Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
alloc.c
Go to the documentation of this file.
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
53 #include "ocfs2_trace.h"
54 
55 #include "buffer_head_io.h"
56 
62 };
63 
64 static enum ocfs2_contig_type
65  ocfs2_extent_rec_contig(struct super_block *sb,
66  struct ocfs2_extent_rec *ext,
67  struct ocfs2_extent_rec *insert_rec);
68 /*
69  * Operations for a specific extent tree type.
70  *
71  * To implement an on-disk btree (extent tree) type in ocfs2, add
72  * an ocfs2_extent_tree_operations structure and the matching
73  * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
74  * for the allocation portion of the extent tree.
75  */
77  /*
78  * last_eb_blk is the block number of the right most leaf extent
79  * block. Most on-disk structures containing an extent tree store
80  * this value for fast access. The ->eo_set_last_eb_blk() and
81  * ->eo_get_last_eb_blk() operations access this value. They are
82  * both required.
83  */
85  u64 blkno);
87 
88  /*
89  * The on-disk structure usually keeps track of how many total
90  * clusters are stored in this extent tree. This function updates
91  * that value. new_clusters is the delta, and must be
92  * added to the total. Required.
93  */
95  u32 new_clusters);
96 
97  /*
98  * If this extent tree is supported by an extent map, insert
99  * a record into the map.
100  */
102  struct ocfs2_extent_rec *rec);
103 
104  /*
105  * If this extent tree is supported by an extent map, truncate the
106  * map to clusters,
107  */
109  u32 clusters);
110 
111  /*
112  * If ->eo_insert_check() exists, it is called before rec is
113  * inserted into the extent tree. It is optional.
114  */
116  struct ocfs2_extent_rec *rec);
118 
119  /*
120  * --------------------------------------------------------------
121  * The remaining are internal to ocfs2_extent_tree and don't have
122  * accessor functions
123  */
124 
125  /*
126  * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
127  * It is required.
128  */
130 
131  /*
132  * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
133  * it exists. If it does not, et->et_max_leaf_clusters is set
134  * to 0 (unlimited). Optional.
135  */
137 
138  /*
139  * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
140  * are contiguous or not. Optional. Don't need to set it if use
141  * ocfs2_extent_rec as the tree leaf.
142  */
143  enum ocfs2_contig_type
145  struct ocfs2_extent_rec *ext,
146  struct ocfs2_extent_rec *insert_rec);
147 };
148 
149 
150 /*
151  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
152  * in the methods.
153  */
154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
156  u64 blkno);
157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
158  u32 clusters);
159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
160  struct ocfs2_extent_rec *rec);
161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
162  u32 clusters);
163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
164  struct ocfs2_extent_rec *rec);
165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
167 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
168  .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
169  .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
170  .eo_update_clusters = ocfs2_dinode_update_clusters,
171  .eo_extent_map_insert = ocfs2_dinode_extent_map_insert,
172  .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
173  .eo_insert_check = ocfs2_dinode_insert_check,
174  .eo_sanity_check = ocfs2_dinode_sanity_check,
175  .eo_fill_root_el = ocfs2_dinode_fill_root_el,
176 };
177 
178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
179  u64 blkno)
180 {
181  struct ocfs2_dinode *di = et->et_object;
182 
183  BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
184  di->i_last_eb_blk = cpu_to_le64(blkno);
185 }
186 
187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
188 {
189  struct ocfs2_dinode *di = et->et_object;
190 
191  BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
192  return le64_to_cpu(di->i_last_eb_blk);
193 }
194 
195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
196  u32 clusters)
197 {
198  struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
199  struct ocfs2_dinode *di = et->et_object;
200 
201  le32_add_cpu(&di->i_clusters, clusters);
202  spin_lock(&oi->ip_lock);
204  spin_unlock(&oi->ip_lock);
205 }
206 
207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
208  struct ocfs2_extent_rec *rec)
209 {
210  struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
211 
212  ocfs2_extent_map_insert_rec(inode, rec);
213 }
214 
215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
216  u32 clusters)
217 {
218  struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
219 
220  ocfs2_extent_map_trunc(inode, clusters);
221 }
222 
223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
224  struct ocfs2_extent_rec *rec)
225 {
226  struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
227  struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
228 
230  mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
231  (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
232  "Device %s, asking for sparse allocation: inode %llu, "
233  "cpos %u, clusters %u\n",
234  osb->dev_str,
235  (unsigned long long)oi->ip_blkno,
236  rec->e_cpos, oi->ip_clusters);
237 
238  return 0;
239 }
240 
241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
242 {
243  struct ocfs2_dinode *di = et->et_object;
244 
245  BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
247 
248  return 0;
249 }
250 
251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
252 {
253  struct ocfs2_dinode *di = et->et_object;
254 
255  et->et_root_el = &di->id2.i_list;
256 }
257 
258 
259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
260 {
261  struct ocfs2_xattr_value_buf *vb = et->et_object;
262 
263  et->et_root_el = &vb->vb_xv->xr_list;
264 }
265 
266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
267  u64 blkno)
268 {
269  struct ocfs2_xattr_value_buf *vb = et->et_object;
270 
271  vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
272 }
273 
274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
275 {
276  struct ocfs2_xattr_value_buf *vb = et->et_object;
277 
278  return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
279 }
280 
281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
282  u32 clusters)
283 {
284  struct ocfs2_xattr_value_buf *vb = et->et_object;
285 
286  le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
287 }
288 
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
290  .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
291  .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
292  .eo_update_clusters = ocfs2_xattr_value_update_clusters,
293  .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
294 };
295 
296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
297 {
298  struct ocfs2_xattr_block *xb = et->et_object;
299 
300  et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
301 }
302 
303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
304 {
307  ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
308 }
309 
310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
311  u64 blkno)
312 {
313  struct ocfs2_xattr_block *xb = et->et_object;
314  struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
315 
316  xt->xt_last_eb_blk = cpu_to_le64(blkno);
317 }
318 
319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
320 {
321  struct ocfs2_xattr_block *xb = et->et_object;
322  struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
323 
324  return le64_to_cpu(xt->xt_last_eb_blk);
325 }
326 
327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
328  u32 clusters)
329 {
330  struct ocfs2_xattr_block *xb = et->et_object;
331 
332  le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
333 }
334 
335 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
336  .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
337  .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
338  .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
339  .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
340  .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
341 };
342 
343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
344  u64 blkno)
345 {
346  struct ocfs2_dx_root_block *dx_root = et->et_object;
347 
348  dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
349 }
350 
351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
352 {
353  struct ocfs2_dx_root_block *dx_root = et->et_object;
354 
355  return le64_to_cpu(dx_root->dr_last_eb_blk);
356 }
357 
358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
359  u32 clusters)
360 {
361  struct ocfs2_dx_root_block *dx_root = et->et_object;
362 
363  le32_add_cpu(&dx_root->dr_clusters, clusters);
364 }
365 
366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
367 {
368  struct ocfs2_dx_root_block *dx_root = et->et_object;
369 
370  BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
371 
372  return 0;
373 }
374 
375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
376 {
377  struct ocfs2_dx_root_block *dx_root = et->et_object;
378 
379  et->et_root_el = &dx_root->dr_list;
380 }
381 
382 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
383  .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
384  .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
385  .eo_update_clusters = ocfs2_dx_root_update_clusters,
386  .eo_sanity_check = ocfs2_dx_root_sanity_check,
387  .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
388 };
389 
390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
391 {
392  struct ocfs2_refcount_block *rb = et->et_object;
393 
394  et->et_root_el = &rb->rf_list;
395 }
396 
397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
398  u64 blkno)
399 {
400  struct ocfs2_refcount_block *rb = et->et_object;
401 
402  rb->rf_last_eb_blk = cpu_to_le64(blkno);
403 }
404 
405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407  struct ocfs2_refcount_block *rb = et->et_object;
408 
409  return le64_to_cpu(rb->rf_last_eb_blk);
410 }
411 
412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
413  u32 clusters)
414 {
415  struct ocfs2_refcount_block *rb = et->et_object;
416 
417  le32_add_cpu(&rb->rf_clusters, clusters);
418 }
419 
420 static enum ocfs2_contig_type
421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
422  struct ocfs2_extent_rec *ext,
423  struct ocfs2_extent_rec *insert_rec)
424 {
425  return CONTIG_NONE;
426 }
427 
428 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
429  .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk,
430  .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk,
431  .eo_update_clusters = ocfs2_refcount_tree_update_clusters,
432  .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el,
433  .eo_extent_contig = ocfs2_refcount_tree_extent_contig,
434 };
435 
436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
437  struct ocfs2_caching_info *ci,
438  struct buffer_head *bh,
440  void *obj,
441  struct ocfs2_extent_tree_operations *ops)
442 {
443  et->et_ops = ops;
444  et->et_root_bh = bh;
445  et->et_ci = ci;
447  if (!obj)
448  obj = (void *)bh->b_data;
449  et->et_object = obj;
450 
451  et->et_ops->eo_fill_root_el(et);
452  if (!et->et_ops->eo_fill_max_leaf_clusters)
453  et->et_max_leaf_clusters = 0;
454  else
455  et->et_ops->eo_fill_max_leaf_clusters(et);
456 }
457 
459  struct ocfs2_caching_info *ci,
460  struct buffer_head *bh)
461 {
462  __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
463  NULL, &ocfs2_dinode_et_ops);
464 }
465 
467  struct ocfs2_caching_info *ci,
468  struct buffer_head *bh)
469 {
470  __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
471  NULL, &ocfs2_xattr_tree_et_ops);
472 }
473 
475  struct ocfs2_caching_info *ci,
476  struct ocfs2_xattr_value_buf *vb)
477 {
478  __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
479  &ocfs2_xattr_value_et_ops);
480 }
481 
483  struct ocfs2_caching_info *ci,
484  struct buffer_head *bh)
485 {
486  __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
487  NULL, &ocfs2_dx_root_et_ops);
488 }
489 
491  struct ocfs2_caching_info *ci,
492  struct buffer_head *bh)
493 {
494  __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
495  NULL, &ocfs2_refcount_tree_et_ops);
496 }
497 
498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
499  u64 new_last_eb_blk)
500 {
501  et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
502 }
503 
504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
505 {
506  return et->et_ops->eo_get_last_eb_blk(et);
507 }
508 
509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
510  u32 clusters)
511 {
512  et->et_ops->eo_update_clusters(et, clusters);
513 }
514 
515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
516  struct ocfs2_extent_rec *rec)
517 {
518  if (et->et_ops->eo_extent_map_insert)
519  et->et_ops->eo_extent_map_insert(et, rec);
520 }
521 
522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
523  u32 clusters)
524 {
525  if (et->et_ops->eo_extent_map_truncate)
526  et->et_ops->eo_extent_map_truncate(et, clusters);
527 }
528 
529 static inline int ocfs2_et_root_journal_access(handle_t *handle,
530  struct ocfs2_extent_tree *et,
531  int type)
532 {
533  return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
534  type);
535 }
536 
537 static inline enum ocfs2_contig_type
538  ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
539  struct ocfs2_extent_rec *rec,
540  struct ocfs2_extent_rec *insert_rec)
541 {
542  if (et->et_ops->eo_extent_contig)
543  return et->et_ops->eo_extent_contig(et, rec, insert_rec);
544 
545  return ocfs2_extent_rec_contig(
547  rec, insert_rec);
548 }
549 
550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
551  struct ocfs2_extent_rec *rec)
552 {
553  int ret = 0;
554 
555  if (et->et_ops->eo_insert_check)
556  ret = et->et_ops->eo_insert_check(et, rec);
557  return ret;
558 }
559 
560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
561 {
562  int ret = 0;
563 
564  if (et->et_ops->eo_sanity_check)
565  ret = et->et_ops->eo_sanity_check(et);
566  return ret;
567 }
568 
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570  struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572  struct ocfs2_extent_tree *et,
573  struct ocfs2_path *path,
574  struct ocfs2_extent_rec *insert_rec);
575 /*
576  * Reset the actual path elements so that we can re-use the structure
577  * to build another path. Generally, this involves freeing the buffer
578  * heads.
579  */
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
581 {
582  int i, start = 0, depth = 0;
583  struct ocfs2_path_item *node;
584 
585  if (keep_root)
586  start = 1;
587 
588  for(i = start; i < path_num_items(path); i++) {
589  node = &path->p_node[i];
590 
591  brelse(node->bh);
592  node->bh = NULL;
593  node->el = NULL;
594  }
595 
596  /*
597  * Tree depth may change during truncate, or insert. If we're
598  * keeping the root extent list, then make sure that our path
599  * structure reflects the proper depth.
600  */
601  if (keep_root)
602  depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
603  else
604  path_root_access(path) = NULL;
605 
606  path->p_tree_depth = depth;
607 }
608 
610 {
611  if (path) {
612  ocfs2_reinit_path(path, 0);
613  kfree(path);
614  }
615 }
616 
617 /*
618  * All the elements of src into dest. After this call, src could be freed
619  * without affecting dest.
620  *
621  * Both paths should have the same root. Any non-root elements of dest
622  * will be freed.
623  */
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
625 {
626  int i;
627 
628  BUG_ON(path_root_bh(dest) != path_root_bh(src));
629  BUG_ON(path_root_el(dest) != path_root_el(src));
631 
632  ocfs2_reinit_path(dest, 1);
633 
634  for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635  dest->p_node[i].bh = src->p_node[i].bh;
636  dest->p_node[i].el = src->p_node[i].el;
637 
638  if (dest->p_node[i].bh)
639  get_bh(dest->p_node[i].bh);
640  }
641 }
642 
643 /*
644  * Make the *dest path the same as src and re-initialize src path to
645  * have a root only.
646  */
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
648 {
649  int i;
650 
651  BUG_ON(path_root_bh(dest) != path_root_bh(src));
653 
654  for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655  brelse(dest->p_node[i].bh);
656 
657  dest->p_node[i].bh = src->p_node[i].bh;
658  dest->p_node[i].el = src->p_node[i].el;
659 
660  src->p_node[i].bh = NULL;
661  src->p_node[i].el = NULL;
662  }
663 }
664 
665 /*
666  * Insert an extent block at given index.
667  *
668  * This will not take an additional reference on eb_bh.
669  */
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671  struct buffer_head *eb_bh)
672 {
673  struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
674 
675  /*
676  * Right now, no root bh is an extent block, so this helps
677  * catch code errors with dinode trees. The assertion can be
678  * safely removed if we ever need to insert extent block
679  * structures at the root.
680  */
681  BUG_ON(index == 0);
682 
683  path->p_node[index].bh = eb_bh;
684  path->p_node[index].el = &eb->h_list;
685 }
686 
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688  struct ocfs2_extent_list *root_el,
690 {
691  struct ocfs2_path *path;
692 
693  BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
694 
695  path = kzalloc(sizeof(*path), GFP_NOFS);
696  if (path) {
697  path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
698  get_bh(root_bh);
699  path_root_bh(path) = root_bh;
700  path_root_el(path) = root_el;
701  path_root_access(path) = access;
702  }
703 
704  return path;
705 }
706 
708 {
709  return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710  path_root_access(path));
711 }
712 
714 {
715  return ocfs2_new_path(et->et_root_bh, et->et_root_el,
717 }
718 
719 /*
720  * Journal the buffer at depth idx. All idx>0 are extent_blocks,
721  * otherwise it's the root_access function.
722  *
723  * I don't like the way this function's name looks next to
724  * ocfs2_journal_access_path(), but I don't have a better one.
725  */
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727  struct ocfs2_caching_info *ci,
728  struct ocfs2_path *path,
729  int idx)
730 {
732 
733  if (!access)
734  access = ocfs2_journal_access;
735 
736  if (idx)
737  access = ocfs2_journal_access_eb;
738 
739  return access(handle, ci, path->p_node[idx].bh,
741 }
742 
743 /*
744  * Convenience function to journal all components in a path.
745  */
747  handle_t *handle,
748  struct ocfs2_path *path)
749 {
750  int i, ret = 0;
751 
752  if (!path)
753  goto out;
754 
755  for(i = 0; i < path_num_items(path); i++) {
756  ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
757  if (ret < 0) {
758  mlog_errno(ret);
759  goto out;
760  }
761  }
762 
763 out:
764  return ret;
765 }
766 
767 /*
768  * Return the index of the extent record which contains cluster #v_cluster.
769  * -1 is returned if it was not found.
770  *
771  * Should work fine on interior and exterior nodes.
772  */
774 {
775  int ret = -1;
776  int i;
777  struct ocfs2_extent_rec *rec;
778  u32 rec_end, rec_start, clusters;
779 
780  for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781  rec = &el->l_recs[i];
782 
783  rec_start = le32_to_cpu(rec->e_cpos);
784  clusters = ocfs2_rec_clusters(el, rec);
785 
786  rec_end = rec_start + clusters;
787 
788  if (v_cluster >= rec_start && v_cluster < rec_end) {
789  ret = i;
790  break;
791  }
792  }
793 
794  return ret;
795 }
796 
797 /*
798  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799  * ocfs2_extent_rec_contig only work properly against leaf nodes!
800  */
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802  struct ocfs2_extent_rec *ext,
803  u64 blkno)
804 {
805  u64 blk_end = le64_to_cpu(ext->e_blkno);
806 
807  blk_end += ocfs2_clusters_to_blocks(sb,
809 
810  return blkno == blk_end;
811 }
812 
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814  struct ocfs2_extent_rec *right)
815 {
816  u32 left_range;
817 
818  left_range = le32_to_cpu(left->e_cpos) +
820 
821  return (left_range == le32_to_cpu(right->e_cpos));
822 }
823 
824 static enum ocfs2_contig_type
825  ocfs2_extent_rec_contig(struct super_block *sb,
826  struct ocfs2_extent_rec *ext,
827  struct ocfs2_extent_rec *insert_rec)
828 {
829  u64 blkno = le64_to_cpu(insert_rec->e_blkno);
830 
831  /*
832  * Refuse to coalesce extent records with different flag
833  * fields - we don't want to mix unwritten extents with user
834  * data.
835  */
836  if (ext->e_flags != insert_rec->e_flags)
837  return CONTIG_NONE;
838 
839  if (ocfs2_extents_adjacent(ext, insert_rec) &&
840  ocfs2_block_extent_contig(sb, ext, blkno))
841  return CONTIG_RIGHT;
842 
843  blkno = le64_to_cpu(ext->e_blkno);
844  if (ocfs2_extents_adjacent(insert_rec, ext) &&
845  ocfs2_block_extent_contig(sb, insert_rec, blkno))
846  return CONTIG_LEFT;
847 
848  return CONTIG_NONE;
849 }
850 
851 /*
852  * NOTE: We can have pretty much any combination of contiguousness and
853  * appending.
854  *
855  * The usefulness of APPEND_TAIL is more in that it lets us know that
856  * we'll have to update the path to that leaf.
857  */
861 };
862 
867 };
868 
875 };
876 
881 };
882 
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884  struct buffer_head *bh)
885 {
886  int rc;
887  struct ocfs2_extent_block *eb =
888  (struct ocfs2_extent_block *)bh->b_data;
889 
890  trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
891 
892  BUG_ON(!buffer_uptodate(bh));
893 
894  /*
895  * If the ecc fails, we return the error but otherwise
896  * leave the filesystem running. We know any error is
897  * local to this block.
898  */
899  rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
900  if (rc) {
901  mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
902  (unsigned long long)bh->b_blocknr);
903  return rc;
904  }
905 
906  /*
907  * Errors after here are fatal.
908  */
909 
910  if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
911  ocfs2_error(sb,
912  "Extent block #%llu has bad signature %.*s",
913  (unsigned long long)bh->b_blocknr, 7,
914  eb->h_signature);
915  return -EINVAL;
916  }
917 
918  if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
919  ocfs2_error(sb,
920  "Extent block #%llu has an invalid h_blkno "
921  "of %llu",
922  (unsigned long long)bh->b_blocknr,
923  (unsigned long long)le64_to_cpu(eb->h_blkno));
924  return -EINVAL;
925  }
926 
928  ocfs2_error(sb,
929  "Extent block #%llu has an invalid "
930  "h_fs_generation of #%u",
931  (unsigned long long)bh->b_blocknr,
933  return -EINVAL;
934  }
935 
936  return 0;
937 }
938 
940  struct buffer_head **bh)
941 {
942  int rc;
943  struct buffer_head *tmp = *bh;
944 
945  rc = ocfs2_read_block(ci, eb_blkno, &tmp,
946  ocfs2_validate_extent_block);
947 
948  /* If ocfs2_read_block() got us a new bh, pass it up. */
949  if (!rc && !*bh)
950  *bh = tmp;
951 
952  return rc;
953 }
954 
955 
956 /*
957  * How many free extents have we got before we need more meta data?
958  */
960  struct ocfs2_extent_tree *et)
961 {
962  int retval;
963  struct ocfs2_extent_list *el = NULL;
964  struct ocfs2_extent_block *eb;
965  struct buffer_head *eb_bh = NULL;
966  u64 last_eb_blk = 0;
967 
968  el = et->et_root_el;
969  last_eb_blk = ocfs2_et_get_last_eb_blk(et);
970 
971  if (last_eb_blk) {
972  retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
973  &eb_bh);
974  if (retval < 0) {
975  mlog_errno(retval);
976  goto bail;
977  }
978  eb = (struct ocfs2_extent_block *) eb_bh->b_data;
979  el = &eb->h_list;
980  }
981 
982  BUG_ON(el->l_tree_depth != 0);
983 
984  retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
985 bail:
986  brelse(eb_bh);
987 
988  trace_ocfs2_num_free_extents(retval);
989  return retval;
990 }
991 
992 /* expects array to already be allocated
993  *
994  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
995  * l_count for you
996  */
997 static int ocfs2_create_new_meta_bhs(handle_t *handle,
998  struct ocfs2_extent_tree *et,
999  int wanted,
1000  struct ocfs2_alloc_context *meta_ac,
1001  struct buffer_head *bhs[])
1002 {
1003  int count, status, i;
1004  u16 suballoc_bit_start;
1005  u32 num_got;
1006  u64 suballoc_loc, first_blkno;
1007  struct ocfs2_super *osb =
1009  struct ocfs2_extent_block *eb;
1010 
1011  count = 0;
1012  while (count < wanted) {
1013  status = ocfs2_claim_metadata(handle,
1014  meta_ac,
1015  wanted - count,
1016  &suballoc_loc,
1017  &suballoc_bit_start,
1018  &num_got,
1019  &first_blkno);
1020  if (status < 0) {
1021  mlog_errno(status);
1022  goto bail;
1023  }
1024 
1025  for(i = count; i < (num_got + count); i++) {
1026  bhs[i] = sb_getblk(osb->sb, first_blkno);
1027  if (bhs[i] == NULL) {
1028  status = -EIO;
1029  mlog_errno(status);
1030  goto bail;
1031  }
1032  ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1033 
1034  status = ocfs2_journal_access_eb(handle, et->et_ci,
1035  bhs[i],
1037  if (status < 0) {
1038  mlog_errno(status);
1039  goto bail;
1040  }
1041 
1042  memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1043  eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1044  /* Ok, setup the minimal stuff here. */
1046  eb->h_blkno = cpu_to_le64(first_blkno);
1048  eb->h_suballoc_slot =
1049  cpu_to_le16(meta_ac->ac_alloc_slot);
1050  eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1051  eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1052  eb->h_list.l_count =
1053  cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1054 
1055  suballoc_bit_start++;
1056  first_blkno++;
1057 
1058  /* We'll also be dirtied by the caller, so
1059  * this isn't absolutely necessary. */
1060  ocfs2_journal_dirty(handle, bhs[i]);
1061  }
1062 
1063  count += num_got;
1064  }
1065 
1066  status = 0;
1067 bail:
1068  if (status < 0) {
1069  for(i = 0; i < wanted; i++) {
1070  brelse(bhs[i]);
1071  bhs[i] = NULL;
1072  }
1073  mlog_errno(status);
1074  }
1075  return status;
1076 }
1077 
1078 /*
1079  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1080  *
1081  * Returns the sum of the rightmost extent rec logical offset and
1082  * cluster count.
1083  *
1084  * ocfs2_add_branch() uses this to determine what logical cluster
1085  * value should be populated into the leftmost new branch records.
1086  *
1087  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1088  * value for the new topmost tree record.
1089  */
1090 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1091 {
1092  int i;
1093 
1094  i = le16_to_cpu(el->l_next_free_rec) - 1;
1095 
1096  return le32_to_cpu(el->l_recs[i].e_cpos) +
1097  ocfs2_rec_clusters(el, &el->l_recs[i]);
1098 }
1099 
1100 /*
1101  * Change range of the branches in the right most path according to the leaf
1102  * extent block's rightmost record.
1103  */
1104 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1105  struct ocfs2_extent_tree *et)
1106 {
1107  int status;
1108  struct ocfs2_path *path = NULL;
1109  struct ocfs2_extent_list *el;
1110  struct ocfs2_extent_rec *rec;
1111 
1112  path = ocfs2_new_path_from_et(et);
1113  if (!path) {
1114  status = -ENOMEM;
1115  return status;
1116  }
1117 
1118  status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1119  if (status < 0) {
1120  mlog_errno(status);
1121  goto out;
1122  }
1123 
1124  status = ocfs2_extend_trans(handle, path_num_items(path));
1125  if (status < 0) {
1126  mlog_errno(status);
1127  goto out;
1128  }
1129 
1130  status = ocfs2_journal_access_path(et->et_ci, handle, path);
1131  if (status < 0) {
1132  mlog_errno(status);
1133  goto out;
1134  }
1135 
1136  el = path_leaf_el(path);
1137  rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1138 
1139  ocfs2_adjust_rightmost_records(handle, et, path, rec);
1140 
1141 out:
1142  ocfs2_free_path(path);
1143  return status;
1144 }
1145 
1146 /*
1147  * Add an entire tree branch to our inode. eb_bh is the extent block
1148  * to start at, if we don't want to start the branch at the root
1149  * structure.
1150  *
1151  * last_eb_bh is required as we have to update it's next_leaf pointer
1152  * for the new last extent block.
1153  *
1154  * the new branch will be 'empty' in the sense that every block will
1155  * contain a single record with cluster count == 0.
