Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hfa384x_usb.c
Go to the documentation of this file.
1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 * The contents of this file are subject to the Mozilla Public
11 * License Version 1.1 (the "License"); you may not use this file
12 * except in compliance with the License. You may obtain a copy of
13 * the License at http://www.mozilla.org/MPL/
14 *
15 * Software distributed under the License is distributed on an "AS
16 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 * implied. See the License for the specific language governing
18 * rights and limitations under the License.
19 *
20 * Alternatively, the contents of this file may be used under the
21 * terms of the GNU Public License version 2 (the "GPL"), in which
22 * case the provisions of the GPL are applicable instead of the
23 * above. If you wish to allow the use of your version of this file
24 * only under the terms of the GPL and not to allow others to use
25 * your version of this file under the MPL, indicate your decision
26 * by deleting the provisions above and replace them with the notice
27 * and other provisions required by the GPL. If you do not delete
28 * the provisions above, a recipient may use your version of this
29 * file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction. The lowest level functions are simply C-callable wrappers
52 * around the register accesses. The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable. The next higher layer implements common sequences
55 * of invocations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx Highest level abstractions provided by the
59 * hfa384x code. They are driver defined wrappers
60 * for common sequences. These functions generally
61 * use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
64 * functions are wrappers for the RID get/set
65 * sequence. They call copy_[to|from]_bap() and
66 * cmd_access(). These functions operate on the
67 * RIDs and buffers without validation. The caller
68 * is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx functions that provide access to the f/w commands.
72 * The function arguments correspond to each command
73 * argument, even command arguments that get packed
74 * into single registers. These functions _just_
75 * issue the command by setting the cmd/parm regs
76 * & reading the status/resp regs. Additional
77 * activities required to fully use a command
78 * (read/write from/to bap, get/set int status etc.)
79 * are implemented separately. Think of these as
80 * C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx These functions implement the sequence required
84 * to issue any prism2 command. Primarily used by the
85 * hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx BAP read/write access functions.
88 * Note: we usually use BAP0 for non-interrupt context
89 * and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo. The four
96 * functions are create(), destroy(), start(), and stop(). create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up. The start() function gets
99 * the actual hardware running and enables the interrupts. The stop()
100 * function shuts the hardware down. The sequence should be:
101 * create()
102 * start()
103 * .
104 * . Do interesting things w/ the hardware
105 * .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112 
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128 
129 #define SUBMIT_URB(u, f) usb_submit_urb(u, f)
130 
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
142 
143 enum cmd_mode {
144  DOWAIT = 0,
146 };
147 
148 #define THROTTLE_JIFFIES (HZ/8)
149 #define URB_ASYNC_UNLINK 0
150 #define USB_QUEUE_BULK 0
151 
152 #define ROUNDUP64(a) (((a)+63)&~63)
153 
154 #ifdef DEBUG_USB
155 static void dbprint_urb(struct urb *urb);
156 #endif
157 
158 static void
159 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
160 
161 static void hfa384x_usb_defer(struct work_struct *data);
162 
163 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
164 
165 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
166 
167 /*---------------------------------------------------*/
168 /* Callbacks */
169 static void hfa384x_usbout_callback(struct urb *urb);
170 static void hfa384x_ctlxout_callback(struct urb *urb);
171 static void hfa384x_usbin_callback(struct urb *urb);
172 
173 static void
174 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
175 
176 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
177 
178 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
179 
180 static void
181 hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
182 
183 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
184  int urb_status);
185 
186 /*---------------------------------------------------*/
187 /* Functions to support the prism2 usb command queue */
188 
189 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
190 
191 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
192 
193 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
194 
195 static void hfa384x_usb_throttlefn(unsigned long data);
196 
197 static void hfa384x_usbctlx_completion_task(unsigned long data);
198 
199 static void hfa384x_usbctlx_reaper_task(unsigned long data);
200 
201 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
202 
203 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
204 
207 };
208 
209 static int
210 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
211  hfa384x_usbctlx_t *ctlx,
212  struct usbctlx_completor *completor);
213 
214 static int
215 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
216 
217 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
218 
219 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
220 
221 static int
222 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
223  hfa384x_cmdresult_t *result);
224 
225 static void
226 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
227  hfa384x_rridresult_t *result);
228 
229 /*---------------------------------------------------*/
230 /* Low level req/resp CTLX formatters and submitters */
231 static int
232 hfa384x_docmd(hfa384x_t *hw,
233  enum cmd_mode mode,
234  hfa384x_metacmd_t *cmd,
235  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
236 
237 static int
238 hfa384x_dorrid(hfa384x_t *hw,
239  enum cmd_mode mode,
240  u16 rid,
241  void *riddata,
242  unsigned int riddatalen,
243  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
244 
245 static int
246 hfa384x_dowrid(hfa384x_t *hw,
247  enum cmd_mode mode,
248  u16 rid,
249  void *riddata,
250  unsigned int riddatalen,
251  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
252 
253 static int
254 hfa384x_dormem(hfa384x_t *hw,
255  enum cmd_mode mode,
256  u16 page,
257  u16 offset,
258  void *data,
259  unsigned int len,
260  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
261 
262 static int
263 hfa384x_dowmem(hfa384x_t *hw,
264  enum cmd_mode mode,
265  u16 page,
266  u16 offset,
267  void *data,
268  unsigned int len,
269  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
270 
271 static int hfa384x_isgood_pdrcode(u16 pdrcode);
272 
273 static inline const char *ctlxstr(CTLX_STATE s)
274 {
275  static const char *ctlx_str[] = {
276  "Initial state",
277  "Complete",
278  "Request failed",
279  "Request pending",
280  "Request packet submitted",
281  "Request packet completed",
282  "Response packet completed"
283  };
284 
285  return ctlx_str[s];
286 };
287 
288 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t * hw)
289 {
290  return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
291 }
292 
293 #ifdef DEBUG_USB
294 void dbprint_urb(struct urb *urb)
295 {
296  pr_debug("urb->pipe=0x%08x\n", urb->pipe);
297  pr_debug("urb->status=0x%08x\n", urb->status);
298  pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
299  pr_debug("urb->transfer_buffer=0x%08x\n",
300  (unsigned int)urb->transfer_buffer);
301  pr_debug("urb->transfer_buffer_length=0x%08x\n",
302  urb->transfer_buffer_length);
303  pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
304  pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
305  pr_debug("urb->setup_packet(ctl)=0x%08x\n",
306  (unsigned int)urb->setup_packet);
307  pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
308  pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
309  pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
310  pr_debug("urb->timeout=0x%08x\n", urb->timeout);
311  pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
312  pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
313 }
314 #endif
315 
316 /*----------------------------------------------------------------
317 * submit_rx_urb
318 *
319 * Listen for input data on the BULK-IN pipe. If the pipe has
320 * stalled then schedule it to be reset.
