Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
inode.c
Go to the documentation of this file.
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 
22 int reiserfs_commit_write(struct file *f, struct page *page,
23  unsigned from, unsigned to);
24 
26 {
27  /* We need blocks for transaction + (user+group) quota update (possibly delete) */
28  int jbegin_count =
30  2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
32  int depth;
33  int err;
34 
35  if (!inode->i_nlink && !is_bad_inode(inode))
36  dquot_initialize(inode);
37 
38  truncate_inode_pages(&inode->i_data, 0);
39  if (inode->i_nlink)
40  goto no_delete;
41 
42  depth = reiserfs_write_lock_once(inode->i_sb);
43 
44  /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45  if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
47 
48  if (journal_begin(&th, inode->i_sb, jbegin_count))
49  goto out;
51 
52  reiserfs_discard_prealloc(&th, inode);
53 
54  err = reiserfs_delete_object(&th, inode);
55 
56  /* Do quota update inside a transaction for journaled quotas. We must do that
57  * after delete_object so that quota updates go into the same transaction as
58  * stat data deletion */
59  if (!err)
60  dquot_free_inode(inode);
61 
62  if (journal_end(&th, inode->i_sb, jbegin_count))
63  goto out;
64 
65  /* check return value from reiserfs_delete_object after
66  * ending the transaction
67  */
68  if (err)
69  goto out;
70 
71  /* all items of file are deleted, so we can remove "save" link */
72  remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
73  * about an error here */
74  } else {
75  /* no object items are in the tree */
76  ;
77  }
78  out:
79  reiserfs_write_unlock_once(inode->i_sb, depth);
80  clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
81  dquot_drop(inode);
82  inode->i_blocks = 0;
83  return;
84 
85 no_delete:
86  clear_inode(inode);
87  dquot_drop(inode);
88 }
89 
90 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91  __u32 objectid, loff_t offset, int type, int length)
92 {
93  key->version = version;
94 
95  key->on_disk_key.k_dir_id = dirid;
96  key->on_disk_key.k_objectid = objectid;
97  set_cpu_key_k_offset(key, offset);
98  set_cpu_key_k_type(key, type);
99  key->key_length = length;
100 }
101 
102 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103  offset and type of key */
104 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105  int type, int length)
106 {
107  _make_cpu_key(key, get_inode_item_key_version(inode),
109  le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110  length);
111 }
112 
113 //
114 // when key is 0, do not set version and short key
115 //
116 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117  int version,
118  loff_t offset, int type, int length,
119  int entry_count /*or ih_free_space */ )
120 {
121  if (key) {
122  ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123  ih->ih_key.k_objectid =
124  cpu_to_le32(key->on_disk_key.k_objectid);
125  }
126  put_ih_version(ih, version);
127  set_le_ih_k_offset(ih, offset);
128  set_le_ih_k_type(ih, type);
129  put_ih_item_len(ih, length);
130  /* set_ih_free_space (ih, 0); */
131  // for directory items it is entry count, for directs and stat
132  // datas - 0xffff, for indirects - 0
133  put_ih_entry_count(ih, entry_count);
134 }
135 
136 //
137 // FIXME: we might cache recently accessed indirect item
138 
139 // Ugh. Not too eager for that....
140 // I cut the code until such time as I see a convincing argument (benchmark).
141 // I don't want a bloated inode struct..., and I don't like code complexity....
142 
143 /* cutting the code is fine, since it really isn't in use yet and is easy
144 ** to add back in. But, Vladimir has a really good idea here. Think
145 ** about what happens for reading a file. For each page,
146 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
147 ** an indirect item. This indirect item has X number of pointers, where
148 ** X is a big number if we've done the block allocation right. But,
149 ** we only use one or two of these pointers during each call to readpage,
150 ** needlessly researching again later on.
151 **
152 ** The size of the cache could be dynamic based on the size of the file.
153 **
154 ** I'd also like to see us cache the location the stat data item, since
155 ** we are needlessly researching for that frequently.
156 **
157 ** --chris
158 */
159 
160 /* If this page has a file tail in it, and
161 ** it was read in by get_block_create_0, the page data is valid,
162 ** but tail is still sitting in a direct item, and we can't write to
163 ** it. So, look through this page, and check all the mapped buffers
164 ** to make sure they have valid block numbers. Any that don't need
165 ** to be unmapped, so that __block_write_begin will correctly call
166 ** reiserfs_get_block to convert the tail into an unformatted node
167 */
168 static inline void fix_tail_page_for_writing(struct page *page)
169 {
170  struct buffer_head *head, *next, *bh;
171 
172  if (page && page_has_buffers(page)) {
173  head = page_buffers(page);
174  bh = head;
175  do {
176  next = bh->b_this_page;
177  if (buffer_mapped(bh) && bh->b_blocknr == 0) {
179  }
180  bh = next;
181  } while (bh != head);
182  }
183 }
184 
185 /* reiserfs_get_block does not need to allocate a block only if it has been
186  done already or non-hole position has been found in the indirect item */
187 static inline int allocation_needed(int retval, b_blocknr_t allocated,
188  struct item_head *ih,
189  __le32 * item, int pos_in_item)
190 {
191  if (allocated)
192  return 0;
193  if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194  get_block_num(item, pos_in_item))
195  return 0;
196  return 1;
197 }
198 
199 static inline int indirect_item_found(int retval, struct item_head *ih)
200 {
201  return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
202 }
203 
204 static inline void set_block_dev_mapped(struct buffer_head *bh,
205  b_blocknr_t block, struct inode *inode)
206 {
207  map_bh(bh, inode->i_sb, block);
208 }
209 
210 //
211 // files which were created in the earlier version can not be longer,
212 // than 2 gb
213 //
214 static int file_capable(struct inode *inode, sector_t block)
215 {
216  if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
217  block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
218  return 1;
219 
220  return 0;
221 }
222 
223 static int restart_transaction(struct reiserfs_transaction_handle *th,
224  struct inode *inode, struct treepath *path)
225 {
226  struct super_block *s = th->t_super;
227  int len = th->t_blocks_allocated;
228  int err;
229 
230  BUG_ON(!th->t_trans_id);
231  BUG_ON(!th->t_refcount);
232 
233  pathrelse(path);
234 
235  /* we cannot restart while nested */
236  if (th->t_refcount > 1) {
237  return 0;
238  }
239  reiserfs_update_sd(th, inode);
240  err = journal_end(th, s, len);
241  if (!err) {
242  err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243  if (!err)
245  }
246  return err;
247 }
248 
249 // it is called by get_block when create == 0. Returns block number
250 // for 'block'-th logical block of file. When it hits direct item it
251 // returns 0 (being called from bmap) or read direct item into piece
252 // of page (bh_result)
253 
254 // Please improve the english/clarity in the comment above, as it is
255 // hard to understand.
256 
257 static int _get_block_create_0(struct inode *inode, sector_t block,
258  struct buffer_head *bh_result, int args)
259 {
260  INITIALIZE_PATH(path);
261  struct cpu_key key;
262  struct buffer_head *bh;
263  struct item_head *ih, tmp_ih;
265  char *p = NULL;
266  int chars;
267  int ret;
268  int result;
269  int done = 0;
270  unsigned long offset;
271 
272  // prepare the key to look for the 'block'-th block of file
273  make_cpu_key(&key, inode,
274  (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
275  3);
276 
277  result = search_for_position_by_key(inode->i_sb, &key, &path);
278  if (result != POSITION_FOUND) {
279  pathrelse(&path);
280  if (p)
281  kunmap(bh_result->b_page);
282  if (result == IO_ERROR)
283  return -EIO;
284  // We do not return -ENOENT if there is a hole but page is uptodate, because it means
285  // That there is some MMAPED data associated with it that is yet to be written to disk.
286  if ((args & GET_BLOCK_NO_HOLE)
287  && !PageUptodate(bh_result->b_page)) {
288  return -ENOENT;
289  }
290  return 0;
291  }
292  //
293  bh = get_last_bh(&path);
294  ih = get_ih(&path);
295  if (is_indirect_le_ih(ih)) {
296  __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
297 
298  /* FIXME: here we could cache indirect item or part of it in
299  the inode to avoid search_by_key in case of subsequent
300  access to file */
301  blocknr = get_block_num(ind_item, path.pos_in_item);
302  ret = 0;
303  if (blocknr) {
304  map_bh(bh_result, inode->i_sb, blocknr);
305  if (path.pos_in_item ==
306  ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307  set_buffer_boundary(bh_result);
308  }
309  } else
310  // We do not return -ENOENT if there is a hole but page is uptodate, because it means
311  // That there is some MMAPED data associated with it that is yet to be written to disk.
312  if ((args & GET_BLOCK_NO_HOLE)
313  && !PageUptodate(bh_result->b_page)) {
314  ret = -ENOENT;
315  }
316 
317  pathrelse(&path);
318  if (p)
319  kunmap(bh_result->b_page);
320  return ret;
321  }
322  // requested data are in direct item(s)
323  if (!(args & GET_BLOCK_READ_DIRECT)) {
324  // we are called by bmap. FIXME: we can not map block of file
325  // when it is stored in direct item(s)
326  pathrelse(&path);
327  if (p)
328  kunmap(bh_result->b_page);
329  return -ENOENT;
330  }
331 
332  /* if we've got a direct item, and the buffer or page was uptodate,
333  ** we don't want to pull data off disk again. skip to the
334  ** end, where we map the buffer and return
335  */
336  if (buffer_uptodate(bh_result)) {
337  goto finished;
338  } else
339  /*
340  ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341  ** pages without any buffers. If the page is up to date, we don't want
342  ** read old data off disk. Set the up to date bit on the buffer instead
343  ** and jump to the end
344  */
345  if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346  set_buffer_uptodate(bh_result);
347  goto finished;
348  }
349  // read file tail into part of page
350  offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351  copy_item_head(&tmp_ih, ih);
352 
353  /* we only want to kmap if we are reading the tail into the page.
354  ** this is not the common case, so we don't kmap until we are
355  ** sure we need to. But, this means the item might move if
356  ** kmap schedules
357  */
358  if (!p)
359  p = (char *)kmap(bh_result->b_page);
360 
361  p += offset;
362  memset(p, 0, inode->i_sb->s_blocksize);
363  do {
364  if (!is_direct_le_ih(ih)) {
365  BUG();
366  }
367  /* make sure we don't read more bytes than actually exist in
368  ** the file. This can happen in odd cases where i_size isn't
369  ** correct, and when direct item padding results in a few
370  ** extra bytes at the end of the direct item
371  */
372  if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373  break;
374  if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375  chars =
376  inode->i_size - (le_ih_k_offset(ih) - 1) -
377  path.pos_in_item;
378  done = 1;
379  } else {
380  chars = ih_item_len(ih) - path.pos_in_item;
381  }
382  memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
383 
384  if (done)
385  break;
386 
387  p += chars;
388 
389  if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390  // we done, if read direct item is not the last item of
391  // node FIXME: we could try to check right delimiting key
392  // to see whether direct item continues in the right
393  // neighbor or rely on i_size
394  break;
395 
396  // update key to look for the next piece
397  set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398  result = search_for_position_by_key(inode->i_sb, &key, &path);
399  if (result != POSITION_FOUND)
400  // i/o error most likely
401  break;
402  bh = get_last_bh(&path);
403  ih = get_ih(&path);
404  } while (1);
405 
406  flush_dcache_page(bh_result->b_page);
407  kunmap(bh_result->b_page);
408 
409  finished:
410  pathrelse(&path);
411 
412  if (result == IO_ERROR)
413  return -EIO;
414 
415  /* this buffer has valid data, but isn't valid for io. mapping it to
416  * block #0 tells the rest of reiserfs it just has a tail in it
417  */
418  map_bh(bh_result, inode->i_sb, 0);
419  set_buffer_uptodate(bh_result);
420  return 0;
421 }
422 
423 // this is called to create file map. So, _get_block_create_0 will not
424 // read direct item
425 static int reiserfs_bmap(struct inode *inode, sector_t block,
426  struct buffer_head *bh_result, int create)
427 {
428  if (!file_capable(inode, block))
429  return -EFBIG;
430 
431  reiserfs_write_lock(inode->i_sb);
432  /* do not read the direct item */
433  _get_block_create_0(inode, block, bh_result, 0);
434  reiserfs_write_unlock(inode->i_sb);
435  return 0;
436 }
437 
438 /* special version of get_block that is only used by grab_tail_page right
439 ** now. It is sent to __block_write_begin, and when you try to get a
440 ** block past the end of the file (or a block from a hole) it returns
441 ** -ENOENT instead of a valid buffer. __block_write_begin expects to
442 ** be able to do i/o on the buffers returned, unless an error value
443 ** is also returned.