1156  */
1157 static int ocfs2_add_branch(handle_t *handle,
1158  struct ocfs2_extent_tree *et,
1159  struct buffer_head *eb_bh,
1160  struct buffer_head **last_eb_bh,
1161  struct ocfs2_alloc_context *meta_ac)
1162 {
1163  int status, new_blocks, i;
1164  u64 next_blkno, new_last_eb_blk;
1165  struct buffer_head *bh;
1166  struct buffer_head **new_eb_bhs = NULL;
1167  struct ocfs2_extent_block *eb;
1168  struct ocfs2_extent_list *eb_el;
1169  struct ocfs2_extent_list *el;
1170  u32 new_cpos, root_end;
1171 
1172  BUG_ON(!last_eb_bh || !*last_eb_bh);
1173 
1174  if (eb_bh) {
1175  eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1176  el = &eb->h_list;
1177  } else
1178  el = et->et_root_el;
1179 
1180  /* we never add a branch to a leaf. */
1181  BUG_ON(!el->l_tree_depth);
1182 
1183  new_blocks = le16_to_cpu(el->l_tree_depth);
1184 
1185  eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1186  new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1187  root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1188 
1189  /*
1190  * If there is a gap before the root end and the real end
1191  * of the righmost leaf block, we need to remove the gap
1192  * between new_cpos and root_end first so that the tree
1193  * is consistent after we add a new branch(it will start
1194  * from new_cpos).
1195  */
1196  if (root_end > new_cpos) {
1197  trace_ocfs2_adjust_rightmost_branch(
1198  (unsigned long long)
1200  root_end, new_cpos);
1201 
1202  status = ocfs2_adjust_rightmost_branch(handle, et);
1203  if (status) {
1204  mlog_errno(status);
1205  goto bail;
1206  }
1207  }
1208 
1209  /* allocate the number of new eb blocks we need */
1210  new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1211  GFP_KERNEL);
1212  if (!new_eb_bhs) {
1213  status = -ENOMEM;
1214  mlog_errno(status);
1215  goto bail;
1216  }
1217 
1218  status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1219  meta_ac, new_eb_bhs);
1220  if (status < 0) {
1221  mlog_errno(status);
1222  goto bail;
1223  }
1224 
1225  /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1226  * linked with the rest of the tree.
1227  * conversly, new_eb_bhs[0] is the new bottommost leaf.
1228  *
1229  * when we leave the loop, new_last_eb_blk will point to the
1230  * newest leaf, and next_blkno will point to the topmost extent
1231  * block. */
1232  next_blkno = new_last_eb_blk = 0;
1233  for(i = 0; i < new_blocks; i++) {
1234  bh = new_eb_bhs[i];
1235  eb = (struct ocfs2_extent_block *) bh->b_data;
1236  /* ocfs2_create_new_meta_bhs() should create it right! */
1238  eb_el = &eb->h_list;
1239 
1240  status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1242  if (status < 0) {
1243  mlog_errno(status);
1244  goto bail;
1245  }
1246 
1247  eb->h_next_leaf_blk = 0;
1248  eb_el->l_tree_depth = cpu_to_le16(i);
1249  eb_el->l_next_free_rec = cpu_to_le16(1);
1250  /*
1251  * This actually counts as an empty extent as
1252  * c_clusters == 0
1253  */
1254  eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1255  eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1256  /*
1257  * eb_el isn't always an interior node, but even leaf
1258  * nodes want a zero'd flags and reserved field so
1259  * this gets the whole 32 bits regardless of use.
1260  */
1261  eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1262  if (!eb_el->l_tree_depth)
1263  new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1264 
1265  ocfs2_journal_dirty(handle, bh);
1266  next_blkno = le64_to_cpu(eb->h_blkno);
1267  }
1268 
1269  /* This is a bit hairy. We want to update up to three blocks
1270  * here without leaving any of them in an inconsistent state
1271  * in case of error. We don't have to worry about
1272  * journal_dirty erroring as it won't unless we've aborted the
1273  * handle (in which case we would never be here) so reserving
1274  * the write with journal_access is all we need to do. */
1275  status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1277  if (status < 0) {
1278  mlog_errno(status);
1279  goto bail;
1280  }
1281  status = ocfs2_et_root_journal_access(handle, et,
1283  if (status < 0) {
1284  mlog_errno(status);
1285  goto bail;
1286  }
1287  if (eb_bh) {
1288  status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1290  if (status < 0) {
1291  mlog_errno(status);
1292  goto bail;
1293  }
1294  }
1295 
1296  /* Link the new branch into the rest of the tree (el will
1297  * either be on the root_bh, or the extent block passed in. */
1298  i = le16_to_cpu(el->l_next_free_rec);
1299  el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1300  el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1301  el->l_recs[i].e_int_clusters = 0;
1302  le16_add_cpu(&el->l_next_free_rec, 1);
1303 
1304  /* fe needs a new last extent block pointer, as does the
1305  * next_leaf on the previously last-extent-block. */
1306  ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1307 
1308  eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1309  eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1310 
1311  ocfs2_journal_dirty(handle, *last_eb_bh);
1312  ocfs2_journal_dirty(handle, et->et_root_bh);
1313  if (eb_bh)
1314  ocfs2_journal_dirty(handle, eb_bh);
1315 
1316  /*
1317  * Some callers want to track the rightmost leaf so pass it
1318  * back here.
1319  */
1320  brelse(*last_eb_bh);
1321  get_bh(new_eb_bhs[0]);
1322  *last_eb_bh = new_eb_bhs[0];
1323 
1324  status = 0;
1325 bail:
1326  if (new_eb_bhs) {
1327  for (i = 0; i < new_blocks; i++)
1328  brelse(new_eb_bhs[i]);
1329  kfree(new_eb_bhs);
1330  }
1331 
1332  return status;
1333 }
1334 
1335 /*
1336  * adds another level to the allocation tree.
1337  * returns back the new extent block so you can add a branch to it
1338  * after this call.
1339  */
1340 static int ocfs2_shift_tree_depth(handle_t *handle,
1341  struct ocfs2_extent_tree *et,
1342  struct ocfs2_alloc_context *meta_ac,
1343  struct buffer_head **ret_new_eb_bh)
1344 {
1345  int status, i;
1346  u32 new_clusters;
1347  struct buffer_head *new_eb_bh = NULL;
1348  struct ocfs2_extent_block *eb;
1349  struct ocfs2_extent_list *root_el;
1350  struct ocfs2_extent_list *eb_el;
1351 
1352  status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1353  &new_eb_bh);
1354  if (status < 0) {
1355  mlog_errno(status);
1356  goto bail;
1357  }
1358 
1359  eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1360  /* ocfs2_create_new_meta_bhs() should create it right! */
1362 
1363  eb_el = &eb->h_list;
1364  root_el = et->et_root_el;
1365 
1366  status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1368  if (status < 0) {
1369  mlog_errno(status);
1370  goto bail;
1371  }
1372 
1373  /* copy the root extent list data into the new extent block */
1374  eb_el->l_tree_depth = root_el->l_tree_depth;
1375  eb_el->l_next_free_rec = root_el->l_next_free_rec;
1376  for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1377  eb_el->l_recs[i] = root_el->l_recs[i];
1378 
1379  ocfs2_journal_dirty(handle, new_eb_bh);
1380 
1381  status = ocfs2_et_root_journal_access(handle, et,
1383  if (status < 0) {
1384  mlog_errno(status);
1385  goto bail;
1386  }
1387 
1388  new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1389 
1390  /* update root_bh now */
1391  le16_add_cpu(&root_el->l_tree_depth, 1);
1392  root_el->l_recs[0].e_cpos = 0;
1393  root_el->l_recs[0].e_blkno = eb->h_blkno;
1394  root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1395  for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1396  memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1397  root_el->l_next_free_rec = cpu_to_le16(1);
1398 
1399  /* If this is our 1st tree depth shift, then last_eb_blk
1400  * becomes the allocated extent block */
1401  if (root_el->l_tree_depth == cpu_to_le16(1))
1402  ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1403 
1404  ocfs2_journal_dirty(handle, et->et_root_bh);
1405 
1406  *ret_new_eb_bh = new_eb_bh;
1407  new_eb_bh = NULL;
1408  status = 0;
1409 bail:
1410  brelse(new_eb_bh);
1411 
1412  return status;
1413 }
1414 
1415 /*
1416  * Should only be called when there is no space left in any of the
1417  * leaf nodes. What we want to do is find the lowest tree depth
1418  * non-leaf extent block with room for new records. There are three
1419  * valid results of this search:
1420  *
1421  * 1) a lowest extent block is found, then we pass it back in
1422  * *lowest_eb_bh and return '0'
1423  *
1424  * 2) the search fails to find anything, but the root_el has room. We
1425  * pass NULL back in *lowest_eb_bh, but still return '0'
1426  *
1427  * 3) the search fails to find anything AND the root_el is full, in
1428  * which case we return > 0
1429  *
1430  * return status < 0 indicates an error.
1431  */
1432 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1433  struct buffer_head **target_bh)
1434 {
1435  int status = 0, i;
1436  u64 blkno;
1437  struct ocfs2_extent_block *eb;
1438  struct ocfs2_extent_list *el;
1439  struct buffer_head *bh = NULL;
1440  struct buffer_head *lowest_bh = NULL;
1441 
1442  *target_bh = NULL;
1443 
1444  el = et->et_root_el;
1445 
1446  while(le16_to_cpu(el->l_tree_depth) > 1) {
1447  if (le16_to_cpu(el->l_next_free_rec) == 0) {
1449  "Owner %llu has empty "
1450  "extent list (next_free_rec == 0)",
1451  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1452  status = -EIO;
1453  goto bail;
1454  }
1455  i = le16_to_cpu(el->l_next_free_rec) - 1;
1456  blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1457  if (!blkno) {
1459  "Owner %llu has extent "
1460  "list where extent # %d has no physical "
1461  "block start",
1462  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1463  status = -EIO;
1464  goto bail;
1465  }
1466 
1467  brelse(bh);
1468  bh = NULL;
1469 
1470  status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1471  if (status < 0) {
1472  mlog_errno(status);
1473  goto bail;
1474  }
1475 
1476  eb = (struct ocfs2_extent_block *) bh->b_data;
1477  el = &eb->h_list;
1478 
1480  le16_to_cpu(el->l_count)) {
1481  brelse(lowest_bh);
1482  lowest_bh = bh;
1483  get_bh(lowest_bh);
1484  }
1485  }
1486 
1487  /* If we didn't find one and the fe doesn't have any room,
1488  * then return '1' */
1489  el = et->et_root_el;
1490  if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1491  status = 1;
1492 
1493  *target_bh = lowest_bh;
1494 bail:
1495  brelse(bh);
1496 
1497  return status;
1498 }
1499 
1500 /*
1501  * Grow a b-tree so that it has more records.
1502  *
1503  * We might shift the tree depth in which case existing paths should
1504  * be considered invalid.
1505  *
1506  * Tree depth after the grow is returned via *final_depth.
1507  *
1508  * *last_eb_bh will be updated by ocfs2_add_branch().
1509  */
1510 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1511  int *final_depth, struct buffer_head **last_eb_bh,
1512  struct ocfs2_alloc_context *meta_ac)
1513 {
1514  int ret, shift;
1515  struct ocfs2_extent_list *el = et->et_root_el;
1516  int depth = le16_to_cpu(el->l_tree_depth);
1517  struct buffer_head *bh = NULL;
1518 
1519  BUG_ON(meta_ac == NULL);
1520 
1521  shift = ocfs2_find_branch_target(et, &bh);
1522  if (shift < 0) {
1523  ret = shift;
1524  mlog_errno(ret);
1525  goto out;
1526  }
1527 
1528  /* We traveled all the way to the bottom of the allocation tree
1529  * and didn't find room for any more extents - we need to add
1530  * another tree level */
1531  if (shift) {
1532  BUG_ON(bh);
1533  trace_ocfs2_grow_tree(
1534  (unsigned long long)
1536  depth);
1537 
1538  /* ocfs2_shift_tree_depth will return us a buffer with
1539  * the new extent block (so we can pass that to
1540  * ocfs2_add_branch). */
1541  ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1542  if (ret < 0) {
1543  mlog_errno(ret);
1544  goto out;
1545  }
1546  depth++;
1547  if (depth == 1) {
1548  /*
1549  * Special case: we have room now if we shifted from
1550  * tree_depth 0, so no more work needs to be done.
1551  *
1552  * We won't be calling add_branch, so pass
1553  * back *last_eb_bh as the new leaf. At depth
1554  * zero, it should always be null so there's
1555  * no reason to brelse.
1556  */
1557  BUG_ON(*last_eb_bh);
1558  get_bh(bh);
1559  *last_eb_bh = bh;
1560  goto out;
1561  }
1562  }
1563 
1564  /* call ocfs2_add_branch to add the final part of the tree with
1565  * the new data. */
1566  ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1567  meta_ac);
1568  if (ret < 0) {
1569  mlog_errno(ret);
1570  goto out;
1571  }
1572 
1573 out:
1574  if (final_depth)
1575  *final_depth = depth;
1576  brelse(bh);
1577  return ret;
1578 }
1579 
1580 /*
1581  * This function will discard the rightmost extent record.
1582  */
1583 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1584 {
1585  int next_free = le16_to_cpu(el->l_next_free_rec);
1586  int count = le16_to_cpu(el->l_count);
1587  unsigned int num_bytes;
1588 
1589  BUG_ON(!next_free);
1590  /* This will cause us to go off the end of our extent list. */
1591  BUG_ON(next_free >= count);
1592 
1593  num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1594 
1595  memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1596 }
1597 
1598 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1599  struct ocfs2_extent_rec *insert_rec)
1600 {
1601  int i, insert_index, next_free, has_empty, num_bytes;
1602  u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1603  struct ocfs2_extent_rec *rec;
1604 
1605  next_free = le16_to_cpu(el->l_next_free_rec);
1606  has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1607 
1608  BUG_ON(!next_free);
1609 
1610  /* The tree code before us didn't allow enough room in the leaf. */
1611  BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1612 
1613  /*
1614  * The easiest way to approach this is to just remove the
1615  * empty extent and temporarily decrement next_free.
1616  */
1617  if (has_empty) {
1618  /*
1619  * If next_free was 1 (only an empty extent), this
1620  * loop won't execute, which is fine. We still want
1621  * the decrement above to happen.
1622  */
1623  for(i = 0; i < (next_free - 1); i++)
1624  el->l_recs[i] = el->l_recs[i+1];
1625 
1626  next_free--;
1627  }
1628 
1629  /*
1630  * Figure out what the new record index should be.
1631  */
1632  for(i = 0; i < next_free; i++) {
1633  rec = &el->l_recs[i];
1634 
1635  if (insert_cpos < le32_to_cpu(rec->e_cpos))
1636  break;
1637  }
1638  insert_index = i;
1639 
1640  trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1641  has_empty, next_free,
1642  le16_to_cpu(el->l_count));
1643 
1644  BUG_ON(insert_index < 0);
1645  BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1646  BUG_ON(insert_index > next_free);
1647 
1648  /*
1649  * No need to memmove if we're just adding to the tail.
1650  */
1651  if (insert_index != next_free) {
1652  BUG_ON(next_free >= le16_to_cpu(el->l_count));
1653 
1654  num_bytes = next_free - insert_index;
1655  num_bytes *= sizeof(struct ocfs2_extent_rec);
1656  memmove(&el->l_recs[insert_index + 1],
1657  &el->l_recs[insert_index],
1658  num_bytes);
1659  }
1660 
1661  /*
1662  * Either we had an empty extent, and need to re-increment or
1663  * there was no empty extent on a non full rightmost leaf node,
1664  * in which case we still need to increment.
1665  */
1666  next_free++;
1667  el->l_next_free_rec = cpu_to_le16(next_free);
1668  /*
1669  * Make sure none of the math above just messed up our tree.
1670  */
1672 
1673  el->l_recs[insert_index] = *insert_rec;
1674 
1675 }
1676 
1677 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1678 {
1679  int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1680 
1681  BUG_ON(num_recs == 0);
1682 
1683  if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1684  num_recs--;
1685  size = num_recs * sizeof(struct ocfs2_extent_rec);
1686  memmove(&el->l_recs[0], &el->l_recs[1], size);
1687  memset(&el->l_recs[num_recs], 0,
1688  sizeof(struct ocfs2_extent_rec));
1689  el->l_next_free_rec = cpu_to_le16(num_recs);
1690  }
1691 }
1692 
1693 /*
1694  * Create an empty extent record .
1695  *
1696  * l_next_free_rec may be updated.
1697  *
1698  * If an empty extent already exists do nothing.
1699  */
1700 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1701 {
1702  int next_free = le16_to_cpu(el->l_next_free_rec);
1703 
1704  BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1705 
1706  if (next_free == 0)
1707  goto set_and_inc;
1708 
1709  if (ocfs2_is_empty_extent(&el->l_recs[0]))
1710  return;
1711 
1713  "Asked to create an empty extent in a full list:\n"
1714  "count = %u, tree depth = %u",
1715  le16_to_cpu(el->l_count),
1716  le16_to_cpu(el->l_tree_depth));
1717 
1718  ocfs2_shift_records_right(el);
1719 
1720 set_and_inc:
1721  le16_add_cpu(&el->l_next_free_rec, 1);
1722  memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1723 }
1724 
1725 /*
1726  * For a rotation which involves two leaf nodes, the "root node" is
1727  * the lowest level tree node which contains a path to both leafs. This
1728  * resulting set of information can be used to form a complete "subtree"
1729  *
1730  * This function is passed two full paths from the dinode down to a
1731  * pair of adjacent leaves. It's task is to figure out which path
1732  * index contains the subtree root - this can be the root index itself
1733  * in a worst-case rotation.
1734  *
1735  * The array index of the subtree root is passed back.
1736  */
1738  struct ocfs2_path *left,
1739  struct ocfs2_path *right)
1740 {
1741  int i = 0;
1742 
1743  /*
1744  * Check that the caller passed in two paths from the same tree.
1745  */
1746  BUG_ON(path_root_bh(left) != path_root_bh(right));
1747 
1748  do {
1749  i++;
1750 
1751  /*
1752  * The caller didn't pass two adjacent paths.
1753  */
1754  mlog_bug_on_msg(i > left->p_tree_depth,
1755  "Owner %llu, left depth %u, right depth %u\n"
1756  "left leaf blk %llu, right leaf blk %llu\n",
1757  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1758  left->p_tree_depth, right->p_tree_depth,
1759  (unsigned long long)path_leaf_bh(left)->b_blocknr,
1760  (unsigned long long)path_leaf_bh(right)->b_blocknr);
1761  } while (left->p_node[i].bh->b_blocknr ==
1762  right->p_node[i].bh->b_blocknr);
1763 
1764  return i - 1;
1765 }
1766 
1767 typedef void (path_insert_t)(void *, struct buffer_head *);
1768 
1769 /*
1770  * Traverse a btree path in search of cpos, starting at root_el.
1771  *
1772  * This code can be called with a cpos larger than the tree, in which
1773  * case it will return the rightmost path.
1774  */
1775 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1776  struct ocfs2_extent_list *root_el, u32 cpos,
1777  path_insert_t *func, void *data)
1778 {
1779  int i, ret = 0;
1780  u32 range;
1781  u64 blkno;
1782  struct buffer_head *bh = NULL;
1783  struct ocfs2_extent_block *eb;
1784  struct ocfs2_extent_list *el;
1785  struct ocfs2_extent_rec *rec;
1786 
1787  el = root_el;
1788  while (el->l_tree_depth) {
1789  if (le16_to_cpu(el->l_next_free_rec) == 0) {
1791  "Owner %llu has empty extent list at "
1792  "depth %u\n",
1793  (unsigned long long)ocfs2_metadata_cache_owner(ci),
1794  le16_to_cpu(el->l_tree_depth));
1795  ret = -EROFS;
1796  goto out;
1797 
1798  }
1799 
1800  for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1801  rec = &el->l_recs[i];
1802 
1803  /*
1804  * In the case that cpos is off the allocation
1805  * tree, this should just wind up returning the
1806  * rightmost record.
1807  */
1808  range = le32_to_cpu(rec->e_cpos) +
1809  ocfs2_rec_clusters(el, rec);
1810  if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1811  break;
1812  }
1813 
1814  blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1815  if (blkno == 0) {
1817  "Owner %llu has bad blkno in extent list "
1818  "at depth %u (index %d)\n",
1819  (unsigned long long)ocfs2_metadata_cache_owner(ci),
1820  le16_to_cpu(el->l_tree_depth), i);
1821  ret = -EROFS;
1822  goto out;
1823  }
1824 
1825  brelse(bh);
1826  bh = NULL;
1827  ret = ocfs2_read_extent_block(ci, blkno, &bh);
1828  if (ret) {
1829  mlog_errno(ret);
1830  goto out;
1831  }
1832 
1833  eb = (struct ocfs2_extent_block *) bh->b_data;
1834  el = &eb->h_list;
1835 
1837  le16_to_cpu(el->l_count)) {
1839  "Owner %llu has bad count in extent list "
1840  "at block %llu (next free=%u, count=%u)\n",
1841  (unsigned long long)ocfs2_metadata_cache_owner(ci),
1842  (unsigned long long)bh->b_blocknr,
1844  le16_to_cpu(el->l_count));
1845  ret = -EROFS;
1846  goto out;
1847  }
1848 
1849  if (func)
1850  func(data, bh);
1851  }
1852 
1853 out:
1854  /*
1855  * Catch any trailing bh that the loop didn't handle.
1856  */
1857  brelse(bh);
1858 
1859  return ret;
1860 }
1861 
1862 /*
1863  * Given an initialized path (that is, it has a valid root extent
1864  * list), this function will traverse the btree in search of the path
1865  * which would contain cpos.
1866  *
1867  * The path traveled is recorded in the path structure.
1868  *
1869  * Note that this will not do any comparisons on leaf node extent
1870  * records, so it will work fine in the case that we just added a tree
1871  * branch.
1872  */
1874  int index;
1875  struct ocfs2_path *path;
1876 };
1877 static void find_path_ins(void *data, struct buffer_head *bh)
1878 {
1879  struct find_path_data *fp = data;
1880 
1881  get_bh(bh);
1882  ocfs2_path_insert_eb(fp->path, fp->index, bh);
1883  fp->index++;
1884 }
1886  struct ocfs2_path *path, u32 cpos)
1887 {
1888  struct find_path_data data;
1889 
1890  data.index = 1;
1891  data.path = path;
1892  return __ocfs2_find_path(ci, path_root_el(path), cpos,
1893  find_path_ins, &data);
1894 }
1895 
1896 static void find_leaf_ins(void *data, struct buffer_head *bh)
1897 {
1898  struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1899  struct ocfs2_extent_list *el = &eb->h_list;
1900  struct buffer_head **ret = data;
1901 
1902  /* We want to retain only the leaf block. */
1903  if (le16_to_cpu(el->l_tree_depth) == 0) {
1904  get_bh(bh);
1905  *ret = bh;
1906  }
1907 }
1908 /*
1909  * Find the leaf block in the tree which would contain cpos. No
1910  * checking of the actual leaf is done.
1911  *
1912  * Some paths want to call this instead of allocating a path structure
1913  * and calling ocfs2_find_path().
1914  *
1915  * This function doesn't handle non btree extent lists.
1916  */
1918  struct ocfs2_extent_list *root_el, u32 cpos,
1919  struct buffer_head **leaf_bh)
1920 {
1921  int ret;
1922  struct buffer_head *bh = NULL;
1923 
1924  ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1925  if (ret) {
1926  mlog_errno(ret);
1927  goto out;
1928  }
1929 
1930  *leaf_bh = bh;
1931 out:
1932  return ret;
1933 }
1934 
1935 /*
1936  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1937  *
1938  * Basically, we've moved stuff around at the bottom of the tree and
1939  * we need to fix up the extent records above the changes to reflect
1940  * the new changes.
1941  *
1942  * left_rec: the record on the left.
1943  * left_child_el: is the child list pointed to by left_rec
1944  * right_rec: the record to the right of left_rec
1945  * right_child_el: is the child list pointed to by right_rec
1946  *
1947  * By definition, this only works on interior nodes.
1948  */
1949 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1950  struct ocfs2_extent_list *left_child_el,
1951  struct ocfs2_extent_rec *right_rec,
1952  struct ocfs2_extent_list *right_child_el)
1953 {
1954  u32 left_clusters, right_end;
1955 
1956  /*
1957  * Interior nodes never have holes. Their cpos is the cpos of
1958  * the leftmost record in their child list. Their cluster
1959  * count covers the full theoretical range of their child list
1960  * - the range between their cpos and the cpos of the record
1961  * immediately to their right.
1962  */
1963  left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1964  if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1965  BUG_ON(right_child_el->l_tree_depth);
1966  BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1967  left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1968  }
1969  left_clusters -= le32_to_cpu(left_rec->e_cpos);
1970  left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1971 
1972  /*
1973  * Calculate the rightmost cluster count boundary before
1974  * moving cpos - we will need to adjust clusters after
1975  * updating e_cpos to keep the same highest cluster count.
1976  */
1977  right_end = le32_to_cpu(right_rec->e_cpos);
1978  right_end += le32_to_cpu(right_rec->e_int_clusters);
1979 
1980  right_rec->e_cpos = left_rec->e_cpos;
1981  le32_add_cpu(&right_rec->e_cpos, left_clusters);
1982 
1983  right_end -= le32_to_cpu(right_rec->e_cpos);
1984  right_rec->e_int_clusters = cpu_to_le32(right_end);
1985 }
1986 
1987 /*
1988  * Adjust the adjacent root node records involved in a
1989  * rotation. left_el_blkno is passed in as a key so that we can easily
1990  * find it's index in the root list.
1991  */
1992 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1993  struct ocfs2_extent_list *left_el,
1994  struct ocfs2_extent_list *right_el,
1995  u64 left_el_blkno)
1996 {
1997  int i;
1998 
1999  BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2000  le16_to_cpu(left_el->l_tree_depth));
2001 
2002  for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2003  if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2004  break;
2005  }
2006 
2007  /*
2008  * The path walking code should have never returned a root and
2009  * two paths which are not adjacent.