321 *
322 * Arguments:
323 * hw device struct
324 * memflags memory allocation flags
325 *
326 * Returns:
327 * error code from submission
328 *
329 * Call context:
330 * Any
331 ----------------------------------------------------------------*/
332 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
333 {
334  struct sk_buff *skb;
335  int result;
336 
337  skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
338  if (skb == NULL) {
339  result = -ENOMEM;
340  goto done;
341  }
342 
343  /* Post the IN urb */
344  usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
345  hw->endp_in,
346  skb->data, sizeof(hfa384x_usbin_t),
347  hfa384x_usbin_callback, hw->wlandev);
348 
349  hw->rx_urb_skb = skb;
350 
351  result = -ENOLINK;
352  if (!hw->wlandev->hwremoved &&
353  !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
354  result = SUBMIT_URB(&hw->rx_urb, memflags);
355 
356  /* Check whether we need to reset the RX pipe */
357  if (result == -EPIPE) {
359  "%s rx pipe stalled: requesting reset\n",
360  hw->wlandev->netdev->name);
361  if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
362  schedule_work(&hw->usb_work);
363  }
364  }
365 
366  /* Don't leak memory if anything should go wrong */
367  if (result != 0) {
368  dev_kfree_skb(skb);
369  hw->rx_urb_skb = NULL;
370  }
371 
372 done:
373  return result;
374 }
375 
376 /*----------------------------------------------------------------
377 * submit_tx_urb
378 *
379 * Prepares and submits the URB of transmitted data. If the
380 * submission fails then it will schedule the output pipe to
381 * be reset.
382 *
383 * Arguments:
384 * hw device struct
385 * tx_urb URB of data for tranmission
386 * memflags memory allocation flags
387 *
388 * Returns:
389 * error code from submission
390 *
391 * Call context:
392 * Any
393 ----------------------------------------------------------------*/
394 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
395 {
396  struct net_device *netdev = hw->wlandev->netdev;
397  int result;
398 
399  result = -ENOLINK;
400  if (netif_running(netdev)) {
401 
402  if (!hw->wlandev->hwremoved
403  && !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
404  result = SUBMIT_URB(tx_urb, memflags);
405 
406  /* Test whether we need to reset the TX pipe */
407  if (result == -EPIPE) {
409  "%s tx pipe stalled: requesting reset\n",
410  netdev->name);
411  set_bit(WORK_TX_HALT, &hw->usb_flags);
412  schedule_work(&hw->usb_work);
413  } else if (result == 0) {
414  netif_stop_queue(netdev);
415  }
416  }
417  }
418 
419  return result;
420 }
421 
422 /*----------------------------------------------------------------
423 * hfa394x_usb_defer
424 *
425 * There are some things that the USB stack cannot do while
426 * in interrupt context, so we arrange this function to run
427 * in process context.
428 *
429 * Arguments:
430 * hw device structure
431 *
432 * Returns:
433 * nothing
434 *
435 * Call context:
436 * process (by design)
437 ----------------------------------------------------------------*/
438 static void hfa384x_usb_defer(struct work_struct *data)
439 {
440  hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
441  struct net_device *netdev = hw->wlandev->netdev;
442 
443  /* Don't bother trying to reset anything if the plug
444  * has been pulled ...
445  */
446  if (hw->wlandev->hwremoved)
447  return;
448 
449  /* Reception has stopped: try to reset the input pipe */
450  if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
451  int ret;
452 
453  usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
454 
455  ret = usb_clear_halt(hw->usb, hw->endp_in);
456  if (ret != 0) {
458  "Failed to clear rx pipe for %s: err=%d\n",
459  netdev->name, ret);
460  } else {
461  printk(KERN_INFO "%s rx pipe reset complete.\n",
462  netdev->name);
463  clear_bit(WORK_RX_HALT, &hw->usb_flags);
464  set_bit(WORK_RX_RESUME, &hw->usb_flags);
465  }
466  }
467 
468  /* Resume receiving data back from the device. */
469  if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
470  int ret;
471 
472  ret = submit_rx_urb(hw, GFP_KERNEL);
473  if (ret != 0) {
475  "Failed to resume %s rx pipe.\n", netdev->name);
476  } else {
477  clear_bit(WORK_RX_RESUME, &hw->usb_flags);
478  }
479  }
480 
481  /* Transmission has stopped: try to reset the output pipe */
482  if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
483  int ret;
484 
485  usb_kill_urb(&hw->tx_urb);
486  ret = usb_clear_halt(hw->usb, hw->endp_out);
487  if (ret != 0) {
489  "Failed to clear tx pipe for %s: err=%d\n",
490  netdev->name, ret);
491  } else {
492  printk(KERN_INFO "%s tx pipe reset complete.\n",
493  netdev->name);
494  clear_bit(WORK_TX_HALT, &hw->usb_flags);
495  set_bit(WORK_TX_RESUME, &hw->usb_flags);
496 
497  /* Stopping the BULK-OUT pipe also blocked
498  * us from sending any more CTLX URBs, so
499  * we need to re-run our queue ...