444 **
445 ** So, this allows __block_write_begin to be used for reading a single block
446 ** in a page. Where it does not produce a valid page for holes, or past the
447 ** end of the file. This turns out to be exactly what we need for reading
448 ** tails for conversion.
449 **
450 ** The point of the wrapper is forcing a certain value for create, even
451 ** though the VFS layer is calling this function with create==1. If you
452 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453 ** don't use this function.
454 */
455 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456  struct buffer_head *bh_result,
457  int create)
458 {
459  return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
460 }
461 
462 /* This is special helper for reiserfs_get_block in case we are executing
463  direct_IO request. */
464 static int reiserfs_get_blocks_direct_io(struct inode *inode,
465  sector_t iblock,
466  struct buffer_head *bh_result,
467  int create)
468 {
469  int ret;
470 
471  bh_result->b_page = NULL;
472 
473  /* We set the b_size before reiserfs_get_block call since it is
474  referenced in convert_tail_for_hole() that may be called from
475  reiserfs_get_block() */
476  bh_result->b_size = (1 << inode->i_blkbits);
477 
478  ret = reiserfs_get_block(inode, iblock, bh_result,
479  create | GET_BLOCK_NO_DANGLE);
480  if (ret)
481  goto out;
482 
483  /* don't allow direct io onto tail pages */
484  if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485  /* make sure future calls to the direct io funcs for this offset
486  ** in the file fail by unmapping the buffer
487  */
488  clear_buffer_mapped(bh_result);
489  ret = -EINVAL;
490  }
491  /* Possible unpacked tail. Flush the data before pages have
492  disappeared */
493  if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494  int err;
495 
496  reiserfs_write_lock(inode->i_sb);
497 
498  err = reiserfs_commit_for_inode(inode);
499  REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
500 
501  reiserfs_write_unlock(inode->i_sb);
502 
503  if (err < 0)
504  ret = err;
505  }
506  out:
507  return ret;
508 }
509 
510 /*
511 ** helper function for when reiserfs_get_block is called for a hole
512 ** but the file tail is still in a direct item
513 ** bh_result is the buffer head for the hole
514 ** tail_offset is the offset of the start of the tail in the file
515 **
516 ** This calls prepare_write, which will start a new transaction
517 ** you should not be in a transaction, or have any paths held when you
518 ** call this.
519 */
520 static int convert_tail_for_hole(struct inode *inode,
521  struct buffer_head *bh_result,
522  loff_t tail_offset)
523 {
524  unsigned long index;
525  unsigned long tail_end;
526  unsigned long tail_start;
527  struct page *tail_page;
528  struct page *hole_page = bh_result->b_page;
529  int retval = 0;
530 
531  if ((tail_offset & (bh_result->b_size - 1)) != 1)
532  return -EIO;
533 
534  /* always try to read until the end of the block */
535  tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536  tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
537 
538  index = tail_offset >> PAGE_CACHE_SHIFT;
539  /* hole_page can be zero in case of direct_io, we are sure
540  that we cannot get here if we write with O_DIRECT into
541  tail page */
542  if (!hole_page || index != hole_page->index) {
543  tail_page = grab_cache_page(inode->i_mapping, index);
544  retval = -ENOMEM;
545  if (!tail_page) {
546  goto out;
547  }
548  } else {
549  tail_page = hole_page;
550  }
551 
552  /* we don't have to make sure the conversion did not happen while
553  ** we were locking the page because anyone that could convert
554  ** must first take i_mutex.
555  **
556  ** We must fix the tail page for writing because it might have buffers
557  ** that are mapped, but have a block number of 0. This indicates tail
558  ** data that has been read directly into the page, and
559  ** __block_write_begin won't trigger a get_block in this case.
560  */
561  fix_tail_page_for_writing(tail_page);
562  retval = __reiserfs_write_begin(tail_page, tail_start,
563  tail_end - tail_start);
564  if (retval)
565  goto unlock;
566 
567  /* tail conversion might change the data in the page */
568  flush_dcache_page(tail_page);
569 
570  retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571 
572  unlock:
573  if (tail_page != hole_page) {
574  unlock_page(tail_page);
575  page_cache_release(tail_page);
576  }
577  out:
578  return retval;
579 }
580 
581 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582  sector_t block,
583  struct inode *inode,
584  b_blocknr_t * allocated_block_nr,
585  struct treepath *path, int flags)
586 {
587  BUG_ON(!th->t_trans_id);
588 
589 #ifdef REISERFS_PREALLOCATE
590  if (!(flags & GET_BLOCK_NO_IMUX)) {
591  return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592  path, block);
593  }
594 #endif
595  return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596  block);
597 }
598 
599 int reiserfs_get_block(struct inode *inode, sector_t block,
600  struct buffer_head *bh_result, int create)
601 {
602  int repeat, retval = 0;
603  b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
604  INITIALIZE_PATH(path);
605  int pos_in_item;
606  struct cpu_key key;
607  struct buffer_head *bh, *unbh = NULL;
608  struct item_head *ih, tmp_ih;
609  __le32 *item;
610  int done;
611  int fs_gen;
612  int lock_depth;
613  struct reiserfs_transaction_handle *th = NULL;
614  /* space reserved in transaction batch:
615  . 3 balancings in direct->indirect conversion
616  . 1 block involved into reiserfs_update_sd()
617  XXX in practically impossible worst case direct2indirect()
618  can incur (much) more than 3 balancings.
619  quota update for user, group */
620  int jbegin_count =
621  JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622  2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623  int version;
624  int dangle = 1;
625  loff_t new_offset =
626  (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
627 
628  lock_depth = reiserfs_write_lock_once(inode->i_sb);
629  version = get_inode_item_key_version(inode);
630 
631  if (!file_capable(inode, block)) {
632  reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633  return -EFBIG;
634  }
635 
636  /* if !create, we aren't changing the FS, so we don't need to
637  ** log anything, so we don't need to start a transaction
638  */
639  if (!(create & GET_BLOCK_CREATE)) {
640  int ret;
641  /* find number of block-th logical block of the file */
642  ret = _get_block_create_0(inode, block, bh_result,
643  create | GET_BLOCK_READ_DIRECT);
644  reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645  return ret;
646  }
647  /*
648  * if we're already in a transaction, make sure to close
649  * any new transactions we start in this func
650  */
651  if ((create & GET_BLOCK_NO_DANGLE) ||
652  reiserfs_transaction_running(inode->i_sb))
653  dangle = 0;
654 
655  /* If file is of such a size, that it might have a tail and tails are enabled
656  ** we should mark it as possibly needing tail packing on close
657  */
658  if ((have_large_tails(inode->i_sb)
659  && inode->i_size < i_block_size(inode) * 4)
660  || (have_small_tails(inode->i_sb)
661  && inode->i_size < i_block_size(inode)))
662  REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
663 
664  /* set the key of the first byte in the 'block'-th block of file */
665  make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666  if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667  start_trans:
668  th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669  if (!th) {
670  retval = -ENOMEM;
671  goto failure;
672  }
674  }
675  research:
676 
677  retval = search_for_position_by_key(inode->i_sb, &key, &path);
678  if (retval == IO_ERROR) {
679  retval = -EIO;
680  goto failure;
681  }
682 
683  bh = get_last_bh(&path);
684  ih = get_ih(&path);
685  item = get_item(&path);
686  pos_in_item = path.pos_in_item;
687 
688  fs_gen = get_generation(inode->i_sb);
689  copy_item_head(&tmp_ih, ih);
690 
691  if (allocation_needed
692  (retval, allocated_block_nr, ih, item, pos_in_item)) {
693  /* we have to allocate block for the unformatted node */
694  if (!th) {
695  pathrelse(&path);
696  goto start_trans;
697  }
698 
699  repeat =
700  _allocate_block(th, block, inode, &allocated_block_nr,
701  &path, create);
702 
703  if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704  /* restart the transaction to give the journal a chance to free
705  ** some blocks. releases the path, so we have to go back to
706  ** research if we succeed on the second try
707  */
708  SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709  retval = restart_transaction(th, inode, &path);
710  if (retval)
711  goto failure;
712  repeat =
713  _allocate_block(th, block, inode,
714  &allocated_block_nr, NULL, create);
715 
716  if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717  goto research;
718  }
719  if (repeat == QUOTA_EXCEEDED)
720  retval = -EDQUOT;
721  else
722  retval = -ENOSPC;
723  goto failure;
724  }
725 
726  if (fs_changed(fs_gen, inode->i_sb)
727  && item_moved(&tmp_ih, &path)) {
728  goto research;
729  }
730  }
731 
732  if (indirect_item_found(retval, ih)) {
733  b_blocknr_t unfm_ptr;
734  /* 'block'-th block is in the file already (there is
735  corresponding cell in some indirect item). But it may be
736  zero unformatted node pointer (hole) */
737  unfm_ptr = get_block_num(item, pos_in_item);
738  if (unfm_ptr == 0) {
739  /* use allocated block to plug the hole */
740  reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741  if (fs_changed(fs_gen, inode->i_sb)
742  && item_moved(&tmp_ih, &path)) {
744  bh);
745  goto research;
746  }
747  set_buffer_new(bh_result);
748  if (buffer_dirty(bh_result)
749  && reiserfs_data_ordered(inode->i_sb))
750  reiserfs_add_ordered_list(inode, bh_result);
751  put_block_num(item, pos_in_item, allocated_block_nr);
752  unfm_ptr = allocated_block_nr;
753  journal_mark_dirty(th, inode->i_sb, bh);
754  reiserfs_update_sd(th, inode);
755  }
756  set_block_dev_mapped(bh_result, unfm_ptr, inode);
757  pathrelse(&path);
758  retval = 0;
759  if (!dangle && th)
761 
762  reiserfs_write_unlock_once(inode->i_sb, lock_depth);
763 
764  /* the item was found, so new blocks were not added to the file
765  ** there is no need to make sure the inode is updated with this
766  ** transaction
767  */
768  return retval;
769  }
770 
771  if (!th) {
772  pathrelse(&path);
773  goto start_trans;
774  }
775 
776  /* desired position is not found or is in the direct item. We have
777  to append file with holes up to 'block'-th block converting
778  direct items to indirect one if necessary */
779  done = 0;
780  do {
781  if (is_statdata_le_ih(ih)) {
782  __le32 unp = 0;
783  struct cpu_key tmp_key;
784 
785  /* indirect item has to be inserted */
786  make_le_item_head(&tmp_ih, &key, version, 1,
788  0 /* free_space */ );
789 
790  if (cpu_key_k_offset(&key) == 1) {
791  /* we are going to add 'block'-th block to the file. Use
792  allocated block for that */
793  unp = cpu_to_le32(allocated_block_nr);
794  set_block_dev_mapped(bh_result,
795  allocated_block_nr, inode);
796  set_buffer_new(bh_result);
797  done = 1;
798  }
799  tmp_key = key; // ;)
800  set_cpu_key_k_offset(&tmp_key, 1);
801  PATH_LAST_POSITION(&path)++;
802 
803  retval =
804  reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805  inode, (char *)&unp);
806  if (retval) {
807  reiserfs_free_block(th, inode,
808  allocated_block_nr, 1);
809  goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
810  }
811  //mark_tail_converted (inode);
812  } else if (is_direct_le_ih(ih)) {
