Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
page.c
Go to the documentation of this file.
1 /*
2  * page.c - buffer/page management specific to NILFS
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Written by Ryusuke Konishi <[email protected]>,
21  * Seiji Kihara <[email protected]>.
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/writeback.h>
26 #include <linux/swap.h>
27 #include <linux/bitops.h>
28 #include <linux/page-flags.h>
29 #include <linux/list.h>
30 #include <linux/highmem.h>
31 #include <linux/pagevec.h>
32 #include <linux/gfp.h>
33 #include "nilfs.h"
34 #include "page.h"
35 #include "mdt.h"
36 
37 
38 #define NILFS_BUFFER_INHERENT_BITS \
39  ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
40  (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Checked))
41 
42 static struct buffer_head *
43 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
44  int blkbits, unsigned long b_state)
45 
46 {
47  unsigned long first_block;
48  struct buffer_head *bh;
49 
50  if (!page_has_buffers(page))
51  create_empty_buffers(page, 1 << blkbits, b_state);
52 
53  first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
54  bh = nilfs_page_get_nth_block(page, block - first_block);
55 
56  touch_buffer(bh);
57  wait_on_buffer(bh);
58  return bh;
59 }
60 
61 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
62  struct address_space *mapping,
63  unsigned long blkoff,
64  unsigned long b_state)
65 {
66  int blkbits = inode->i_blkbits;
67  pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
68  struct page *page;
69  struct buffer_head *bh;
70 
71  page = grab_cache_page(mapping, index);
72  if (unlikely(!page))
73  return NULL;
74 
75  bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
76  if (unlikely(!bh)) {
77  unlock_page(page);
78  page_cache_release(page);
79  return NULL;
80  }
81  return bh;
82 }
83 
89 void nilfs_forget_buffer(struct buffer_head *bh)
90 {
91  struct page *page = bh->b_page;
92 
93  lock_buffer(bh);
94  clear_buffer_nilfs_volatile(bh);
95  clear_buffer_nilfs_checked(bh);
96  clear_buffer_nilfs_redirected(bh);
97  clear_buffer_dirty(bh);
98  if (nilfs_page_buffers_clean(page))
100 
101  clear_buffer_uptodate(bh);
102  clear_buffer_mapped(bh);
103  bh->b_blocknr = -1;
104  ClearPageUptodate(page);
105  ClearPageMappedToDisk(page);
106  unlock_buffer(bh);
107  brelse(bh);
108 }
109 
115 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
116 {
117  void *kaddr0, *kaddr1;
118  unsigned long bits;
119  struct page *spage = sbh->b_page, *dpage = dbh->b_page;
120  struct buffer_head *bh;
121 
122  kaddr0 = kmap_atomic(spage);
123  kaddr1 = kmap_atomic(dpage);
124  memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
125  kunmap_atomic(kaddr1);
126  kunmap_atomic(kaddr0);
127 
128  dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
129  dbh->b_blocknr = sbh->b_blocknr;
130  dbh->b_bdev = sbh->b_bdev;
131 
132  bh = dbh;
133  bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
134  while ((bh = bh->b_this_page) != dbh) {
135  lock_buffer(bh);
136  bits &= bh->b_state;
137  unlock_buffer(bh);
138  }
139  if (bits & (1UL << BH_Uptodate))
140  SetPageUptodate(dpage);
141  else
142  ClearPageUptodate(dpage);
143  if (bits & (1UL << BH_Mapped))
144  SetPageMappedToDisk(dpage);
145  else
146  ClearPageMappedToDisk(dpage);
147 }
148 
157 {
158  struct buffer_head *bh, *head;
159 
160  bh = head = page_buffers(page);
161  do {
162  if (buffer_dirty(bh))
163  return 0;
164  bh = bh->b_this_page;
165  } while (bh != head);
166  return 1;
167 }
168 
169 void nilfs_page_bug(struct page *page)
170 {
171  struct address_space *m;
172  unsigned long ino;
173 
174  if (unlikely(!page)) {
175  printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
176  return;
177  }
178 
179  m = page->mapping;
180  ino = m ? m->host->i_ino : 0;
181 
182  printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
183  "mapping=%p ino=%lu\n",
184  page, atomic_read(&page->_count),
185  (unsigned long long)page->index, page->flags, m, ino);
186 
187  if (page_has_buffers(page)) {