500  */
501  hfa384x_usbctlxq_run(hw);
502  }
503  }
504 
505  /* Resume transmitting. */
506  if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
507  netif_wake_queue(hw->wlandev->netdev);
508 }
509 
510 /*----------------------------------------------------------------
511 * hfa384x_create
512 *
513 * Sets up the hfa384x_t data structure for use. Note this
514 * does _not_ initialize the actual hardware, just the data structures
515 * we use to keep track of its state.
516 *
517 * Arguments:
518 * hw device structure
519 * irq device irq number
520 * iobase i/o base address for register access
521 * membase memory base address for register access
522 *
523 * Returns:
524 * nothing
525 *
526 * Side effects:
527 *
528 * Call context:
529 * process
530 ----------------------------------------------------------------*/
531 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
532 {
533  memset(hw, 0, sizeof(hfa384x_t));
534  hw->usb = usb;
535 
536  /* set up the endpoints */
537  hw->endp_in = usb_rcvbulkpipe(usb, 1);
538  hw->endp_out = usb_sndbulkpipe(usb, 2);
539 
540  /* Set up the waitq */
541  init_waitqueue_head(&hw->cmdq);
542 
543  /* Initialize the command queue */
544  spin_lock_init(&hw->ctlxq.lock);
545  INIT_LIST_HEAD(&hw->ctlxq.pending);
546  INIT_LIST_HEAD(&hw->ctlxq.active);
547  INIT_LIST_HEAD(&hw->ctlxq.completing);
548  INIT_LIST_HEAD(&hw->ctlxq.reapable);
549 
550  /* Initialize the authentication queue */
551  skb_queue_head_init(&hw->authq);
552 
553  tasklet_init(&hw->reaper_bh,
554  hfa384x_usbctlx_reaper_task, (unsigned long)hw);
555  tasklet_init(&hw->completion_bh,
556  hfa384x_usbctlx_completion_task, (unsigned long)hw);
557  INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
558  INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
559 
560  init_timer(&hw->throttle);
561  hw->throttle.function = hfa384x_usb_throttlefn;
562  hw->throttle.data = (unsigned long)hw;
563 
564  init_timer(&hw->resptimer);
565  hw->resptimer.function = hfa384x_usbctlx_resptimerfn;
566  hw->resptimer.data = (unsigned long)hw;
567 
568  init_timer(&hw->reqtimer);
569  hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn;
570  hw->reqtimer.data = (unsigned long)hw;
571 
572  usb_init_urb(&hw->rx_urb);
573  usb_init_urb(&hw->tx_urb);
574  usb_init_urb(&hw->ctlx_urb);
575 
576  hw->link_status = HFA384x_LINK_NOTCONNECTED;
577  hw->state = HFA384x_STATE_INIT;
578 
579  INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
580  init_timer(&hw->commsqual_timer);
581  hw->commsqual_timer.data = (unsigned long)hw;
582  hw->commsqual_timer.function = prism2sta_commsqual_timer;
583 }
584 
585 /*----------------------------------------------------------------
586 * hfa384x_destroy
587 *
588 * Partner to hfa384x_create(). This function cleans up the hw
589 * structure so that it can be freed by the caller using a simple
590 * kfree. Currently, this function is just a placeholder. If, at some
591 * point in the future, an hw in the 'shutdown' state requires a 'deep'
592 * kfree, this is where it should be done. Note that if this function
593 * is called on a _running_ hw structure, the drvr_stop() function is
594 * called.
595 *
596 * Arguments:
597 * hw device structure
598 *
599 * Returns:
600 * nothing, this function is not allowed to fail.