813  /* direct item has to be converted */
814  loff_t tail_offset;
815 
816  tail_offset =
817  ((le_ih_k_offset(ih) -
818  1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819  if (tail_offset == cpu_key_k_offset(&key)) {
820  /* direct item we just found fits into block we have
821  to map. Convert it into unformatted node: use
822  bh_result for the conversion */
823  set_block_dev_mapped(bh_result,
824  allocated_block_nr, inode);
825  unbh = bh_result;
826  done = 1;
827  } else {
828  /* we have to padd file tail stored in direct item(s)
829  up to block size and convert it to unformatted
830  node. FIXME: this should also get into page cache */
831 
832  pathrelse(&path);
833  /*
834  * ugly, but we can only end the transaction if
835  * we aren't nested
836  */
837  BUG_ON(!th->t_refcount);
838  if (th->t_refcount == 1) {
839  retval =
841  (th);
842  th = NULL;
843  if (retval)
844  goto failure;
845  }
846 
847  retval =
848  convert_tail_for_hole(inode, bh_result,
849  tail_offset);
850  if (retval) {
851  if (retval != -ENOSPC)
852  reiserfs_error(inode->i_sb,
853  "clm-6004",
854  "convert tail failed "
855  "inode %lu, error %d",
856  inode->i_ino,
857  retval);
858  if (allocated_block_nr) {
859  /* the bitmap, the super, and the stat data == 3 */
860  if (!th)
861  th = reiserfs_persistent_transaction(inode->i_sb, 3);
862  if (th)
864  inode,
865  allocated_block_nr,
866  1);
867  }
868  goto failure;
869  }
870  goto research;
871  }
872  retval =
873  direct2indirect(th, inode, &path, unbh,
874  tail_offset);
875  if (retval) {
876  reiserfs_unmap_buffer(unbh);
877  reiserfs_free_block(th, inode,
878  allocated_block_nr, 1);
879  goto failure;
880  }
881  /* it is important the set_buffer_uptodate is done after
882  ** the direct2indirect. The buffer might contain valid
883  ** data newer than the data on disk (read by readpage, changed,
884  ** and then sent here by writepage). direct2indirect needs
885  ** to know if unbh was already up to date, so it can decide
886  ** if the data in unbh needs to be replaced with data from
887  ** the disk
888  */
889  set_buffer_uptodate(unbh);
890 
891  /* unbh->b_page == NULL in case of DIRECT_IO request, this means
892  buffer will disappear shortly, so it should not be added to
893  */
894  if (unbh->b_page) {
895  /* we've converted the tail, so we must
896  ** flush unbh before the transaction commits
897  */
898  reiserfs_add_tail_list(inode, unbh);
899 
900  /* mark it dirty now to prevent commit_write from adding
901  ** this buffer to the inode's dirty buffer list
902  */
903  /*
904  * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905  * It's still atomic, but it sets the page dirty too,
906  * which makes it eligible for writeback at any time by the
907  * VM (which was also the case with __mark_buffer_dirty())
908  */
909  mark_buffer_dirty(unbh);
910  }
911  } else {
912  /* append indirect item with holes if needed, when appending
913  pointer to 'block'-th block use block, which is already
914  allocated */
915  struct cpu_key tmp_key;
916  unp_t unf_single = 0; // We use this in case we need to allocate only
917  // one block which is a fastpath
918  unp_t *un;
919  __u64 max_to_insert =
920  MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921  UNFM_P_SIZE;
922  __u64 blocks_needed;
923 
924  RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925  "vs-804: invalid position for append");
926  /* indirect item has to be appended, set up key of that position */
927  make_cpu_key(&tmp_key, inode,
928  le_key_k_offset(version,
929  &(ih->ih_key)) +
930  op_bytes_number(ih,
931  inode->i_sb->s_blocksize),
932  //pos_in_item * inode->i_sb->s_blocksize,
933  TYPE_INDIRECT, 3); // key type is unimportant
934 
935  RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936  "green-805: invalid offset");
937  blocks_needed =
938  1 +
939  ((cpu_key_k_offset(&key) -
940  cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941  s_blocksize_bits);
942 
943  if (blocks_needed == 1) {
944  un = &unf_single;
945  } else {
946  un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947  if (!un) {
948  un = &unf_single;
949  blocks_needed = 1;
950  max_to_insert = 0;
951  }
952  }
953  if (blocks_needed <= max_to_insert) {
954  /* we are going to add target block to the file. Use allocated
955  block for that */
956  un[blocks_needed - 1] =
957  cpu_to_le32(allocated_block_nr);
958  set_block_dev_mapped(bh_result,
959  allocated_block_nr, inode);
960  set_buffer_new(bh_result);
961  done = 1;
962  } else {
963  /* paste hole to the indirect item */
964  /* If kmalloc failed, max_to_insert becomes zero and it means we
965  only have space for one block */
966  blocks_needed =
967  max_to_insert ? max_to_insert : 1;
968  }
969  retval =
970  reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971  (char *)un,
972  UNFM_P_SIZE *
973  blocks_needed);
974 
975  if (blocks_needed != 1)
976  kfree(un);
977 
978  if (retval) {
979  reiserfs_free_block(th, inode,
980  allocated_block_nr, 1);
981  goto failure;
982  }
983  if (!done) {
984  /* We need to mark new file size in case this function will be
985  interrupted/aborted later on. And we may do this only for
986  holes. */
987  inode->i_size +=
988  inode->i_sb->s_blocksize * blocks_needed;
989  }
990  }
991 
992  if (done == 1)
993  break;
994 
995  /* this loop could log more blocks than we had originally asked
996  ** for. So, we have to allow the transaction to end if it is
997  ** too big or too full. Update the inode so things are
998  ** consistent if we crash before the function returns
999  **
1000  ** release the path so that anybody waiting on the path before
1001  ** ending their transaction will be able to continue.
1002  */
1004  retval = restart_transaction(th, inode, &path);
1005  if (retval)
1006  goto failure;
1007  }
1008  /*
1009  * inserting indirect pointers for a hole can take a
1010  * long time. reschedule if needed and also release the write
1011  * lock for others.
1012  */
1013  if (need_resched()) {
1014  reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015  schedule();
1016  lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017  }
1018 
1019  retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020  if (retval == IO_ERROR) {
1021  retval = -EIO;
1022  goto failure;
1023  }
1024  if (retval == POSITION_FOUND) {
1025  reiserfs_warning(inode->i_sb, "vs-825",
1026  "%K should not be found", &key);
1027  retval = -EEXIST;
1028  if (allocated_block_nr)
1029  reiserfs_free_block(th, inode,
1030  allocated_block_nr, 1);
1031  pathrelse(&path);
1032  goto failure;
1033  }
1034  bh = get_last_bh(&path);
1035  ih = get_ih(&path);
1036  item = get_item(&path);
1037  pos_in_item = path.pos_in_item;
1038  } while (1);
1039 
1040  retval = 0;
1041 
1042  failure:
1043  if (th && (!dangle || (retval && !th->t_trans_id))) {
1044  int err;
1045  if (th->t_trans_id)
1046  reiserfs_update_sd(th, inode);
1048  if (err)
1049  retval = err;
1050  }
1051 
1052  reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053  reiserfs_check_path(&path);
1054  return retval;
1055 }
1056 
1057 static int
1058 reiserfs_readpages(struct file *file, struct address_space *mapping,
1059  struct list_head *pages, unsigned nr_pages)
1060 {
1061  return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062 }
1063 
1064 /* Compute real number of used bytes by file
1065  * Following three functions can go away when we'll have enough space in stat item
1066  */
1067 static int real_space_diff(struct inode *inode, int sd_size)
1068 {
1069  int bytes;
1070  loff_t blocksize = inode->i_sb->s_blocksize;
1071 
1072  if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073  return sd_size;
1074 
1075  /* End of file is also in full block with indirect reference, so round
1076  ** up to the next block.
1077  **
1078  ** there is just no way to know if the tail is actually packed
1079  ** on the file, so we have to assume it isn't. When we pack the
1080  ** tail, we add 4 bytes to pretend there really is an unformatted
1081  ** node pointer
1082  */
1083  bytes =
1084  ((inode->i_size +
1085  (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086  sd_size;
1087  return bytes;
1088 }
1089 
1090 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091  int sd_size)
1092 {
1093  if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094  return inode->i_size +
1095  (loff_t) (real_space_diff(inode, sd_size));
1096  }
1097  return ((loff_t) real_space_diff(inode, sd_size)) +
1098  (((loff_t) blocks) << 9);
1099 }
1100 
1101 /* Compute number of blocks used by file in ReiserFS counting */
1102 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103 {
1104  loff_t bytes = inode_get_bytes(inode);
1105  loff_t real_space = real_space_diff(inode, sd_size);
1106 
1107  /* keeps fsck and non-quota versions of reiserfs happy */
1108  if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109  bytes += (loff_t) 511;
1110  }
1111 
1112  /* files from before the quota patch might i_blocks such that
1113  ** bytes < real_space. Deal with that here to prevent it from
1114  ** going negative.
1115  */
1116  if (bytes < real_space)
1117  return 0;
1118  return (bytes - real_space) >> 9;
1119 }
1120 
1121 //
1122 // BAD: new directories have stat data of new type and all other items
1123 // of old type. Version stored in the inode says about body items, so
1124 // in update_stat_data we can not rely on inode, but have to check
1125 // item version directly
1126 //
1127 
1128 // called by read_locked_inode
1129 static void init_inode(struct inode *inode, struct treepath *path)
1130 {
1131  struct buffer_head *bh;
1132  struct item_head *ih;
1133  __u32 rdev;
1134  //int version = ITEM_VERSION_1;
1135 
1136  bh = PATH_PLAST_BUFFER(path);
1137  ih = PATH_PITEM_HEAD(path);
1138 
1139  copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140 
1141  INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142  REISERFS_I(inode)->i_flags = 0;
1143  REISERFS_I(inode)->i_prealloc_block = 0;
1144  REISERFS_I(inode)->i_prealloc_count = 0;
1145  REISERFS_I(inode)->i_trans_id = 0;
1146  REISERFS_I(inode)->i_jl = NULL;
1147  reiserfs_init_xattr_rwsem(inode);
1148 
1149  if (stat_data_v1(ih)) {
1150  struct stat_data_v1 *sd =
1151  (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152  unsigned long blocks;
1153 
1156  inode->i_mode = sd_v1_mode(sd);
1157  set_nlink(inode, sd_v1_nlink(sd));
1158  i_uid_write(inode, sd_v1_uid(sd));
1159  i_gid_write(inode, sd_v1_gid(sd));
1160  inode->i_size = sd_v1_size(sd);
1161  inode->i_atime.tv_sec = sd_v1_atime(sd);
1162  inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163  inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164  inode->i_atime.tv_nsec = 0;
1165  inode->i_ctime.tv_nsec = 0;
1166  inode->i_mtime.tv_nsec = 0;
1167 
1168  inode->i_blocks = sd_v1_blocks(sd);
1169  inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170  blocks = (inode->i_size + 511) >> 9;
1171  blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172  if (inode->i_blocks > blocks) {
1173  // there was a bug in <=3.5.23 when i_blocks could take negative
1174  // values. Starting from 3.5.17 this value could even be stored in
1175  // stat data. For such files we set i_blocks based on file
1176  // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177  // only updated if file's inode will ever change
1178  inode->i_blocks = blocks;
1179  }
1180 
1181  rdev = sd_v1_rdev(sd);
1182  REISERFS_I(inode)->i_first_direct_byte =
1184  /* an early bug in the quota code can give us an odd number for the
1185  ** block count. This is incorrect, fix it here.