2010  */
2011  BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2012 
2013  ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2014  &root_el->l_recs[i + 1], right_el);
2015 }
2016 
2017 /*
2018  * We've changed a leaf block (in right_path) and need to reflect that
2019  * change back up the subtree.
2020  *
2021  * This happens in multiple places:
2022  * - When we've moved an extent record from the left path leaf to the right
2023  * path leaf to make room for an empty extent in the left path leaf.
2024  * - When our insert into the right path leaf is at the leftmost edge
2025  * and requires an update of the path immediately to it's left. This
2026  * can occur at the end of some types of rotation and appending inserts.
2027  * - When we've adjusted the last extent record in the left path leaf and the
2028  * 1st extent record in the right path leaf during cross extent block merge.
2029  */
2030 static void ocfs2_complete_edge_insert(handle_t *handle,
2031  struct ocfs2_path *left_path,
2032  struct ocfs2_path *right_path,
2033  int subtree_index)
2034 {
2035  int i, idx;
2036  struct ocfs2_extent_list *el, *left_el, *right_el;
2037  struct ocfs2_extent_rec *left_rec, *right_rec;
2038  struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2039 
2040  /*
2041  * Update the counts and position values within all the
2042  * interior nodes to reflect the leaf rotation we just did.
2043  *
2044  * The root node is handled below the loop.
2045  *
2046  * We begin the loop with right_el and left_el pointing to the
2047  * leaf lists and work our way up.
2048  *
2049  * NOTE: within this loop, left_el and right_el always refer
2050  * to the *child* lists.
2051  */
2052  left_el = path_leaf_el(left_path);
2053  right_el = path_leaf_el(right_path);
2054  for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2055  trace_ocfs2_complete_edge_insert(i);
2056 
2057  /*
2058  * One nice property of knowing that all of these
2059  * nodes are below the root is that we only deal with
2060  * the leftmost right node record and the rightmost
2061  * left node record.
2062  */
2063  el = left_path->p_node[i].el;
2064  idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2065  left_rec = &el->l_recs[idx];
2066 
2067  el = right_path->p_node[i].el;
2068  right_rec = &el->l_recs[0];
2069 
2070  ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2071  right_el);
2072 
2073  ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2074  ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2075 
2076  /*
2077  * Setup our list pointers now so that the current
2078  * parents become children in the next iteration.
2079  */
2080  left_el = left_path->p_node[i].el;
2081  right_el = right_path->p_node[i].el;
2082  }
2083 
2084  /*
2085  * At the root node, adjust the two adjacent records which
2086  * begin our path to the leaves.
2087  */
2088 
2089  el = left_path->p_node[subtree_index].el;
2090  left_el = left_path->p_node[subtree_index + 1].el;
2091  right_el = right_path->p_node[subtree_index + 1].el;
2092 
2093  ocfs2_adjust_root_records(el, left_el, right_el,
2094  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2095 
2096  root_bh = left_path->p_node[subtree_index].bh;
2097 
2098  ocfs2_journal_dirty(handle, root_bh);
2099 }
2100 
2101 static int ocfs2_rotate_subtree_right(handle_t *handle,
2102  struct ocfs2_extent_tree *et,
2103  struct ocfs2_path *left_path,
2104  struct ocfs2_path *right_path,
2105  int subtree_index)
2106 {
2107  int ret, i;
2108  struct buffer_head *right_leaf_bh;
2109  struct buffer_head *left_leaf_bh = NULL;
2110  struct buffer_head *root_bh;
2111  struct ocfs2_extent_list *right_el, *left_el;
2112  struct ocfs2_extent_rec move_rec;
2113 
2114  left_leaf_bh = path_leaf_bh(left_path);
2115  left_el = path_leaf_el(left_path);
2116 
2117  if (left_el->l_next_free_rec != left_el->l_count) {
2119  "Inode %llu has non-full interior leaf node %llu"
2120  "(next free = %u)",
2121  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2122  (unsigned long long)left_leaf_bh->b_blocknr,
2123  le16_to_cpu(left_el->l_next_free_rec));
2124  return -EROFS;
2125  }
2126 
2127  /*
2128  * This extent block may already have an empty record, so we
2129  * return early if so.
2130  */
2131  if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2132  return 0;
2133 
2134  root_bh = left_path->p_node[subtree_index].bh;
2135  BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2136 
2137  ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2138  subtree_index);
2139  if (ret) {
2140  mlog_errno(ret);
2141  goto out;
2142  }
2143 
2144  for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2145  ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2146  right_path, i);
2147  if (ret) {
2148  mlog_errno(ret);
2149  goto out;
2150  }
2151 
2152  ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2153  left_path, i);
2154  if (ret) {
2155  mlog_errno(ret);
2156  goto out;
2157  }
2158  }
2159 
2160  right_leaf_bh = path_leaf_bh(right_path);
2161  right_el = path_leaf_el(right_path);
2162 
2163  /* This is a code error, not a disk corruption. */
2164  mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2165  "because rightmost leaf block %llu is empty\n",
2166  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2167  (unsigned long long)right_leaf_bh->b_blocknr);
2168 
2169  ocfs2_create_empty_extent(right_el);
2170 
2171  ocfs2_journal_dirty(handle, right_leaf_bh);
2172 
2173  /* Do the copy now. */
2174  i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2175  move_rec = left_el->l_recs[i];
2176  right_el->l_recs[0] = move_rec;
2177 
2178  /*
2179  * Clear out the record we just copied and shift everything
2180  * over, leaving an empty extent in the left leaf.
2181  *
2182  * We temporarily subtract from next_free_rec so that the
2183  * shift will lose the tail record (which is now defunct).
2184  */
2185  le16_add_cpu(&left_el->l_next_free_rec, -1);
2186  ocfs2_shift_records_right(left_el);
2187  memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2188  le16_add_cpu(&left_el->l_next_free_rec, 1);
2189 
2190  ocfs2_journal_dirty(handle, left_leaf_bh);
2191 
2192  ocfs2_complete_edge_insert(handle, left_path, right_path,
2193  subtree_index);
2194 
2195 out:
2196  return ret;
2197 }
2198 
2199 /*
2200  * Given a full path, determine what cpos value would return us a path
2201  * containing the leaf immediately to the left of the current one.
2202  *
2203  * Will return zero if the path passed in is already the leftmost path.
2204  */
2206  struct ocfs2_path *path, u32 *cpos)
2207 {
2208  int i, j, ret = 0;
2209  u64 blkno;
2210  struct ocfs2_extent_list *el;
2211 
2212  BUG_ON(path->p_tree_depth == 0);
2213 
2214  *cpos = 0;
2215 
2216  blkno = path_leaf_bh(path)->b_blocknr;
2217 
2218  /* Start at the tree node just above the leaf and work our way up. */
2219  i = path->p_tree_depth - 1;
2220  while (i >= 0) {
2221  el = path->p_node[i].el;
2222 
2223  /*
2224  * Find the extent record just before the one in our
2225  * path.
2226  */
2227  for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2228  if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2229  if (j == 0) {
2230  if (i == 0) {
2231  /*
2232  * We've determined that the
2233  * path specified is already
2234  * the leftmost one - return a
2235  * cpos of zero.
2236  */
2237  goto out;
2238  }
2239  /*
2240  * The leftmost record points to our
2241  * leaf - we need to travel up the
2242  * tree one level.
2243  */
2244  goto next_node;
2245  }
2246 
2247  *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2248  *cpos = *cpos + ocfs2_rec_clusters(el,
2249  &el->l_recs[j - 1]);
2250  *cpos = *cpos - 1;
2251  goto out;
2252  }
2253  }
2254 
2255  /*
2256  * If we got here, we never found a valid node where
2257  * the tree indicated one should be.
2258  */
2259  ocfs2_error(sb,
2260  "Invalid extent tree at extent block %llu\n",
2261  (unsigned long long)blkno);
2262  ret = -EROFS;
2263  goto out;
2264 
2265 next_node:
2266  blkno = path->p_node[i].bh->b_blocknr;
2267  i--;
2268  }
2269 
2270 out:
2271  return ret;
2272 }
2273 
2274 /*
2275  * Extend the transaction by enough credits to complete the rotation,
2276  * and still leave at least the original number of credits allocated
2277  * to this transaction.
2278  */
2279 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2280  int op_credits,
2281  struct ocfs2_path *path)
2282 {
2283  int ret = 0;
2284  int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2285 
2286  if (handle->h_buffer_credits < credits)
2287  ret = ocfs2_extend_trans(handle,
2288  credits - handle->h_buffer_credits);
2289 
2290  return ret;
2291 }
2292 
2293 /*
2294  * Trap the case where we're inserting into the theoretical range past
2295  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2296  * whose cpos is less than ours into the right leaf.
2297  *
2298  * It's only necessary to look at the rightmost record of the left
2299  * leaf because the logic that calls us should ensure that the
2300  * theoretical ranges in the path components above the leaves are
2301  * correct.
2302  */
2303 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2304  u32 insert_cpos)
2305 {
2306  struct ocfs2_extent_list *left_el;
2307  struct ocfs2_extent_rec *rec;
2308  int next_free;
2309 
2310  left_el = path_leaf_el(left_path);
2311  next_free = le16_to_cpu(left_el->l_next_free_rec);
2312  rec = &left_el->l_recs[next_free - 1];
2313 
2314  if (insert_cpos > le32_to_cpu(rec->e_cpos))
2315  return 1;
2316  return 0;
2317 }
2318 
2319 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2320 {
2321  int next_free = le16_to_cpu(el->l_next_free_rec);
2322  unsigned int range;
2323  struct ocfs2_extent_rec *rec;
2324 
2325  if (next_free == 0)
2326  return 0;
2327 
2328  rec = &el->l_recs[0];
2329  if (ocfs2_is_empty_extent(rec)) {
2330  /* Empty list. */
2331  if (next_free == 1)
2332  return 0;
2333  rec = &el->l_recs[1];
2334  }
2335 
2336  range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2337  if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2338  return 1;
2339  return 0;
2340 }
2341 
2342 /*
2343  * Rotate all the records in a btree right one record, starting at insert_cpos.
2344  *
2345  * The path to the rightmost leaf should be passed in.
2346  *
2347  * The array is assumed to be large enough to hold an entire path (tree depth).
2348  *
2349  * Upon successful return from this function:
2350  *
2351  * - The 'right_path' array will contain a path to the leaf block
2352  * whose range contains e_cpos.
2353  * - That leaf block will have a single empty extent in list index 0.
2354  * - In the case that the rotation requires a post-insert update,
2355  * *ret_left_path will contain a valid path which can be passed to
2356  * ocfs2_insert_path().
2357  */
2358 static int ocfs2_rotate_tree_right(handle_t *handle,
2359  struct ocfs2_extent_tree *et,
2360  enum ocfs2_split_type split,
2361  u32 insert_cpos,
2362  struct ocfs2_path *right_path,
2363  struct ocfs2_path **ret_left_path)
2364 {
2365  int ret, start, orig_credits = handle->h_buffer_credits;
2366  u32 cpos;
2367  struct ocfs2_path *left_path = NULL;
2369 
2370  *ret_left_path = NULL;
2371 
2372  left_path = ocfs2_new_path_from_path(right_path);
2373  if (!left_path) {
2374  ret = -ENOMEM;
2375  mlog_errno(ret);
2376  goto out;
2377  }
2378 
2379  ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2380  if (ret) {
2381  mlog_errno(ret);
2382  goto out;
2383  }
2384 
2385  trace_ocfs2_rotate_tree_right(
2386  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2387  insert_cpos, cpos);
2388 
2389  /*
2390  * What we want to do here is:
2391  *
2392  * 1) Start with the rightmost path.
2393  *
2394  * 2) Determine a path to the leaf block directly to the left
2395  * of that leaf.
2396  *
2397  * 3) Determine the 'subtree root' - the lowest level tree node
2398  * which contains a path to both leaves.
2399  *
2400  * 4) Rotate the subtree.
2401  *
2402  * 5) Find the next subtree by considering the left path to be
2403  * the new right path.
2404  *
2405  * The check at the top of this while loop also accepts
2406  * insert_cpos == cpos because cpos is only a _theoretical_
2407  * value to get us the left path - insert_cpos might very well
2408  * be filling that hole.
2409  *
2410  * Stop at a cpos of '0' because we either started at the
2411  * leftmost branch (i.e., a tree with one branch and a
2412  * rotation inside of it), or we've gone as far as we can in
2413  * rotating subtrees.
2414  */
2415  while (cpos && insert_cpos <= cpos) {
2416  trace_ocfs2_rotate_tree_right(
2417  (unsigned long long)
2419  insert_cpos, cpos);
2420 
2421  ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2422  if (ret) {
2423  mlog_errno(ret);
2424  goto out;
2425  }
2426 
2427  mlog_bug_on_msg(path_leaf_bh(left_path) ==
2428  path_leaf_bh(right_path),
2429  "Owner %llu: error during insert of %u "
2430  "(left path cpos %u) results in two identical "
2431  "paths ending at %llu\n",
2432  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2433  insert_cpos, cpos,
2434  (unsigned long long)
2435  path_leaf_bh(left_path)->b_blocknr);
2436 
2437  if (split == SPLIT_NONE &&
2438  ocfs2_rotate_requires_path_adjustment(left_path,
2439  insert_cpos)) {
2440 
2441  /*
2442  * We've rotated the tree as much as we
2443  * should. The rest is up to
2444  * ocfs2_insert_path() to complete, after the
2445  * record insertion. We indicate this
2446  * situation by returning the left path.
2447  *
2448  * The reason we don't adjust the records here
2449  * before the record insert is that an error
2450  * later might break the rule where a parent
2451  * record e_cpos will reflect the actual
2452  * e_cpos of the 1st nonempty record of the
2453  * child list.
2454  */
2455  *ret_left_path = left_path;
2456  goto out_ret_path;
2457  }
2458 
2459  start = ocfs2_find_subtree_root(et, left_path, right_path);
2460 
2461  trace_ocfs2_rotate_subtree(start,
2462  (unsigned long long)
2463  right_path->p_node[start].bh->b_blocknr,
2464  right_path->p_tree_depth);
2465 
2466  ret = ocfs2_extend_rotate_transaction(handle, start,
2467  orig_credits, right_path);
2468  if (ret) {
2469  mlog_errno(ret);
2470  goto out;
2471  }
2472 
2473  ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2474  right_path, start);
2475  if (ret) {
2476  mlog_errno(ret);
2477  goto out;
2478  }
2479 
2480  if (split != SPLIT_NONE &&
2481  ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2482  insert_cpos)) {
2483  /*
2484  * A rotate moves the rightmost left leaf
2485  * record over to the leftmost right leaf
2486  * slot. If we're doing an extent split
2487  * instead of a real insert, then we have to
2488  * check that the extent to be split wasn't
2489  * just moved over. If it was, then we can
2490  * exit here, passing left_path back -
2491  * ocfs2_split_extent() is smart enough to
2492  * search both leaves.
2493  */
2494  *ret_left_path = left_path;
2495  goto out_ret_path;
2496  }
2497 
2498  /*
2499  * There is no need to re-read the next right path
2500  * as we know that it'll be our current left
2501  * path. Optimize by copying values instead.
2502  */
2503  ocfs2_mv_path(right_path, left_path);
2504 
2505  ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2506  if (ret) {
2507  mlog_errno(ret);
2508  goto out;
2509  }
2510  }
2511 
2512 out:
2513  ocfs2_free_path(left_path);
2514 
2515 out_ret_path:
2516  return ret;
2517 }
2518 
2519 static int ocfs2_update_edge_lengths(handle_t *handle,
2520  struct ocfs2_extent_tree *et,
2521  int subtree_index, struct ocfs2_path *path)
2522 {
2523  int i, idx, ret;
2524  struct ocfs2_extent_rec *rec;
2525  struct ocfs2_extent_list *el;
2526  struct ocfs2_extent_block *eb;
2527  u32 range;
2528 
2529  /*
2530  * In normal tree rotation process, we will never touch the
2531  * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2532  * doesn't reserve the credits for them either.
2533  *
2534  * But we do have a special case here which will update the rightmost
2535  * records for all the bh in the path.
2536  * So we have to allocate extra credits and access them.
2537  */
2538  ret = ocfs2_extend_trans(handle, subtree_index);
2539  if (ret) {
2540  mlog_errno(ret);
2541  goto out;
2542  }
2543 
2544  ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2545  if (ret) {
2546  mlog_errno(ret);
2547  goto out;
2548  }
2549 
2550  /* Path should always be rightmost. */
2551  eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2552  BUG_ON(eb->h_next_leaf_blk != 0ULL);
2553 
2554  el = &eb->h_list;
2555  BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2556  idx = le16_to_cpu(el->l_next_free_rec) - 1;
2557  rec = &el->l_recs[idx];
2558  range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2559 
2560  for (i = 0; i < path->p_tree_depth; i++) {
2561  el = path->p_node[i].el;
2562  idx = le16_to_cpu(el->l_next_free_rec) - 1;
2563  rec = &el->l_recs[idx];
2564 
2565  rec->e_int_clusters = cpu_to_le32(range);
2566  le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2567 
2568  ocfs2_journal_dirty(handle, path->p_node[i].bh);
2569  }
2570 out:
2571  return ret;
2572 }
2573 
2574 static void ocfs2_unlink_path(handle_t *handle,
2575  struct ocfs2_extent_tree *et,
2576  struct ocfs2_cached_dealloc_ctxt *dealloc,
2577  struct ocfs2_path *path, int unlink_start)
2578 {
2579  int ret, i;
2580  struct ocfs2_extent_block *eb;
2581  struct ocfs2_extent_list *el;
2582  struct buffer_head *bh;
2583 
2584  for(i = unlink_start; i < path_num_items(path); i++) {
2585  bh = path->p_node[i].bh;
2586 
2587  eb = (struct ocfs2_extent_block *)bh->b_data;
2588  /*
2589  * Not all nodes might have had their final count
2590  * decremented by the caller - handle this here.
2591  */
2592  el = &eb->h_list;
2593  if (le16_to_cpu(el->l_next_free_rec) > 1) {
2594  mlog(ML_ERROR,
2595  "Inode %llu, attempted to remove extent block "
2596  "%llu with %u records\n",
2597  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2598  (unsigned long long)le64_to_cpu(eb->h_blkno),
2600 
2601  ocfs2_journal_dirty(handle, bh);
2602  ocfs2_remove_from_cache(et->et_ci, bh);
2603  continue;
2604  }
2605 
2606  el->l_next_free_rec = 0;
2607  memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2608 
2609  ocfs2_journal_dirty(handle, bh);
2610 
2611  ret = ocfs2_cache_extent_block_free(dealloc, eb);
2612  if (ret)
2613  mlog_errno(ret);
2614 
2615  ocfs2_remove_from_cache(et->et_ci, bh);
2616  }
2617 }
2618 
2619 static void ocfs2_unlink_subtree(handle_t *handle,
2620  struct ocfs2_extent_tree *et,
2621  struct ocfs2_path *left_path,
2622  struct ocfs2_path *right_path,
2623  int subtree_index,
2624  struct ocfs2_cached_dealloc_ctxt *dealloc)
2625 {
2626  int i;
2627  struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2628  struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2629  struct ocfs2_extent_list *el;
2630  struct ocfs2_extent_block *eb;
2631 
2632  el = path_leaf_el(left_path);
2633 
2634  eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2635 
2636  for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2637  if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2638  break;
2639 
2640  BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2641 
2642  memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2643  le16_add_cpu(&root_el->l_next_free_rec, -1);
2644 
2645  eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2646  eb->h_next_leaf_blk = 0;
2647 
2648  ocfs2_journal_dirty(handle, root_bh);
2649  ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2650 
2651  ocfs2_unlink_path(handle, et, dealloc, right_path,
2652  subtree_index + 1);
2653 }
2654 
2655 static int ocfs2_rotate_subtree_left(handle_t *handle,
2656  struct ocfs2_extent_tree *et,
2657  struct ocfs2_path *left_path,
2658  struct ocfs2_path *right_path,
2659  int subtree_index,
2660  struct ocfs2_cached_dealloc_ctxt *dealloc,
2661  int *deleted)
2662 {
2663  int ret, i, del_right_subtree = 0, right_has_empty = 0;
2664  struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2665  struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2666  struct ocfs2_extent_block *eb;
2667 
2668  *deleted = 0;
2669 
2670  right_leaf_el = path_leaf_el(right_path);
2671  left_leaf_el = path_leaf_el(left_path);
2672  root_bh = left_path->p_node[subtree_index].bh;
2673  BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2674 
2675  if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2676  return 0;
2677 
2678  eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2679  if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2680  /*
2681  * It's legal for us to proceed if the right leaf is
2682  * the rightmost one and it has an empty extent. There
2683  * are two cases to handle - whether the leaf will be
2684  * empty after removal or not. If the leaf isn't empty
2685  * then just remove the empty extent up front. The
2686  * next block will handle empty leaves by flagging
2687  * them for unlink.
2688  *
2689  * Non rightmost leaves will throw -EAGAIN and the
2690  * caller can manually move the subtree and retry.
2691  */
2692 
2693  if (eb->h_next_leaf_blk != 0ULL)
2694  return -EAGAIN;
2695 
2696  if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2697  ret = ocfs2_journal_access_eb(handle, et->et_ci,
2698  path_leaf_bh(right_path),
2700  if (ret) {
2701  mlog_errno(ret);
2702  goto out;
2703  }
2704 
2705  ocfs2_remove_empty_extent(right_leaf_el);
2706  } else
2707  right_has_empty = 1;
2708  }
2709 
2710  if (eb->h_next_leaf_blk == 0ULL &&
2711  le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2712  /*
2713  * We have to update i_last_eb_blk during the meta
2714  * data delete.
2715  */
2716  ret = ocfs2_et_root_journal_access(handle, et,
2718  if (ret) {
2719  mlog_errno(ret);
2720  goto out;
2721  }
2722 
2723  del_right_subtree = 1;
2724  }
2725 
2726  /*
2727  * Getting here with an empty extent in the right path implies
2728  * that it's the rightmost path and will be deleted.
2729  */
2730  BUG_ON(right_has_empty && !del_right_subtree);
2731 
2732  ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2733  subtree_index);
2734  if (ret) {
2735  mlog_errno(ret);
2736  goto out;
2737  }
2738 
2739  for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2740  ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2741  right_path, i);
2742  if (ret) {
2743  mlog_errno(ret);
2744  goto out;
2745  }
2746 
2747  ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2748  left_path, i);
2749  if (ret) {
2750  mlog_errno(ret);
2751  goto out;
2752  }
2753  }
2754 
2755  if (!right_has_empty) {
2756  /*
2757  * Only do this if we're moving a real
2758  * record. Otherwise, the action is delayed until
2759  * after removal of the right path in which case we
2760  * can do a simple shift to remove the empty extent.
2761  */
2762  ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2763  memset(&right_leaf_el->l_recs[0], 0,
2764  sizeof(struct ocfs2_extent_rec));
2765  }
2766  if (eb->h_next_leaf_blk == 0ULL) {
2767  /*
2768  * Move recs over to get rid of empty extent, decrease
2769  * next_free. This is allowed to remove the last
2770  * extent in our leaf (setting l_next_free_rec to
2771  * zero) - the delete code below won't care.
2772  */
2773  ocfs2_remove_empty_extent(right_leaf_el);
2774  }
2775 
2776  ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2777  ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2778 
2779  if (del_right_subtree) {
2780  ocfs2_unlink_subtree(handle, et, left_path, right_path,
2781  subtree_index, dealloc);
2782  ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2783  left_path);
2784  if (ret) {
2785  mlog_errno(ret);
2786  goto out;
2787  }
2788 
2789  eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2790  ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2791 
2792  /*
2793  * Removal of the extent in the left leaf was skipped
2794  * above so we could delete the right path
2795  * 1st.
2796  */
2797  if (right_has_empty)
2798  ocfs2_remove_empty_extent(left_leaf_el);
2799 
2800  ocfs2_journal_dirty(handle, et_root_bh);
2801 
2802  *deleted = 1;
2803  } else
2804  ocfs2_complete_edge_insert(handle, left_path, right_path,
2805  subtree_index);
2806 
2807 out:
2808  return ret;
2809 }
2810 
2811 /*
2812  * Given a full path, determine what cpos value would return us a path
2813  * containing the leaf immediately to the right of the current one.
2814  *
2815  * Will return zero if the path passed in is already the rightmost path.
2816  *
2817  * This looks similar, but is subtly different to
2818  * ocfs2_find_cpos_for_left_leaf().
2819  */
2821  struct ocfs2_path *path, u32 *cpos)
2822 {
2823  int i, j, ret = 0;
2824  u64 blkno;
2825  struct ocfs2_extent_list *el;
2826 
2827  *cpos = 0;
2828 
2829  if (path->p_tree_depth == 0)
2830  return 0;
2831 
2832  blkno = path_leaf_bh(path)->b_blocknr;
2833 
2834  /* Start at the tree node just above the leaf and work our way up. */
2835  i = path->p_tree_depth - 1;
2836  while (i >= 0) {
2837  int next_free;
2838 
2839  el = path->p_node[i].el;
2840 
2841  /*
2842  * Find the extent record just after the one in our
2843  * path.
2844  */
2845  next_free = le16_to_cpu(el->l_next_free_rec);
2846  for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2847  if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2848  if (j == (next_free - 1)) {
2849  if (i == 0) {
2850  /*
2851  * We've determined that the
2852  * path specified is already
2853  * the rightmost one - return a
2854  * cpos of zero.
2855  */
2856  goto out;
2857  }
2858  /*
2859  * The rightmost record points to our
2860  * leaf - we need to travel up the
2861  * tree one level.
2862  */
2863  goto next_node;
2864  }
2865 
2866  *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2867  goto out;
2868  }
2869  }
2870 
2871  /*
2872  * If we got here, we never found a valid node where
2873  * the tree indicated one should be.