601 *
602 * Side effects:
603 *
604 * Call context:
605 * process
606 ----------------------------------------------------------------*/
607 void hfa384x_destroy(hfa384x_t *hw)
608 {
609  struct sk_buff *skb;
610 
611  if (hw->state == HFA384x_STATE_RUNNING)
612  hfa384x_drvr_stop(hw);
613  hw->state = HFA384x_STATE_PREINIT;
614 
615  kfree(hw->scanresults);
616  hw->scanresults = NULL;
617 
618  /* Now to clean out the auth queue */
619  while ((skb = skb_dequeue(&hw->authq)))
620  dev_kfree_skb(skb);
621 }
622 
623 static hfa384x_usbctlx_t *usbctlx_alloc(void)
624 {
625  hfa384x_usbctlx_t *ctlx;
626 
627  ctlx = kmalloc(sizeof(*ctlx), in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
628  if (ctlx != NULL) {
629  memset(ctlx, 0, sizeof(*ctlx));
630  init_completion(&ctlx->done);
631  }
632 
633  return ctlx;
634 }
635 
636 static int
637 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
638  hfa384x_cmdresult_t *result)
639 {
640  result->status = le16_to_cpu(cmdresp->status);
641  result->resp0 = le16_to_cpu(cmdresp->resp0);
642  result->resp1 = le16_to_cpu(cmdresp->resp1);
643  result->resp2 = le16_to_cpu(cmdresp->resp2);
644 
645  pr_debug("cmdresult:status=0x%04x "
646  "resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
647  result->status, result->resp0, result->resp1, result->resp2);
648 
649  return result->status & HFA384x_STATUS_RESULT;
650 }
651 
652 static void
653 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
654  hfa384x_rridresult_t *result)
655 {
656  result->rid = le16_to_cpu(rridresp->rid);
657  result->riddata = rridresp->data;
658  result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
659 
660 }
661 
662 /*----------------------------------------------------------------
663 * Completor object:
664 * This completor must be passed to hfa384x_usbctlx_complete_sync()
665 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
666 ----------------------------------------------------------------*/
669 
671  hfa384x_cmdresult_t *result;
672 };
673 
674 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
675 {
677 
678  complete = (struct usbctlx_cmd_completor *) head;
679  return usbctlx_get_status(complete->cmdresp, complete->result);
680 }
681 
682 static inline struct usbctlx_completor *init_cmd_completor(
683  struct usbctlx_cmd_completor
684  *completor,
686  *cmdresp,
687  hfa384x_cmdresult_t *result)
688 {
689  completor->head.complete = usbctlx_cmd_completor_fn;
690  completor->cmdresp = cmdresp;
691  completor->result = result;
692  return &(completor->head);
693 }
694 
695 /*----------------------------------------------------------------
696 * Completor object:
697 * This completor must be passed to hfa384x_usbctlx_complete_sync()
698 * when processing a CTLX that reads a RID.
699 ----------------------------------------------------------------*/
702 
704  void *riddata;
705  unsigned int riddatalen;
706 };
707 
708 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
709 {
711  hfa384x_rridresult_t rridresult;
712 
713  complete = (struct usbctlx_rrid_completor *) head;
714  usbctlx_get_rridresult(complete->rridresp, &rridresult);
715 
716  /* Validate the length, note body len calculation in bytes */
717  if (rridresult.riddata_len != complete->riddatalen) {
719  "RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
720  rridresult.rid,
721  complete->riddatalen, rridresult.riddata_len);
722  return -ENODATA;
723  }
724 
725  memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
726  return 0;
727 }
728 
729 static inline struct usbctlx_completor *init_rrid_completor(
731  *completor,
733  *rridresp,
734  void *riddata,
735  unsigned int riddatalen)
736 {
737  completor->head.complete = usbctlx_rrid_completor_fn;
738  completor->rridresp = rridresp;
739  completor->riddata = riddata;
740  completor->riddatalen = riddatalen;
741  return &(completor->head);
742 }
743 
744 /*----------------------------------------------------------------
745 * Completor object:
746 * Interprets the results of a synchronous RID-write
747 ----------------------------------------------------------------*/
749 #define init_wrid_completor init_cmd_completor
750 
751 /*----------------------------------------------------------------
752 * Completor object:
753 * Interprets the results of a synchronous memory-write
754 ----------------------------------------------------------------*/
756 #define init_wmem_completor init_cmd_completor
757 
758 /*----------------------------------------------------------------
759 * Completor object:
760 * Interprets the results of a synchronous memory-read
761 ----------------------------------------------------------------*/
764 
766  void *data;
767  unsigned int len;
768 };
770 
771 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
772 {
774 
775  pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
776  memcpy(complete->data, complete->rmemresp->data, complete->len);
777  return 0;
778 }
779 
780 static inline struct usbctlx_completor *init_rmem_completor(
782  *completor,
784  *rmemresp,
785  void *data,
786  unsigned int len)
787 {
788  completor->head.complete = usbctlx_rmem_completor_fn;
789  completor->rmemresp = rmemresp;
790  completor->data = data;
791  completor->len = len;
792  return &(completor->head);
793 }
794 
795 /*----------------------------------------------------------------
796 * hfa384x_cb_status
797 *
798 * Ctlx_complete handler for async CMD type control exchanges.
799 * mark the hw struct as such.
800 *
801 * Note: If the handling is changed here, it should probably be
802 * changed in docmd as well.
803 *
804 * Arguments:
805 * hw hw struct
806 * ctlx completed CTLX
807 *
808 * Returns:
809 * nothing
810 *
811 * Side effects:
812 *
813 * Call context:
814 * interrupt
815 ----------------------------------------------------------------*/
816 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
817 {
818  if (ctlx->usercb != NULL) {
819  hfa384x_cmdresult_t cmdresult;
820 
821  if (ctlx->state != CTLX_COMPLETE) {
822  memset(&cmdresult, 0, sizeof(cmdresult));
823  cmdresult.status =
825  } else {
826  usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
827  }
828 
829  ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
830  }
831 }
832 
833 /*----------------------------------------------------------------
834 * hfa384x_cb_rrid
835 *
836 * CTLX completion handler for async RRID type control exchanges.
837 *
838 * Note: If the handling is changed here, it should probably be
839 * changed in dorrid as well.