1186  */
1187  if (inode->i_blocks & 1) {
1188  inode->i_blocks++;
1189  }
1190  inode_set_bytes(inode,
1191  to_real_used_space(inode, inode->i_blocks,
1192  SD_V1_SIZE));
1193  /* nopack is initially zero for v1 objects. For v2 objects,
1194  nopack is initialised from sd_attrs */
1195  REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196  } else {
1197  // new stat data found, but object may have old items
1198  // (directories and symlinks)
1199  struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1200 
1201  inode->i_mode = sd_v2_mode(sd);
1202  set_nlink(inode, sd_v2_nlink(sd));
1203  i_uid_write(inode, sd_v2_uid(sd));
1204  inode->i_size = sd_v2_size(sd);
1205  i_gid_write(inode, sd_v2_gid(sd));
1206  inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207  inode->i_atime.tv_sec = sd_v2_atime(sd);
1208  inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209  inode->i_ctime.tv_nsec = 0;
1210  inode->i_mtime.tv_nsec = 0;
1211  inode->i_atime.tv_nsec = 0;
1212  inode->i_blocks = sd_v2_blocks(sd);
1213  rdev = sd_v2_rdev(sd);
1214  if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215  inode->i_generation =
1216  le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217  else
1218  inode->i_generation = sd_v2_generation(sd);
1219 
1220  if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1222  else
1224  REISERFS_I(inode)->i_first_direct_byte = 0;
1226  inode_set_bytes(inode,
1227  to_real_used_space(inode, inode->i_blocks,
1228  SD_V2_SIZE));
1229  /* read persistent inode attributes from sd and initialise
1230  generic inode flags from them */
1231  REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232  sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233  }
1234 
1235  pathrelse(path);
1236  if (S_ISREG(inode->i_mode)) {
1238  inode->i_fop = &reiserfs_file_operations;
1240  } else if (S_ISDIR(inode->i_mode)) {
1242  inode->i_fop = &reiserfs_dir_operations;
1243  } else if (S_ISLNK(inode->i_mode)) {
1246  } else {
1247  inode->i_blocks = 0;
1249  init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250  }
1251 }
1252 
1253 // update new stat data with inode fields
1254 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255 {
1256  struct stat_data *sd_v2 = (struct stat_data *)sd;
1257  __u16 flags;
1258 
1259  set_sd_v2_mode(sd_v2, inode->i_mode);
1260  set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261  set_sd_v2_uid(sd_v2, i_uid_read(inode));
1262  set_sd_v2_size(sd_v2, size);
1263  set_sd_v2_gid(sd_v2, i_gid_read(inode));
1264  set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265  set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266  set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267  set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268  if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269  set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270  else
1271  set_sd_v2_generation(sd_v2, inode->i_generation);
1272  flags = REISERFS_I(inode)->i_attrs;
1273  i_attrs_to_sd_attrs(inode, &flags);
1274  set_sd_v2_attrs(sd_v2, flags);
1275 }
1276 
1277 // used to copy inode's fields to old stat data
1278 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279 {
1280  struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281 
1282  set_sd_v1_mode(sd_v1, inode->i_mode);
1283  set_sd_v1_uid(sd_v1, i_uid_read(inode));
1284  set_sd_v1_gid(sd_v1, i_gid_read(inode));
1285  set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286  set_sd_v1_size(sd_v1, size);
1287  set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288  set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289  set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290 
1291  if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292  set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293  else
1294  set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295 
1296  // Sigh. i_first_direct_byte is back
1298  REISERFS_I(inode)->i_first_direct_byte);
1299 }
1300 
1301 /* NOTE, you must prepare the buffer head before sending it here,
1302 ** and then log it after the call
1303 */
1304 static void update_stat_data(struct treepath *path, struct inode *inode,
1305  loff_t size)
1306 {
1307  struct buffer_head *bh;
1308  struct item_head *ih;
1309 
1310  bh = PATH_PLAST_BUFFER(path);
1311  ih = PATH_PITEM_HEAD(path);
1312 
1313  if (!is_statdata_le_ih(ih))
1314  reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315  INODE_PKEY(inode), ih);
1316 
1317  if (stat_data_v1(ih)) {
1318  // path points to old stat data
1319  inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320  } else {
1321  inode2sd(B_I_PITEM(bh, ih), inode, size);
1322  }
1323 
1324  return;
1325 }
1326 
1328  struct inode *inode, loff_t size)
1329 {
1330  struct cpu_key key;
1331  INITIALIZE_PATH(path);
1332  struct buffer_head *bh;
1333  int fs_gen;
1334  struct item_head *ih, tmp_ih;
1335  int retval;
1336 
1337  BUG_ON(!th->t_trans_id);
1338 
1339  make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1340 
1341  for (;;) {
1342  int pos;
1343  /* look for the object's stat data */
1344  retval = search_item(inode->i_sb, &key, &path);
1345  if (retval == IO_ERROR) {
1346  reiserfs_error(inode->i_sb, "vs-13050",
1347  "i/o failure occurred trying to "
1348  "update %K stat data", &key);
1349  return;
1350  }
1351  if (retval == ITEM_NOT_FOUND) {
1352  pos = PATH_LAST_POSITION(&path);
1353  pathrelse(&path);
1354  if (inode->i_nlink == 0) {
1355  /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356  return;
1357  }
1358  reiserfs_warning(inode->i_sb, "vs-13060",
1359  "stat data of object %k (nlink == %d) "
1360  "not found (pos %d)",
1361  INODE_PKEY(inode), inode->i_nlink,
1362  pos);
1363  reiserfs_check_path(&path);
1364  return;
1365  }
1366 
1367  /* sigh, prepare_for_journal might schedule. When it schedules the
1368  ** FS might change. We have to detect that, and loop back to the
1369  ** search if the stat data item has moved
1370  */
1371  bh = get_last_bh(&path);
1372  ih = get_ih(&path);
1373  copy_item_head(&tmp_ih, ih);
1374  fs_gen = get_generation(inode->i_sb);
1375  reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376  if (fs_changed(fs_gen, inode->i_sb)
1377  && item_moved(&tmp_ih, &path)) {
1379  continue; /* Stat_data item has been moved after scheduling. */
1380  }
1381  break;
1382  }
1383  update_stat_data(&path, inode, size);
1384  journal_mark_dirty(th, th->t_super, bh);
1385  pathrelse(&path);
1386  return;
1387 }
1388 
1389 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390 ** does a make_bad_inode when things go wrong. But, we need to make sure
1391 ** and clear the key in the private portion of the inode, otherwise a
1392 ** corresponding iput might try to delete whatever object the inode last
1393 ** represented.
1394 */
1395 static void reiserfs_make_bad_inode(struct inode *inode)
1396 {
1397  memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398  make_bad_inode(inode);
1399 }
1400 
1401 //
1402 // initially this function was derived from minix or ext2's analog and
1403 // evolved as the prototype did
1404 //
1405 
1406 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407 {
1408  struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409  inode->i_ino = args->objectid;
1410  INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411  return 0;
1412 }
1413 
1414 /* looks for stat data in the tree, and fills up the fields of in-core
1415  inode stat data fields */
1416 void reiserfs_read_locked_inode(struct inode *inode,
1417  struct reiserfs_iget_args *args)
1418 {
1419  INITIALIZE_PATH(path_to_sd);
1420  struct cpu_key key;
1421  unsigned long dirino;
1422  int retval;
1423 
1424  dirino = args->dirid;
1425 
1426  /* set version 1, version 2 could be used too, because stat data
1427  key is the same in both versions */
1428  key.version = KEY_FORMAT_3_5;
1429  key.on_disk_key.k_dir_id = dirino;
1430  key.on_disk_key.k_objectid = inode->i_ino;
1431  key.on_disk_key.k_offset = 0;
1432  key.on_disk_key.k_type = 0;
1433 
1434  /* look for the object's stat data */
1435  retval = search_item(inode->i_sb, &key, &path_to_sd);
1436  if (retval == IO_ERROR) {
1437  reiserfs_error(inode->i_sb, "vs-13070",
1438  "i/o failure occurred trying to find "
1439  "stat data of %K", &key);
1440  reiserfs_make_bad_inode(inode);
1441  return;
1442  }
1443  if (retval != ITEM_FOUND) {
1444  /* a stale NFS handle can trigger this without it being an error */
1445  pathrelse(&path_to_sd);
1446  reiserfs_make_bad_inode(inode);
1447  clear_nlink(inode);
1448  return;
1449  }
1450 
1451  init_inode(inode, &path_to_sd);
1452 
1453  /* It is possible that knfsd is trying to access inode of a file
1454  that is being removed from the disk by some other thread. As we
1455  update sd on unlink all that is required is to check for nlink
1456  here. This bug was first found by Sizif when debugging
1457  SquidNG/Butterfly, forgotten, and found again after Philippe
1458  Gramoulle <[email protected]> reproduced it.
1459 
1460  More logical fix would require changes in fs/inode.c:iput() to
1461  remove inode from hash-table _after_ fs cleaned disk stuff up and
1462  in iget() to return NULL if I_FREEING inode is found in
1463  hash-table. */
1464  /* Currently there is one place where it's ok to meet inode with
1465  nlink==0: processing of open-unlinked and half-truncated files
1466  during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467  if ((inode->i_nlink == 0) &&
1468  !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469  reiserfs_warning(inode->i_sb, "vs-13075",
1470  "dead inode read from disk %K. "
1471  "This is likely to be race with knfsd. Ignore",
1472  &key);
1473  reiserfs_make_bad_inode(inode);
1474  }
1475 
1476  reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1477 
1478  /*
1479  * Stat data v1 doesn't support ACLs.
1480  */
1481  if (get_inode_sd_version(inode) == STAT_DATA_V1)
1482  cache_no_acl(inode);
1483 }
1484 
1497 int reiserfs_find_actor(struct inode *inode, void *opaque)
1498 {
1499  struct reiserfs_iget_args *args;
1500 
1501  args = opaque;
1502  /* args is already in CPU order */
1503  return (inode->i_ino == args->objectid) &&
1504  (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1505 }
1506 
1507 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1508 {
1509  struct inode *inode;
1510  struct reiserfs_iget_args args;
1511 
1512  args.objectid = key->on_disk_key.k_objectid;
1513  args.dirid = key->on_disk_key.k_dir_id;
1515  inode = iget5_locked(s, key->on_disk_key.k_objectid,
1517  (void *)(&args));
1519  if (!inode)
1520  return ERR_PTR(-ENOMEM);
1521 
1522  if (inode->i_state & I_NEW) {
1523  reiserfs_read_locked_inode(inode, &args);
1524  unlock_new_inode(inode);
1525  }
1526 
1527  if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528  /* either due to i/o error or a stale NFS handle */
1529  iput(inode);
1530  inode = NULL;
1531  }
1532  return inode;
1533 }
1534 
1535 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536  u32 objectid, u32 dir_id, u32 generation)
1537 
1538 {
1539  struct cpu_key key;
1540  struct inode *inode;
1541 
1542  key.on_disk_key.k_objectid = objectid;
1543  key.on_disk_key.k_dir_id = dir_id;
1544  reiserfs_write_lock(sb);
1545  inode = reiserfs_iget(sb, &key);
1546  if (inode && !IS_ERR(inode) && generation != 0 &&
1547  generation != inode->i_generation) {
1548  iput(inode);
1549  inode = NULL;
1550  }
1552 
1553  return d_obtain_alias(inode);
1554 }
1555 
1556 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557  int fh_len, int fh_type)
1558 {
1559  /* fhtype happens to reflect the number of u32s encoded.
1560  * due to a bug in earlier code, fhtype might indicate there
1561  * are more u32s then actually fitted.
1562  * so if fhtype seems to be more than len, reduce fhtype.
1563  * Valid types are:
1564  * 2 - objectid + dir_id - legacy support
1565  * 3 - objectid + dir_id + generation
1566  * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1567  * 5 - objectid + dir_id + generation + objectid and dirid of parent
1568  * 6 - as above plus generation of directory
1569  * 6 does not fit in NFSv2 handles
1570  */
1571  if (fh_type > fh_len) {
1572  if (fh_type != 6 || fh_len != 5)
1573  reiserfs_warning(sb, "reiserfs-13077",
1574  "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575  fh_type, fh_len);
1576  fh_type = fh_len;
1577  }
1578  if (fh_len < 2)
1579  return NULL;
1580 
1581  return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1582  (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1583 }
1584 
1585 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1586  int fh_len, int fh_type)
1587 {
1588  if (fh_type > fh_len)
1589  fh_type = fh_len;
1590  if (fh_type < 4)
1591  return NULL;
1592 
1593  return reiserfs_get_dentry(sb,
1594  (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1595  (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1596  (fh_type == 6) ? fid->raw[5] : 0);
1597 }
1598 
1599 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1600  struct inode *parent)
1601 {
1602  int maxlen = *lenp;
1603 
1604  if (parent && (maxlen < 5)) {
1605  *lenp = 5;
1606  return 255;
1607  } else if (maxlen < 3) {
1608  *lenp = 3;
1609  return 255;
1610  }
1611 
1612  data[0] = inode->i_ino;
1613  data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1614  data[2] = inode->i_generation;
1615  *lenp = 3;
1616  if (parent) {
1617  data[3] = parent->i_ino;
1618  data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1619  *lenp = 5;
1620  if (maxlen >= 6) {
1621  data[5] = parent->i_generation;
1622  *lenp = 6;
1623  }
1624  }
1625  return *lenp;
1626 }
1627 
1628 /* looks for stat data, then copies fields to it, marks the buffer
1629  containing stat data as dirty */
1630 /* reiserfs inodes are never really dirty, since the dirty inode call
1631 ** always logs them. This call allows the VFS inode marking routines
1632 ** to properly mark inodes for datasync and such, but only actually
1633 ** does something when called for a synchronous update.
1634 */
1635 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1636 {
1637  struct reiserfs_transaction_handle th;
1638  int jbegin_count = 1;
1639 
1640  if (inode->i_sb->s_flags & MS_RDONLY)
1641  return -EROFS;
1642  /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1643  ** these cases are just when the system needs ram, not when the
1644  ** inode needs to reach disk for safety, and they can safely be
1645  ** ignored because the altered inode has already been logged.
