flags & CLONE_THREAD)
1465  threadgroup_change_end(current);
1466  perf_event_fork(p);
1467 
1468  trace_task_newtask(p, clone_flags);
1469 
1470  return p;
1471 
1472 bad_fork_free_pid:
1473  if (pid != &init_struct_pid)
1474  free_pid(pid);
1475 bad_fork_cleanup_io:
1476  if (p->io_context)
1477  exit_io_context(p);
1478 bad_fork_cleanup_namespaces:
1479  if (unlikely(clone_flags & CLONE_NEWPID))
1480  pid_ns_release_proc(p->nsproxy->pid_ns);
1482 bad_fork_cleanup_mm:
1483  if (p->mm)
1484  mmput(p->mm);
1485 bad_fork_cleanup_signal:
1486  if (!(clone_flags & CLONE_THREAD))
1487  free_signal_struct(p->signal);
1488 bad_fork_cleanup_sighand:
1490 bad_fork_cleanup_fs:
1491  exit_fs(p); /* blocking */
1492 bad_fork_cleanup_files:
1493  exit_files(p); /* blocking */
1494 bad_fork_cleanup_semundo:
1495  exit_sem(p);
1496 bad_fork_cleanup_audit:
1497  audit_free(p);
1498 bad_fork_cleanup_policy:
1500 #ifdef CONFIG_NUMA
1501  mpol_put(p->mempolicy);
1502 bad_fork_cleanup_cgroup:
1503 #endif
1504  if (clone_flags & CLONE_THREAD)
1505  threadgroup_change_end(current);
1506  cgroup_exit(p, cgroup_callbacks_done);
1507  delayacct_tsk_free(p);
1508  module_put(task_thread_info(p)->exec_domain->module);
1509 bad_fork_cleanup_count:
1510  atomic_dec(&p->cred->user->processes);
1511  exit_creds(p);
1512 bad_fork_free:
1513  free_task(p);
1514 fork_out:
1515  return ERR_PTR(retval);
1516 }
1517 
1519 {
1520  memset(regs, 0, sizeof(struct pt_regs));
1521  return regs;
1522 }
1523 
1524 static inline void init_idle_pids(struct pid_link *links)
1525 {
1526  enum pid_type type;
1527 
1528  for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1529  INIT_HLIST_NODE(&links[type].node); /* not really needed */
1530  links[type].pid = &init_struct_pid;
1531  }
1532 }
1533 
1535 {
1536  struct task_struct *task;
1537  struct pt_regs regs;
1538 
1539  task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1540  &init_struct_pid, 0);
1541  if (!IS_ERR(task)) {
1542  init_idle_pids(task->pids);
1543  init_idle(task, cpu);
1544  }
1545 
1546  return task;
1547 }
1548 
1549 /*
1550  * Ok, this is the main fork-routine.
1551  *
1552  * It copies the process, and if successful kick-starts
1553  * it and waits for it to finish using the VM if required.
1554  */
1555 long do_fork(unsigned long clone_flags,
1556  unsigned long stack_start,
1557  struct pt_regs *regs,
1558  unsigned long stack_size,
1559  int __user *parent_tidptr,
1560  int __user *child_tidptr)
1561 {
1562  struct task_struct *p;
1563  int trace = 0;
1564  long nr;
1565 
1566  /*
1567  * Do some preliminary argument and permissions checking before we
1568  * actually start allocating stuff
1569  */
1570  if (clone_flags & CLONE_NEWUSER) {
1571  if (clone_flags & CLONE_THREAD)
1572  return -EINVAL;
1573  /* hopefully this check will go away when userns support is
1574  * complete
1575  */
1576  if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1577  !capable(CAP_SETGID))
1578  return -EPERM;
1579  }
1580 
1581  /*
1582  * Determine whether and which event to report to ptracer. When
1583  * called from kernel_thread or CLONE_UNTRACED is explicitly
1584  * requested, no event is reported; otherwise, report if the event
1585  * for the type of forking is enabled.