188  struct buffer_head *bh, *head;
189  int i = 0;
190 
191  bh = head = page_buffers(page);
192  do {
194  " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
195  i++, bh, atomic_read(&bh->b_count),
196  (unsigned long long)bh->b_blocknr, bh->b_state);
197  bh = bh->b_this_page;
198  } while (bh != head);
199  }
200 }
201 
212 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
213 {
214  struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
215  unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
216 
217  BUG_ON(PageWriteback(dst));
218 
219  sbh = sbufs = page_buffers(src);
220  if (!page_has_buffers(dst))
221  create_empty_buffers(dst, sbh->b_size, 0);
222 
223  if (copy_dirty)
224  mask |= (1UL << BH_Dirty);
225 
226  dbh = dbufs = page_buffers(dst);
227  do {
228  lock_buffer(sbh);
229  lock_buffer(dbh);
230  dbh->b_state = sbh->b_state & mask;
231  dbh->b_blocknr = sbh->b_blocknr;
232  dbh->b_bdev = sbh->b_bdev;
233  sbh = sbh->b_this_page;
234  dbh = dbh->b_this_page;
235  } while (dbh != dbufs);
236 
237  copy_highpage(dst, src);
238 
239  if (PageUptodate(src) && !PageUptodate(dst))
240  SetPageUptodate(dst);
241  else if (!PageUptodate(src) && PageUptodate(dst))
242  ClearPageUptodate(dst);
243  if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
244  SetPageMappedToDisk(dst);
245  else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
246  ClearPageMappedToDisk(dst);
247 
248  do {
249  unlock_buffer(sbh);
250  unlock_buffer(dbh);
251  sbh = sbh->b_this_page;
252  dbh = dbh->b_this_page;
253  } while (dbh != dbufs);
254 }
255 
257  struct address_space *smap)
258 {
259  struct pagevec pvec;
260  unsigned int i;
261  pgoff_t index = 0;
262  int err = 0;
263 
264  pagevec_init(&pvec, 0);
265 repeat:
266  if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
267  PAGEVEC_SIZE))
268  return 0;
269 
270  for (i = 0; i < pagevec_count(&pvec); i++) {
271  struct page *page = pvec.pages[i], *dpage;
272 
273  lock_page(page);
274  if (unlikely(!PageDirty(page)))
275  NILFS_PAGE_BUG(page, "inconsistent dirty state");
276 
277  dpage = grab_cache_page(dmap, page->index);
278  if (unlikely(!dpage)) {
279  /* No empty page is added to the page cache */
280  err = -ENOMEM;
281  unlock_page(page);
282  break;
283  }
284  if (unlikely(!page_has_buffers(page)))
285  NILFS_PAGE_BUG(page,
286  "found empty page in dat page cache");
287 
288  nilfs_copy_page(dpage, page, 1);
290 
291  unlock_page(dpage);
292  page_cache_release(dpage);
293  unlock_page(page);
294  }
295  pagevec_release(&pvec);
296  cond_resched();
297 
298  if (likely(!err))
299  goto repeat;
300  return err;
301 }
302 
312  struct address_space *smap)
313 {
314  struct pagevec pvec;
315  unsigned int i, n;
316  pgoff_t index = 0;
317  int err;
318 
319  pagevec_init(&pvec, 0);
320 repeat:
321  n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
322  if (!n)
323  return;
324  index = pvec.pages[n - 1]->index + 1;
325 
326  for (i = 0; i < pagevec_count(&pvec); i++) {
327  struct page *page = pvec.pages[i], *dpage;
328  pgoff_t offset = page->index;
329 
330  lock_page(page);
331  dpage = find_lock_page(dmap, offset);
332  if (dpage) {
333  /* override existing page on the destination cache */
334  WARN_ON(PageDirty(dpage));
335  nilfs_copy_page(dpage, page, 0);
336  unlock_page(dpage);
337  page_cache_release(dpage);
338  } else {
339  struct page *page2;
340 
341  /* move the page to the destination cache */
342  spin_lock_irq(&smap->tree_lock);
343  page2 = radix_tree_delete(&smap->page_tree, offset);
344  WARN_ON(page2 != page);
345 
346  smap->nrpages--;
347  spin_unlock_irq(&smap->tree_lock);
348 
349  spin_lock_irq(&dmap->tree_lock);
350  err = radix_tree_insert(&dmap->page_tree, offset, page);
351  if (unlikely(err < 0)) {
352  WARN_ON(err == -EEXIST);
353  page->mapping = NULL;
354  page_cache_release(page); /* for cache */
355  } else {
356  page->mapping = dmap;
357  dmap->nrpages++;
358  if (PageDirty(page))
360  offset,
362  }
363  spin_unlock_irq(&dmap->tree_lock);
364  }
365  unlock_page(page);
366  }
367  pagevec_release(&pvec);