1646  */
1647  if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1648  reiserfs_write_lock(inode->i_sb);
1649  if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1650  reiserfs_update_sd(&th, inode);
1651  journal_end_sync(&th, inode->i_sb, jbegin_count);
1652  }
1653  reiserfs_write_unlock(inode->i_sb);
1654  }
1655  return 0;
1656 }
1657 
1658 /* stat data of new object is inserted already, this inserts the item
1659  containing "." and ".." entries */
1660 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1661  struct inode *inode,
1662  struct item_head *ih, struct treepath *path,
1663  struct inode *dir)
1664 {
1665  struct super_block *sb = th->t_super;
1666  char empty_dir[EMPTY_DIR_SIZE];
1667  char *body = empty_dir;
1668  struct cpu_key key;
1669  int retval;
1670 
1671  BUG_ON(!th->t_trans_id);
1672 
1673  _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1674  le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1675  TYPE_DIRENTRY, 3 /*key length */ );
1676 
1677  /* compose item head for new item. Directories consist of items of
1678  old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1679  is done by reiserfs_new_inode */
1680  if (old_format_only(sb)) {
1683 
1684  make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1685  ih->ih_key.k_objectid,
1686  INODE_PKEY(dir)->k_dir_id,
1687  INODE_PKEY(dir)->k_objectid);
1688  } else {
1691 
1692  make_empty_dir_item(body, ih->ih_key.k_dir_id,
1693  ih->ih_key.k_objectid,
1694  INODE_PKEY(dir)->k_dir_id,
1695  INODE_PKEY(dir)->k_objectid);
1696  }
1697 
1698  /* look for place in the tree for new item */
1699  retval = search_item(sb, &key, path);
1700  if (retval == IO_ERROR) {
1701  reiserfs_error(sb, "vs-13080",
1702  "i/o failure occurred creating new directory");
1703  return -EIO;
1704  }
1705  if (retval == ITEM_FOUND) {
1706  pathrelse(path);
1707  reiserfs_warning(sb, "vs-13070",
1708  "object with this key exists (%k)",
1709  &(ih->ih_key));
1710  return -EEXIST;
1711  }
1712 
1713  /* insert item, that is empty directory item */
1714  return reiserfs_insert_item(th, path, &key, ih, inode, body);
1715 }
1716 
1717 /* stat data of object has been inserted, this inserts the item
1718  containing the body of symlink */
1719 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1720  struct item_head *ih,
1721  struct treepath *path, const char *symname,
1722  int item_len)
1723 {
1724  struct super_block *sb = th->t_super;
1725  struct cpu_key key;
1726  int retval;
1727 
1728  BUG_ON(!th->t_trans_id);
1729 
1730  _make_cpu_key(&key, KEY_FORMAT_3_5,
1731  le32_to_cpu(ih->ih_key.k_dir_id),
1732  le32_to_cpu(ih->ih_key.k_objectid),
1733  1, TYPE_DIRECT, 3 /*key length */ );
1734 
1735  make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1736  0 /*free_space */ );
1737 
1738  /* look for place in the tree for new item */
1739  retval = search_item(sb, &key, path);
1740  if (retval == IO_ERROR) {
1741  reiserfs_error(sb, "vs-13080",
1742  "i/o failure occurred creating new symlink");
1743  return -EIO;
1744  }
1745  if (retval == ITEM_FOUND) {
1746  pathrelse(path);
1747  reiserfs_warning(sb, "vs-13080",
1748  "object with this key exists (%k)",
1749  &(ih->ih_key));
1750  return -EEXIST;
1751  }
1752 
1753  /* insert item, that is body of symlink */
1754  return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1755 }
1756 
1757 /* inserts the stat data into the tree, and then calls
1758  reiserfs_new_directory (to insert ".", ".." item if new object is
1759  directory) or reiserfs_new_symlink (to insert symlink body if new
1760  object is symlink) or nothing (if new object is regular file)
1761 
1762  NOTE! uid and gid must already be set in the inode. If we return
1763  non-zero due to an error, we have to drop the quota previously allocated
1764  for the fresh inode. This can only be done outside a transaction, so
1765  if we return non-zero, we also end the transaction. */
1767  struct inode *dir, umode_t mode, const char *symname,
1768  /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1769  strlen (symname) for symlinks) */
1770  loff_t i_size, struct dentry *dentry,
1771  struct inode *inode,
1773 {
1774  struct super_block *sb;
1775  struct reiserfs_iget_args args;
1776  INITIALIZE_PATH(path_to_key);
1777  struct cpu_key key;
1778  struct item_head ih;
1779  struct stat_data sd;
1780  int retval;
1781  int err;
1782 
1783  BUG_ON(!th->t_trans_id);
1784 
1785  reiserfs_write_unlock(inode->i_sb);
1786  err = dquot_alloc_inode(inode);
1787  reiserfs_write_lock(inode->i_sb);
1788  if (err)
1789  goto out_end_trans;
1790  if (!dir->i_nlink) {
1791  err = -EPERM;
1792  goto out_bad_inode;
1793  }
1794 
1795  sb = dir->i_sb;
1796 
1797  /* item head of new item */
1798  ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1799  ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1800  if (!ih.ih_key.k_objectid) {
1801  err = -ENOMEM;
1802  goto out_bad_inode;
1803  }
1804  args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1805  if (old_format_only(sb))
1808  else
1811  memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1812  args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1813  if (insert_inode_locked4(inode, args.objectid,
1814  reiserfs_find_actor, &args) < 0) {
1815  err = -EINVAL;
1816  goto out_bad_inode;
1817  }
1818  if (old_format_only(sb))
1819  /* not a perfect generation count, as object ids can be reused, but
1820  ** this is as good as reiserfs can do right now.
1821  ** note that the private part of inode isn't filled in yet, we have
1822  ** to use the directory.
1823  */
1825  else
1826 #if defined( USE_INODE_GENERATION_COUNTER )
1827  inode->i_generation =
1828  le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1829 #else
1830  inode->i_generation = ++event;
1831 #endif
1832 
1833  /* fill stat data */
1834  set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1835 
1836  /* uid and gid must already be set by the caller for quota init */
1837 
1838  /* symlink cannot be immutable or append only, right? */
1839  if (S_ISLNK(inode->i_mode))
1840  inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1841 
1842  inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1843  inode->i_size = i_size;
1844  inode->i_blocks = 0;
1845  inode->i_bytes = 0;
1846  REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1847  U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1848 
1849  INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1850  REISERFS_I(inode)->i_flags = 0;
1851  REISERFS_I(inode)->i_prealloc_block = 0;
1852  REISERFS_I(inode)->i_prealloc_count = 0;
1853  REISERFS_I(inode)->i_trans_id = 0;
1854  REISERFS_I(inode)->i_jl = NULL;
1855  REISERFS_I(inode)->i_attrs =
1856  REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1857  sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1858  reiserfs_init_xattr_rwsem(inode);
1859 
1860  /* key to search for correct place for new stat data */
1861  _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1862  le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1863  TYPE_STAT_DATA, 3 /*key length */ );
1864 
1865  /* find proper place for inserting of stat data */
1866  retval = search_item(sb, &key, &path_to_key);
1867  if (retval == IO_ERROR) {
1868  err = -EIO;
1869  goto out_bad_inode;
1870  }
1871  if (retval == ITEM_FOUND) {
1872  pathrelse(&path_to_key);
1873  err = -EEXIST;
1874  goto out_bad_inode;
1875  }
1876  if (old_format_only(sb)) {
1877  if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
1878  pathrelse(&path_to_key);
1879  /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1880  err = -EINVAL;
1881  goto out_bad_inode;
1882  }
1883  inode2sd_v1(&sd, inode, inode->i_size);
1884  } else {
1885  inode2sd(&sd, inode, inode->i_size);
1886  }
1887  // store in in-core inode the key of stat data and version all
1888  // object items will have (directory items will have old offset
1889  // format, other new objects will consist of new items)
1890  if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1892  else
1894  if (old_format_only(sb))
1896  else
1898 
1899  /* insert the stat data into the tree */
1900 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1901  if (REISERFS_I(dir)->new_packing_locality)
1902  th->displace_new_blocks = 1;
1903 #endif
1904  retval =
1905  reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1906  (char *)(&sd));
1907  if (retval) {
1908  err = retval;
1909  reiserfs_check_path(&path_to_key);
1910  goto out_bad_inode;
1911  }
1912 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1913  if (!th->displace_new_blocks)
1914  REISERFS_I(dir)->new_packing_locality = 0;
1915 #endif
1916  if (S_ISDIR(mode)) {
1917  /* insert item with "." and ".." */
1918  retval =
1919  reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1920  }
1921 
1922  if (S_ISLNK(mode)) {
1923  /* insert body of symlink */
1924  if (!old_format_only(sb))
1925  i_size = ROUND_UP(i_size);
1926  retval =
1927  reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1928  i_size);
1929  }
1930  if (retval) {
1931  err = retval;
1932  reiserfs_check_path(&path_to_key);
1933  journal_end(th, th->t_super, th->t_blocks_allocated);
1934  goto out_inserted_sd;
1935  }
1936 
1937  if (reiserfs_posixacl(inode->i_sb)) {
1938  retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1939  if (retval) {
1940  err = retval;
1941  reiserfs_check_path(&path_to_key);
1942  journal_end(th, th->t_super, th->t_blocks_allocated);
1943  goto out_inserted_sd;
1944  }
1945  } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1946  reiserfs_warning(inode->i_sb, "jdm-13090",
1947  "ACLs aren't enabled in the fs, "
1948  "but vfs thinks they are!");
1949  } else if (IS_PRIVATE(dir))
1950  inode->i_flags |= S_PRIVATE;
1951 
1952  if (security->name) {
1953  retval = reiserfs_security_write(th, inode, security);
1954  if (retval) {
1955  err = retval;
1956  reiserfs_check_path(&path_to_key);
1957  retval = journal_end(th, th->t_super,
1958  th->t_blocks_allocated);
1959  if (retval)
1960  err = retval;
1961  goto out_inserted_sd;
1962  }
1963  }
1964 
1965  reiserfs_update_sd(th, inode);
1966  reiserfs_check_path(&path_to_key);
1967 
1968  return 0;
1969 
1970 /* it looks like you can easily compress these two goto targets into
1971  * one. Keeping it like this doesn't actually hurt anything, and they
1972  * are place holders for what the quota code actually needs.
1973  */
1974  out_bad_inode:
1975  /* Invalidate the object, nothing was inserted yet */
1976  INODE_PKEY(inode)->k_objectid = 0;
1977 
1978  /* Quota change must be inside a transaction for journaling */
1979  dquot_free_inode(inode);
1980 
1981  out_end_trans:
1982  journal_end(th, th->t_super, th->t_blocks_allocated);
1983  reiserfs_write_unlock(inode->i_sb);
1984  /* Drop can be outside and it needs more credits so it's better to have it outside */
1985  dquot_drop(inode);
1986  reiserfs_write_lock(inode->i_sb);
1987  inode->i_flags |= S_NOQUOTA;
1988  make_bad_inode(inode);
1989 
1990  out_inserted_sd:
1991  clear_nlink(inode);
1992  th->t_trans_id = 0; /* so the caller can't use this handle later */
1993  unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1994  iput(inode);
1995  return err;
1996 }
1997 
1998 /*
1999 ** finds the tail page in the page cache,
2000 ** reads the last block in.
2001 **
2002 ** On success, page_result is set to a locked, pinned page, and bh_result
2003 ** is set to an up to date buffer for the last block in the file. returns 0.
2004 **
2005 ** tail conversion is not done, so bh_result might not be valid for writing
2006 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2007 ** trying to write the block.
2008 **
2009 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2010 */
2011 static int grab_tail_page(struct inode *inode,
2012  struct page **page_result,
2013  struct buffer_head **bh_result)
2014 {
2015 
2016  /* we want the page with the last byte in the file,
2017  ** not the page that will hold the next byte for appending
2018  */
2019  unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2020  unsigned long pos = 0;
2021  unsigned long start = 0;
2022  unsigned long blocksize = inode->i_sb->s_blocksize;
2023  unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2024  struct buffer_head *bh;
2025  struct buffer_head *head;
2026  struct page *page;
2027  int error;
2028 
2029  /* we know that we are only called with inode->i_size > 0.
2030  ** we also know that a file tail can never be as big as a block
2031  ** If i_size % blocksize == 0, our file is currently block aligned
2032  ** and it won't need converting or zeroing after a truncate.