1586  */
1587  if (!(clone_flags & CLONE_UNTRACED) && likely(user_mode(regs))) {
1588  if (clone_flags & CLONE_VFORK)
1589  trace = PTRACE_EVENT_VFORK;
1590  else if ((clone_flags & CSIGNAL) != SIGCHLD)
1591  trace = PTRACE_EVENT_CLONE;
1592  else
1593  trace = PTRACE_EVENT_FORK;
1594 
1595  if (likely(!ptrace_event_enabled(current, trace)))
1596  trace = 0;
1597  }
1598 
1599  p = copy_process(clone_flags, stack_start, regs, stack_size,
1600  child_tidptr, NULL, trace);
1601  /*
1602  * Do this prior waking up the new thread - the thread pointer
1603  * might get invalid after that point, if the thread exits quickly.
1604  */
1605  if (!IS_ERR(p)) {
1606  struct completion vfork;
1607 
1608  trace_sched_process_fork(current, p);
1609 
1610  nr = task_pid_vnr(p);
1611 
1612  if (clone_flags & CLONE_PARENT_SETTID)
1613  put_user(nr, parent_tidptr);
1614 
1615  if (clone_flags & CLONE_VFORK) {
1616  p->vfork_done = &vfork;
1617  init_completion(&vfork);
1618  get_task_struct(p);
1619  }
1620 
1621  wake_up_new_task(p);
1622 
1623  /* forking complete and child started to run, tell ptracer */
1624  if (unlikely(trace))
1625  ptrace_event(trace, nr);
1626 
1627  if (clone_flags & CLONE_VFORK) {
1628  if (!wait_for_vfork_done(p, &vfork))
1629  ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1630  }
1631  } else {
1632  nr = PTR_ERR(p);
1633  }
1634  return nr;
1635 }
1636 
1637 #ifdef CONFIG_GENERIC_KERNEL_THREAD
1638 /*
1639  * Create a kernel thread.
1640  */
1641 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1642 {
1643  return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, NULL,
1644  (unsigned long)arg, NULL, NULL);
1645 }
1646 #endif
1647 
1648 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1649 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1650 #endif
1651 
1652 static void sighand_ctor(void *data)
1653 {
1654  struct sighand_struct *sighand = data;
1655 
1656  spin_lock_init(&sighand->siglock);
1657  init_waitqueue_head(&sighand->signalfd_wqh);
1658 }
1659 
1661 {
1662  sighand_cachep = kmem_cache_create("sighand_cache",
1663  sizeof(struct sighand_struct), 0,
1665  SLAB_NOTRACK, sighand_ctor);
1666  signal_cachep = kmem_cache_create("signal_cache",
1667  sizeof(struct signal_struct), 0,
1669  files_cachep = kmem_cache_create("files_cache",
1670  sizeof(struct files_struct), 0,
1672  fs_cachep = kmem_cache_create("fs_cache",
1673  sizeof(struct fs_struct), 0,
1675  /*
1676  * FIXME! The "sizeof(struct mm_struct)" currently includes the
1677  * whole struct cpumask for the OFFSTACK case. We could change
1678  * this to *only* allocate as much of it as required by the
1679  * maximum number of CPU's we can ever have. The cpumask_allocation
1680  * is at the end of the structure, exactly for that reason.
1681  */
1682  mm_cachep = kmem_cache_create("mm_struct",
1683  sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1685  vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1686  mmap_init();
1688 }
1689 
1690 /*
1691  * Check constraints on flags passed to the unshare system call.
1692  */
1693 static int check_unshare_flags(unsigned long unshare_flags)
1694 {
1695  if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1696  CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1698  return -EINVAL;
1699  /*
1700  * Not implemented, but pretend it works if there is nothing to
1701  * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1702  * needs to unshare vm.