368  cond_resched();
369 
370  goto repeat;
371 }
372 
374 {
375  struct pagevec pvec;
376  unsigned int i;
377  pgoff_t index = 0;
378 
379  pagevec_init(&pvec, 0);
380 
381  while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
382  PAGEVEC_SIZE)) {
383  for (i = 0; i < pagevec_count(&pvec); i++) {
384  struct page *page = pvec.pages[i];
385  struct buffer_head *bh, *head;
386 
387  lock_page(page);
388  ClearPageUptodate(page);
389  ClearPageMappedToDisk(page);
390  bh = head = page_buffers(page);
391  do {
392  lock_buffer(bh);
393  clear_buffer_dirty(bh);
394  clear_buffer_nilfs_volatile(bh);
395  clear_buffer_nilfs_checked(bh);
396  clear_buffer_nilfs_redirected(bh);
397  clear_buffer_uptodate(bh);
398  clear_buffer_mapped(bh);
399  unlock_buffer(bh);
400  bh = bh->b_this_page;
401  } while (bh != head);
402 
404  unlock_page(page);
405  }
406  pagevec_release(&pvec);
407  cond_resched();
408  }
409 }
410 
412  unsigned from, unsigned to)
413 {
414  unsigned block_start, block_end;
415  struct buffer_head *bh, *head;
416  unsigned nc = 0;
417 
418  for (bh = head = page_buffers(page), block_start = 0;
419  bh != head || !block_start;
420  block_start = block_end, bh = bh->b_this_page) {
421  block_end = block_start + bh->b_size;
422  if (block_end > from && block_start < to && !buffer_dirty(bh))
423  nc++;
424  }
425  return nc;
426 }
427 
429  struct backing_dev_info *bdi)
430 {
431  mapping->host = inode;
432  mapping->flags = 0;
433  mapping_set_gfp_mask(mapping, GFP_NOFS);
434  mapping->assoc_mapping = NULL;
435  mapping->backing_dev_info = bdi;
436  mapping->a_ops = &empty_aops;
437 }
438 
439 /*
440  * NILFS2 needs clear_page_dirty() in the following two cases:
441  *
442  * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
443  * page dirty flags when it copies back pages from the shadow cache
444  * (gcdat->{i_mapping,i_btnode_cache}) to its original cache
445  * (dat->{i_mapping,i_btnode_cache}).
446  *
447  * 2) Some B-tree operations like insertion or deletion may dispose buffers
448  * in dirty state, and this needs to cancel the dirty state of their pages.
449  */
451 {
452  struct address_space *mapping = page->mapping;
453 
454  if (mapping) {
455  spin_lock_irq(&mapping->tree_lock);
456  if (test_bit(PG_dirty, &page->flags)) {
458  page_index(page),
460  spin_unlock_irq(&mapping->tree_lock);
461  return clear_page_dirty_for_io(page);
462  }
463  spin_unlock_irq(&mapping->tree_lock);
464  return 0;
465  }
466  return TestClearPageDirty(page);
467 }
468 
482  sector_t start_blk,
483  sector_t *blkoff)
484 {
485  unsigned int i;
486  pgoff_t index;
487  unsigned int nblocks_in_page;
488  unsigned long length = 0;
489  sector_t b;
490  struct pagevec pvec;
491  struct page *page;
492 
493  if (inode->i_mapping->nrpages == 0)
494  return 0;
495 
496  index = start_blk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
497  nblocks_in_page = 1U << (PAGE_CACHE_SHIFT - inode->i_blkbits);
498 
499  pagevec_init(&pvec, 0);
500 
501 repeat:
502  pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
503  pvec.pages);
504  if (pvec.nr == 0)
505  return length;
506 
507  if (length > 0 && pvec.pages[0]->index > index)
508  goto out;
509 
510  b = pvec.pages[0]->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
511  i = 0;
512  do {
513  page = pvec.pages[i];
514 
515  lock_page(page);
516  if (page_has_buffers(page)) {
517  struct buffer_head *bh, *head;
518 
519  bh = head = page_buffers(page);
520  do {
521  if (b < start_blk)
522  continue;
523  if (buffer_delay(bh)) {
524  if (length == 0)
525  *blkoff = b;
526  length++;
527  } else if (length > 0) {
528  goto out_locked;
529  }
530  } while (++b, bh = bh->b_this_page, bh != head);
531  } else {
532  if (length > 0)
533  goto out_locked;
534 
535  b += nblocks_in_page;
536  }
537  unlock_page(page);
538 
539  } while (++i < pagevec_count(&pvec));
540 
541  index = page->index + 1;
542  pagevec_release(&pvec);
543  cond_resched();
544  goto repeat;
545 
546 out_locked:
547  unlock_page(page);
548 out:
549  pagevec_release(&pvec);
550  return length;
551 }