2874  */
2875  ocfs2_error(sb,
2876  "Invalid extent tree at extent block %llu\n",
2877  (unsigned long long)blkno);
2878  ret = -EROFS;
2879  goto out;
2880 
2881 next_node:
2882  blkno = path->p_node[i].bh->b_blocknr;
2883  i--;
2884  }
2885 
2886 out:
2887  return ret;
2888 }
2889 
2890 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2891  struct ocfs2_extent_tree *et,
2892  struct ocfs2_path *path)
2893 {
2894  int ret;
2895  struct buffer_head *bh = path_leaf_bh(path);
2896  struct ocfs2_extent_list *el = path_leaf_el(path);
2897 
2898  if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2899  return 0;
2900 
2901  ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2902  path_num_items(path) - 1);
2903  if (ret) {
2904  mlog_errno(ret);
2905  goto out;
2906  }
2907 
2908  ocfs2_remove_empty_extent(el);
2909  ocfs2_journal_dirty(handle, bh);
2910 
2911 out:
2912  return ret;
2913 }
2914 
2915 static int __ocfs2_rotate_tree_left(handle_t *handle,
2916  struct ocfs2_extent_tree *et,
2917  int orig_credits,
2918  struct ocfs2_path *path,
2919  struct ocfs2_cached_dealloc_ctxt *dealloc,
2920  struct ocfs2_path **empty_extent_path)
2921 {
2922  int ret, subtree_root, deleted;
2923  u32 right_cpos;
2924  struct ocfs2_path *left_path = NULL;
2925  struct ocfs2_path *right_path = NULL;
2927 
2928  BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2929 
2930  *empty_extent_path = NULL;
2931 
2932  ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2933  if (ret) {
2934  mlog_errno(ret);
2935  goto out;
2936  }
2937 
2938  left_path = ocfs2_new_path_from_path(path);
2939  if (!left_path) {
2940  ret = -ENOMEM;
2941  mlog_errno(ret);
2942  goto out;
2943  }
2944 
2945  ocfs2_cp_path(left_path, path);
2946 
2947  right_path = ocfs2_new_path_from_path(path);
2948  if (!right_path) {
2949  ret = -ENOMEM;
2950  mlog_errno(ret);
2951  goto out;
2952  }
2953 
2954  while (right_cpos) {
2955  ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2956  if (ret) {
2957  mlog_errno(ret);
2958  goto out;
2959  }
2960 
2961  subtree_root = ocfs2_find_subtree_root(et, left_path,
2962  right_path);
2963 
2964  trace_ocfs2_rotate_subtree(subtree_root,
2965  (unsigned long long)
2966  right_path->p_node[subtree_root].bh->b_blocknr,
2967  right_path->p_tree_depth);
2968 
2969  ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2970  orig_credits, left_path);
2971  if (ret) {
2972  mlog_errno(ret);
2973  goto out;
2974  }
2975 
2976  /*
2977  * Caller might still want to make changes to the
2978  * tree root, so re-add it to the journal here.
2979  */
2980  ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2981  left_path, 0);
2982  if (ret) {
2983  mlog_errno(ret);
2984  goto out;
2985  }
2986 
2987  ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2988  right_path, subtree_root,
2989  dealloc, &deleted);
2990  if (ret == -EAGAIN) {
2991  /*
2992  * The rotation has to temporarily stop due to
2993  * the right subtree having an empty
2994  * extent. Pass it back to the caller for a
2995  * fixup.
2996  */
2997  *empty_extent_path = right_path;
2998  right_path = NULL;
2999  goto out;
3000  }
3001  if (ret) {
3002  mlog_errno(ret);
3003  goto out;
3004  }
3005 
3006  /*
3007  * The subtree rotate might have removed records on
3008  * the rightmost edge. If so, then rotation is
3009  * complete.
3010  */
3011  if (deleted)
3012  break;
3013 
3014  ocfs2_mv_path(left_path, right_path);
3015 
3016  ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3017  &right_cpos);
3018  if (ret) {
3019  mlog_errno(ret);
3020  goto out;
3021  }
3022  }
3023 
3024 out:
3025  ocfs2_free_path(right_path);
3026  ocfs2_free_path(left_path);
3027 
3028  return ret;
3029 }
3030 
3031 static int ocfs2_remove_rightmost_path(handle_t *handle,
3032  struct ocfs2_extent_tree *et,
3033  struct ocfs2_path *path,
3034  struct ocfs2_cached_dealloc_ctxt *dealloc)
3035 {
3036  int ret, subtree_index;
3037  u32 cpos;
3038  struct ocfs2_path *left_path = NULL;
3039  struct ocfs2_extent_block *eb;
3040  struct ocfs2_extent_list *el;
3041 
3042 
3043  ret = ocfs2_et_sanity_check(et);
3044  if (ret)
3045  goto out;
3046  /*
3047  * There's two ways we handle this depending on
3048  * whether path is the only existing one.
3049  */
3050  ret = ocfs2_extend_rotate_transaction(handle, 0,
3051  handle->h_buffer_credits,
3052  path);
3053  if (ret) {
3054  mlog_errno(ret);
3055  goto out;
3056  }
3057 
3058  ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3059  if (ret) {
3060  mlog_errno(ret);
3061  goto out;
3062  }
3063 
3065  path, &cpos);
3066  if (ret) {
3067  mlog_errno(ret);
3068  goto out;
3069  }
3070 
3071  if (cpos) {
3072  /*
3073  * We have a path to the left of this one - it needs
3074  * an update too.
3075  */
3076  left_path = ocfs2_new_path_from_path(path);
3077  if (!left_path) {
3078  ret = -ENOMEM;
3079  mlog_errno(ret);
3080  goto out;
3081  }
3082 
3083  ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3084  if (ret) {
3085  mlog_errno(ret);
3086  goto out;
3087  }
3088 
3089  ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3090  if (ret) {
3091  mlog_errno(ret);
3092  goto out;
3093  }
3094 
3095  subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3096 
3097  ocfs2_unlink_subtree(handle, et, left_path, path,
3098  subtree_index, dealloc);
3099  ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3100  left_path);
3101  if (ret) {
3102  mlog_errno(ret);
3103  goto out;
3104  }
3105 
3106  eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3107  ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3108  } else {
3109  /*
3110  * 'path' is also the leftmost path which
3111  * means it must be the only one. This gets
3112  * handled differently because we want to
3113  * revert the root back to having extents
3114  * in-line.
3115  */
3116  ocfs2_unlink_path(handle, et, dealloc, path, 1);
3117 
3118  el = et->et_root_el;
3119  el->l_tree_depth = 0;
3120  el->l_next_free_rec = 0;
3121  memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3122 
3123  ocfs2_et_set_last_eb_blk(et, 0);
3124  }
3125 
3126  ocfs2_journal_dirty(handle, path_root_bh(path));
3127 
3128 out:
3129  ocfs2_free_path(left_path);
3130  return ret;
3131 }
3132 
3133 /*
3134  * Left rotation of btree records.
3135  *
3136  * In many ways, this is (unsurprisingly) the opposite of right
3137  * rotation. We start at some non-rightmost path containing an empty
3138  * extent in the leaf block. The code works its way to the rightmost
3139  * path by rotating records to the left in every subtree.
3140  *
3141  * This is used by any code which reduces the number of extent records
3142  * in a leaf. After removal, an empty record should be placed in the
3143  * leftmost list position.
3144  *
3145  * This won't handle a length update of the rightmost path records if
3146  * the rightmost tree leaf record is removed so the caller is
3147  * responsible for detecting and correcting that.
3148  */
3149 static int ocfs2_rotate_tree_left(handle_t *handle,
3150  struct ocfs2_extent_tree *et,
3151  struct ocfs2_path *path,
3152  struct ocfs2_cached_dealloc_ctxt *dealloc)
3153 {
3154  int ret, orig_credits = handle->h_buffer_credits;
3155  struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3156  struct ocfs2_extent_block *eb;
3157  struct ocfs2_extent_list *el;
3158 
3159  el = path_leaf_el(path);
3160  if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3161  return 0;
3162 
3163  if (path->p_tree_depth == 0) {
3164 rightmost_no_delete:
3165  /*
3166  * Inline extents. This is trivially handled, so do
3167  * it up front.
3168  */
3169  ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3170  if (ret)
3171  mlog_errno(ret);
3172  goto out;
3173  }
3174 
3175  /*
3176  * Handle rightmost branch now. There's several cases:
3177  * 1) simple rotation leaving records in there. That's trivial.
3178  * 2) rotation requiring a branch delete - there's no more
3179  * records left. Two cases of this:
3180  * a) There are branches to the left.
3181  * b) This is also the leftmost (the only) branch.
3182  *
3183  * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3184  * 2a) we need the left branch so that we can update it with the unlink
3185  * 2b) we need to bring the root back to inline extents.
3186  */
3187 
3188  eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3189  el = &eb->h_list;
3190  if (eb->h_next_leaf_blk == 0) {
3191  /*
3192  * This gets a bit tricky if we're going to delete the
3193  * rightmost path. Get the other cases out of the way
3194  * 1st.
3195  */
3196  if (le16_to_cpu(el->l_next_free_rec) > 1)
3197  goto rightmost_no_delete;
3198 
3199  if (le16_to_cpu(el->l_next_free_rec) == 0) {
3200  ret = -EIO;
3202  "Owner %llu has empty extent block at %llu",
3203  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3204  (unsigned long long)le64_to_cpu(eb->h_blkno));
3205  goto out;
3206  }
3207 
3208  /*
3209  * XXX: The caller can not trust "path" any more after
3210  * this as it will have been deleted. What do we do?
3211  *
3212  * In theory the rotate-for-merge code will never get
3213  * here because it'll always ask for a rotate in a
3214  * nonempty list.
3215  */
3216 
3217  ret = ocfs2_remove_rightmost_path(handle, et, path,
3218  dealloc);
3219  if (ret)
3220  mlog_errno(ret);
3221  goto out;
3222  }
3223 
3224  /*
3225  * Now we can loop, remembering the path we get from -EAGAIN
3226  * and restarting from there.
3227  */
3228 try_rotate:
3229  ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3230  dealloc, &restart_path);
3231  if (ret && ret != -EAGAIN) {
3232  mlog_errno(ret);
3233  goto out;
3234  }
3235 
3236  while (ret == -EAGAIN) {
3237  tmp_path = restart_path;
3238  restart_path = NULL;
3239 
3240  ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3241  tmp_path, dealloc,
3242  &restart_path);
3243  if (ret && ret != -EAGAIN) {
3244  mlog_errno(ret);
3245  goto out;
3246  }
3247 
3248  ocfs2_free_path(tmp_path);
3249  tmp_path = NULL;
3250 
3251  if (ret == 0)
3252  goto try_rotate;
3253  }
3254 
3255 out:
3256  ocfs2_free_path(tmp_path);
3257  ocfs2_free_path(restart_path);
3258  return ret;
3259 }
3260 
3261 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3262  int index)
3263 {
3264  struct ocfs2_extent_rec *rec = &el->l_recs[index];
3265  unsigned int size;
3266 
3267  if (rec->e_leaf_clusters == 0) {
3268  /*
3269  * We consumed all of the merged-from record. An empty
3270  * extent cannot exist anywhere but the 1st array
3271  * position, so move things over if the merged-from
3272  * record doesn't occupy that position.
3273  *
3274  * This creates a new empty extent so the caller
3275  * should be smart enough to have removed any existing
3276  * ones.
3277  */
3278  if (index > 0) {
3279  BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3280  size = index * sizeof(struct ocfs2_extent_rec);
3281  memmove(&el->l_recs[1], &el->l_recs[0], size);
3282  }
3283 
3284  /*
3285  * Always memset - the caller doesn't check whether it
3286  * created an empty extent, so there could be junk in
3287  * the other fields.
3288  */
3289  memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3290  }
3291 }
3292 
3293 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3294  struct ocfs2_path *left_path,
3295  struct ocfs2_path **ret_right_path)
3296 {
3297  int ret;
3298  u32 right_cpos;
3299  struct ocfs2_path *right_path = NULL;
3300  struct ocfs2_extent_list *left_el;
3301 
3302  *ret_right_path = NULL;
3303 
3304  /* This function shouldn't be called for non-trees. */
3305  BUG_ON(left_path->p_tree_depth == 0);
3306 
3307  left_el = path_leaf_el(left_path);
3308  BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3309 
3311  left_path, &right_cpos);
3312  if (ret) {
3313  mlog_errno(ret);
3314  goto out;
3315  }
3316 
3317  /* This function shouldn't be called for the rightmost leaf. */
3318  BUG_ON(right_cpos == 0);
3319 
3320  right_path = ocfs2_new_path_from_path(left_path);
3321  if (!right_path) {
3322  ret = -ENOMEM;
3323  mlog_errno(ret);
3324  goto out;
3325  }
3326 
3327  ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3328  if (ret) {
3329  mlog_errno(ret);
3330  goto out;
3331  }
3332 
3333  *ret_right_path = right_path;
3334 out:
3335  if (ret)
3336  ocfs2_free_path(right_path);
3337  return ret;
3338 }
3339 
3340 /*
3341  * Remove split_rec clusters from the record at index and merge them
3342  * onto the beginning of the record "next" to it.
3343  * For index < l_count - 1, the next means the extent rec at index + 1.
3344  * For index == l_count - 1, the "next" means the 1st extent rec of the
3345  * next extent block.
3346  */
3347 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3348  handle_t *handle,
3349  struct ocfs2_extent_tree *et,
3350  struct ocfs2_extent_rec *split_rec,
3351  int index)
3352 {
3353  int ret, next_free, i;
3354  unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3355  struct ocfs2_extent_rec *left_rec;
3356  struct ocfs2_extent_rec *right_rec;
3357  struct ocfs2_extent_list *right_el;
3358  struct ocfs2_path *right_path = NULL;
3359  int subtree_index = 0;
3360  struct ocfs2_extent_list *el = path_leaf_el(left_path);
3361  struct buffer_head *bh = path_leaf_bh(left_path);
3362  struct buffer_head *root_bh = NULL;
3363 
3364  BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3365  left_rec = &el->l_recs[index];
3366 
3367  if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3369  /* we meet with a cross extent block merge. */
3370  ret = ocfs2_get_right_path(et, left_path, &right_path);
3371  if (ret) {
3372  mlog_errno(ret);
3373  goto out;
3374  }
3375 
3376  right_el = path_leaf_el(right_path);
3377  next_free = le16_to_cpu(right_el->l_next_free_rec);
3378  BUG_ON(next_free <= 0);
3379  right_rec = &right_el->l_recs[0];
3380  if (ocfs2_is_empty_extent(right_rec)) {
3381  BUG_ON(next_free <= 1);
3382  right_rec = &right_el->l_recs[1];
3383  }
3384 
3385  BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3386  le16_to_cpu(left_rec->e_leaf_clusters) !=
3387  le32_to_cpu(right_rec->e_cpos));
3388 
3389  subtree_index = ocfs2_find_subtree_root(et, left_path,
3390  right_path);
3391 
3392  ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3393  handle->h_buffer_credits,
3394  right_path);
3395  if (ret) {
3396  mlog_errno(ret);
3397  goto out;
3398  }
3399 
3400  root_bh = left_path->p_node[subtree_index].bh;
3401  BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3402 
3403  ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3404  subtree_index);
3405  if (ret) {
3406  mlog_errno(ret);
3407  goto out;
3408  }
3409 
3410  for (i = subtree_index + 1;
3411  i < path_num_items(right_path); i++) {
3412  ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3413  right_path, i);
3414  if (ret) {
3415  mlog_errno(ret);
3416  goto out;
3417  }
3418 
3419  ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3420  left_path, i);
3421  if (ret) {
3422  mlog_errno(ret);
3423  goto out;
3424  }
3425  }
3426 
3427  } else {
3428  BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3429  right_rec = &el->l_recs[index + 1];
3430  }
3431 
3432  ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3433  path_num_items(left_path) - 1);
3434  if (ret) {
3435  mlog_errno(ret);
3436  goto out;
3437  }
3438 
3439  le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3440 
3441  le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3442  le64_add_cpu(&right_rec->e_blkno,
3443  -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3444  split_clusters));
3445  le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3446 
3447  ocfs2_cleanup_merge(el, index);
3448 
3449  ocfs2_journal_dirty(handle, bh);
3450  if (right_path) {
3451  ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3452  ocfs2_complete_edge_insert(handle, left_path, right_path,
3453  subtree_index);
3454  }
3455 out:
3456  if (right_path)
3457  ocfs2_free_path(right_path);
3458  return ret;
3459 }
3460 
3461 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3462  struct ocfs2_path *right_path,
3463  struct ocfs2_path **ret_left_path)
3464 {
3465  int ret;
3466  u32 left_cpos;
3467  struct ocfs2_path *left_path = NULL;
3468 
3469  *ret_left_path = NULL;
3470 
3471  /* This function shouldn't be called for non-trees. */
3472  BUG_ON(right_path->p_tree_depth == 0);
3473 
3475  right_path, &left_cpos);
3476  if (ret) {
3477  mlog_errno(ret);
3478  goto out;
3479  }
3480 
3481  /* This function shouldn't be called for the leftmost leaf. */
3482  BUG_ON(left_cpos == 0);
3483 
3484  left_path = ocfs2_new_path_from_path(right_path);
3485  if (!left_path) {
3486  ret = -ENOMEM;
3487  mlog_errno(ret);
3488  goto out;
3489  }
3490 
3491  ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3492  if (ret) {
3493  mlog_errno(ret);
3494  goto out;
3495  }
3496 
3497  *ret_left_path = left_path;
3498 out:
3499  if (ret)
3500  ocfs2_free_path(left_path);
3501  return ret;
3502 }
3503 
3504 /*
3505  * Remove split_rec clusters from the record at index and merge them
3506  * onto the tail of the record "before" it.
3507  * For index > 0, the "before" means the extent rec at index - 1.
3508  *
3509  * For index == 0, the "before" means the last record of the previous
3510  * extent block. And there is also a situation that we may need to
3511  * remove the rightmost leaf extent block in the right_path and change
3512  * the right path to indicate the new rightmost path.
3513  */
3514 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3515  handle_t *handle,
3516  struct ocfs2_extent_tree *et,
3517  struct ocfs2_extent_rec *split_rec,
3518  struct ocfs2_cached_dealloc_ctxt *dealloc,
3519  int index)
3520 {
3521  int ret, i, subtree_index = 0, has_empty_extent = 0;
3522  unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3523  struct ocfs2_extent_rec *left_rec;
3524  struct ocfs2_extent_rec *right_rec;
3525  struct ocfs2_extent_list *el = path_leaf_el(right_path);
3526  struct buffer_head *bh = path_leaf_bh(right_path);
3527  struct buffer_head *root_bh = NULL;
3528  struct ocfs2_path *left_path = NULL;
3529  struct ocfs2_extent_list *left_el;
3530 
3531  BUG_ON(index < 0);
3532 
3533  right_rec = &el->l_recs[index];
3534  if (index == 0) {
3535  /* we meet with a cross extent block merge. */
3536  ret = ocfs2_get_left_path(et, right_path, &left_path);
3537  if (ret) {
3538  mlog_errno(ret);
3539  goto out;
3540  }
3541 
3542  left_el = path_leaf_el(left_path);
3543  BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3544  le16_to_cpu(left_el->l_count));
3545 
3546  left_rec = &left_el->l_recs[
3547  le16_to_cpu(left_el->l_next_free_rec) - 1];
3548  BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3549  le16_to_cpu(left_rec->e_leaf_clusters) !=
3550  le32_to_cpu(split_rec->e_cpos));
3551 
3552  subtree_index = ocfs2_find_subtree_root(et, left_path,
3553  right_path);
3554 
3555  ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3556  handle->h_buffer_credits,
3557  left_path);
3558  if (ret) {
3559  mlog_errno(ret);
3560  goto out;
3561  }
3562 
3563  root_bh = left_path->p_node[subtree_index].bh;
3564  BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3565 
3566  ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3567  subtree_index);
3568  if (ret) {
3569  mlog_errno(ret);
3570  goto out;
3571  }
3572 
3573  for (i = subtree_index + 1;
3574  i < path_num_items(right_path); i++) {
3575  ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3576  right_path, i);
3577  if (ret) {
3578  mlog_errno(ret);
3579  goto out;
3580  }
3581 
3582  ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3583  left_path, i);
3584  if (ret) {
3585  mlog_errno(ret);
3586  goto out;
3587  }
3588  }
3589  } else {
3590  left_rec = &el->l_recs[index - 1];
3591  if (ocfs2_is_empty_extent(&el->l_recs[0]))
3592  has_empty_extent = 1;
3593  }
3594 
3595  ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3596  path_num_items(right_path) - 1);
3597  if (ret) {
3598  mlog_errno(ret);
3599  goto out;
3600  }
3601 
3602  if (has_empty_extent && index == 1) {
3603  /*
3604  * The easy case - we can just plop the record right in.
3605  */
3606  *left_rec = *split_rec;
3607 
3608  has_empty_extent = 0;
3609  } else
3610  le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3611 
3612  le32_add_cpu(&right_rec->e_cpos, split_clusters);
3613  le64_add_cpu(&right_rec->e_blkno,
3614  ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3615  split_clusters));
3616  le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3617 
3618  ocfs2_cleanup_merge(el, index);
3619 
3620  ocfs2_journal_dirty(handle, bh);
3621  if (left_path) {
3622  ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3623 
3624  /*
3625  * In the situation that the right_rec is empty and the extent
3626  * block is empty also, ocfs2_complete_edge_insert can't handle
3627  * it and we need to delete the right extent block.
3628  */
3629  if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3630  le16_to_cpu(el->l_next_free_rec) == 1) {
3631 
3632  ret = ocfs2_remove_rightmost_path(handle, et,
3633  right_path,
3634  dealloc);
3635  if (ret) {
3636  mlog_errno(ret);
3637  goto out;
3638  }
3639 
3640  /* Now the rightmost extent block has been deleted.
3641  * So we use the new rightmost path.
3642  */
3643  ocfs2_mv_path(right_path, left_path);
3644  left_path = NULL;
3645  } else
3646  ocfs2_complete_edge_insert(handle, left_path,
3647  right_path, subtree_index);
3648  }
3649 out:
3650  if (left_path)
3651  ocfs2_free_path(left_path);
3652  return ret;
3653 }
3654 
3655 static int ocfs2_try_to_merge_extent(handle_t *handle,
3656  struct ocfs2_extent_tree *et,
3657  struct ocfs2_path *path,
3658  int split_index,
3659  struct ocfs2_extent_rec *split_rec,
3660  struct ocfs2_cached_dealloc_ctxt *dealloc,
3661  struct ocfs2_merge_ctxt *ctxt)
3662 {
3663  int ret = 0;
3664  struct ocfs2_extent_list *el = path_leaf_el(path);
3665  struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3666 
3667  BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3668 
3669  if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3670  /*
3671  * The merge code will need to create an empty
3672  * extent to take the place of the newly
3673  * emptied slot. Remove any pre-existing empty
3674  * extents - having more than one in a leaf is
3675  * illegal.
3676  */
3677  ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3678  if (ret) {
3679  mlog_errno(ret);
3680  goto out;
3681  }
3682  split_index--;
3683  rec = &el->l_recs[split_index];
3684  }
3685 
3686  if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3687  /*
3688  * Left-right contig implies this.
3689  */
3690  BUG_ON(!ctxt->c_split_covers_rec);
3691 
3692  /*
3693  * Since the leftright insert always covers the entire
3694  * extent, this call will delete the insert record
3695  * entirely, resulting in an empty extent record added to
3696  * the extent block.
3697  *
3698  * Since the adding of an empty extent shifts
3699  * everything back to the right, there's no need to
3700  * update split_index here.
3701  *
3702  * When the split_index is zero, we need to merge it to the
3703  * prevoius extent block. It is more efficient and easier
3704  * if we do merge_right first and merge_left later.
3705  */
3706  ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3707  split_index);
3708  if (ret) {
3709  mlog_errno(ret);
3710  goto out;
3711  }
3712 
3713  /*
3714  * We can only get this from logic error above.
3715  */
3716  BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3717 
3718  /* The merge left us with an empty extent, remove it. */
3719  ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3720  if (ret) {
3721  mlog_errno(ret);
3722  goto out;
3723  }
3724 
3725  rec = &el->l_recs[split_index];
3726 
3727  /*
3728  * Note that we don't pass split_rec here on purpose -
3729  * we've merged it into the rec already.
3730  */
3731  ret = ocfs2_merge_rec_left(path, handle, et, rec,
3732  dealloc, split_index);
3733 
3734  if (ret) {
3735  mlog_errno(ret);
3736  goto out;
3737  }
3738 
3739  ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3740  /*
3741  * Error from this last rotate is not critical, so
3742  * print but don't bubble it up.
3743  */
3744  if (ret)
3745  mlog_errno(ret);
3746  ret = 0;
3747  } else {
3748  /*
3749  * Merge a record to the left or right.
3750  *
3751  * 'contig_type' is relative to the existing record,
3752  * so for example, if we're "right contig", it's to
3753  * the record on the left (hence the left merge).
3754  */
3755  if (ctxt->c_contig_type == CONTIG_RIGHT) {
3756  ret = ocfs2_merge_rec_left(path, handle, et,
3757  split_rec, dealloc,
3758  split_index);
3759  if (ret) {
3760  mlog_errno(ret);
3761  goto out;
3762  }
3763  } else {
3764  ret = ocfs2_merge_rec_right(path, handle,
3765  et, split_rec,
3766  split_index);
3767  if (ret) {
3768  mlog_errno(ret);
3769  goto out;
3770  }
3771  }
3772 
3773  if (ctxt->c_split_covers_rec) {
3774  /*
3775  * The merge may have left an empty extent in
3776  * our leaf. Try to rotate it away.
3777  */
3778  ret = ocfs2_rotate_tree_left(handle, et, path,
3779  dealloc);
3780  if (ret)
3781  mlog_errno(ret);
3782  ret = 0;
3783  }
3784  }
3785 
3786 out:
3787  return ret;
3788 }
3789 
3790 static void ocfs2_subtract_from_rec(struct super_block *sb,
3791  enum ocfs2_split_type split,
3792  struct ocfs2_extent_rec *rec,
3793  struct ocfs2_extent_rec *split_rec)
3794 {
3795  u64 len_blocks;
3796 
3797  len_blocks = ocfs2_clusters_to_blocks(sb,
3798  le16_to_cpu(split_rec->e_leaf_clusters));
3799 
3800  if (split == SPLIT_LEFT) {
3801  /*
3802  * Region is on the left edge of the existing
3803  * record.
3804  */
3805  le32_add_cpu(&rec->e_cpos,
3806  le16_to_cpu(split_rec->e_leaf_clusters));
3807  le64_add_cpu(&rec->e_blkno, len_blocks);
3808  le16_add_cpu(&rec->e_leaf_clusters,
3809  -le16_to_cpu(split_rec->e_leaf_clusters));
3810  } else {
3811  /*
3812  * Region is on the right edge of the existing
3813  * record.