840 *
841 * Arguments:
842 * hw hw struct
843 * ctlx completed CTLX
844 *
845 * Returns:
846 * nothing
847 *
848 * Side effects:
849 *
850 * Call context:
851 * interrupt
852 ----------------------------------------------------------------*/
853 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
854 {
855  if (ctlx->usercb != NULL) {
856  hfa384x_rridresult_t rridresult;
857 
858  if (ctlx->state != CTLX_COMPLETE) {
859  memset(&rridresult, 0, sizeof(rridresult));
860  rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
861  } else {
862  usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
863  &rridresult);
864  }
865 
866  ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
867  }
868 }
869 
870 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
871 {
872  return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
873 }
874 
875 static inline int
876 hfa384x_docmd_async(hfa384x_t *hw,
877  hfa384x_metacmd_t *cmd,
878  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
879 {
880  return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
881 }
882 
883 static inline int
884 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
885  unsigned int riddatalen)
886 {
887  return hfa384x_dorrid(hw, DOWAIT,
888  rid, riddata, riddatalen, NULL, NULL, NULL);
889 }
890 
891 static inline int
892 hfa384x_dorrid_async(hfa384x_t *hw,
893  u16 rid, void *riddata, unsigned int riddatalen,
894  ctlx_cmdcb_t cmdcb,
895  ctlx_usercb_t usercb, void *usercb_data)
896 {
897  return hfa384x_dorrid(hw, DOASYNC,
898  rid, riddata, riddatalen,
899  cmdcb, usercb, usercb_data);
900 }
901 
902 static inline int
903 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
904  unsigned int riddatalen)
905 {
906  return hfa384x_dowrid(hw, DOWAIT,
907  rid, riddata, riddatalen, NULL, NULL, NULL);
908 }
909 
910 static inline int
911 hfa384x_dowrid_async(hfa384x_t *hw,
912  u16 rid, void *riddata, unsigned int riddatalen,
913  ctlx_cmdcb_t cmdcb,
914  ctlx_usercb_t usercb, void *usercb_data)
915 {
916  return hfa384x_dowrid(hw, DOASYNC,
917  rid, riddata, riddatalen,
918  cmdcb, usercb, usercb_data);
919 }
920 
921 static inline int
922 hfa384x_dormem_wait(hfa384x_t *hw,
923  u16 page, u16 offset, void *data, unsigned int len)
924 {
925  return hfa384x_dormem(hw, DOWAIT,
926  page, offset, data, len, NULL, NULL, NULL);
927 }
928 
929 static inline int
930 hfa384x_dormem_async(hfa384x_t *hw,
931  u16 page, u16 offset, void *data, unsigned int len,
932  ctlx_cmdcb_t cmdcb,
933  ctlx_usercb_t usercb, void *usercb_data)
934 {
935  return hfa384x_dormem(hw, DOASYNC,
936  page, offset, data, len,
937  cmdcb, usercb, usercb_data);
938 }
939 
940 static inline int
941 hfa384x_dowmem_wait(hfa384x_t *hw,
942  u16 page, u16 offset, void *data, unsigned int len)
943 {
944  return hfa384x_dowmem(hw, DOWAIT,
945  page, offset, data, len, NULL, NULL, NULL);
946 }
947 
948 static inline int
949 hfa384x_dowmem_async(hfa384x_t *hw,
950  u16 page,
951  u16 offset,
952  void *data,
953  unsigned int len,
954  ctlx_cmdcb_t cmdcb,
955  ctlx_usercb_t usercb, void *usercb_data)
956 {
957  return hfa384x_dowmem(hw, DOASYNC,
958  page, offset, data, len,
959  cmdcb, usercb, usercb_data);
960 }
961 
962 /*----------------------------------------------------------------
963 * hfa384x_cmd_initialize
964 *
965 * Issues the initialize command and sets the hw->state based
966 * on the result.
967 *
968 * Arguments:
969 * hw device structure
970 *
971 * Returns:
972 * 0 success
973 * >0 f/w reported error - f/w status code
974 * <0 driver reported error
975 *
976 * Side effects:
977 *
978 * Call context:
979 * process
980 ----------------------------------------------------------------*/
981 int hfa384x_cmd_initialize(hfa384x_t *hw)
982 {
983  int result = 0;
984  int i;
985  hfa384x_metacmd_t cmd;
986 
987  cmd.cmd = HFA384x_CMDCODE_INIT;
988  cmd.parm0 = 0;
989  cmd.parm1 = 0;
990  cmd.parm2 = 0;
991 
992  result = hfa384x_docmd_wait(hw, &cmd);
993 
994  pr_debug("cmdresp.init: "
995  "status=0x%04x, resp0=0x%04x, "
996  "resp1=0x%04x, resp2=0x%04x\n",
997  cmd.result.status,
998  cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
999  if (result == 0) {
1000  for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
1001  hw->port_enabled[i] = 0;
1002  }
1003 
1004  hw->link_status = HFA384x_LINK_NOTCONNECTED;
1005 
1006  return result;
1007 }
1008 
1009 /*----------------------------------------------------------------
1010 * hfa384x_cmd_disable
1011 *
1012 * Issues the disable command to stop communications on one of
1013 * the MACs 'ports'.
1014 *
1015 * Arguments:
1016 * hw device structure
1017 * macport MAC port number (host order)
1018 *
1019 * Returns:
1020 * 0 success
1021 * >0 f/w reported failure - f/w status code
1022 * <0 driver reported error (timeout|bad arg)
1023 *
1024 * Side effects:
1025 *
1026 * Call context:
1027 * process
1028 ----------------------------------------------------------------*/
1029 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1030 {
1031  int result = 0;
1032  hfa384x_metacmd_t cmd;
1033 
1035  HFA384x_CMD_MACPORT_SET(macport);
1036  cmd.parm0 = 0;
1037  cmd.parm1 = 0;
1038  cmd.parm2 = 0;
1039 
1040  result = hfa384x_docmd_wait(hw, &cmd);
1041 
1042  return result;
1043 }
1044 
1045 /*----------------------------------------------------------------
1046 * hfa384x_cmd_enable
1047 *
1048 * Issues the enable command to enable communications on one of
1049 * the MACs 'ports'.