2033  */
2034  if ((offset & (blocksize - 1)) == 0) {
2035  return -ENOENT;
2036  }
2037  page = grab_cache_page(inode->i_mapping, index);
2038  error = -ENOMEM;
2039  if (!page) {
2040  goto out;
2041  }
2042  /* start within the page of the last block in the file */
2043  start = (offset / blocksize) * blocksize;
2044 
2045  error = __block_write_begin(page, start, offset - start,
2046  reiserfs_get_block_create_0);
2047  if (error)
2048  goto unlock;
2049 
2050  head = page_buffers(page);
2051  bh = head;
2052  do {
2053  if (pos >= start) {
2054  break;
2055  }
2056  bh = bh->b_this_page;
2057  pos += blocksize;
2058  } while (bh != head);
2059 
2060  if (!buffer_uptodate(bh)) {
2061  /* note, this should never happen, prepare_write should
2062  ** be taking care of this for us. If the buffer isn't up to date,
2063  ** I've screwed up the code to find the buffer, or the code to
2064  ** call prepare_write
2065  */
2066  reiserfs_error(inode->i_sb, "clm-6000",
2067  "error reading block %lu", bh->b_blocknr);
2068  error = -EIO;
2069  goto unlock;
2070  }
2071  *bh_result = bh;
2072  *page_result = page;
2073 
2074  out:
2075  return error;
2076 
2077  unlock:
2078  unlock_page(page);
2079  page_cache_release(page);
2080  return error;
2081 }
2082 
2083 /*
2084 ** vfs version of truncate file. Must NOT be called with
2085 ** a transaction already started.
2086 **
2087 ** some code taken from block_truncate_page
2088 */
2089 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2090 {
2091  struct reiserfs_transaction_handle th;
2092  /* we want the offset for the first byte after the end of the file */
2093  unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2094  unsigned blocksize = inode->i_sb->s_blocksize;
2095  unsigned length;
2096  struct page *page = NULL;
2097  int error;
2098  struct buffer_head *bh = NULL;
2099  int err2;
2100  int lock_depth;
2101 
2102  lock_depth = reiserfs_write_lock_once(inode->i_sb);
2103 
2104  if (inode->i_size > 0) {
2105  error = grab_tail_page(inode, &page, &bh);
2106  if (error) {
2107  // -ENOENT means we truncated past the end of the file,
2108  // and get_block_create_0 could not find a block to read in,
2109  // which is ok.
2110  if (error != -ENOENT)
2111  reiserfs_error(inode->i_sb, "clm-6001",
2112  "grab_tail_page failed %d",
2113  error);
2114  page = NULL;
2115  bh = NULL;
2116  }
2117  }
2118 
2119  /* so, if page != NULL, we have a buffer head for the offset at
2120  ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2121  ** then we have an unformatted node. Otherwise, we have a direct item,
2122  ** and no zeroing is required on disk. We zero after the truncate,
2123  ** because the truncate might pack the item anyway
2124  ** (it will unmap bh if it packs).
2125  */
2126  /* it is enough to reserve space in transaction for 2 balancings:
2127  one for "save" link adding and another for the first
2128  cut_from_item. 1 is for update_sd */
2129  error = journal_begin(&th, inode->i_sb,
2130  JOURNAL_PER_BALANCE_CNT * 2 + 1);
2131  if (error)
2132  goto out;
2134  if (update_timestamps)
2135  /* we are doing real truncate: if the system crashes before the last
2136  transaction of truncating gets committed - on reboot the file
2137  either appears truncated properly or not truncated at all */
2138  add_save_link(&th, inode, 1);
2139  err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2140  error =
2141  journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2142  if (error)
2143  goto out;
2144 
2145  /* check reiserfs_do_truncate after ending the transaction */
2146  if (err2) {
2147  error = err2;
2148  goto out;
2149  }
2150 
2151  if (update_timestamps) {
2152  error = remove_save_link(inode, 1 /* truncate */);
2153  if (error)
2154  goto out;
2155  }
2156 
2157  if (page) {
2158  length = offset & (blocksize - 1);
2159  /* if we are not on a block boundary */
2160  if (length) {
2161  length = blocksize - length;
2162  zero_user(page, offset, length);
2163  if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2164  mark_buffer_dirty(bh);
2165  }
2166  }
2167  unlock_page(page);
2168  page_cache_release(page);
2169  }
2170 
2171  reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2172 
2173  return 0;
2174  out:
2175  if (page) {
2176  unlock_page(page);
2177  page_cache_release(page);
2178  }
2179 
2180  reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2181 
2182  return error;
2183 }
2184 
2185 static int map_block_for_writepage(struct inode *inode,
2186  struct buffer_head *bh_result,
2187  unsigned long block)
2188 {
2189  struct reiserfs_transaction_handle th;
2190  int fs_gen;
2191  struct item_head tmp_ih;
2192  struct item_head *ih;
2193  struct buffer_head *bh;
2194  __le32 *item;
2195  struct cpu_key key;
2196  INITIALIZE_PATH(path);
2197  int pos_in_item;
2198  int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2199  loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2200  int retval;
2201  int use_get_block = 0;
2202  int bytes_copied = 0;
2203  int copy_size;
2204  int trans_running = 0;
2205 
2206  /* catch places below that try to log something without starting a trans */
2207  th.t_trans_id = 0;
2208 
2209  if (!buffer_uptodate(bh_result)) {
2210  return -EIO;
2211  }
2212 
2213  kmap(bh_result->b_page);
2214  start_over:
2215  reiserfs_write_lock(inode->i_sb);
2216  make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2217 
2218  research:
2219  retval = search_for_position_by_key(inode->i_sb, &key, &path);
2220  if (retval != POSITION_FOUND) {
2221  use_get_block = 1;
2222  goto out;
2223  }
2224 
2225  bh = get_last_bh(&path);
2226  ih = get_ih(&path);
2227  item = get_item(&path);
2228  pos_in_item = path.pos_in_item;
2229 
2230  /* we've found an unformatted node */
2231  if (indirect_item_found(retval, ih)) {
2232  if (bytes_copied > 0) {
2233  reiserfs_warning(inode->i_sb, "clm-6002",
2234  "bytes_copied %d", bytes_copied);
2235  }
2236  if (!get_block_num(item, pos_in_item)) {
2237  /* crap, we are writing to a hole */
2238  use_get_block = 1;
2239  goto out;
2240  }
2241  set_block_dev_mapped(bh_result,
2242  get_block_num(item, pos_in_item), inode);
2243  } else if (is_direct_le_ih(ih)) {
2244  char *p;
2245  p = page_address(bh_result->b_page);
2246  p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2247  copy_size = ih_item_len(ih) - pos_in_item;
2248 
2249  fs_gen = get_generation(inode->i_sb);
2250  copy_item_head(&tmp_ih, ih);
2251 
2252  if (!trans_running) {
2253  /* vs-3050 is gone, no need to drop the path */
2254  retval = journal_begin(&th, inode->i_sb, jbegin_count);
2255  if (retval)
2256  goto out;
2258  trans_running = 1;
2259  if (fs_changed(fs_gen, inode->i_sb)
2260  && item_moved(&tmp_ih, &path)) {
2262  bh);
2263  goto research;
2264  }
2265  }
2266 
2267  reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2268 
2269  if (fs_changed(fs_gen, inode->i_sb)
2270  && item_moved(&tmp_ih, &path)) {
2272  goto research;
2273  }
2274 
2275  memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2276  copy_size);
2277 
2278  journal_mark_dirty(&th, inode->i_sb, bh);
2279  bytes_copied += copy_size;
2280  set_block_dev_mapped(bh_result, 0, inode);
2281 
2282  /* are there still bytes left? */
2283  if (bytes_copied < bh_result->b_size &&
2284  (byte_offset + bytes_copied) < inode->i_size) {
2285  set_cpu_key_k_offset(&key,
2286  cpu_key_k_offset(&key) +
2287  copy_size);
2288  goto research;
2289  }
2290  } else {
2291  reiserfs_warning(inode->i_sb, "clm-6003",
2292  "bad item inode %lu", inode->i_ino);
2293  retval = -EIO;
2294  goto out;
2295  }
2296  retval = 0;
2297 
2298  out:
2299  pathrelse(&path);
2300  if (trans_running) {
2301  int err = journal_end(&th, inode->i_sb, jbegin_count);
2302  if (err)
2303  retval = err;
2304  trans_running = 0;
2305  }
2306  reiserfs_write_unlock(inode->i_sb);
2307 
2308  /* this is where we fill in holes in the file. */
2309  if (use_get_block) {
2310  retval = reiserfs_get_block(inode, block, bh_result,
2313  if (!retval) {
2314  if (!buffer_mapped(bh_result)
2315  || bh_result->b_blocknr == 0) {
2316  /* get_block failed to find a mapped unformatted node. */
2317  use_get_block = 0;
2318  goto start_over;
2319  }
2320  }
2321  }
2322  kunmap(bh_result->b_page);
2323 
2324  if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2325  /* we've copied data from the page into the direct item, so the
2326  * buffer in the page is now clean, mark it to reflect that.
2327  */
2328  lock_buffer(bh_result);
2329  clear_buffer_dirty(bh_result);
2330  unlock_buffer(bh_result);
2331  }
2332  return retval;
2333 }
2334 
2335 /*
2336  * [email protected]: updated in 2.5.54 to follow the same general io
2337  * start/recovery path as __block_write_full_page, along with special
2338  * code to handle reiserfs tails.
2339  */
2340 static int reiserfs_write_full_page(struct page *page,
2341  struct writeback_control *wbc)
2342 {
2343  struct inode *inode = page->mapping->host;
2344  unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2345  int error = 0;
2346  unsigned long block;
2347  sector_t last_block;
2348  struct buffer_head *head, *bh;
2349  int partial = 0;
2350  int nr = 0;
2351  int checked = PageChecked(page);
2352  struct reiserfs_transaction_handle th;
2353  struct super_block *s = inode->i_sb;
2354  int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2355  th.t_trans_id = 0;
2356 
2357  /* no logging allowed when nonblocking or from PF_MEMALLOC */
2358  if (checked && (current->flags & PF_MEMALLOC)) {
2359  redirty_page_for_writepage(wbc, page);
2360  unlock_page(page);
2361  return 0;
2362  }
2363 
2364  /* The page dirty bit is cleared before writepage is called, which
2365  * means we have to tell create_empty_buffers to make dirty buffers
2366  * The page really should be up to date at this point, so tossing
2367  * in the BH_Uptodate is just a sanity check.
2368  */
2369  if (!page_has_buffers(page)) {
2371  (1 << BH_Dirty) | (1 << BH_Uptodate));
2372  }
2373  head = page_buffers(page);
2374 
2375  /* last page in the file, zero out any contents past the
2376  ** last byte in the file
2377  */
2378  if (page->index >= end_index) {
2379  unsigned last_offset;
2380 
2381  last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2382  /* no file contents in this page */
2383  if (page->index >= end_index + 1 || !last_offset) {
2384  unlock_page(page);
2385  return 0;
2386  }
2387  zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2388  }
2389  bh = head;
2390  block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2391  last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2392  /* first map all the buffers, logging any direct items we find */
2393  do {
2394  if (block > last_block) {
2395  /*
2396  * This can happen when the block size is less than
2397  * the page size. The corresponding bytes in the page
2398  * were zero filled above
2399  */
2400  clear_buffer_dirty(bh);
2401  set_buffer_uptodate(bh);
2402  } else if ((checked || buffer_dirty(bh)) &&
2403  (!buffer_mapped(bh) || (buffer_mapped(bh)
2404  && bh->b_blocknr ==
2405  0))) {
2406  /* not mapped yet, or it points to a direct item, search
2407  * the btree for the mapping info, and log any direct
2408  * items found
2409  */
2410  if ((error = map_block_for_writepage(inode, bh, block))) {
2411  goto fail;
2412  }
2413  }
2414  bh = bh->b_this_page;
2415  block++;
2416  } while (bh != head);
2417 
2418  /*
2419  * we start the transaction after map_block_for_writepage,
2420  * because it can create holes in the file (an unbounded operation).