3814  */
3815  le16_add_cpu(&rec->e_leaf_clusters,
3816  -le16_to_cpu(split_rec->e_leaf_clusters));
3817  }
3818 }
3819 
3820 /*
3821  * Do the final bits of extent record insertion at the target leaf
3822  * list. If this leaf is part of an allocation tree, it is assumed
3823  * that the tree above has been prepared.
3824  */
3825 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3826  struct ocfs2_extent_rec *insert_rec,
3827  struct ocfs2_extent_list *el,
3828  struct ocfs2_insert_type *insert)
3829 {
3830  int i = insert->ins_contig_index;
3831  unsigned int range;
3832  struct ocfs2_extent_rec *rec;
3833 
3834  BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3835 
3836  if (insert->ins_split != SPLIT_NONE) {
3837  i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3838  BUG_ON(i == -1);
3839  rec = &el->l_recs[i];
3840  ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3841  insert->ins_split, rec,
3842  insert_rec);
3843  goto rotate;
3844  }
3845 
3846  /*
3847  * Contiguous insert - either left or right.
3848  */
3849  if (insert->ins_contig != CONTIG_NONE) {
3850  rec = &el->l_recs[i];
3851  if (insert->ins_contig == CONTIG_LEFT) {
3852  rec->e_blkno = insert_rec->e_blkno;
3853  rec->e_cpos = insert_rec->e_cpos;
3854  }
3855  le16_add_cpu(&rec->e_leaf_clusters,
3856  le16_to_cpu(insert_rec->e_leaf_clusters));
3857  return;
3858  }
3859 
3860  /*
3861  * Handle insert into an empty leaf.
3862  */
3863  if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3864  ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3865  ocfs2_is_empty_extent(&el->l_recs[0]))) {
3866  el->l_recs[0] = *insert_rec;
3867  el->l_next_free_rec = cpu_to_le16(1);
3868  return;
3869  }
3870 
3871  /*
3872  * Appending insert.
3873  */
3874  if (insert->ins_appending == APPEND_TAIL) {
3875  i = le16_to_cpu(el->l_next_free_rec) - 1;
3876  rec = &el->l_recs[i];
3877  range = le32_to_cpu(rec->e_cpos)
3878  + le16_to_cpu(rec->e_leaf_clusters);
3879  BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3880 
3882  le16_to_cpu(el->l_count),
3883  "owner %llu, depth %u, count %u, next free %u, "
3884  "rec.cpos %u, rec.clusters %u, "
3885  "insert.cpos %u, insert.clusters %u\n",
3888  le16_to_cpu(el->l_count),
3890  le32_to_cpu(el->l_recs[i].e_cpos),
3891  le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3892  le32_to_cpu(insert_rec->e_cpos),
3893  le16_to_cpu(insert_rec->e_leaf_clusters));
3894  i++;
3895  el->l_recs[i] = *insert_rec;
3896  le16_add_cpu(&el->l_next_free_rec, 1);
3897  return;
3898  }
3899 
3900 rotate:
3901  /*
3902  * Ok, we have to rotate.
3903  *
3904  * At this point, it is safe to assume that inserting into an
3905  * empty leaf and appending to a leaf have both been handled
3906  * above.
3907  *
3908  * This leaf needs to have space, either by the empty 1st
3909  * extent record, or by virtue of an l_next_rec < l_count.
3910  */
3911  ocfs2_rotate_leaf(el, insert_rec);
3912 }
3913 
3914 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3915  struct ocfs2_extent_tree *et,
3916  struct ocfs2_path *path,
3917  struct ocfs2_extent_rec *insert_rec)
3918 {
3919  int ret, i, next_free;
3920  struct buffer_head *bh;
3921  struct ocfs2_extent_list *el;
3922  struct ocfs2_extent_rec *rec;
3923 
3924  /*
3925  * Update everything except the leaf block.
3926  */
3927  for (i = 0; i < path->p_tree_depth; i++) {
3928  bh = path->p_node[i].bh;
3929  el = path->p_node[i].el;
3930 
3931  next_free = le16_to_cpu(el->l_next_free_rec);
3932  if (next_free == 0) {
3934  "Owner %llu has a bad extent list",
3935  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3936  ret = -EIO;
3937  return;
3938  }
3939 
3940  rec = &el->l_recs[next_free - 1];
3941 
3942  rec->e_int_clusters = insert_rec->e_cpos;
3943  le32_add_cpu(&rec->e_int_clusters,
3944  le16_to_cpu(insert_rec->e_leaf_clusters));
3945  le32_add_cpu(&rec->e_int_clusters,
3946  -le32_to_cpu(rec->e_cpos));
3947 
3948  ocfs2_journal_dirty(handle, bh);
3949  }
3950 }
3951 
3952 static int ocfs2_append_rec_to_path(handle_t *handle,
3953  struct ocfs2_extent_tree *et,
3954  struct ocfs2_extent_rec *insert_rec,
3955  struct ocfs2_path *right_path,
3956  struct ocfs2_path **ret_left_path)
3957 {
3958  int ret, next_free;
3959  struct ocfs2_extent_list *el;
3960  struct ocfs2_path *left_path = NULL;
3961 
3962  *ret_left_path = NULL;
3963 
3964  /*
3965  * This shouldn't happen for non-trees. The extent rec cluster
3966  * count manipulation below only works for interior nodes.
3967  */
3968  BUG_ON(right_path->p_tree_depth == 0);
3969 
3970  /*
3971  * If our appending insert is at the leftmost edge of a leaf,
3972  * then we might need to update the rightmost records of the
3973  * neighboring path.
3974  */
3975  el = path_leaf_el(right_path);
3976  next_free = le16_to_cpu(el->l_next_free_rec);
3977  if (next_free == 0 ||
3978  (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3979  u32 left_cpos;
3980 
3982  right_path, &left_cpos);
3983  if (ret) {
3984  mlog_errno(ret);
3985  goto out;
3986  }
3987 
3988  trace_ocfs2_append_rec_to_path(
3989  (unsigned long long)
3991  le32_to_cpu(insert_rec->e_cpos),
3992  left_cpos);
3993 
3994  /*
3995  * No need to worry if the append is already in the
3996  * leftmost leaf.
3997  */
3998  if (left_cpos) {
3999  left_path = ocfs2_new_path_from_path(right_path);
4000  if (!left_path) {
4001  ret = -ENOMEM;
4002  mlog_errno(ret);
4003  goto out;
4004  }
4005 
4006  ret = ocfs2_find_path(et->et_ci, left_path,
4007  left_cpos);
4008  if (ret) {
4009  mlog_errno(ret);
4010  goto out;
4011  }
4012 
4013  /*
4014  * ocfs2_insert_path() will pass the left_path to the
4015  * journal for us.
4016  */
4017  }
4018  }
4019 
4020  ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4021  if (ret) {
4022  mlog_errno(ret);
4023  goto out;
4024  }
4025 
4026  ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4027 
4028  *ret_left_path = left_path;
4029  ret = 0;
4030 out:
4031  if (ret != 0)
4032  ocfs2_free_path(left_path);
4033 
4034  return ret;
4035 }
4036 
4037 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4038  struct ocfs2_path *left_path,
4039  struct ocfs2_path *right_path,
4040  struct ocfs2_extent_rec *split_rec,
4041  enum ocfs2_split_type split)
4042 {
4043  int index;
4044  u32 cpos = le32_to_cpu(split_rec->e_cpos);
4045  struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4046  struct ocfs2_extent_rec *rec, *tmprec;
4047 
4048  right_el = path_leaf_el(right_path);
4049  if (left_path)
4050  left_el = path_leaf_el(left_path);
4051 
4052  el = right_el;
4053  insert_el = right_el;
4054  index = ocfs2_search_extent_list(el, cpos);
4055  if (index != -1) {
4056  if (index == 0 && left_path) {
4057  BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4058 
4059  /*
4060  * This typically means that the record
4061  * started in the left path but moved to the
4062  * right as a result of rotation. We either
4063  * move the existing record to the left, or we
4064  * do the later insert there.
4065  *
4066  * In this case, the left path should always
4067  * exist as the rotate code will have passed
4068  * it back for a post-insert update.
4069  */
4070 
4071  if (split == SPLIT_LEFT) {
4072  /*
4073  * It's a left split. Since we know
4074  * that the rotate code gave us an
4075  * empty extent in the left path, we
4076  * can just do the insert there.
4077  */
4078  insert_el = left_el;
4079  } else {
4080  /*
4081  * Right split - we have to move the
4082  * existing record over to the left
4083  * leaf. The insert will be into the
4084  * newly created empty extent in the
4085  * right leaf.
4086  */
4087  tmprec = &right_el->l_recs[index];
4088  ocfs2_rotate_leaf(left_el, tmprec);
4089  el = left_el;
4090 
4091  memset(tmprec, 0, sizeof(*tmprec));
4092  index = ocfs2_search_extent_list(left_el, cpos);
4093  BUG_ON(index == -1);
4094  }
4095  }
4096  } else {
4097  BUG_ON(!left_path);
4098  BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4099  /*
4100  * Left path is easy - we can just allow the insert to
4101  * happen.
4102  */
4103  el = left_el;
4104  insert_el = left_el;
4105  index = ocfs2_search_extent_list(el, cpos);
4106  BUG_ON(index == -1);
4107  }
4108 
4109  rec = &el->l_recs[index];
4110  ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4111  split, rec, split_rec);
4112  ocfs2_rotate_leaf(insert_el, split_rec);
4113 }
4114 
4115 /*
4116  * This function only does inserts on an allocation b-tree. For tree
4117  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4118  *
4119  * right_path is the path we want to do the actual insert
4120  * in. left_path should only be passed in if we need to update that
4121  * portion of the tree after an edge insert.
4122  */
4123 static int ocfs2_insert_path(handle_t *handle,
4124  struct ocfs2_extent_tree *et,
4125  struct ocfs2_path *left_path,
4126  struct ocfs2_path *right_path,
4127  struct ocfs2_extent_rec *insert_rec,
4128  struct ocfs2_insert_type *insert)
4129 {
4130  int ret, subtree_index;
4131  struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4132 
4133  if (left_path) {
4134  /*
4135  * There's a chance that left_path got passed back to
4136  * us without being accounted for in the
4137  * journal. Extend our transaction here to be sure we
4138  * can change those blocks.
4139  */
4140  ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4141  if (ret < 0) {
4142  mlog_errno(ret);
4143  goto out;
4144  }
4145 
4146  ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4147  if (ret < 0) {
4148  mlog_errno(ret);
4149  goto out;
4150  }
4151  }
4152 
4153  /*
4154  * Pass both paths to the journal. The majority of inserts
4155  * will be touching all components anyway.
4156  */
4157  ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4158  if (ret < 0) {
4159  mlog_errno(ret);
4160  goto out;
4161  }
4162 
4163  if (insert->ins_split != SPLIT_NONE) {
4164  /*
4165  * We could call ocfs2_insert_at_leaf() for some types
4166  * of splits, but it's easier to just let one separate
4167  * function sort it all out.
4168  */
4169  ocfs2_split_record(et, left_path, right_path,
4170  insert_rec, insert->ins_split);
4171 
4172  /*
4173  * Split might have modified either leaf and we don't
4174  * have a guarantee that the later edge insert will
4175  * dirty this for us.
4176  */
4177  if (left_path)
4178  ocfs2_journal_dirty(handle,
4179  path_leaf_bh(left_path));
4180  } else
4181  ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4182  insert);
4183 
4184  ocfs2_journal_dirty(handle, leaf_bh);
4185 
4186  if (left_path) {
4187  /*
4188  * The rotate code has indicated that we need to fix
4189  * up portions of the tree after the insert.
4190  *
4191  * XXX: Should we extend the transaction here?
4192  */
4193  subtree_index = ocfs2_find_subtree_root(et, left_path,
4194  right_path);
4195  ocfs2_complete_edge_insert(handle, left_path, right_path,
4196  subtree_index);
4197  }
4198 
4199  ret = 0;
4200 out:
4201  return ret;
4202 }
4203 
4204 static int ocfs2_do_insert_extent(handle_t *handle,
4205  struct ocfs2_extent_tree *et,
4206  struct ocfs2_extent_rec *insert_rec,
4207  struct ocfs2_insert_type *type)
4208 {
4209  int ret, rotate = 0;
4210  u32 cpos;
4211  struct ocfs2_path *right_path = NULL;
4212  struct ocfs2_path *left_path = NULL;
4213  struct ocfs2_extent_list *el;
4214 
4215  el = et->et_root_el;
4216 
4217  ret = ocfs2_et_root_journal_access(handle, et,
4219  if (ret) {
4220  mlog_errno(ret);
4221  goto out;
4222  }
4223 
4224  if (le16_to_cpu(el->l_tree_depth) == 0) {
4225  ocfs2_insert_at_leaf(et, insert_rec, el, type);
4226  goto out_update_clusters;
4227  }
4228 
4229  right_path = ocfs2_new_path_from_et(et);
4230  if (!right_path) {
4231  ret = -ENOMEM;
4232  mlog_errno(ret);
4233  goto out;
4234  }
4235 
4236  /*
4237  * Determine the path to start with. Rotations need the
4238  * rightmost path, everything else can go directly to the
4239  * target leaf.
4240  */
4241  cpos = le32_to_cpu(insert_rec->e_cpos);
4242  if (type->ins_appending == APPEND_NONE &&
4243  type->ins_contig == CONTIG_NONE) {
4244  rotate = 1;
4245  cpos = UINT_MAX;
4246  }
4247 
4248  ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4249  if (ret) {
4250  mlog_errno(ret);
4251  goto out;
4252  }
4253 
4254  /*
4255  * Rotations and appends need special treatment - they modify
4256  * parts of the tree's above them.
4257  *
4258  * Both might pass back a path immediate to the left of the
4259  * one being inserted to. This will be cause
4260  * ocfs2_insert_path() to modify the rightmost records of
4261  * left_path to account for an edge insert.
4262  *
4263  * XXX: When modifying this code, keep in mind that an insert
4264  * can wind up skipping both of these two special cases...
4265  */
4266  if (rotate) {
4267  ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4268  le32_to_cpu(insert_rec->e_cpos),
4269  right_path, &left_path);
4270  if (ret) {
4271  mlog_errno(ret);
4272  goto out;
4273  }
4274 
4275  /*
4276  * ocfs2_rotate_tree_right() might have extended the
4277  * transaction without re-journaling our tree root.
4278  */
4279  ret = ocfs2_et_root_journal_access(handle, et,
4281  if (ret) {
4282  mlog_errno(ret);
4283  goto out;
4284  }
4285  } else if (type->ins_appending == APPEND_TAIL
4286  && type->ins_contig != CONTIG_LEFT) {
4287  ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4288  right_path, &left_path);
4289  if (ret) {
4290  mlog_errno(ret);
4291  goto out;
4292  }
4293  }
4294 
4295  ret = ocfs2_insert_path(handle, et, left_path, right_path,
4296  insert_rec, type);
4297  if (ret) {
4298  mlog_errno(ret);
4299  goto out;
4300  }
4301 
4302 out_update_clusters:
4303  if (type->ins_split == SPLIT_NONE)
4304  ocfs2_et_update_clusters(et,
4305  le16_to_cpu(insert_rec->e_leaf_clusters));
4306 
4307  ocfs2_journal_dirty(handle, et->et_root_bh);
4308 
4309 out:
4310  ocfs2_free_path(left_path);
4311  ocfs2_free_path(right_path);
4312 
4313  return ret;
4314 }
4315 
4316 static enum ocfs2_contig_type
4317 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4318  struct ocfs2_path *path,
4319  struct ocfs2_extent_list *el, int index,
4320  struct ocfs2_extent_rec *split_rec)
4321 {
4322  int status;
4323  enum ocfs2_contig_type ret = CONTIG_NONE;
4324  u32 left_cpos, right_cpos;
4325  struct ocfs2_extent_rec *rec = NULL;
4326  struct ocfs2_extent_list *new_el;
4327  struct ocfs2_path *left_path = NULL, *right_path = NULL;
4328  struct buffer_head *bh;
4329  struct ocfs2_extent_block *eb;
4331 
4332  if (index > 0) {
4333  rec = &el->l_recs[index - 1];
4334  } else if (path->p_tree_depth > 0) {
4335  status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4336  if (status)
4337  goto out;
4338 
4339  if (left_cpos != 0) {
4340  left_path = ocfs2_new_path_from_path(path);
4341  if (!left_path)
4342  goto out;
4343 
4344  status = ocfs2_find_path(et->et_ci, left_path,
4345  left_cpos);
4346  if (status)
4347  goto out;
4348 
4349  new_el = path_leaf_el(left_path);
4350 
4351  if (le16_to_cpu(new_el->l_next_free_rec) !=
4352  le16_to_cpu(new_el->l_count)) {
4353  bh = path_leaf_bh(left_path);
4354  eb = (struct ocfs2_extent_block *)bh->b_data;
4355  ocfs2_error(sb,
4356  "Extent block #%llu has an "
4357  "invalid l_next_free_rec of "
4358  "%d. It should have "
4359  "matched the l_count of %d",
4360  (unsigned long long)le64_to_cpu(eb->h_blkno),
4361  le16_to_cpu(new_el->l_next_free_rec),
4362  le16_to_cpu(new_el->l_count));
4363  status = -EINVAL;
4364  goto out;
4365  }
4366  rec = &new_el->l_recs[
4367  le16_to_cpu(new_el->l_next_free_rec) - 1];
4368  }
4369  }
4370 
4371  /*
4372  * We're careful to check for an empty extent record here -
4373  * the merge code will know what to do if it sees one.
4374  */
4375  if (rec) {
4376  if (index == 1 && ocfs2_is_empty_extent(rec)) {
4377  if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4378  ret = CONTIG_RIGHT;
4379  } else {
4380  ret = ocfs2_et_extent_contig(et, rec, split_rec);
4381  }
4382  }
4383 
4384  rec = NULL;
4385  if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4386  rec = &el->l_recs[index + 1];
4387  else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4388  path->p_tree_depth > 0) {
4389  status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4390  if (status)
4391  goto out;
4392 
4393  if (right_cpos == 0)
4394  goto out;
4395 
4396  right_path = ocfs2_new_path_from_path(path);
4397  if (!right_path)
4398  goto out;
4399 
4400  status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4401  if (status)
4402  goto out;
4403 
4404  new_el = path_leaf_el(right_path);
4405  rec = &new_el->l_recs[0];
4406  if (ocfs2_is_empty_extent(rec)) {
4407  if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4408  bh = path_leaf_bh(right_path);
4409  eb = (struct ocfs2_extent_block *)bh->b_data;
4410  ocfs2_error(sb,
4411  "Extent block #%llu has an "
4412  "invalid l_next_free_rec of %d",
4413  (unsigned long long)le64_to_cpu(eb->h_blkno),
4414  le16_to_cpu(new_el->l_next_free_rec));
4415  status = -EINVAL;
4416  goto out;
4417  }
4418  rec = &new_el->l_recs[1];
4419  }
4420  }
4421 
4422  if (rec) {
4423  enum ocfs2_contig_type contig_type;
4424 
4425  contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4426 
4427  if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4428  ret = CONTIG_LEFTRIGHT;
4429  else if (ret == CONTIG_NONE)
4430  ret = contig_type;
4431  }
4432 
4433 out:
4434  if (left_path)
4435  ocfs2_free_path(left_path);
4436  if (right_path)
4437  ocfs2_free_path(right_path);
4438 
4439  return ret;
4440 }
4441 
4442 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4443  struct ocfs2_insert_type *insert,
4444  struct ocfs2_extent_list *el,
4445  struct ocfs2_extent_rec *insert_rec)
4446 {
4447  int i;
4448  enum ocfs2_contig_type contig_type = CONTIG_NONE;
4449 
4450  BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4451 
4452  for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4453  contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4454  insert_rec);
4455  if (contig_type != CONTIG_NONE) {
4456  insert->ins_contig_index = i;
4457  break;
4458  }
4459  }
4460  insert->ins_contig = contig_type;
4461 
4462  if (insert->ins_contig != CONTIG_NONE) {
4463  struct ocfs2_extent_rec *rec =
4464  &el->l_recs[insert->ins_contig_index];
4465  unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4466  le16_to_cpu(insert_rec->e_leaf_clusters);
4467 
4468  /*
4469  * Caller might want us to limit the size of extents, don't
4470  * calculate contiguousness if we might exceed that limit.
4471  */
4472  if (et->et_max_leaf_clusters &&
4473  (len > et->et_max_leaf_clusters))
4474  insert->ins_contig = CONTIG_NONE;
4475  }
4476 }
4477 
4478 /*
4479  * This should only be called against the righmost leaf extent list.
4480  *
4481  * ocfs2_figure_appending_type() will figure out whether we'll have to
4482  * insert at the tail of the rightmost leaf.
4483  *
4484  * This should also work against the root extent list for tree's with 0
4485  * depth. If we consider the root extent list to be the rightmost leaf node
4486  * then the logic here makes sense.
4487  */
4488 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4489  struct ocfs2_extent_list *el,
4490  struct ocfs2_extent_rec *insert_rec)
4491 {
4492  int i;
4493  u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4494  struct ocfs2_extent_rec *rec;
4495 
4496  insert->ins_appending = APPEND_NONE;
4497 
4498  BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4499 
4500  if (!el->l_next_free_rec)
4501  goto set_tail_append;
4502 
4503  if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4504  /* Were all records empty? */
4505  if (le16_to_cpu(el->l_next_free_rec) == 1)
4506  goto set_tail_append;
4507  }
4508 
4509  i = le16_to_cpu(el->l_next_free_rec) - 1;
4510  rec = &el->l_recs[i];
4511 
4512  if (cpos >=
4514  goto set_tail_append;
4515 
4516  return;
4517 
4518 set_tail_append:
4519  insert->ins_appending = APPEND_TAIL;
4520 }
4521 
4522 /*
4523  * Helper function called at the beginning of an insert.
4524  *
4525  * This computes a few things that are commonly used in the process of
4526  * inserting into the btree:
4527  * - Whether the new extent is contiguous with an existing one.
4528  * - The current tree depth.
4529  * - Whether the insert is an appending one.
4530  * - The total # of free records in the tree.
4531  *
4532  * All of the information is stored on the ocfs2_insert_type
4533  * structure.
4534  */
4535 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4536  struct buffer_head **last_eb_bh,
4537  struct ocfs2_extent_rec *insert_rec,
4538  int *free_records,
4539  struct ocfs2_insert_type *insert)
4540 {
4541  int ret;
4542  struct ocfs2_extent_block *eb;
4543  struct ocfs2_extent_list *el;
4544  struct ocfs2_path *path = NULL;
4545  struct buffer_head *bh = NULL;
4546 
4547  insert->ins_split = SPLIT_NONE;
4548 
4549  el = et->et_root_el;
4550  insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4551 
4552  if (el->l_tree_depth) {
4553  /*
4554  * If we have tree depth, we read in the
4555  * rightmost extent block ahead of time as
4556  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4557  * may want it later.
4558  */
4559  ret = ocfs2_read_extent_block(et->et_ci,
4560  ocfs2_et_get_last_eb_blk(et),
4561  &bh);
4562  if (ret) {
4563  mlog_errno(ret);
4564  goto out;
4565  }
4566  eb = (struct ocfs2_extent_block *) bh->b_data;
4567  el = &eb->h_list;
4568  }
4569 
4570  /*
4571  * Unless we have a contiguous insert, we'll need to know if
4572  * there is room left in our allocation tree for another
4573  * extent record.
4574  *
4575  * XXX: This test is simplistic, we can search for empty
4576  * extent records too.
4577  */
4578  *free_records = le16_to_cpu(el->l_count) -
4580 
4581  if (!insert->ins_tree_depth) {
4582  ocfs2_figure_contig_type(et, insert, el, insert_rec);
4583  ocfs2_figure_appending_type(insert, el, insert_rec);
4584  return 0;
4585  }
4586 
4587  path = ocfs2_new_path_from_et(et);
4588  if (!path) {
4589  ret = -ENOMEM;
4590  mlog_errno(ret);
4591  goto out;
4592  }
4593 
4594  /*
4595  * In the case that we're inserting past what the tree
4596  * currently accounts for, ocfs2_find_path() will return for
4597  * us the rightmost tree path. This is accounted for below in
4598  * the appending code.
4599  */
4600  ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4601  if (ret) {
4602  mlog_errno(ret);
4603  goto out;
4604  }
4605 
4606  el = path_leaf_el(path);
4607 
4608  /*
4609  * Now that we have the path, there's two things we want to determine:
4610  * 1) Contiguousness (also set contig_index if this is so)
4611  *
4612  * 2) Are we doing an append? We can trivially break this up
4613  * into two types of appends: simple record append, or a
4614  * rotate inside the tail leaf.
4615  */
4616  ocfs2_figure_contig_type(et, insert, el, insert_rec);
4617 
4618  /*
4619  * The insert code isn't quite ready to deal with all cases of
4620  * left contiguousness. Specifically, if it's an insert into
4621  * the 1st record in a leaf, it will require the adjustment of
4622  * cluster count on the last record of the path directly to it's
4623  * left. For now, just catch that case and fool the layers
4624  * above us. This works just fine for tree_depth == 0, which
4625  * is why we allow that above.
4626  */
4627  if (insert->ins_contig == CONTIG_LEFT &&
4628  insert->ins_contig_index == 0)
4629  insert->ins_contig = CONTIG_NONE;
4630 
4631  /*
4632  * Ok, so we can simply compare against last_eb to figure out
4633  * whether the path doesn't exist. This will only happen in
4634  * the case that we're doing a tail append, so maybe we can
4635  * take advantage of that information somehow.
4636  */
4637  if (ocfs2_et_get_last_eb_blk(et) ==
4638  path_leaf_bh(path)->b_blocknr) {
4639  /*
4640  * Ok, ocfs2_find_path() returned us the rightmost
4641  * tree path. This might be an appending insert. There are
4642  * two cases:
4643  * 1) We're doing a true append at the tail:
4644  * -This might even be off the end of the leaf
4645  * 2) We're "appending" by rotating in the tail
4646  */
4647  ocfs2_figure_appending_type(insert, el, insert_rec);
4648  }
4649 
4650 out:
4651  ocfs2_free_path(path);
4652 
4653  if (ret == 0)
4654  *last_eb_bh = bh;
4655  else
4656  brelse(bh);
4657  return ret;
4658 }
4659 
4660 /*
4661  * Insert an extent into a btree.