1050 *
1051 * Arguments:
1052 * hw device structure
1053 * macport MAC port number
1054 *
1055 * Returns:
1056 * 0 success
1057 * >0 f/w reported failure - f/w status code
1058 * <0 driver reported error (timeout|bad arg)
1059 *
1060 * Side effects:
1061 *
1062 * Call context:
1063 * process
1064 ----------------------------------------------------------------*/
1065 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1066 {
1067  int result = 0;
1068  hfa384x_metacmd_t cmd;
1069 
1071  HFA384x_CMD_MACPORT_SET(macport);
1072  cmd.parm0 = 0;
1073  cmd.parm1 = 0;
1074  cmd.parm2 = 0;
1075 
1076  result = hfa384x_docmd_wait(hw, &cmd);
1077 
1078  return result;
1079 }
1080 
1081 /*----------------------------------------------------------------
1082 * hfa384x_cmd_monitor
1083 *
1084 * Enables the 'monitor mode' of the MAC. Here's the description of
1085 * monitor mode that I've received thus far:
1086 *
1087 * "The "monitor mode" of operation is that the MAC passes all
1088 * frames for which the PLCP checks are correct. All received
1089 * MPDUs are passed to the host with MAC Port = 7, with a
1090 * receive status of good, FCS error, or undecryptable. Passing
1091 * certain MPDUs is a violation of the 802.11 standard, but useful
1092 * for a debugging tool." Normal communication is not possible
1093 * while monitor mode is enabled.
1094 *
1095 * Arguments:
1096 * hw device structure
1097 * enable a code (0x0b|0x0f) that enables/disables
1098 * monitor mode. (host order)
1099 *
1100 * Returns:
1101 * 0 success
1102 * >0 f/w reported failure - f/w status code
1103 * <0 driver reported error (timeout|bad arg)
1104 *
1105 * Side effects:
1106 *
1107 * Call context:
1108 * process
1109 ----------------------------------------------------------------*/
1110 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1111 {
1112  int result = 0;
1113  hfa384x_metacmd_t cmd;
1114 
1116  HFA384x_CMD_AINFO_SET(enable);
1117  cmd.parm0 = 0;
1118  cmd.parm1 = 0;
1119  cmd.parm2 = 0;
1120 
1121  result = hfa384x_docmd_wait(hw, &cmd);
1122 
1123  return result;
1124 }
1125 
1126 /*----------------------------------------------------------------
1127 * hfa384x_cmd_download
1128 *
1129 * Sets the controls for the MAC controller code/data download
1130 * process. The arguments set the mode and address associated
1131 * with a download. Note that the aux registers should be enabled
1132 * prior to setting one of the download enable modes.
1133 *
1134 * Arguments:
1135 * hw device structure
1136 * mode 0 - Disable programming and begin code exec
1137 * 1 - Enable volatile mem programming
1138 * 2 - Enable non-volatile mem programming
1139 * 3 - Program non-volatile section from NV download
1140 * buffer.
1141 * (host order)
1142 * lowaddr
1143 * highaddr For mode 1, sets the high & low order bits of
1144 * the "destination address". This address will be
1145 * the execution start address when download is
1146 * subsequently disabled.
1147 * For mode 2, sets the high & low order bits of
1148 * the destination in NV ram.
1149 * For modes 0 & 3, should be zero. (host order)
1150 * NOTE: these are CMD format.
1151 * codelen Length of the data to write in mode 2,
1152 * zero otherwise. (host order)
1153 *
1154 * Returns:
1155 * 0 success
1156 * >0 f/w reported failure - f/w status code
1157 * <0 driver reported error (timeout|bad arg)
1158 *
1159 * Side effects:
1160 *
1161 * Call context:
1162 * process
1163 ----------------------------------------------------------------*/
1164 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1165  u16 highaddr, u16 codelen)
1166 {
1167  int result = 0;
1168  hfa384x_metacmd_t cmd;
1169 
1170  pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1171  mode, lowaddr, highaddr, codelen);
1172 
1174  HFA384x_CMD_PROGMODE_SET(mode));
1175 
1176  cmd.parm0 = lowaddr;
1177  cmd.parm1 = highaddr;
1178  cmd.parm2 = codelen;
1179 
1180  result = hfa384x_docmd_wait(hw, &cmd);
1181 
1182  return result;
1183 }
1184 
1185 /*----------------------------------------------------------------
1186 * hfa384x_corereset
1187 *
1188 * Perform a reset of the hfa38xx MAC core. We assume that the hw
1189 * structure is in its "created" state. That is, it is initialized
1190 * with proper values. Note that if a reset is done after the
1191 * device has been active for awhile, the caller might have to clean
1192 * up some leftover cruft in the hw structure.
1193 *
1194 * Arguments:
1195 * hw device structure
1196 * holdtime how long (in ms) to hold the reset
1197 * settletime how long (in ms) to wait after releasing
1198 * the reset
1199 *
1200 * Returns:
1201 * nothing
1202 *
1203 * Side effects:
1204 *
1205 * Call context:
1206 * process
1207 ----------------------------------------------------------------*/
1208 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1209 {
1210  int result = 0;
1211 
1212  result = usb_reset_device(hw->usb);
1213  if (result < 0) {
1214  printk(KERN_ERR "usb_reset_device() failed, result=%d.\n",
1215  result);
1216  }
1217 
1218  return result;
1219 }
1220 
1221 /*----------------------------------------------------------------
1222 * hfa384x_usbctlx_complete_sync
1223 *
1224 * Waits for a synchronous CTLX object to complete,
1225 * and then handles the response.