2421  * starting it here, we can make a reliable estimate for how many
2422  * blocks we're going to log
2423  */
2424  if (checked) {
2425  ClearPageChecked(page);
2427  error = journal_begin(&th, s, bh_per_page + 1);
2428  if (error) {
2430  goto fail;
2431  }
2433  }
2434  /* now go through and lock any dirty buffers on the page */
2435  do {
2436  get_bh(bh);
2437  if (!buffer_mapped(bh))
2438  continue;
2439  if (buffer_mapped(bh) && bh->b_blocknr == 0)
2440  continue;
2441 
2442  if (checked) {
2443  reiserfs_prepare_for_journal(s, bh, 1);
2444  journal_mark_dirty(&th, s, bh);
2445  continue;
2446  }
2447  /* from this point on, we know the buffer is mapped to a
2448  * real block and not a direct item
2449  */
2450  if (wbc->sync_mode != WB_SYNC_NONE) {
2451  lock_buffer(bh);
2452  } else {
2453  if (!trylock_buffer(bh)) {
2454  redirty_page_for_writepage(wbc, page);
2455  continue;
2456  }
2457  }
2458  if (test_clear_buffer_dirty(bh)) {
2460  } else {
2461  unlock_buffer(bh);
2462  }
2463  } while ((bh = bh->b_this_page) != head);
2464 
2465  if (checked) {
2466  error = journal_end(&th, s, bh_per_page + 1);
2468  if (error)
2469  goto fail;
2470  }
2471  BUG_ON(PageWriteback(page));
2472  set_page_writeback(page);
2473  unlock_page(page);
2474 
2475  /*
2476  * since any buffer might be the only dirty buffer on the page,
2477  * the first submit_bh can bring the page out of writeback.
2478  * be careful with the buffers.
2479  */
2480  do {
2481  struct buffer_head *next = bh->b_this_page;
2482  if (buffer_async_write(bh)) {
2483  submit_bh(WRITE, bh);
2484  nr++;
2485  }
2486  put_bh(bh);
2487  bh = next;
2488  } while (bh != head);
2489 
2490  error = 0;
2491  done:
2492  if (nr == 0) {
2493  /*
2494  * if this page only had a direct item, it is very possible for
2495  * no io to be required without there being an error. Or,
2496  * someone else could have locked them and sent them down the
2497  * pipe without locking the page
2498  */
2499  bh = head;
2500  do {
2501  if (!buffer_uptodate(bh)) {
2502  partial = 1;
2503  break;
2504  }
2505  bh = bh->b_this_page;
2506  } while (bh != head);
2507  if (!partial)
2508  SetPageUptodate(page);
2509  end_page_writeback(page);
2510  }
2511  return error;
2512 
2513  fail:
2514  /* catches various errors, we need to make sure any valid dirty blocks
2515  * get to the media. The page is currently locked and not marked for
2516  * writeback
2517  */
2518  ClearPageUptodate(page);
2519  bh = head;
2520  do {
2521  get_bh(bh);
2522  if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2523  lock_buffer(bh);
2525  } else {
2526  /*
2527  * clear any dirty bits that might have come from getting
2528  * attached to a dirty page
2529  */
2530  clear_buffer_dirty(bh);
2531  }
2532  bh = bh->b_this_page;
2533  } while (bh != head);
2534  SetPageError(page);
2535  BUG_ON(PageWriteback(page));
2536  set_page_writeback(page);
2537  unlock_page(page);
2538  do {
2539  struct buffer_head *next = bh->b_this_page;
2540  if (buffer_async_write(bh)) {
2541  clear_buffer_dirty(bh);
2542  submit_bh(WRITE, bh);
2543  nr++;
2544  }
2545  put_bh(bh);
2546  bh = next;
2547  } while (bh != head);
2548  goto done;
2549 }
2550 
2551 static int reiserfs_readpage(struct file *f, struct page *page)
2552 {
2554 }
2555 
2556 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2557 {
2558  struct inode *inode = page->mapping->host;
2560  return reiserfs_write_full_page(page, wbc);
2561 }
2562 
2563 static void reiserfs_truncate_failed_write(struct inode *inode)
2564 {
2565  truncate_inode_pages(inode->i_mapping, inode->i_size);
2566  reiserfs_truncate_file(inode, 0);
2567 }
2568 
2569 static int reiserfs_write_begin(struct file *file,
2570  struct address_space *mapping,
2571  loff_t pos, unsigned len, unsigned flags,
2572  struct page **pagep, void **fsdata)
2573 {
2574  struct inode *inode;
2575  struct page *page;
2576  pgoff_t index;
2577  int ret;
2578  int old_ref = 0;
2579 
2580  inode = mapping->host;
2581  *fsdata = 0;
2582  if (flags & AOP_FLAG_CONT_EXPAND &&
2583  (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2584  pos ++;
2585  *fsdata = (void *)(unsigned long)flags;
2586  }
2587 
2588  index = pos >> PAGE_CACHE_SHIFT;
2589  page = grab_cache_page_write_begin(mapping, index, flags);
2590  if (!page)
2591  return -ENOMEM;
2592  *pagep = page;
2593 
2595  fix_tail_page_for_writing(page);
2596  if (reiserfs_transaction_running(inode->i_sb)) {
2598  th = (struct reiserfs_transaction_handle *)current->
2599  journal_info;
2600  BUG_ON(!th->t_refcount);
2601  BUG_ON(!th->t_trans_id);
2602  old_ref = th->t_refcount;
2603  th->t_refcount++;
2604  }
2605  ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2606  if (ret && reiserfs_transaction_running(inode->i_sb)) {
2607  struct reiserfs_transaction_handle *th = current->journal_info;
2608  /* this gets a little ugly. If reiserfs_get_block returned an
2609  * error and left a transacstion running, we've got to close it,
2610  * and we've got to free handle if it was a persistent transaction.
2611  *
2612  * But, if we had nested into an existing transaction, we need
2613  * to just drop the ref count on the handle.
2614  *
2615  * If old_ref == 0, the transaction is from reiserfs_get_block,
2616  * and it was a persistent trans. Otherwise, it was nested above.
2617  */
2618  if (th->t_refcount > old_ref) {
2619  if (old_ref)
2620  th->t_refcount--;
2621  else {
2622  int err;
2623  reiserfs_write_lock(inode->i_sb);
2625  reiserfs_write_unlock(inode->i_sb);
2626  if (err)
2627  ret = err;
2628  }
2629  }
2630  }
2631  if (ret) {
2632  unlock_page(page);
2633  page_cache_release(page);
2634  /* Truncate allocated blocks */
2635  reiserfs_truncate_failed_write(inode);
2636  }
2637  return ret;
2638 }
2639 
2640 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2641 {
2642  struct inode *inode = page->mapping->host;
2643  int ret;
2644  int old_ref = 0;
2645 
2646  reiserfs_write_unlock(inode->i_sb);
2648  reiserfs_write_lock(inode->i_sb);
2649 
2650  fix_tail_page_for_writing(page);
2651  if (reiserfs_transaction_running(inode->i_sb)) {
2653  th = (struct reiserfs_transaction_handle *)current->
2654  journal_info;
2655  BUG_ON(!th->t_refcount);
2656  BUG_ON(!th->t_trans_id);
2657  old_ref = th->t_refcount;
2658  th->t_refcount++;
2659  }
2660 
2661  ret = __block_write_begin(page, from, len, reiserfs_get_block);
2662  if (ret && reiserfs_transaction_running(inode->i_sb)) {
2663  struct reiserfs_transaction_handle *th = current->journal_info;
2664  /* this gets a little ugly. If reiserfs_get_block returned an
2665  * error and left a transacstion running, we've got to close it,
2666  * and we've got to free handle if it was a persistent transaction.
2667  *
2668  * But, if we had nested into an existing transaction, we need
2669  * to just drop the ref count on the handle.
2670  *
2671  * If old_ref == 0, the transaction is from reiserfs_get_block,
2672  * and it was a persistent trans. Otherwise, it was nested above.
2673  */
2674  if (th->t_refcount > old_ref) {
2675  if (old_ref)
2676  th->t_refcount--;
2677  else {
2678  int err;
2679  reiserfs_write_lock(inode->i_sb);
2681  reiserfs_write_unlock(inode->i_sb);
2682  if (err)
2683  ret = err;
2684  }
2685  }
2686  }
2687  return ret;
2688 
2689 }
2690 
2691 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2692 {
2693  return generic_block_bmap(as, block, reiserfs_bmap);
2694 }
2695 
2696 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2697  loff_t pos, unsigned len, unsigned copied,
2698  struct page *page, void *fsdata)
2699 {
2700  struct inode *inode = page->mapping->host;
2701  int ret = 0;
2702  int update_sd = 0;
2704  unsigned start;
2705  int lock_depth = 0;
2706  bool locked = false;
2707 
2708  if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2709  pos ++;
2710 
2712  if (reiserfs_transaction_running(inode->i_sb))
2713  th = current->journal_info;
2714  else
2715  th = NULL;
2716 
2717  start = pos & (PAGE_CACHE_SIZE - 1);
2718  if (unlikely(copied < len)) {
2719  if (!PageUptodate(page))
2720  copied = 0;
2721 
2722  page_zero_new_buffers(page, start + copied, start + len);
2723  }
2724  flush_dcache_page(page);
2725 
2726  reiserfs_commit_page(inode, page, start, start + copied);
2727 
2728  /* generic_commit_write does this for us, but does not update the
2729  ** transaction tracking stuff when the size changes. So, we have
2730  ** to do the i_size updates here.
2731  */
2732  if (pos + copied > inode->i_size) {
2733  struct reiserfs_transaction_handle myth;
2734  lock_depth = reiserfs_write_lock_once(inode->i_sb);
2735  locked = true;
2736  /* If the file have grown beyond the border where it
2737  can have a tail, unmark it as needing a tail
2738  packing */
2739  if ((have_large_tails(inode->i_sb)
2740  && inode->i_size > i_block_size(inode) * 4)
2741  || (have_small_tails(inode->i_sb)
2742  && inode->i_size > i_block_size(inode)))
2743  REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2744 
2745  ret = journal_begin(&myth, inode->i_sb, 1);
2746  if (ret)
2747  goto journal_error;
2748 
2750  inode->i_size = pos + copied;
2751  /*
2752  * this will just nest into our transaction. It's important
2753  * to use mark_inode_dirty so the inode gets pushed around on the
2754  * dirty lists, and so that O_SYNC works as expected
2755  */
2756  mark_inode_dirty(inode);
2757  reiserfs_update_sd(&myth, inode);
2758  update_sd = 1;
2759  ret = journal_end(&myth, inode->i_sb, 1);
2760  if (ret)
2761  goto journal_error;
2762  }
2763  if (th) {
2764  if (!locked) {
2765  lock_depth = reiserfs_write_lock_once(inode->i_sb);
2766  locked = true;
2767  }
2768  if (!update_sd)
2769  mark_inode_dirty(inode);
2771  if (ret)
2772  goto out;
2773  }
2774 
2775  out:
2776  if (locked)
2777  reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2778  unlock_page(page);
2779  page_cache_release(page);
2780 
2781  if (pos + len > inode->i_size)
2782  reiserfs_truncate_failed_write(inode);
2783 
2784  return ret == 0 ? copied : ret;
2785 
2786  journal_error:
2787  reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2788  locked = false;
2789  if (th) {
2790  if (!update_sd)
2791  reiserfs_update_sd(th, inode);
2793  }
2794  goto out;
2795 }
2796 
2797 int reiserfs_commit_write(struct file *f, struct page *page,
2798  unsigned from, unsigned to)
2799 {
2800  struct inode *inode = page->mapping->host;
2801  loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2802  int ret = 0;
2803  int update_sd = 0;
2804  struct reiserfs_transaction_handle *th = NULL;
2805 
2806  reiserfs_write_unlock(inode->i_sb);
2808  reiserfs_write_lock(inode->i_sb);
2809 
2810  if (reiserfs_transaction_running(inode->i_sb)) {
2811  th = current->journal_info;
2812  }
2813  reiserfs_commit_page(inode, page, from, to);
2814 
2815  /* generic_commit_write does this for us, but does not update the
2816  ** transaction tracking stuff when the size changes. So, we have
2817  ** to do the i_size updates here.