4662  *
4663  * The caller needs to update the owning btree's cluster count.
4664  */
4665 int ocfs2_insert_extent(handle_t *handle,
4666  struct ocfs2_extent_tree *et,
4667  u32 cpos,
4668  u64 start_blk,
4669  u32 new_clusters,
4670  u8 flags,
4671  struct ocfs2_alloc_context *meta_ac)
4672 {
4673  int status;
4674  int uninitialized_var(free_records);
4675  struct buffer_head *last_eb_bh = NULL;
4676  struct ocfs2_insert_type insert = {0, };
4677  struct ocfs2_extent_rec rec;
4678 
4679  trace_ocfs2_insert_extent_start(
4680  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4681  cpos, new_clusters);
4682 
4683  memset(&rec, 0, sizeof(rec));
4684  rec.e_cpos = cpu_to_le32(cpos);
4685  rec.e_blkno = cpu_to_le64(start_blk);
4686  rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4687  rec.e_flags = flags;
4688  status = ocfs2_et_insert_check(et, &rec);
4689  if (status) {
4690  mlog_errno(status);
4691  goto bail;
4692  }
4693 
4694  status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4695  &free_records, &insert);
4696  if (status < 0) {
4697  mlog_errno(status);
4698  goto bail;
4699  }
4700 
4701  trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4702  insert.ins_contig_index, free_records,
4703  insert.ins_tree_depth);
4704 
4705  if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4706  status = ocfs2_grow_tree(handle, et,
4707  &insert.ins_tree_depth, &last_eb_bh,
4708  meta_ac);
4709  if (status) {
4710  mlog_errno(status);
4711  goto bail;
4712  }
4713  }
4714 
4715  /* Finally, we can add clusters. This might rotate the tree for us. */
4716  status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4717  if (status < 0)
4718  mlog_errno(status);
4719  else
4720  ocfs2_et_extent_map_insert(et, &rec);
4721 
4722 bail:
4723  brelse(last_eb_bh);
4724 
4725  return status;
4726 }
4727 
4728 /*
4729  * Allcate and add clusters into the extent b-tree.
4730  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4731  * The extent b-tree's root is specified by et, and
4732  * it is not limited to the file storage. Any extent tree can use this
4733  * function if it implements the proper ocfs2_extent_tree.
4734  */
4735 int ocfs2_add_clusters_in_btree(handle_t *handle,
4736  struct ocfs2_extent_tree *et,
4737  u32 *logical_offset,
4738  u32 clusters_to_add,
4739  int mark_unwritten,
4740  struct ocfs2_alloc_context *data_ac,
4741  struct ocfs2_alloc_context *meta_ac,
4742  enum ocfs2_alloc_restarted *reason_ret)
4743 {
4744  int status = 0, err = 0;
4745  int free_extents;
4747  u32 bit_off, num_bits;
4748  u64 block;
4749  u8 flags = 0;
4750  struct ocfs2_super *osb =
4752 
4753  BUG_ON(!clusters_to_add);
4754 
4755  if (mark_unwritten)
4756  flags = OCFS2_EXT_UNWRITTEN;
4757 
4758  free_extents = ocfs2_num_free_extents(osb, et);
4759  if (free_extents < 0) {
4760  status = free_extents;
4761  mlog_errno(status);
4762  goto leave;
4763  }
4764 
4765  /* there are two cases which could cause us to EAGAIN in the
4766  * we-need-more-metadata case:
4767  * 1) we haven't reserved *any*
4768  * 2) we are so fragmented, we've needed to add metadata too
4769  * many times. */
4770  if (!free_extents && !meta_ac) {
4771  err = -1;
4772  status = -EAGAIN;
4773  reason = RESTART_META;
4774  goto leave;
4775  } else if ((!free_extents)
4776  && (ocfs2_alloc_context_bits_left(meta_ac)
4777  < ocfs2_extend_meta_needed(et->et_root_el))) {
4778  err = -2;
4779  status = -EAGAIN;
4780  reason = RESTART_META;
4781  goto leave;
4782  }
4783 
4784  status = __ocfs2_claim_clusters(handle, data_ac, 1,
4785  clusters_to_add, &bit_off, &num_bits);
4786  if (status < 0) {
4787  if (status != -ENOSPC)
4788  mlog_errno(status);
4789  goto leave;
4790  }
4791 
4792  BUG_ON(num_bits > clusters_to_add);
4793 
4794  /* reserve our write early -- insert_extent may update the tree root */
4795  status = ocfs2_et_root_journal_access(handle, et,
4797  if (status < 0) {
4798  mlog_errno(status);
4799  goto leave;
4800  }
4801 
4802  block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4803  trace_ocfs2_add_clusters_in_btree(
4804  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4805  bit_off, num_bits);
4806  status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4807  num_bits, flags, meta_ac);
4808  if (status < 0) {
4809  mlog_errno(status);
4810  goto leave;
4811  }
4812 
4813  ocfs2_journal_dirty(handle, et->et_root_bh);
4814 
4815  clusters_to_add -= num_bits;
4816  *logical_offset += num_bits;
4817 
4818  if (clusters_to_add) {
4819  err = clusters_to_add;
4820  status = -EAGAIN;
4821  reason = RESTART_TRANS;
4822  }
4823 
4824 leave:
4825  if (reason_ret)
4826  *reason_ret = reason;
4827  trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4828  return status;
4829 }
4830 
4831 static void ocfs2_make_right_split_rec(struct super_block *sb,
4832  struct ocfs2_extent_rec *split_rec,
4833  u32 cpos,
4834  struct ocfs2_extent_rec *rec)
4835 {
4836  u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4837  u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4838 
4839  memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4840 
4841  split_rec->e_cpos = cpu_to_le32(cpos);
4842  split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4843 
4844  split_rec->e_blkno = rec->e_blkno;
4845  le64_add_cpu(&split_rec->e_blkno,
4846  ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4847 
4848  split_rec->e_flags = rec->e_flags;
4849 }
4850 
4851 static int ocfs2_split_and_insert(handle_t *handle,
4852  struct ocfs2_extent_tree *et,
4853  struct ocfs2_path *path,
4854  struct buffer_head **last_eb_bh,
4855  int split_index,
4856  struct ocfs2_extent_rec *orig_split_rec,
4857  struct ocfs2_alloc_context *meta_ac)
4858 {
4859  int ret = 0, depth;
4860  unsigned int insert_range, rec_range, do_leftright = 0;
4861  struct ocfs2_extent_rec tmprec;
4862  struct ocfs2_extent_list *rightmost_el;
4863  struct ocfs2_extent_rec rec;
4864  struct ocfs2_extent_rec split_rec = *orig_split_rec;
4865  struct ocfs2_insert_type insert;
4866  struct ocfs2_extent_block *eb;
4867 
4868 leftright:
4869  /*
4870  * Store a copy of the record on the stack - it might move
4871  * around as the tree is manipulated below.
4872  */
4873  rec = path_leaf_el(path)->l_recs[split_index];
4874 
4875  rightmost_el = et->et_root_el;
4876 
4877  depth = le16_to_cpu(rightmost_el->l_tree_depth);
4878  if (depth) {
4879  BUG_ON(!(*last_eb_bh));
4880  eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4881  rightmost_el = &eb->h_list;
4882  }
4883 
4884  if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4885  le16_to_cpu(rightmost_el->l_count)) {
4886  ret = ocfs2_grow_tree(handle, et,
4887  &depth, last_eb_bh, meta_ac);
4888  if (ret) {
4889  mlog_errno(ret);
4890  goto out;
4891  }
4892  }
4893 
4894  memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4895  insert.ins_appending = APPEND_NONE;
4896  insert.ins_contig = CONTIG_NONE;
4897  insert.ins_tree_depth = depth;
4898 
4899  insert_range = le32_to_cpu(split_rec.e_cpos) +
4900  le16_to_cpu(split_rec.e_leaf_clusters);
4901  rec_range = le32_to_cpu(rec.e_cpos) +
4903 
4904  if (split_rec.e_cpos == rec.e_cpos) {
4905  insert.ins_split = SPLIT_LEFT;
4906  } else if (insert_range == rec_range) {
4907  insert.ins_split = SPLIT_RIGHT;
4908  } else {
4909  /*
4910  * Left/right split. We fake this as a right split
4911  * first and then make a second pass as a left split.
4912  */
4913  insert.ins_split = SPLIT_RIGHT;
4914 
4915  ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4916  &tmprec, insert_range, &rec);
4917 
4918  split_rec = tmprec;
4919 
4920  BUG_ON(do_leftright);
4921  do_leftright = 1;
4922  }
4923 
4924  ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4925  if (ret) {
4926  mlog_errno(ret);
4927  goto out;
4928  }
4929 
4930  if (do_leftright == 1) {
4931  u32 cpos;
4932  struct ocfs2_extent_list *el;
4933 
4934  do_leftright++;
4935  split_rec = *orig_split_rec;
4936 
4937  ocfs2_reinit_path(path, 1);
4938 
4939  cpos = le32_to_cpu(split_rec.e_cpos);
4940  ret = ocfs2_find_path(et->et_ci, path, cpos);
4941  if (ret) {
4942  mlog_errno(ret);
4943  goto out;
4944  }
4945 
4946  el = path_leaf_el(path);
4947  split_index = ocfs2_search_extent_list(el, cpos);
4948  goto leftright;
4949  }
4950 out:
4951 
4952  return ret;
4953 }
4954 
4955 static int ocfs2_replace_extent_rec(handle_t *handle,
4956  struct ocfs2_extent_tree *et,
4957  struct ocfs2_path *path,
4958  struct ocfs2_extent_list *el,
4959  int split_index,
4960  struct ocfs2_extent_rec *split_rec)
4961 {
4962  int ret;
4963 
4964  ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
4965  path_num_items(path) - 1);
4966  if (ret) {
4967  mlog_errno(ret);
4968  goto out;
4969  }
4970 
4971  el->l_recs[split_index] = *split_rec;
4972 
4973  ocfs2_journal_dirty(handle, path_leaf_bh(path));
4974 out:
4975  return ret;
4976 }
4977 
4978 /*
4979  * Split part or all of the extent record at split_index in the leaf
4980  * pointed to by path. Merge with the contiguous extent record if needed.
4981  *
4982  * Care is taken to handle contiguousness so as to not grow the tree.
4983  *
4984  * meta_ac is not strictly necessary - we only truly need it if growth
4985  * of the tree is required. All other cases will degrade into a less
4986  * optimal tree layout.
4987  *
4988  * last_eb_bh should be the rightmost leaf block for any extent
4989  * btree. Since a split may grow the tree or a merge might shrink it,
4990  * the caller cannot trust the contents of that buffer after this call.
4991  *
4992  * This code is optimized for readability - several passes might be
4993  * made over certain portions of the tree. All of those blocks will
4994  * have been brought into cache (and pinned via the journal), so the
4995  * extra overhead is not expressed in terms of disk reads.
4996  */
4997 int ocfs2_split_extent(handle_t *handle,
4998  struct ocfs2_extent_tree *et,
4999  struct ocfs2_path *path,
5000  int split_index,
5001  struct ocfs2_extent_rec *split_rec,
5002  struct ocfs2_alloc_context *meta_ac,
5003  struct ocfs2_cached_dealloc_ctxt *dealloc)
5004 {
5005  int ret = 0;
5006  struct ocfs2_extent_list *el = path_leaf_el(path);
5007  struct buffer_head *last_eb_bh = NULL;
5008  struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5009  struct ocfs2_merge_ctxt ctxt;
5010  struct ocfs2_extent_list *rightmost_el;
5011 
5012  if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5013  ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5014  (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5015  ret = -EIO;
5016  mlog_errno(ret);
5017  goto out;
5018  }
5019 
5020  ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el,
5021  split_index,
5022  split_rec);
5023 
5024  /*
5025  * The core merge / split code wants to know how much room is
5026  * left in this allocation tree, so we pass the
5027  * rightmost extent list.
5028  */
5029  if (path->p_tree_depth) {
5030  struct ocfs2_extent_block *eb;
5031 
5032  ret = ocfs2_read_extent_block(et->et_ci,
5033  ocfs2_et_get_last_eb_blk(et),
5034  &last_eb_bh);
5035  if (ret) {
5036  mlog_errno(ret);
5037  goto out;
5038  }
5039 
5040  eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5041  rightmost_el = &eb->h_list;
5042  } else
5043  rightmost_el = path_root_el(path);
5044 
5045  if (rec->e_cpos == split_rec->e_cpos &&
5046  rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5047  ctxt.c_split_covers_rec = 1;
5048  else
5049  ctxt.c_split_covers_rec = 0;
5050 
5051  ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5052 
5053  trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5054  ctxt.c_has_empty_extent,
5055  ctxt.c_split_covers_rec);
5056 
5057  if (ctxt.c_contig_type == CONTIG_NONE) {
5058  if (ctxt.c_split_covers_rec)
5059  ret = ocfs2_replace_extent_rec(handle, et, path, el,
5060  split_index, split_rec);
5061  else
5062  ret = ocfs2_split_and_insert(handle, et, path,
5063  &last_eb_bh, split_index,
5064  split_rec, meta_ac);
5065  if (ret)
5066  mlog_errno(ret);
5067  } else {
5068  ret = ocfs2_try_to_merge_extent(handle, et, path,
5069  split_index, split_rec,
5070  dealloc, &ctxt);
5071  if (ret)
5072  mlog_errno(ret);
5073  }
5074 
5075 out:
5076  brelse(last_eb_bh);
5077  return ret;
5078 }
5079 
5080 /*
5081  * Change the flags of the already-existing extent at cpos for len clusters.
5082  *
5083  * new_flags: the flags we want to set.
5084  * clear_flags: the flags we want to clear.
5085  * phys: the new physical offset we want this new extent starts from.
5086  *
5087  * If the existing extent is larger than the request, initiate a
5088  * split. An attempt will be made at merging with adjacent extents.
5089  *
5090  * The caller is responsible for passing down meta_ac if we'll need it.
5091  */
5092 int ocfs2_change_extent_flag(handle_t *handle,
5093  struct ocfs2_extent_tree *et,
5094  u32 cpos, u32 len, u32 phys,
5095  struct ocfs2_alloc_context *meta_ac,
5096  struct ocfs2_cached_dealloc_ctxt *dealloc,
5097  int new_flags, int clear_flags)
5098 {
5099  int ret, index;
5101  u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5102  struct ocfs2_extent_rec split_rec;
5103  struct ocfs2_path *left_path = NULL;
5104  struct ocfs2_extent_list *el;
5105  struct ocfs2_extent_rec *rec;
5106 
5107  left_path = ocfs2_new_path_from_et(et);
5108  if (!left_path) {
5109  ret = -ENOMEM;
5110  mlog_errno(ret);
5111  goto out;
5112  }
5113 
5114  ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5115  if (ret) {
5116  mlog_errno(ret);
5117  goto out;
5118  }
5119  el = path_leaf_el(left_path);
5120 
5121  index = ocfs2_search_extent_list(el, cpos);
5122  if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5123  ocfs2_error(sb,
5124  "Owner %llu has an extent at cpos %u which can no "
5125  "longer be found.\n",
5126  (unsigned long long)
5127  ocfs2_metadata_cache_owner(et->et_ci), cpos);
5128  ret = -EROFS;
5129  goto out;
5130  }
5131 
5132  ret = -EIO;
5133  rec = &el->l_recs[index];
5134  if (new_flags && (rec->e_flags & new_flags)) {
5135  mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5136  "extent that already had them",
5137  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5138  new_flags);
5139  goto out;
5140  }
5141 
5142  if (clear_flags && !(rec->e_flags & clear_flags)) {
5143  mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5144  "extent that didn't have them",
5145  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5146  clear_flags);
5147  goto out;
5148  }
5149 
5150  memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5151  split_rec.e_cpos = cpu_to_le32(cpos);
5152  split_rec.e_leaf_clusters = cpu_to_le16(len);
5153  split_rec.e_blkno = cpu_to_le64(start_blkno);
5154  split_rec.e_flags = rec->e_flags;
5155  if (new_flags)
5156  split_rec.e_flags |= new_flags;
5157  if (clear_flags)
5158  split_rec.e_flags &= ~clear_flags;
5159 
5160  ret = ocfs2_split_extent(handle, et, left_path,
5161  index, &split_rec, meta_ac,
5162  dealloc);
5163  if (ret)
5164  mlog_errno(ret);
5165 
5166 out:
5167  ocfs2_free_path(left_path);
5168  return ret;
5169 
5170 }
5171 
5172 /*
5173  * Mark the already-existing extent at cpos as written for len clusters.
5174  * This removes the unwritten extent flag.
5175  *
5176  * If the existing extent is larger than the request, initiate a
5177  * split. An attempt will be made at merging with adjacent extents.
5178  *
5179  * The caller is responsible for passing down meta_ac if we'll need it.
5180  */
5182  struct ocfs2_extent_tree *et,
5183  handle_t *handle, u32 cpos, u32 len, u32 phys,
5184  struct ocfs2_alloc_context *meta_ac,
5185  struct ocfs2_cached_dealloc_ctxt *dealloc)
5186 {
5187  int ret;
5188 
5189  trace_ocfs2_mark_extent_written(
5190  (unsigned long long)OCFS2_I(inode)->ip_blkno,
5191  cpos, len, phys);
5192 
5193  if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5194  ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5195  "that are being written to, but the feature bit "
5196  "is not set in the super block.",
5197  (unsigned long long)OCFS2_I(inode)->ip_blkno);
5198  ret = -EROFS;
5199  goto out;
5200  }
5201 
5202  /*
5203  * XXX: This should be fixed up so that we just re-insert the
5204  * next extent records.
5205  */
5206  ocfs2_et_extent_map_truncate(et, 0);
5207 
5208  ret = ocfs2_change_extent_flag(handle, et, cpos,
5209  len, phys, meta_ac, dealloc,
5210  0, OCFS2_EXT_UNWRITTEN);
5211  if (ret)
5212  mlog_errno(ret);
5213 
5214 out:
5215  return ret;
5216 }
5217 
5218 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5219  struct ocfs2_path *path,
5220  int index, u32 new_range,
5221  struct ocfs2_alloc_context *meta_ac)
5222 {
5223  int ret, depth, credits;
5224  struct buffer_head *last_eb_bh = NULL;
5225  struct ocfs2_extent_block *eb;
5226  struct ocfs2_extent_list *rightmost_el, *el;
5227  struct ocfs2_extent_rec split_rec;
5228  struct ocfs2_extent_rec *rec;
5229  struct ocfs2_insert_type insert;
5230 
5231  /*
5232  * Setup the record to split before we grow the tree.
5233  */
5234  el = path_leaf_el(path);
5235  rec = &el->l_recs[index];
5236  ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5237  &split_rec, new_range, rec);
5238 
5239  depth = path->p_tree_depth;
5240  if (depth > 0) {
5241  ret = ocfs2_read_extent_block(et->et_ci,
5242  ocfs2_et_get_last_eb_blk(et),
5243  &last_eb_bh);
5244  if (ret < 0) {
5245  mlog_errno(ret);
5246  goto out;
5247  }
5248 
5249  eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5250  rightmost_el = &eb->h_list;
5251  } else
5252  rightmost_el = path_leaf_el(path);
5253 
5254  credits = path->p_tree_depth +
5255  ocfs2_extend_meta_needed(et->et_root_el);
5256  ret = ocfs2_extend_trans(handle, credits);
5257  if (ret) {
5258  mlog_errno(ret);
5259  goto out;
5260  }
5261 
5262  if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5263  le16_to_cpu(rightmost_el->l_count)) {
5264  ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5265  meta_ac);
5266  if (ret) {
5267  mlog_errno(ret);
5268  goto out;
5269  }
5270  }
5271 
5272  memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5273  insert.ins_appending = APPEND_NONE;
5274  insert.ins_contig = CONTIG_NONE;
5275  insert.ins_split = SPLIT_RIGHT;
5276  insert.ins_tree_depth = depth;
5277 
5278  ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5279  if (ret)
5280  mlog_errno(ret);
5281 
5282 out:
5283  brelse(last_eb_bh);
5284  return ret;
5285 }
5286 
5287 static int ocfs2_truncate_rec(handle_t *handle,
5288  struct ocfs2_extent_tree *et,
5289  struct ocfs2_path *path, int index,
5290  struct ocfs2_cached_dealloc_ctxt *dealloc,
5291  u32 cpos, u32 len)
5292 {
5293  int ret;
5294  u32 left_cpos, rec_range, trunc_range;
5295  int wants_rotate = 0, is_rightmost_tree_rec = 0;
5297  struct ocfs2_path *left_path = NULL;
5298  struct ocfs2_extent_list *el = path_leaf_el(path);
5299  struct ocfs2_extent_rec *rec;
5300  struct ocfs2_extent_block *eb;
5301 
5302  if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5303  ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5304  if (ret) {
5305  mlog_errno(ret);
5306  goto out;
5307  }
5308 
5309  index--;
5310  }
5311 
5312  if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5313  path->p_tree_depth) {
5314  /*
5315  * Check whether this is the rightmost tree record. If
5316  * we remove all of this record or part of its right
5317  * edge then an update of the record lengths above it
5318  * will be required.
5319  */
5320  eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5321  if (eb->h_next_leaf_blk == 0)
5322  is_rightmost_tree_rec = 1;
5323  }
5324 
5325  rec = &el->l_recs[index];
5326  if (index == 0 && path->p_tree_depth &&
5327  le32_to_cpu(rec->e_cpos) == cpos) {
5328  /*
5329  * Changing the leftmost offset (via partial or whole
5330  * record truncate) of an interior (or rightmost) path
5331  * means we have to update the subtree that is formed
5332  * by this leaf and the one to it's left.
5333  *
5334  * There are two cases we can skip:
5335  * 1) Path is the leftmost one in our btree.
5336  * 2) The leaf is rightmost and will be empty after
5337  * we remove the extent record - the rotate code
5338  * knows how to update the newly formed edge.
5339  */
5340 
5341  ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5342  if (ret) {
5343  mlog_errno(ret);
5344  goto out;
5345  }
5346 
5347  if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5348  left_path = ocfs2_new_path_from_path(path);
5349  if (!left_path) {
5350  ret = -ENOMEM;
5351  mlog_errno(ret);
5352  goto out;
5353  }
5354 
5355  ret = ocfs2_find_path(et->et_ci, left_path,
5356  left_cpos);
5357  if (ret) {
5358  mlog_errno(ret);
5359  goto out;
5360  }
5361  }
5362  }
5363 
5364  ret = ocfs2_extend_rotate_transaction(handle, 0,
5365  handle->h_buffer_credits,
5366  path);
5367  if (ret) {
5368  mlog_errno(ret);
5369  goto out;
5370  }
5371 
5372  ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5373  if (ret) {
5374  mlog_errno(ret);
5375  goto out;
5376  }
5377 
5378  ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5379  if (ret) {
5380  mlog_errno(ret);
5381  goto out;
5382  }
5383 
5384  rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5385  trunc_range = cpos + len;
5386 
5387  if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5388  int next_free;
5389 
5390  memset(rec, 0, sizeof(*rec));
5391  ocfs2_cleanup_merge(el, index);
5392  wants_rotate = 1;
5393 
5394  next_free = le16_to_cpu(el->l_next_free_rec);
5395  if (is_rightmost_tree_rec && next_free > 1) {
5396  /*
5397  * We skip the edge update if this path will
5398  * be deleted by the rotate code.
5399  */
5400  rec = &el->l_recs[next_free - 1];
5401  ocfs2_adjust_rightmost_records(handle, et, path,
5402  rec);
5403  }
5404  } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5405  /* Remove leftmost portion of the record. */
5406  le32_add_cpu(&rec->e_cpos, len);
5407  le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5408  le16_add_cpu(&rec->e_leaf_clusters, -len);
5409  } else if (rec_range == trunc_range) {
5410  /* Remove rightmost portion of the record */
5411  le16_add_cpu(&rec->e_leaf_clusters, -len);
5412  if (is_rightmost_tree_rec)
5413  ocfs2_adjust_rightmost_records(handle, et, path, rec);
5414  } else {
5415  /* Caller should have trapped this. */
5416  mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5417  "(%u, %u)\n",
5418  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5419  le32_to_cpu(rec->e_cpos),
5420  le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5421  BUG();
5422  }
5423 
5424  if (left_path) {
5425  int subtree_index;
5426 
5427  subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5428  ocfs2_complete_edge_insert(handle, left_path, path,
5429  subtree_index);
5430  }
5431 
5432  ocfs2_journal_dirty(handle, path_leaf_bh(path));
5433 
5434  ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5435  if (ret) {
5436  mlog_errno(ret);
5437  goto out;
5438  }
5439 
5440 out:
5441  ocfs2_free_path(left_path);
5442  return ret;
5443 }
5444 
5445 int ocfs2_remove_extent(handle_t *handle,
5446  struct ocfs2_extent_tree *et,
5447  u32 cpos, u32 len,
5448  struct ocfs2_alloc_context *meta_ac,
5449  struct ocfs2_cached_dealloc_ctxt *dealloc)
5450 {
5451  int ret, index;
5452  u32 rec_range, trunc_range;
5453  struct ocfs2_extent_rec *rec;
5454  struct ocfs2_extent_list *el;
5455  struct ocfs2_path *path = NULL;
5456 
5457  /*
5458  * XXX: Why are we truncating to 0 instead of wherever this
5459  * affects us?