1226 *
1227 * Arguments:
1228 * hw device structure
1229 * ctlx CTLX ptr
1230 * completor functor object to decide what to
1231 * do with the CTLX's result.
1232 *
1233 * Returns:
1234 * 0 Success
1235 * -ERESTARTSYS Interrupted by a signal
1236 * -EIO CTLX failed
1237 * -ENODEV Adapter was unplugged
1238 * ??? Result from completor
1239 *
1240 * Side effects:
1241 *
1242 * Call context:
1243 * process
1244 ----------------------------------------------------------------*/
1245 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1246  hfa384x_usbctlx_t *ctlx,
1247  struct usbctlx_completor *completor)
1248 {
1249  unsigned long flags;
1250  int result;
1251 
1252  result = wait_for_completion_interruptible(&ctlx->done);
1253 
1254  spin_lock_irqsave(&hw->ctlxq.lock, flags);
1255 
1256  /*
1257  * We can only handle the CTLX if the USB disconnect
1258  * function has not run yet ...
1259  */
1260 cleanup:
1261  if (hw->wlandev->hwremoved) {
1262  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1263  result = -ENODEV;
1264  } else if (result != 0) {
1265  int runqueue = 0;
1266 
1267  /*
1268  * We were probably interrupted, so delete
1269  * this CTLX asynchronously, kill the timers
1270  * and the URB, and then start the next
1271  * pending CTLX.
1272  *
1273  * NOTE: We can only delete the timers and
1274  * the URB if this CTLX is active.
1275  */
1276  if (ctlx == get_active_ctlx(hw)) {
1277  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1278 
1279  del_singleshot_timer_sync(&hw->reqtimer);
1280  del_singleshot_timer_sync(&hw->resptimer);
1281  hw->req_timer_done = 1;
1282  hw->resp_timer_done = 1;
1283  usb_kill_urb(&hw->ctlx_urb);
1284 
1285  spin_lock_irqsave(&hw->ctlxq.lock, flags);
1286 
1287  runqueue = 1;
1288 
1289  /*
1290  * This scenario is so unlikely that I'm
1291  * happy with a grubby "goto" solution ...
1292  */
1293  if (hw->wlandev->hwremoved)
1294  goto cleanup;
1295  }
1296 
1297  /*
1298  * The completion task will send this CTLX
1299  * to the reaper the next time it runs. We
1300  * are no longer in a hurry.
1301  */
1302  ctlx->reapable = 1;
1303  ctlx->state = CTLX_REQ_FAILED;
1304  list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1305 
1306  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1307 
1308  if (runqueue)
1309  hfa384x_usbctlxq_run(hw);
1310  } else {
1311  if (ctlx->state == CTLX_COMPLETE) {
1312  result = completor->complete(completor);
1313  } else {
1314  printk(KERN_WARNING "CTLX[%d] error: state(%s)\n",
1315  le16_to_cpu(ctlx->outbuf.type),
1316  ctlxstr(ctlx->state));
1317  result = -EIO;
1318  }
1319 
1320  list_del(&ctlx->list);
1321  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1322  kfree(ctlx);
1323  }
1324 
1325  return result;
1326 }
1327 
1328 /*----------------------------------------------------------------
1329 * hfa384x_docmd
1330 *
1331 * Constructs a command CTLX and submits it.
1332 *
1333 * NOTE: Any changes to the 'post-submit' code in this function
1334 * need to be carried over to hfa384x_cbcmd() since the handling
1335 * is virtually identical.
1336 *
1337 * Arguments:
1338 * hw device structure
1339 * mode DOWAIT or DOASYNC
1340 * cmd cmd structure. Includes all arguments and result
1341 * data points. All in host order. in host order
1342 * cmdcb command-specific callback
1343 * usercb user callback for async calls, NULL for DOWAIT calls
1344 * usercb_data user supplied data pointer for async calls, NULL
1345 * for DOASYNC calls
1346 *
1347 * Returns:
1348 * 0 success
1349 * -EIO CTLX failure
1350 * -ERESTARTSYS Awakened on signal
1351 * >0 command indicated error, Status and Resp0-2 are
1352 * in hw structure.
1353 *
1354 * Side effects:
1355 *
1356 *
1357 * Call context:
1358 * process
1359 ----------------------------------------------------------------*/
1360 static int
1361 hfa384x_docmd(hfa384x_t *hw,
1362  enum cmd_mode mode,
1363  hfa384x_metacmd_t *cmd,
1364  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1365 {
1366  int result;
1367  hfa384x_usbctlx_t *ctlx;
1368 
1369  ctlx = usbctlx_alloc();
1370  if (ctlx == NULL) {
1371  result = -ENOMEM;
1372  goto done;
1373  }
1374 
1375  /* Initialize the command */
1376  ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1377  ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1378  ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1379  ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1380  ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1381 
1382  ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1383 
1384  pr_debug("cmdreq: cmd=0x%04x "
1385  "parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1386  cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1387 
1388  ctlx->reapable = mode;
1389  ctlx->cmdcb = cmdcb;
1390  ctlx->usercb = usercb;
1391  ctlx->usercb_data = usercb_data;
1392 
1393  result = hfa384x_usbctlx_submit(hw, ctlx);
1394  if (result != 0) {
1395  kfree(ctlx);
1396  } else if (mode == DOWAIT) {
1397  struct usbctlx_cmd_completor completor;
1398 
1399  result =
1400  hfa384x_usbctlx_complete_sync(hw, ctlx,
1401  init_cmd_completor(&completor,
1402  &ctlx->
1403  inbuf.