2818  */
2819  if (pos > inode->i_size) {
2820  struct reiserfs_transaction_handle myth;
2821  /* If the file have grown beyond the border where it
2822  can have a tail, unmark it as needing a tail
2823  packing */
2824  if ((have_large_tails(inode->i_sb)
2825  && inode->i_size > i_block_size(inode) * 4)
2826  || (have_small_tails(inode->i_sb)
2827  && inode->i_size > i_block_size(inode)))
2828  REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2829 
2830  ret = journal_begin(&myth, inode->i_sb, 1);
2831  if (ret)
2832  goto journal_error;
2833 
2835  inode->i_size = pos;
2836  /*
2837  * this will just nest into our transaction. It's important
2838  * to use mark_inode_dirty so the inode gets pushed around on the
2839  * dirty lists, and so that O_SYNC works as expected
2840  */
2841  mark_inode_dirty(inode);
2842  reiserfs_update_sd(&myth, inode);
2843  update_sd = 1;
2844  ret = journal_end(&myth, inode->i_sb, 1);
2845  if (ret)
2846  goto journal_error;
2847  }
2848  if (th) {
2849  if (!update_sd)
2850  mark_inode_dirty(inode);
2852  if (ret)
2853  goto out;
2854  }
2855 
2856  out:
2857  return ret;
2858 
2859  journal_error:
2860  if (th) {
2861  if (!update_sd)
2862  reiserfs_update_sd(th, inode);
2864  }
2865 
2866  return ret;
2867 }
2868 
2869 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2870 {
2871  if (reiserfs_attrs(inode->i_sb)) {
2872  if (sd_attrs & REISERFS_SYNC_FL)
2873  inode->i_flags |= S_SYNC;
2874  else
2875  inode->i_flags &= ~S_SYNC;
2876  if (sd_attrs & REISERFS_IMMUTABLE_FL)
2877  inode->i_flags |= S_IMMUTABLE;
2878  else
2879  inode->i_flags &= ~S_IMMUTABLE;
2880  if (sd_attrs & REISERFS_APPEND_FL)
2881  inode->i_flags |= S_APPEND;
2882  else
2883  inode->i_flags &= ~S_APPEND;
2884  if (sd_attrs & REISERFS_NOATIME_FL)
2885  inode->i_flags |= S_NOATIME;
2886  else
2887  inode->i_flags &= ~S_NOATIME;
2888  if (sd_attrs & REISERFS_NOTAIL_FL)
2889  REISERFS_I(inode)->i_flags |= i_nopack_mask;
2890  else
2891  REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2892  }
2893 }
2894 
2895 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2896 {
2897  if (reiserfs_attrs(inode->i_sb)) {
2898  if (inode->i_flags & S_IMMUTABLE)
2899  *sd_attrs |= REISERFS_IMMUTABLE_FL;
2900  else
2901  *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2902  if (inode->i_flags & S_SYNC)
2903  *sd_attrs |= REISERFS_SYNC_FL;
2904  else
2905  *sd_attrs &= ~REISERFS_SYNC_FL;
2906  if (inode->i_flags & S_NOATIME)
2907  *sd_attrs |= REISERFS_NOATIME_FL;
2908  else
2909  *sd_attrs &= ~REISERFS_NOATIME_FL;
2910  if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2911  *sd_attrs |= REISERFS_NOTAIL_FL;
2912  else
2913  *sd_attrs &= ~REISERFS_NOTAIL_FL;
2914  }
2915 }
2916 
2917 /* decide if this buffer needs to stay around for data logging or ordered
2918 ** write purposes
2919 */
2920 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2921 {
2922  int ret = 1;
2923  struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2924 
2925  lock_buffer(bh);
2926  spin_lock(&j->j_dirty_buffers_lock);
2927  if (!buffer_mapped(bh)) {
2928  goto free_jh;
2929  }
2930  /* the page is locked, and the only places that log a data buffer
2931  * also lock the page.
2932  */
2933  if (reiserfs_file_data_log(inode)) {
2934  /*
2935  * very conservative, leave the buffer pinned if
2936  * anyone might need it.
2937  */
2938  if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2939  ret = 0;
2940  }
2941  } else if (buffer_dirty(bh)) {
2942  struct reiserfs_journal_list *jl;
2943  struct reiserfs_jh *jh = bh->b_private;
2944 
2945  /* why is this safe?
2946  * reiserfs_setattr updates i_size in the on disk
2947  * stat data before allowing vmtruncate to be called.
2948  *
2949  * If buffer was put onto the ordered list for this
2950  * transaction, we know for sure either this transaction
2951  * or an older one already has updated i_size on disk,
2952  * and this ordered data won't be referenced in the file
2953  * if we crash.
2954  *
2955  * if the buffer was put onto the ordered list for an older
2956  * transaction, we need to leave it around
2957  */
2958  if (jh && (jl = jh->jl)
2959  && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2960  ret = 0;
2961  }
2962  free_jh:
2963  if (ret && bh->b_private) {
2964  reiserfs_free_jh(bh);
2965  }
2966  spin_unlock(&j->j_dirty_buffers_lock);
2967  unlock_buffer(bh);
2968  return ret;
2969 }
2970 
2971 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2972 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2973 {
2974  struct buffer_head *head, *bh, *next;
2975  struct inode *inode = page->mapping->host;
2976  unsigned int curr_off = 0;
2977  int ret = 1;
2978 
2979  BUG_ON(!PageLocked(page));
2980 
2981  if (offset == 0)
2982  ClearPageChecked(page);
2983 
2984  if (!page_has_buffers(page))
2985  goto out;
2986 
2987  head = page_buffers(page);
2988  bh = head;
2989  do {
2990  unsigned int next_off = curr_off + bh->b_size;
2991  next = bh->b_this_page;
2992 
2993  /*
2994  * is this block fully invalidated?
2995  */
2996  if (offset <= curr_off) {
2997  if (invalidatepage_can_drop(inode, bh))
2999  else
3000  ret = 0;
3001  }
3002  curr_off = next_off;
3003  bh = next;
3004  } while (bh != head);
3005 
3006  /*
3007  * We release buffers only if the entire page is being invalidated.
3008  * The get_block cached value has been unconditionally invalidated,
3009  * so real IO is not possible anymore.
3010  */
3011  if (!offset && ret) {
3012  ret = try_to_release_page(page, 0);
3013  /* maybe should BUG_ON(!ret); - neilb */
3014  }
3015  out:
3016  return;
3017 }
3018 
3019 static int reiserfs_set_page_dirty(struct page *page)
3020 {
3021  struct inode *inode = page->mapping->host;
3022  if (reiserfs_file_data_log(inode)) {
3023  SetPageChecked(page);
3024  return __set_page_dirty_nobuffers(page);
3025  }
3026  return __set_page_dirty_buffers(page);
3027 }
3028 
3029 /*
3030  * Returns 1 if the page's buffers were dropped. The page is locked.
3031  *
3032  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3033  * in the buffers at page_buffers(page).
3034  *
3035  * even in -o notail mode, we can't be sure an old mount without -o notail
3036  * didn't create files with tails.
3037  */
3038 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3039 {
3040  struct inode *inode = page->mapping->host;
3041  struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3042  struct buffer_head *head;
3043  struct buffer_head *bh;
3044  int ret = 1;
3045 
3046  WARN_ON(PageChecked(page));
3047  spin_lock(&j->j_dirty_buffers_lock);
3048  head = page_buffers(page);
3049  bh = head;
3050  do {
3051  if (bh->b_private) {
3052  if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3053  reiserfs_free_jh(bh);
3054  } else {
3055  ret = 0;
3056  break;
3057  }
3058  }
3059  bh = bh->b_this_page;
3060  } while (bh != head);
3061  if (ret)
3062  ret = try_to_free_buffers(page);
3063  spin_unlock(&j->j_dirty_buffers_lock);
3064  return ret;
3065 }
3066 
3067 /* We thank Mingming Cao for helping us understand in great detail what
3068  to do in this section of the code. */
3069 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3070  const struct iovec *iov, loff_t offset,
3071  unsigned long nr_segs)
3072 {
3073  struct file *file = iocb->ki_filp;
3074  struct inode *inode = file->f_mapping->host;
3075  ssize_t ret;
3076 
3077  ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3078  reiserfs_get_blocks_direct_io);
3079 
3080  /*
3081  * In case of error extending write may have instantiated a few
3082  * blocks outside i_size. Trim these off again.
3083  */
3084  if (unlikely((rw & WRITE) && ret < 0)) {
3085  loff_t isize = i_size_read(inode);
3086  loff_t end = offset + iov_length(iov, nr_segs);
3087 
3088  if (end > isize)
3089  vmtruncate(inode, isize);
3090  }
3091 
3092  return ret;
3093 }
3094 
3095 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3096 {
3097  struct inode *inode = dentry->d_inode;
3098  unsigned int ia_valid;
3099  int depth;
3100  int error;
3101 
3102  error = inode_change_ok(inode, attr);
3103  if (error)
3104  return error;
3105 
3106  /* must be turned off for recursive notify_change calls */
3107  ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3108 
3109  if (is_quota_modification(inode, attr))
3110  dquot_initialize(inode);
3111  depth = reiserfs_write_lock_once(inode->i_sb);
3112  if (attr->ia_valid & ATTR_SIZE) {
3113  /* version 2 items will be caught by the s_maxbytes check
3114  ** done for us in vmtruncate
3115  */
3117  attr->ia_size > MAX_NON_LFS) {
3118  error = -EFBIG;
3119  goto out;
3120  }
3121 
3122  inode_dio_wait(inode);
3123 
3124  /* fill in hole pointers in the expanding truncate case. */
3125  if (attr->ia_size > inode->i_size) {
3126  error = generic_cont_expand_simple(inode, attr->ia_size);
3127  if (REISERFS_I(inode)->i_prealloc_count > 0) {
3128  int err;
3129  struct reiserfs_transaction_handle th;
3130  /* we're changing at most 2 bitmaps, inode + super */
3131  err = journal_begin(&th, inode->i_sb, 4);
3132  if (!err) {
3133  reiserfs_discard_prealloc(&th, inode);
3134  err = journal_end(&th, inode->i_sb, 4);
3135  }
3136  if (err)
3137  error = err;
3138  }
3139  if (error)
3140  goto out;
3141  /*
3142  * file size is changed, ctime and mtime are
3143  * to be updated
3144  */
3145  attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3146  }
3147  }
3148 
3149  if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3150  ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3151  (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3152  /* stat data of format v3.5 has 16 bit uid and gid */
3153  error = -EINVAL;
3154  goto out;
3155  }
3156 
3157  if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3158  (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3159  struct reiserfs_transaction_handle th;
3160  int jbegin_count =
3161  2 *
3162  (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3163  REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3164  2;
3165 
3166  error = reiserfs_chown_xattrs(inode, attr);
3167 
3168  if (error)
3169  return error;
3170 
3171  /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3172  error = journal_begin(&th, inode->i_sb, jbegin_count);
3173  if (error)
3174  goto out;
3175  reiserfs_write_unlock_once(inode->i_sb, depth);
3176  error = dquot_transfer(inode, attr);
3177  depth = reiserfs_write_lock_once(inode->i_sb);
3178  if (error) {
3179  journal_end(&th, inode->i_sb, jbegin_count);
3180  goto out;
3181  }
3182 
3183  /* Update corresponding info in inode so that everything is in
3184  * one transaction */
3185  if (attr->ia_valid & ATTR_UID)
3186  inode->i_uid = attr->ia_uid;
3187  if (attr->ia_valid & ATTR_GID)
3188  inode->i_gid = attr->ia_gid;
3189  mark_inode_dirty(inode);
3190  error = journal_end(&th, inode->i_sb, jbegin_count);
3191  if (error)
3192  goto out;
3193  }
3194 
3195  /*
3196  * Relax the lock here, as it might truncate the
3197  * inode pages and wait for inode pages locks.
3198  * To release such page lock, the owner needs the
3199  * reiserfs lock
3200  */
3201  reiserfs_write_unlock_once(inode->i_sb, depth);
3202  if ((attr->ia_valid & ATTR_SIZE) &&
3203  attr->ia_size != i_size_read(inode))
3204  error = vmtruncate(inode, attr->ia_size);
3205 
3206  if (!error) {
3207  setattr_copy(inode, attr);
3208  mark_inode_dirty(inode);
3209  }
3210  depth = reiserfs_write_lock_once(inode->i_sb);
3211 
3212  if (!error && reiserfs_posixacl(inode->i_sb)) {
3213  if (attr->ia_valid & ATTR_MODE)
3214  error = reiserfs_acl_chmod(inode);
3215  }
3216 
3217  out:
3218  reiserfs_write_unlock_once(inode->i_sb, depth);
3219 
3220  return error;
3221 }
3222 
3224  .writepage = reiserfs_writepage,
3225  .readpage = reiserfs_readpage,
3226  .readpages = reiserfs_readpages,
3227  .releasepage = reiserfs_releasepage,
3228  .invalidatepage = reiserfs_invalidatepage,
3229  .write_begin = reiserfs_write_begin,
3230  .write_end = reiserfs_write_end,
3231  .bmap = reiserfs_aop_bmap,
3232  .direct_IO = reiserfs_direct_IO,
3233  .set_page_dirty = reiserfs_set_page_dirty,
3234 };