1703  */
1704  if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1705  /* FIXME: get_task_mm() increments ->mm_users */
1706  if (atomic_read(&current->mm->mm_users) > 1)
1707  return -EINVAL;
1708  }
1709 
1710  return 0;
1711 }
1712 
1713 /*
1714  * Unshare the filesystem structure if it is being shared
1715  */
1716 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1717 {
1718  struct fs_struct *fs = current->fs;
1719 
1720  if (!(unshare_flags & CLONE_FS) || !fs)
1721  return 0;
1722 
1723  /* don't need lock here; in the worst case we'll do useless copy */
1724  if (fs->users == 1)
1725  return 0;
1726 
1727  *new_fsp = copy_fs_struct(fs);
1728  if (!*new_fsp)
1729  return -ENOMEM;
1730 
1731  return 0;
1732 }
1733 
1734 /*
1735  * Unshare file descriptor table if it is being shared
1736  */
1737 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1738 {
1739  struct files_struct *fd = current->files;
1740  int error = 0;
1741 
1742  if ((unshare_flags & CLONE_FILES) &&
1743  (fd && atomic_read(&fd->count) > 1)) {
1744  *new_fdp = dup_fd(fd, &error);
1745  if (!*new_fdp)
1746  return error;
1747  }
1748 
1749  return 0;
1750 }
1751 
1752 /*
1753  * unshare allows a process to 'unshare' part of the process
1754  * context which was originally shared using clone. copy_*
1755  * functions used by do_fork() cannot be used here directly
1756  * because they modify an inactive task_struct that is being
1757  * constructed. Here we are modifying the current, active,
1758  * task_struct.
1759  */
1760 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1761 {
1762  struct fs_struct *fs, *new_fs = NULL;
1763  struct files_struct *fd, *new_fd = NULL;
1764  struct nsproxy *new_nsproxy = NULL;
1765  int do_sysvsem = 0;
1766  int err;
1767 
1768  err = check_unshare_flags(unshare_flags);
1769  if (err)
1770  goto bad_unshare_out;
1771 
1772  /*
1773  * If unsharing namespace, must also unshare filesystem information.
1774  */
1775  if (unshare_flags & CLONE_NEWNS)
1776  unshare_flags |= CLONE_FS;
1777  /*
1778  * CLONE_NEWIPC must also detach from the undolist: after switching
1779  * to a new ipc namespace, the semaphore arrays from the old
1780  * namespace are unreachable.
1781  */
1782  if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1783  do_sysvsem = 1;
1784  err = unshare_fs(unshare_flags, &new_fs);
1785  if (err)
1786  goto bad_unshare_out;
1787  err = unshare_fd(unshare_flags, &new_fd);
1788  if (err)
1789  goto bad_unshare_cleanup_fs;
1790  err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1791  if (err)
1792  goto bad_unshare_cleanup_fd;
1793 
1794  if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1795  if (do_sysvsem) {
1796  /*
1797  * CLONE_SYSVSEM is equivalent to sys_exit().
1798  */
1799  exit_sem(current);
1800  }
1801 
1802  if (new_nsproxy) {
1803  switch_task_namespaces(current, new_nsproxy);
1804  new_nsproxy = NULL;
1805  }
1806 
1807  task_lock(current);
1808 
1809  if (new_fs) {
1810  fs = current->fs;
1811  spin_lock(&fs->lock);
1812  current->fs = new_fs;
1813  if (--fs->users)
1814  new_fs = NULL;
1815  else
1816  new_fs = fs;
1817  spin_unlock(&fs->lock);
1818  }
1819 
1820  if (new_fd) {
1821  fd = current->files;
1822  current->files = new_fd;
1823  new_fd = fd;
1824  }
1825 
1826  task_unlock(current);
1827  }
1828 
1829  if (new_nsproxy)
1830  put_nsproxy(new_nsproxy);
1831 
1832 bad_unshare_cleanup_fd:
1833  if (new_fd)
1834  put_files_struct(new_fd);
1835 
1836 bad_unshare_cleanup_fs:
1837  if (new_fs)
1838  free_fs_struct(new_fs);
1839 
1840 bad_unshare_out:
1841  return err;
1842 }
1843 
1844 /*
1845  * Helper to unshare the files of the current task.
1846  * We don't want to expose copy_files internals to
1847  * the exec layer of the kernel.
1848  */
1849 
1850 int unshare_files(struct files_struct **displaced)
1851 {
1852  struct task_struct *task = current;
1853  struct files_struct *copy = NULL;
1854  int error;
1855 
1856  error = unshare_fd(CLONE_FILES, &copy);
1857  if (error || !copy) {
1858  *displaced = NULL;
1859  return error;
1860  }
1861  *displaced = task->files;
1862  task_lock(task);
1863  task->files = copy;
1864  task_unlock(task);
1865  return 0;
1866 }