5460  */
5461  ocfs2_et_extent_map_truncate(et, 0);
5462 
5463  path = ocfs2_new_path_from_et(et);
5464  if (!path) {
5465  ret = -ENOMEM;
5466  mlog_errno(ret);
5467  goto out;
5468  }
5469 
5470  ret = ocfs2_find_path(et->et_ci, path, cpos);
5471  if (ret) {
5472  mlog_errno(ret);
5473  goto out;
5474  }
5475 
5476  el = path_leaf_el(path);
5477  index = ocfs2_search_extent_list(el, cpos);
5478  if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5480  "Owner %llu has an extent at cpos %u which can no "
5481  "longer be found.\n",
5482  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5483  cpos);
5484  ret = -EROFS;
5485  goto out;
5486  }
5487 
5488  /*
5489  * We have 3 cases of extent removal:
5490  * 1) Range covers the entire extent rec
5491  * 2) Range begins or ends on one edge of the extent rec
5492  * 3) Range is in the middle of the extent rec (no shared edges)
5493  *
5494  * For case 1 we remove the extent rec and left rotate to
5495  * fill the hole.
5496  *
5497  * For case 2 we just shrink the existing extent rec, with a
5498  * tree update if the shrinking edge is also the edge of an
5499  * extent block.
5500  *
5501  * For case 3 we do a right split to turn the extent rec into
5502  * something case 2 can handle.
5503  */
5504  rec = &el->l_recs[index];
5505  rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5506  trunc_range = cpos + len;
5507 
5508  BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5509 
5510  trace_ocfs2_remove_extent(
5511  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5512  cpos, len, index, le32_to_cpu(rec->e_cpos),
5513  ocfs2_rec_clusters(el, rec));
5514 
5515  if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5516  ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5517  cpos, len);
5518  if (ret) {
5519  mlog_errno(ret);
5520  goto out;
5521  }
5522  } else {
5523  ret = ocfs2_split_tree(handle, et, path, index,
5524  trunc_range, meta_ac);
5525  if (ret) {
5526  mlog_errno(ret);
5527  goto out;
5528  }
5529 
5530  /*
5531  * The split could have manipulated the tree enough to
5532  * move the record location, so we have to look for it again.
5533  */
5534  ocfs2_reinit_path(path, 1);
5535 
5536  ret = ocfs2_find_path(et->et_ci, path, cpos);
5537  if (ret) {
5538  mlog_errno(ret);
5539  goto out;
5540  }
5541 
5542  el = path_leaf_el(path);
5543  index = ocfs2_search_extent_list(el, cpos);
5544  if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5546  "Owner %llu: split at cpos %u lost record.",
5547  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5548  cpos);
5549  ret = -EROFS;
5550  goto out;
5551  }
5552 
5553  /*
5554  * Double check our values here. If anything is fishy,
5555  * it's easier to catch it at the top level.
5556  */
5557  rec = &el->l_recs[index];
5558  rec_range = le32_to_cpu(rec->e_cpos) +
5559  ocfs2_rec_clusters(el, rec);
5560  if (rec_range != trunc_range) {
5562  "Owner %llu: error after split at cpos %u"
5563  "trunc len %u, existing record is (%u,%u)",
5564  (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5565  cpos, len, le32_to_cpu(rec->e_cpos),
5566  ocfs2_rec_clusters(el, rec));
5567  ret = -EROFS;
5568  goto out;
5569  }
5570 
5571  ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5572  cpos, len);
5573  if (ret) {
5574  mlog_errno(ret);
5575  goto out;
5576  }
5577  }
5578 
5579 out:
5580  ocfs2_free_path(path);
5581  return ret;
5582 }
5583 
5584 /*
5585  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5586  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5587  * number to reserve some extra blocks, and it only handles meta
5588  * data allocations.
5589  *
5590  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5591  * and punching holes.
5592  */
5593 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5594  struct ocfs2_extent_tree *et,
5595  u32 extents_to_split,
5596  struct ocfs2_alloc_context **ac,
5597  int extra_blocks)
5598 {
5599  int ret = 0, num_free_extents;
5600  unsigned int max_recs_needed = 2 * extents_to_split;
5601  struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5602 
5603  *ac = NULL;
5604 
5605  num_free_extents = ocfs2_num_free_extents(osb, et);
5606  if (num_free_extents < 0) {
5607  ret = num_free_extents;
5608  mlog_errno(ret);
5609  goto out;
5610  }
5611 
5612  if (!num_free_extents ||
5613  (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5614  extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5615 
5616  if (extra_blocks) {
5617  ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5618  if (ret < 0) {
5619  if (ret != -ENOSPC)
5620  mlog_errno(ret);
5621  goto out;
5622  }
5623  }
5624 
5625 out:
5626  if (ret) {
5627  if (*ac) {
5629  *ac = NULL;
5630  }
5631  }
5632 
5633  return ret;
5634 }
5635 
5636 int ocfs2_remove_btree_range(struct inode *inode,
5637  struct ocfs2_extent_tree *et,
5638  u32 cpos, u32 phys_cpos, u32 len, int flags,
5639  struct ocfs2_cached_dealloc_ctxt *dealloc,
5640  u64 refcount_loc)
5641 {
5642  int ret, credits = 0, extra_blocks = 0;
5643  u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5644  struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5645  struct inode *tl_inode = osb->osb_tl_inode;
5646  handle_t *handle;
5647  struct ocfs2_alloc_context *meta_ac = NULL;
5648  struct ocfs2_refcount_tree *ref_tree = NULL;
5649 
5650  if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5651  BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
5653 
5654  ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5655  &ref_tree, NULL);
5656  if (ret) {
5657  mlog_errno(ret);
5658  goto out;
5659  }
5660 
5662  refcount_loc,
5663  phys_blkno,
5664  len,
5665  &credits,
5666  &extra_blocks);
5667  if (ret < 0) {
5668  mlog_errno(ret);
5669  goto out;
5670  }
5671  }
5672 
5673  ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5674  extra_blocks);
5675  if (ret) {
5676  mlog_errno(ret);
5677  return ret;
5678  }
5679 
5680  mutex_lock(&tl_inode->i_mutex);
5681 
5682  if (ocfs2_truncate_log_needs_flush(osb)) {
5683  ret = __ocfs2_flush_truncate_log(osb);
5684  if (ret < 0) {
5685  mlog_errno(ret);
5686  goto out;
5687  }
5688  }
5689 
5690  handle = ocfs2_start_trans(osb,
5691  ocfs2_remove_extent_credits(osb->sb) + credits);
5692  if (IS_ERR(handle)) {
5693  ret = PTR_ERR(handle);
5694  mlog_errno(ret);
5695  goto out;
5696  }
5697 
5698  ret = ocfs2_et_root_journal_access(handle, et,
5700  if (ret) {
5701  mlog_errno(ret);
5702  goto out_commit;
5703  }
5704 
5705  dquot_free_space_nodirty(inode,
5706  ocfs2_clusters_to_bytes(inode->i_sb, len));
5707 
5708  ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5709  if (ret) {
5710  mlog_errno(ret);
5711  goto out_commit;
5712  }
5713 
5714  ocfs2_et_update_clusters(et, -len);
5715 
5716  ocfs2_journal_dirty(handle, et->et_root_bh);
5717 
5718  if (phys_blkno) {
5719  if (flags & OCFS2_EXT_REFCOUNTED)
5720  ret = ocfs2_decrease_refcount(inode, handle,
5721  ocfs2_blocks_to_clusters(osb->sb,
5722  phys_blkno),
5723  len, meta_ac,
5724  dealloc, 1);
5725  else
5726  ret = ocfs2_truncate_log_append(osb, handle,
5727  phys_blkno, len);
5728  if (ret)
5729  mlog_errno(ret);
5730 
5731  }
5732 
5733 out_commit:
5734  ocfs2_commit_trans(osb, handle);
5735 out:
5736  mutex_unlock(&tl_inode->i_mutex);
5737 
5738  if (meta_ac)
5739  ocfs2_free_alloc_context(meta_ac);
5740 
5741  if (ref_tree)
5742  ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5743 
5744  return ret;
5745 }
5746 
5748 {
5749  struct buffer_head *tl_bh = osb->osb_tl_bh;
5750  struct ocfs2_dinode *di;
5751  struct ocfs2_truncate_log *tl;
5752 
5753  di = (struct ocfs2_dinode *) tl_bh->b_data;
5754  tl = &di->id2.i_dealloc;
5755 
5757  "slot %d, invalid truncate log parameters: used = "
5758  "%u, count = %u\n", osb->slot_num,
5760  return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5761 }
5762 
5763 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5764  unsigned int new_start)
5765 {
5766  unsigned int tail_index;
5767  unsigned int current_tail;
5768 
5769  /* No records, nothing to coalesce */
5770  if (!le16_to_cpu(tl->tl_used))
5771  return 0;
5772 
5773  tail_index = le16_to_cpu(tl->tl_used) - 1;
5774  current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5775  current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5776 
5777  return current_tail == new_start;
5778 }
5779 
5781  handle_t *handle,
5782  u64 start_blk,
5783  unsigned int num_clusters)
5784 {
5785  int status, index;
5786  unsigned int start_cluster, tl_count;
5787  struct inode *tl_inode = osb->osb_tl_inode;
5788  struct buffer_head *tl_bh = osb->osb_tl_bh;
5789  struct ocfs2_dinode *di;
5790  struct ocfs2_truncate_log *tl;
5791 
5792  BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5793 
5794  start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5795 
5796  di = (struct ocfs2_dinode *) tl_bh->b_data;
5797 
5798  /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5799  * by the underlying call to ocfs2_read_inode_block(), so any
5800  * corruption is a code bug */
5802 
5803  tl = &di->id2.i_dealloc;
5804  tl_count = le16_to_cpu(tl->tl_count);
5805  mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5806  tl_count == 0,
5807  "Truncate record count on #%llu invalid "
5808  "wanted %u, actual %u\n",
5809  (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5810  ocfs2_truncate_recs_per_inode(osb->sb),
5811  le16_to_cpu(tl->tl_count));
5812 
5813  /* Caller should have known to flush before calling us. */
5814  index = le16_to_cpu(tl->tl_used);
5815  if (index >= tl_count) {
5816  status = -ENOSPC;
5817  mlog_errno(status);
5818  goto bail;
5819  }
5820 
5821  status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5823  if (status < 0) {
5824  mlog_errno(status);
5825  goto bail;
5826  }
5827 
5828  trace_ocfs2_truncate_log_append(
5829  (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5830  start_cluster, num_clusters);
5831  if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5832  /*
5833  * Move index back to the record we are coalescing with.
5834  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5835  */
5836  index--;
5837 
5838  num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5839  trace_ocfs2_truncate_log_append(
5840  (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5841  index, le32_to_cpu(tl->tl_recs[index].t_start),
5842  num_clusters);
5843  } else {
5844  tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5845  tl->tl_used = cpu_to_le16(index + 1);
5846  }
5847  tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5848 
5849  ocfs2_journal_dirty(handle, tl_bh);
5850 
5851  osb->truncated_clusters += num_clusters;
5852 bail:
5853  return status;
5854 }
5855 
5856 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5857  handle_t *handle,
5858  struct inode *data_alloc_inode,
5859  struct buffer_head *data_alloc_bh)
5860 {
5861  int status = 0;
5862  int i;
5863  unsigned int num_clusters;
5864  u64 start_blk;
5865  struct ocfs2_truncate_rec rec;
5866  struct ocfs2_dinode *di;
5867  struct ocfs2_truncate_log *tl;
5868  struct inode *tl_inode = osb->osb_tl_inode;
5869  struct buffer_head *tl_bh = osb->osb_tl_bh;
5870 
5871  di = (struct ocfs2_dinode *) tl_bh->b_data;
5872  tl = &di->id2.i_dealloc;
5873  i = le16_to_cpu(tl->tl_used) - 1;
5874  while (i >= 0) {
5875  /* Caller has given us at least enough credits to
5876  * update the truncate log dinode */
5877  status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5879  if (status < 0) {
5880  mlog_errno(status);
5881  goto bail;
5882  }
5883 
5884  tl->tl_used = cpu_to_le16(i);
5885 
5886  ocfs2_journal_dirty(handle, tl_bh);
5887 
5888  /* TODO: Perhaps we can calculate the bulk of the
5889  * credits up front rather than extending like
5890  * this. */
5891  status = ocfs2_extend_trans(handle,
5893  if (status < 0) {
5894  mlog_errno(status);
5895  goto bail;
5896  }
5897 
5898  rec = tl->tl_recs[i];
5899  start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5900  le32_to_cpu(rec.t_start));
5901  num_clusters = le32_to_cpu(rec.t_clusters);
5902 
5903  /* if start_blk is not set, we ignore the record as
5904  * invalid. */
5905  if (start_blk) {
5906  trace_ocfs2_replay_truncate_records(
5907  (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5908  i, le32_to_cpu(rec.t_start), num_clusters);
5909 
5910  status = ocfs2_free_clusters(handle, data_alloc_inode,
5911  data_alloc_bh, start_blk,
5912  num_clusters);
5913  if (status < 0) {
5914  mlog_errno(status);
5915  goto bail;
5916  }
5917  }
5918  i--;
5919  }
5920 
5921  osb->truncated_clusters = 0;
5922 
5923 bail:
5924  return status;
5925 }
5926 
5927 /* Expects you to already be holding tl_inode->i_mutex */
5929 {
5930  int status;
5931  unsigned int num_to_flush;
5932  handle_t *handle;
5933  struct inode *tl_inode = osb->osb_tl_inode;
5934  struct inode *data_alloc_inode = NULL;
5935  struct buffer_head *tl_bh = osb->osb_tl_bh;
5936  struct buffer_head *data_alloc_bh = NULL;
5937  struct ocfs2_dinode *di;
5938  struct ocfs2_truncate_log *tl;
5939 
5940  BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5941 
5942  di = (struct ocfs2_dinode *) tl_bh->b_data;
5943 
5944  /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5945  * by the underlying call to ocfs2_read_inode_block(), so any
5946  * corruption is a code bug */
5948 
5949  tl = &di->id2.i_dealloc;
5950  num_to_flush = le16_to_cpu(tl->tl_used);
5951  trace_ocfs2_flush_truncate_log(
5952  (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5953  num_to_flush);
5954  if (!num_to_flush) {
5955  status = 0;
5956  goto out;
5957  }
5958 
5959  data_alloc_inode = ocfs2_get_system_file_inode(osb,
5962  if (!data_alloc_inode) {
5963  status = -EINVAL;
5964  mlog(ML_ERROR, "Could not get bitmap inode!\n");
5965  goto out;
5966  }
5967 
5968  mutex_lock(&data_alloc_inode->i_mutex);
5969 
5970  status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5971  if (status < 0) {
5972  mlog_errno(status);
5973  goto out_mutex;
5974  }
5975 
5977  if (IS_ERR(handle)) {
5978  status = PTR_ERR(handle);
5979  mlog_errno(status);
5980  goto out_unlock;
5981  }
5982 
5983  status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5984  data_alloc_bh);
5985  if (status < 0)
5986  mlog_errno(status);
5987 
5988  ocfs2_commit_trans(osb, handle);
5989 
5990 out_unlock:
5991  brelse(data_alloc_bh);
5992  ocfs2_inode_unlock(data_alloc_inode, 1);
5993 
5994 out_mutex:
5995  mutex_unlock(&data_alloc_inode->i_mutex);
5996  iput(data_alloc_inode);
5997 
5998 out:
5999  return status;
6000 }
6001 
6003 {
6004  int status;
6005  struct inode *tl_inode = osb->osb_tl_inode;
6006 
6007  mutex_lock(&tl_inode->i_mutex);
6008  status = __ocfs2_flush_truncate_log(osb);
6009  mutex_unlock(&tl_inode->i_mutex);
6010 
6011  return status;
6012 }
6013 
6014 static void ocfs2_truncate_log_worker(struct work_struct *work)
6015 {
6016  int status;
6017  struct ocfs2_super *osb =
6018  container_of(work, struct ocfs2_super,
6019  osb_truncate_log_wq.work);
6020 
6021  status = ocfs2_flush_truncate_log(osb);
6022  if (status < 0)
6023  mlog_errno(status);
6024  else
6026 }
6027 
6028 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6030  int cancel)
6031 {
6032  if (osb->osb_tl_inode) {
6033  /* We want to push off log flushes while truncates are
6034  * still running. */
6035  if (cancel)
6037 
6040  }
6041 }
6042 
6043 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6044  int slot_num,
6045  struct inode **tl_inode,
6046  struct buffer_head **tl_bh)
6047 {
6048  int status;
6049  struct inode *inode = NULL;
6050  struct buffer_head *bh = NULL;
6051 
6052  inode = ocfs2_get_system_file_inode(osb,
6054  slot_num);
6055  if (!inode) {
6056  status = -EINVAL;
6057  mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6058  goto bail;
6059  }
6060 
6061  status = ocfs2_read_inode_block(inode, &bh);
6062  if (status < 0) {
6063  iput(inode);
6064  mlog_errno(status);
6065  goto bail;
6066  }
6067 
6068  *tl_inode = inode;
6069  *tl_bh = bh;
6070 bail:
6071  return status;
6072 }
6073 
6074 /* called during the 1st stage of node recovery. we stamp a clean
6075  * truncate log and pass back a copy for processing later. if the
6076  * truncate log does not require processing, a *tl_copy is set to
6077  * NULL. */
6079  int slot_num,
6080  struct ocfs2_dinode **tl_copy)
6081 {
6082  int status;
6083  struct inode *tl_inode = NULL;
6084  struct buffer_head *tl_bh = NULL;
6085  struct ocfs2_dinode *di;
6086  struct ocfs2_truncate_log *tl;
6087 
6088  *tl_copy = NULL;
6089 
6090  trace_ocfs2_begin_truncate_log_recovery(slot_num);
6091 
6092  status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6093  if (status < 0) {
6094  mlog_errno(status);
6095  goto bail;
6096  }
6097 
6098  di = (struct ocfs2_dinode *) tl_bh->b_data;
6099 
6100  /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6101  * validated by the underlying call to ocfs2_read_inode_block(),
6102  * so any corruption is a code bug */
6104 
6105  tl = &di->id2.i_dealloc;
6106  if (le16_to_cpu(tl->tl_used)) {
6107  trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6108 
6109  *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6110  if (!(*tl_copy)) {
6111  status = -ENOMEM;
6112  mlog_errno(status);
6113  goto bail;
6114  }
6115 
6116  /* Assuming the write-out below goes well, this copy
6117  * will be passed back to recovery for processing. */
6118  memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6119 
6120  /* All we need to do to clear the truncate log is set
6121  * tl_used. */
6122  tl->tl_used = 0;
6123 
6124  ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6125  status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6126  if (status < 0) {
6127  mlog_errno(status);
6128  goto bail;
6129  }
6130  }
6131 
6132 bail:
6133  if (tl_inode)
6134  iput(tl_inode);
6135  brelse(tl_bh);
6136 
6137  if (status < 0 && (*tl_copy)) {
6138  kfree(*tl_copy);
6139  *tl_copy = NULL;
6140  mlog_errno(status);
6141  }
6142 
6143  return status;
6144 }
6145 
6147  struct ocfs2_dinode *tl_copy)
6148 {
6149  int status = 0;
6150  int i;
6151  unsigned int clusters, num_recs, start_cluster;
6152  u64 start_blk;
6153  handle_t *handle;
6154  struct inode *tl_inode = osb->osb_tl_inode;
6155  struct ocfs2_truncate_log *tl;
6156 
6157  if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6158  mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6159  return -EINVAL;
6160  }
6161 
6162  tl = &tl_copy->id2.i_dealloc;
6163  num_recs = le16_to_cpu(tl->tl_used);
6164  trace_ocfs2_complete_truncate_log_recovery(
6165  (unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6166  num_recs);
6167 
6168  mutex_lock(&tl_inode->i_mutex);
6169  for(i = 0; i < num_recs; i++) {
6170  if (ocfs2_truncate_log_needs_flush(osb)) {
6171  status = __ocfs2_flush_truncate_log(osb);
6172  if (status < 0) {
6173  mlog_errno(status);
6174  goto bail_up;
6175  }
6176  }
6177 
6179  if (IS_ERR(handle)) {
6180  status = PTR_ERR(handle);
6181  mlog_errno(status);
6182  goto bail_up;
6183  }
6184 
6185  clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6186  start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6187  start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6188 
6189  status = ocfs2_truncate_log_append(osb, handle,
6190  start_blk, clusters);
6191  ocfs2_commit_trans(osb, handle);
6192  if (status < 0) {
6193  mlog_errno(status);
6194  goto bail_up;
6195  }
6196  }
6197 
6198 bail_up:
6199  mutex_unlock(&tl_inode->i_mutex);
6200 
6201  return status;
6202 }
6203 
6205 {
6206  int status;
6207  struct inode *tl_inode = osb->osb_tl_inode;
6208 
6209  if (tl_inode) {
6212 
6213  status = ocfs2_flush_truncate_log(osb);
6214  if (status < 0)
6215  mlog_errno(status);
6216 
6217  brelse(osb->osb_tl_bh);
6218  iput(osb->osb_tl_inode);
6219  }
6220 }
6221 
6223 {
6224  int status;
6225  struct inode *tl_inode = NULL;
6226  struct buffer_head *tl_bh = NULL;
6227 
6228  status = ocfs2_get_truncate_log_info(osb,
6229  osb->slot_num,
6230  &tl_inode,
6231  &tl_bh);
6232  if (status < 0)
6233  mlog_errno(status);
6234 
6235  /* ocfs2_truncate_log_shutdown keys on the existence of
6236  * osb->osb_tl_inode so we don't set any of the osb variables
6237  * until we're sure all is well. */
6239  ocfs2_truncate_log_worker);
6240  osb->osb_tl_bh = tl_bh;
6241  osb->osb_tl_inode = tl_inode;
6242 
6243  return status;
6244 }
6245 
6246 /*
6247  * Delayed de-allocation of suballocator blocks.
6248  *
6249  * Some sets of block de-allocations might involve multiple suballocator inodes.
6250  *
6251  * The locking for this can get extremely complicated, especially when
6252  * the suballocator inodes to delete from aren't known until deep
6253  * within an unrelated codepath.
6254  *
6255  * ocfs2_extent_block structures are a good example of this - an inode
6256  * btree could have been grown by any number of nodes each allocating
6257  * out of their own suballoc inode.
6258  *
6259  * These structures allow the delay of block de-allocation until a
6260  * later time, when locking of multiple cluster inodes won't cause
6261  * deadlock.
6262  */
6263 
6264 /*
6265  * Describe a single bit freed from a suballocator. For the block
6266  * suballocators, it represents one block. For the global cluster
6267  * allocator, it represents some clusters and free_bit indicates
6268  * clusters number.
6269  */
6274  unsigned int free_bit;
6275 };
6276 
6280  int f_slot;
6282 };
6283 
6284 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6285  int sysfile_type,
6286  int slot,
6287  struct ocfs2_cached_block_free *head)
6288 {
6289  int ret;
6290  u64 bg_blkno;
6291  handle_t *handle;
6292  struct inode *inode;
6293  struct buffer_head *di_bh = NULL;
6294  struct ocfs2_cached_block_free *tmp;
6295 
6296  inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6297  if (!inode) {
6298  ret = -EINVAL;
6299  mlog_errno(ret);
6300  goto out;
6301  }
6302 
6303  mutex_lock(&inode->i_mutex);
6304 
6305  ret = ocfs2_inode_lock(inode, &di_bh, 1);
6306  if (ret) {
6307  mlog_errno(ret);
6308  goto out_mutex;
6309  }
6310 
6311  handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6312  if (IS_ERR(handle)) {
6313  ret = PTR_ERR(handle);
6314  mlog_errno(ret);
6315  goto out_unlock;
6316  }
6317 
6318  while (head) {
6319  if (head->free_bg)
6320  bg_blkno = head->free_bg;
6321  else
6322  bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6323  head->free_bit);
6324  trace_ocfs2_free_cached_blocks(
6325  (unsigned long long)head->free_blk, head->free_bit);
6326 
6327  ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6328  head->free_bit, bg_blkno, 1);
6329  if (ret) {
6330  mlog_errno(ret);
6331  goto out_journal;
6332  }
6333 
6334  ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6335  if (ret) {
6336  mlog_errno(ret);
6337  goto out_journal;
6338  }
6339 
6340  tmp = head;
6341  head = head->free_next;
6342  kfree(tmp);
6343  }
6344 
6345 out_journal:
6346  ocfs2_commit_trans(osb, handle);
6347 
6348 out_unlock:
6349  ocfs2_inode_unlock(inode, 1);
6350  brelse(di_bh);
6351 out_mutex:
6352  mutex_unlock(&inode->i_mutex);
6353  iput(inode);
6354 out:
6355  while(head) {
6356  /* Premature exit may have left some dangling items. */
6357  tmp = head;
6358  head = head->free_next;
6359  kfree(tmp);
6360  }
6361 
6362  return ret;
6363 }
6364 
6366  u64 blkno, unsigned int bit)
6367 {
6368  int ret = 0;
6369  struct ocfs2_cached_block_free *item;
6370 
6371  item = kzalloc(sizeof(*item), GFP_NOFS);
6372  if (item == NULL) {
6373  ret = -ENOMEM;
6374  mlog_errno(ret);
6375  return ret;
6376  }
6377 
6378  trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6379 
6380  item->free_blk = blkno;
6381  item->free_bit = bit;
6382  item->free_next = ctxt->c_global_allocator;
6383 
6384  ctxt->c_global_allocator = item;
6385  return ret;
6386 }
6387 
6388 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6389  struct ocfs2_cached_block_free *head)
6390 {
6391  struct ocfs2_cached_block_free *tmp;
6392  struct inode *tl_inode = osb->osb_tl_inode;
6393  handle_t *handle;
6394  int ret = 0;
6395 
6396  mutex_lock(&tl_inode->i_mutex);
6397 
6398  while (head) {
6399  if (ocfs2_truncate_log_needs_flush(osb)) {
6400  ret = __ocfs2_flush_truncate_log(osb);
6401  if (ret < 0) {
6402  mlog_errno(ret);
6403  break;
6404  }
6405  }
6406 
6408  if (IS_ERR(handle)) {
6409  ret = PTR_ERR(handle);
6410  mlog_errno(ret);
6411  break;
6412  }
6413 
6414  ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6415  head->free_bit);
6416 
6417  ocfs2_commit_trans(osb, handle);
6418  tmp = head;
6419  head = head->free_next;
6420  kfree(tmp);
6421 
6422  if (ret < 0) {
6423  mlog_errno(ret);
6424  break;
6425  }
6426  }
6427 
6428  mutex_unlock(&tl_inode->i_mutex);
6429 
6430  while (head) {
6431  /* Premature exit may have left some dangling items. */
6432  tmp = head;
6433  head = head->free_next;
6434  kfree(tmp);
6435  }
6436 
6437  return ret;
6438 }
6439 
6441  struct ocfs2_cached_dealloc_ctxt *ctxt)
6442 {
6443  int ret = 0, ret2;
6444  struct ocfs2_per_slot_free_list *fl;
6445 
6446  if (!ctxt)
6447  return 0;
6448 
6449  while (ctxt->c_first_suballocator) {
6450  fl = ctxt->c_first_suballocator;
6451 
6452  if (fl->f_first) {
6453  trace_ocfs2_run_deallocs(fl->f_inode_type,
6454  fl->f_slot);
6455  ret2 = ocfs2_free_cached_blocks(osb,
6456  fl->f_inode_type,
6457  fl->f_slot,
6458  fl->f_first);
6459  if (ret2)
6460  mlog_errno(ret2);
6461  if (!ret)
6462  ret = ret2;
6463  }
6464 
6466  kfree(fl);
6467  }
6468 
6469  if (ctxt->c_global_allocator) {
6470  ret2 = ocfs2_free_cached_clusters(osb,
6471  ctxt->c_global_allocator);
6472  if (ret2)
6473  mlog_errno(ret2);
6474  if (!ret)
6475  ret = ret2;
6476 
6477  ctxt->c_global_allocator = NULL;
6478  }
6479 
6480  return ret;
6481 }
6482 
6483 static struct ocfs2_per_slot_free_list *
6484 ocfs2_find_per_slot_free_list(int type,
6485  int slot,
6486  struct ocfs2_cached_dealloc_ctxt *ctxt)
6487 {
6489 
6490  while (fl) {
6491  if (fl->f_inode_type == type && fl->f_slot == slot)
6492  return fl;
6493 
6494  fl = fl->f_next_suballocator;
6495  }
6496 
6497  fl = kmalloc(sizeof(*fl), GFP_NOFS);
6498  if (fl) {
6499  fl->f_inode_type = type;
6500  fl->f_slot = slot;
6501  fl->f_first = NULL;
6503 
6504  ctxt->c_first_suballocator = fl;
6505  }
6506  return fl;
6507 }
6508 
6510  int type, int slot, u64 suballoc,
6511  u64 blkno, unsigned int bit)
6512 {
6513  int ret;
6514  struct ocfs2_per_slot_free_list *fl;
6515  struct ocfs2_cached_block_free *item;
6516 
6517  fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6518  if (fl == NULL) {
6519  ret = -ENOMEM;
6520  mlog_errno(ret);
6521  goto out;
6522  }
6523 
6524  item = kzalloc(sizeof(*item), GFP_NOFS);
6525  if (item == NULL) {
6526  ret = -ENOMEM;
6527  mlog_errno(ret);
6528  goto out;
6529  }
6530 
6531  trace_ocfs2_cache_block_dealloc(type, slot,
6532  (unsigned long long)suballoc,
6533  (unsigned long long)blkno, bit);
6534 
6535  item->free_bg = suballoc;
6536  item->free_blk = blkno;
6537  item->free_bit = bit;
6538  item->free_next = fl->f_first;
6539 
6540  fl->f_first = item;
6541 
6542  ret = 0;
6543 out:
6544  return ret;
6545 }
6546 
6547 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6548  struct ocfs2_extent_block *eb)
6549 {
6553  le64_to_cpu(eb->h_blkno),
6555 }
6556 
6557 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6558 {
6559  set_buffer_uptodate(bh);
6560  mark_buffer_dirty(bh);
6561  return 0;
6562 }
6563 
6564 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6565  unsigned int from, unsigned int to,
6566  struct page *page, int zero, u64 *phys)
6567 {
6568  int ret, partial = 0;
6569 
6570  ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6571  if (ret)
6572  mlog_errno(ret);
6573 
6574  if (zero)
6575  zero_user_segment(page, from, to);
6576 
6577  /*
6578  * Need to set the buffers we zero'd into uptodate
6579  * here if they aren't - ocfs2_map_page_blocks()
6580  * might've skipped some
6581  */
6582  ret = walk_page_buffers(handle, page_buffers(page),
6583  from, to, &partial,
6584  ocfs2_zero_func);
6585  if (ret < 0)
6586  mlog_errno(ret);
6587  else if (ocfs2_should_order_data(inode)) {
6588  ret = ocfs2_jbd2_file_inode(handle, inode);
6589  if (ret < 0)
6590  mlog_errno(ret);
6591  }
6592 
6593  if (!partial)
6594  SetPageUptodate(page);
6595 
6596  flush_dcache_page(page);
6597 }
6598 
6599 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6600  loff_t end, struct page **pages,
6601  int numpages, u64 phys, handle_t *handle)
6602 {
6603  int i;
6604  struct page *page;
6605  unsigned int from, to = PAGE_CACHE_SIZE;
6606  struct super_block *sb = inode->i_sb;
6607 
6608  BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6609 
6610  if (numpages == 0)
6611  goto out;
6612 
6613  to = PAGE_CACHE_SIZE;
6614  for(i = 0; i < numpages; i++) {
6615  page = pages[i];
6616 
6617  from = start & (PAGE_CACHE_SIZE - 1);
6618  if ((end >> PAGE_CACHE_SHIFT) == page->index)
6619  to = end & (PAGE_CACHE_SIZE - 1);
6620 
6621  BUG_ON(from > PAGE_CACHE_SIZE);
6622  BUG_ON(to > PAGE_CACHE_SIZE);
6623 
6624  ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6625  &phys);
6626 
6627  start = (page->index + 1) << PAGE_CACHE_SHIFT;
6628  }
6629 out:
6630  if (pages)
6631  ocfs2_unlock_and_free_pages(pages, numpages);
6632 }
6633 
6634 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6635  struct page **pages, int *num)
6636 {
6637  int numpages, ret = 0;
6638  struct address_space *mapping = inode->i_mapping;
6639  unsigned long index;
6640  loff_t last_page_bytes;
6641 
6642  BUG_ON(start > end);
6643 
6644  numpages = 0;
6645  last_page_bytes = PAGE_ALIGN(end);
6646  index = start >> PAGE_CACHE_SHIFT;
6647  do {
6648  pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6649  if (!pages[numpages]) {
6650  ret = -ENOMEM;
6651  mlog_errno(ret);
6652  goto out;
6653  }
6654 
6655  numpages++;
6656  index++;
6657  } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6658 
6659 out:
6660  if (ret != 0) {
6661  if (pages)
6662  ocfs2_unlock_and_free_pages(pages, numpages);
6663  numpages = 0;
6664  }
6665 
6666  *num = numpages;
6667 
6668  return ret;
6669 }
6670 
6671 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6672  struct page **pages, int *num)
6673 {
6674  struct super_block *sb = inode->i_sb;
6675 
6676  BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6677  (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6678 
6679  return ocfs2_grab_pages(inode, start, end, pages, num);
6680 }
6681 
6682 /*
6683  * Zero the area past i_size but still within an allocated
6684  * cluster. This avoids exposing nonzero data on subsequent file
6685  * extends.
6686  *
6687  * We need to call this before i_size is updated on the inode because
6688  * otherwise block_write_full_page() will skip writeout of pages past
6689  * i_size. The new_i_size parameter is passed for this reason.
6690  */
6691 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6692  u64 range_start, u64 range_end)
6693 {
6694  int ret = 0, numpages;
6695  struct page **pages = NULL;
6696  u64 phys;
6697  unsigned int ext_flags;
6698  struct super_block *sb = inode->i_sb;
6699 
6700  /*
6701  * File systems which don't support sparse files zero on every
6702  * extend.
6703  */
6704  if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6705  return 0;
6706 
6707  pages = kcalloc(ocfs2_pages_per_cluster(sb),
6708  sizeof(struct page *), GFP_NOFS);
6709  if (pages == NULL) {
6710  ret = -ENOMEM;
6711  mlog_errno(ret);
6712  goto out;
6713  }
6714 
6715  if (range_start == range_end)
6716  goto out;
6717 
6718  ret = ocfs2_extent_map_get_blocks(inode,
6719  range_start >> sb->s_blocksize_bits,
6720  &phys, NULL, &ext_flags);
6721  if (ret) {
6722  mlog_errno(ret);
6723  goto out;
6724  }
6725 
6726  /*
6727  * Tail is a hole, or is marked unwritten. In either case, we
6728  * can count on read and write to return/push zero's.
6729  */
6730  if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6731  goto out;
6732 
6733  ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6734  &numpages);
6735  if (ret) {
6736  mlog_errno(ret);
6737  goto out;
6738  }
6739 
6740  ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6741  numpages, phys, handle);
6742 
6743  /*
6744  * Initiate writeout of the pages we zero'd here. We don't
6745  * wait on them - the truncate_inode_pages() call later will
6746  * do that for us.
6747  */
6748  ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6749  range_end - 1);
6750  if (ret)
6751  mlog_errno(ret);
6752 
6753 out:
6754  if (pages)
6755  kfree(pages);
6756 
6757  return ret;
6758 }
6759 
6760 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6761  struct ocfs2_dinode *di)
6762 {
6763  unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6764  unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6765 
6767  memset(&di->id2, 0, blocksize -
6768  offsetof(struct ocfs2_dinode, id2) -
6769  xattrsize);
6770  else
6771  memset(&di->id2, 0, blocksize -
6772  offsetof(struct ocfs2_dinode, id2));
6773 }
6774 
6775 void ocfs2_dinode_new_extent_list(struct inode *inode,
6776  struct ocfs2_dinode *di)
6777 {
6778  ocfs2_zero_dinode_id2_with_xattr(inode, di);
6779  di->id2.i_list.l_tree_depth = 0;
6780  di->id2.i_list.l_next_free_rec = 0;
6781  di->id2.i_list.l_count = cpu_to_le16(
6782  ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6783 }
6784 
6785 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6786 {
6787  struct ocfs2_inode_info *oi = OCFS2_I(inode);
6788  struct ocfs2_inline_data *idata = &di->id2.i_data;
6789 
6790  spin_lock(&oi->ip_lock);
6793  spin_unlock(&oi->ip_lock);
6794 
6795  /*
6796  * We clear the entire i_data structure here so that all
6797  * fields can be properly initialized.
6798  */
6799  ocfs2_zero_dinode_id2_with_xattr(inode, di);
6800 
6801  idata->id_count = cpu_to_le16(
6802  ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6803 }
6804 
6806  struct buffer_head *di_bh)
6807 {
6808  int ret, i, has_data, num_pages = 0;
6809  handle_t *handle;
6811  struct ocfs2_inode_info *oi = OCFS2_I(inode);
6812  struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6813  struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6814  struct ocfs2_alloc_context *data_ac = NULL;
6815  struct page **pages = NULL;
6816  loff_t end = osb->s_clustersize;
6817  struct ocfs2_extent_tree et;
6818  int did_quota = 0;
6819 
6820  has_data = i_size_read(inode) ? 1 : 0;
6821 
6822  if (has_data) {
6823  pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6824  sizeof(struct page *), GFP_NOFS);
6825  if (pages == NULL) {
6826  ret = -ENOMEM;
6827  mlog_errno(ret);
6828  goto out;
6829  }
6830 
6831  ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6832  if (ret) {
6833  mlog_errno(ret);
6834  goto out;
6835  }
6836  }
6837 
6838  handle = ocfs2_start_trans(osb,
6839  ocfs2_inline_to_extents_credits(osb->sb));
6840  if (IS_ERR(handle)) {
6841  ret = PTR_ERR(handle);
6842  mlog_errno(ret);
6843  goto out_unlock;
6844  }
6845 
6846  ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6848  if (ret) {
6849  mlog_errno(ret);
6850  goto out_commit;
6851  }
6852 
6853  if (has_data) {
6854  u32 bit_off, num;
6855  unsigned int page_end;
6856  u64 phys;
6857 
6858  ret = dquot_alloc_space_nodirty(inode,
6859  ocfs2_clusters_to_bytes(osb->sb, 1));
6860  if (ret)
6861  goto out_commit;
6862  did_quota = 1;
6863 
6864  data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6865 
6866  ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6867  &num);
6868  if (ret) {
6869  mlog_errno(ret);
6870  goto out_commit;
6871  }
6872 
6873  /*
6874  * Save two copies, one for insert, and one that can
6875  * be changed by ocfs2_map_and_dirty_page() below.
6876  */
6877  block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6878 
6879  /*
6880  * Non sparse file systems zero on extend, so no need
6881  * to do that now.
6882  */
6883  if (!ocfs2_sparse_alloc(osb) &&
6884  PAGE_CACHE_SIZE < osb->s_clustersize)
6885  end = PAGE_CACHE_SIZE;
6886 
6887  ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6888  if (ret) {
6889  mlog_errno(ret);
6890  goto out_commit;
6891  }
6892 
6893  /*
6894  * This should populate the 1st page for us and mark
6895  * it up to date.
6896  */
6897  ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6898  if (ret) {
6899  mlog_errno(ret);
6900  goto out_commit;
6901  }
6902 
6903  page_end = PAGE_CACHE_SIZE;
6904  if (PAGE_CACHE_SIZE > osb->s_clustersize)
6905  page_end = osb->s_clustersize;
6906 
6907  for (i = 0; i < num_pages; i++)
6908  ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6909  pages[i], i > 0, &phys);
6910  }
6911 
6912  spin_lock(&oi->ip_lock);
6915  spin_unlock(&oi->ip_lock);
6916 
6917  ocfs2_dinode_new_extent_list(inode, di);
6918 
6919  ocfs2_journal_dirty(handle, di_bh);
6920 
6921  if (has_data) {
6922  /*
6923  * An error at this point should be extremely rare. If
6924  * this proves to be false, we could always re-build
6925  * the in-inode data from our pages.
6926  */
6927  ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
6928  ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
6929  if (ret) {
6930  mlog_errno(ret);
6931  goto out_commit;
6932  }
6933 
6934  inode->i_blocks = ocfs2_inode_sector_count(inode);
6935  }
6936 
6937 out_commit:
6938  if (ret < 0 && did_quota)
6939  dquot_free_space_nodirty(inode,
6940  ocfs2_clusters_to_bytes(osb->sb, 1));
6941 
6942  ocfs2_commit_trans(osb, handle);
6943 
6944 out_unlock:
6945  if (data_ac)
6946  ocfs2_free_alloc_context(data_ac);
6947 
6948 out:
6949  if (pages) {
6950  ocfs2_unlock_and_free_pages(pages, num_pages);
6951  kfree(pages);
6952  }
6953 
6954  return ret;
6955 }
6956 
6957 /*
6958  * It is expected, that by the time you call this function,
6959  * inode->i_size and fe->i_size have been adjusted.
6960  *
6961  * WARNING: This will kfree the truncate context
6962  */
6964  struct inode *inode,
6965  struct buffer_head *di_bh)
6966 {
6967  int status = 0, i, flags = 0;
6968  u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
6969  u64 blkno = 0;
6970  struct ocfs2_extent_list *el;
6971  struct ocfs2_extent_rec *rec;
6972  struct ocfs2_path *path = NULL;
6973  struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6974  struct ocfs2_extent_list *root_el = &(di->id2.i_list);
6975  u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
6976  struct ocfs2_extent_tree et;
6977  struct ocfs2_cached_dealloc_ctxt dealloc;
6978 
6979  ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
6980  ocfs2_init_dealloc_ctxt(&dealloc);
6981 
6982  new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6983  i_size_read(inode));
6984 
6985  path = ocfs2_new_path(di_bh, &di->id2.i_list,
6987  if (!path) {
6988  status = -ENOMEM;
6989  mlog_errno(status);
6990  goto bail;
6991  }
6992 
6993  ocfs2_extent_map_trunc(inode, new_highest_cpos);
6994 
6995 start:
6996  /*
6997  * Check that we still have allocation to delete.
6998  */
6999  if (OCFS2_I(inode)->ip_clusters == 0) {
7000  status = 0;
7001  goto bail;
7002  }
7003 
7004  /*
7005  * Truncate always works against the rightmost tree branch.
7006  */
7007  status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7008  if (status) {
7009  mlog_errno(status);
7010  goto bail;
7011  }
7012 
7013  trace_ocfs2_commit_truncate(
7014  (unsigned long long)OCFS2_I(inode)->ip_blkno,
7015  new_highest_cpos,
7016  OCFS2_I(inode)->ip_clusters,
7017  path->p_tree_depth);
7018 
7019  /*
7020  * By now, el will point to the extent list on the bottom most
7021  * portion of this tree. Only the tail record is considered in
7022  * each pass.
7023  *
7024  * We handle the following cases, in order:
7025  * - empty extent: delete the remaining branch
7026  * - remove the entire record
7027  * - remove a partial record
7028  * - no record needs to be removed (truncate has completed)
7029  */
7030  el = path_leaf_el(path);
7031  if (le16_to_cpu(el->l_next_free_rec) == 0) {
7032  ocfs2_error(inode->i_sb,
7033  "Inode %llu has empty extent block at %llu\n",
7034  (unsigned long long)OCFS2_I(inode)->ip_blkno,
7035  (unsigned long long)path_leaf_bh(path)->b_blocknr);
7036  status = -EROFS;
7037  goto bail;
7038  }
7039 
7040  i = le16_to_cpu(el->l_next_free_rec) - 1;
7041  rec = &el->l_recs[i];
7042  flags = rec->e_flags;
7043  range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7044 
7045  if (i == 0 && ocfs2_is_empty_extent(rec)) {
7046  /*
7047  * Lower levels depend on this never happening, but it's best
7048  * to check it up here before changing the tree.
7049  */
7050  if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7051  ocfs2_error(inode->i_sb, "Inode %lu has an empty "
7052  "extent record, depth %u\n", inode->i_ino,
7053  le16_to_cpu(root_el->l_tree_depth));
7054  status = -EROFS;
7055  goto bail;
7056  }
7057  trunc_cpos = le32_to_cpu(rec->e_cpos);
7058  trunc_len = 0;
7059  blkno = 0;
7060  } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7061  /*
7062  * Truncate entire record.
7063  */
7064  trunc_cpos = le32_to_cpu(rec->e_cpos);
7065  trunc_len = ocfs2_rec_clusters(el, rec);
7066  blkno = le64_to_cpu(rec->e_blkno);
7067  } else if (range > new_highest_cpos) {
7068  /*
7069  * Partial truncate. it also should be
7070  * the last truncate we're doing.
7071  */
7072  trunc_cpos = new_highest_cpos;
7073  trunc_len = range - new_highest_cpos;
7074  coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7075  blkno = le64_to_cpu(rec->e_blkno) +
7076  ocfs2_clusters_to_blocks(inode->i_sb, coff);
7077  } else {
7078  /*
7079  * Truncate completed, leave happily.
7080  */
7081  status = 0;
7082  goto bail;
7083  }
7084 
7085  phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7086 
7087  status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7088  phys_cpos, trunc_len, flags, &dealloc,
7089  refcount_loc);
7090  if (status < 0) {
7091  mlog_errno(status);
7092  goto bail;
7093  }
7094 
7095  ocfs2_reinit_path(path, 1);
7096 
7097  /*
7098  * The check above will catch the case where we've truncated
7099  * away all allocation.
7100  */
7101  goto start;
7102 
7103 bail:
7104 
7106 
7107  ocfs2_run_deallocs(osb, &dealloc);
7108 
7109  ocfs2_free_path(path);
7110 
7111  return status;
7112 }
7113 
7114 /*
7115  * 'start' is inclusive, 'end' is not.
7116  */
7117 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7118  unsigned int start, unsigned int end, int trunc)
7119 {
7120  int ret;
7121  unsigned int numbytes;
7122  handle_t *handle;
7123  struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7124  struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7125  struct ocfs2_inline_data *idata = &di->id2.i_data;
7126 
7127  if (end > i_size_read(inode))
7128  end = i_size_read(inode);
7129 
7130  BUG_ON(start >= end);
7131 
7132  if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7133  !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7134  !ocfs2_supports_inline_data(osb)) {
7135  ocfs2_error(inode->i_sb,
7136  "Inline data flags for inode %llu don't agree! "
7137  "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7138  (unsigned long long)OCFS2_I(inode)->ip_blkno,
7140  OCFS2_I(inode)->ip_dyn_features,
7141  osb->s_feature_incompat);
7142  ret = -EROFS;
7143  goto out;
7144  }
7145 
7147  if (IS_ERR(handle)) {
7148  ret = PTR_ERR(handle);
7149  mlog_errno(ret);
7150  goto out;
7151  }
7152 
7153  ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7155  if (ret) {
7156  mlog_errno(ret);
7157  goto out_commit;
7158  }
7159 
7160  numbytes = end - start;
7161  memset(idata->id_data + start, 0, numbytes);
7162 
7163  /*
7164  * No need to worry about the data page here - it's been
7165  * truncated already and inline data doesn't need it for
7166  * pushing zero's to disk, so we'll let readpage pick it up
7167  * later.
7168  */
7169  if (trunc) {
7170  i_size_write(inode, start);
7171  di->i_size = cpu_to_le64(start);
7172  }
7173 
7174  inode->i_blocks = ocfs2_inode_sector_count(inode);
7175  inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7176 
7177  di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7178  di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7179 
7180  ocfs2_journal_dirty(handle, di_bh);
7181 
7182 out_commit:
7183  ocfs2_commit_trans(osb, handle);
7184 
7185 out:
7186  return ret;
7187 }
7188 
7189 static int ocfs2_trim_extent(struct super_block *sb,
7190  struct ocfs2_group_desc *gd,
7191  u32 start, u32 count)
7192 {
7193  u64 discard, bcount;
7194 
7195  bcount = ocfs2_clusters_to_blocks(sb, count);
7196  discard = le64_to_cpu(gd->bg_blkno) +
7197  ocfs2_clusters_to_blocks(sb, start);
7198 
7199  trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7200 
7201  return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7202 }
7203 
7204 static int ocfs2_trim_group(struct super_block *sb,
7205  struct ocfs2_group_desc *gd,
7206  u32 start, u32 max, u32 minbits)
7207 {
7208  int ret = 0, count = 0, next;
7209  void *bitmap = gd->bg_bitmap;
7210 
7211  if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7212  return 0;
7213 
7214  trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7215  start, max, minbits);
7216 
7217  while (start < max) {
7218  start = ocfs2_find_next_zero_bit(bitmap, max, start);
7219  if (start >= max)
7220  break;
7221  next = ocfs2_find_next_bit(bitmap, max, start);
7222 
7223  if ((next - start) >= minbits) {
7224  ret = ocfs2_trim_extent(sb, gd,
7225  start, next - start);
7226  if (ret < 0) {
7227  mlog_errno(ret);
7228  break;
7229  }
7230  count += next - start;
7231  }
7232  start = next + 1;
7233 
7234  if (fatal_signal_pending(current)) {
7235  count = -ERESTARTSYS;
7236  break;
7237  }
7238 
7239  if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7240  break;
7241  }
7242 
7243  if (ret < 0)
7244  count = ret;
7245 
7246  return count;
7247 }
7248 
7249 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7250 {
7251  struct ocfs2_super *osb = OCFS2_SB(sb);
7252  u64 start, len, trimmed, first_group, last_group, group;
7253  int ret, cnt;
7254  u32 first_bit, last_bit, minlen;
7255  struct buffer_head *main_bm_bh = NULL;
7256  struct inode *main_bm_inode = NULL;
7257  struct buffer_head *gd_bh = NULL;
7258  struct ocfs2_dinode *main_bm;
7259  struct ocfs2_group_desc *gd = NULL;
7260 
7261  start = range->start >> osb->s_clustersize_bits;
7262  len = range->len >> osb->s_clustersize_bits;
7263  minlen = range->minlen >> osb->s_clustersize_bits;
7264  trimmed = 0;
7265 
7266  if (!len) {
7267  range->len = 0;
7268  return 0;
7269  }
7270 
7271  if (minlen >= osb->bitmap_cpg)
7272  return -EINVAL;
7273 
7274  main_bm_inode = ocfs2_get_system_file_inode(osb,
7277  if (!main_bm_inode) {
7278  ret = -EIO;
7279  mlog_errno(ret);
7280  goto out;
7281  }
7282 
7283  mutex_lock(&main_bm_inode->i_mutex);
7284 
7285  ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7286  if (ret < 0) {
7287  mlog_errno(ret);
7288  goto out_mutex;
7289  }
7290  main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7291 
7292  if (start >= le32_to_cpu(main_bm->i_clusters)) {
7293  ret = -EINVAL;
7294  goto out_unlock;
7295  }
7296 
7297  if (start + len > le32_to_cpu(main_bm->i_clusters))
7298  len = le32_to_cpu(main_bm->i_clusters) - start;
7299 
7300  trace_ocfs2_trim_fs(start, len, minlen);
7301 
7302  /* Determine first and last group to examine based on start and len */
7303  first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7304  if (first_group == osb->first_cluster_group_blkno)
7305  first_bit = start;
7306  else
7307  first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7308  last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7309  last_bit = osb->bitmap_cpg;
7310 
7311  for (group = first_group; group <= last_group;) {
7312  if (first_bit + len >= osb->bitmap_cpg)
7313  last_bit = osb->bitmap_cpg;
7314  else
7315  last_bit = first_bit + len;
7316 
7317  ret = ocfs2_read_group_descriptor(main_bm_inode,
7318  main_bm, group,
7319  &gd_bh);
7320  if (ret < 0) {
7321  mlog_errno(ret);
7322  break;
7323  }
7324 
7325  gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7326  cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen);
7327  brelse(gd_bh);
7328  gd_bh = NULL;
7329  if (cnt < 0) {
7330  ret = cnt;
7331  mlog_errno(ret);
7332  break;
7333  }
7334 
7335  trimmed += cnt;
7336  len -= osb->bitmap_cpg - first_bit;
7337  first_bit = 0;
7338  if (group == osb->first_cluster_group_blkno)
7339  group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7340  else
7341  group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7342  }
7343  range->len = trimmed * sb->s_blocksize;
7344 out_unlock:
7345  ocfs2_inode_unlock(main_bm_inode, 0);
7346  brelse(main_bm_bh);
7347 out_mutex:
7348  mutex_unlock(&main_bm_inode->i_mutex);
7349  iput(main_bm_inode);
7350 out:
7351  return ret;
7352 }