1404  cmdresp,
1405  &cmd->
1406  result));
1407  }
1408 
1409 done:
1410  return result;
1411 }
1412 
1413 /*----------------------------------------------------------------
1414 * hfa384x_dorrid
1415 *
1416 * Constructs a read rid CTLX and issues it.
1417 *
1418 * NOTE: Any changes to the 'post-submit' code in this function
1419 * need to be carried over to hfa384x_cbrrid() since the handling
1420 * is virtually identical.
1421 *
1422 * Arguments:
1423 * hw device structure
1424 * mode DOWAIT or DOASYNC
1425 * rid Read RID number (host order)
1426 * riddata Caller supplied buffer that MAC formatted RID.data
1427 * record will be written to for DOWAIT calls. Should
1428 * be NULL for DOASYNC calls.
1429 * riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1430 * cmdcb command callback for async calls, NULL for DOWAIT calls
1431 * usercb user callback for async calls, NULL for DOWAIT calls
1432 * usercb_data user supplied data pointer for async calls, NULL
1433 * for DOWAIT calls
1434 *
1435 * Returns:
1436 * 0 success
1437 * -EIO CTLX failure
1438 * -ERESTARTSYS Awakened on signal
1439 * -ENODATA riddatalen != macdatalen
1440 * >0 command indicated error, Status and Resp0-2 are
1441 * in hw structure.
1442 *
1443 * Side effects:
1444 *
1445 * Call context:
1446 * interrupt (DOASYNC)
1447 * process (DOWAIT or DOASYNC)
1448 ----------------------------------------------------------------*/
1449 static int
1450 hfa384x_dorrid(hfa384x_t *hw,
1451  enum cmd_mode mode,
1452  u16 rid,
1453  void *riddata,
1454  unsigned int riddatalen,
1455  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1456 {
1457  int result;
1458  hfa384x_usbctlx_t *ctlx;
1459 
1460  ctlx = usbctlx_alloc();
1461  if (ctlx == NULL) {
1462  result = -ENOMEM;
1463  goto done;
1464  }
1465 
1466  /* Initialize the command */
1467  ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1468  ctlx->outbuf.rridreq.frmlen =
1469  cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1470  ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1471 
1472  ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1473 
1474  ctlx->reapable = mode;
1475  ctlx->cmdcb = cmdcb;
1476  ctlx->usercb = usercb;
1477  ctlx->usercb_data = usercb_data;
1478 
1479  /* Submit the CTLX */
1480  result = hfa384x_usbctlx_submit(hw, ctlx);
1481  if (result != 0) {
1482  kfree(ctlx);
1483  } else if (mode == DOWAIT) {
1484  struct usbctlx_rrid_completor completor;
1485 
1486  result =
1487  hfa384x_usbctlx_complete_sync(hw, ctlx,
1488  init_rrid_completor
1489  (&completor,
1490  &ctlx->inbuf.rridresp,
1491  riddata, riddatalen));
1492  }
1493 
1494 done:
1495  return result;
1496 }
1497 
1498 /*----------------------------------------------------------------
1499 * hfa384x_dowrid
1500 *
1501 * Constructs a write rid CTLX and issues it.
1502 *
1503 * NOTE: Any changes to the 'post-submit' code in this function
1504 * need to be carried over to hfa384x_cbwrid() since the handling
1505 * is virtually identical.
1506 *
1507 * Arguments:
1508 * hw device structure
1509 * enum cmd_mode DOWAIT or DOASYNC
1510 * rid RID code
1511 * riddata Data portion of RID formatted for MAC
1512 * riddatalen Length of the data portion in bytes
1513 * cmdcb command callback for async calls, NULL for DOWAIT calls
1514 * usercb user callback for async calls, NULL for DOWAIT calls
1515 * usercb_data user supplied data pointer for async calls
1516 *
1517 * Returns:
1518 * 0 success
1519 * -ETIMEDOUT timed out waiting for register ready or
1520 * command completion
1521 * >0 command indicated error, Status and Resp0-2 are
1522 * in hw structure.
1523 *
1524 * Side effects:
1525 *
1526 * Call context:
1527 * interrupt (DOASYNC)
1528 * process (DOWAIT or DOASYNC)
1529 ----------------------------------------------------------------*/
1530 static int
1531 hfa384x_dowrid(hfa384x_t *hw,
1532  enum cmd_mode mode,
1533  u16 rid,
1534  void *riddata,
1535  unsigned int riddatalen,
1536  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1537 {
1538  int result;
1539  hfa384x_usbctlx_t *ctlx;
1540 
1541  ctlx = usbctlx_alloc();
1542  if (ctlx == NULL) {
1543  result = -ENOMEM;
1544  goto done;
1545  }
1546 
1547  /* Initialize the command */
1548  ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1549  ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1550  (ctlx->outbuf.wridreq.rid) +
1551  riddatalen + 1) / 2);
1552  ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1553  memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1554 
1555  ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1556  sizeof(ctlx->outbuf.wridreq.frmlen) +
1557  sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1558 
1559  ctlx->reapable = mode;
1560  ctlx->cmdcb = cmdcb;
1561  ctlx->usercb = usercb;
1562  ctlx->usercb_data = usercb_data;
1563 
1564  /* Submit the CTLX */
1565  result = hfa384x_usbctlx_submit(hw, ctlx);
1566  if (result != 0) {
1567  kfree(ctlx);
1568  } else if (mode == DOWAIT) {
1569  usbctlx_wrid_completor_t completor;
1570  hfa384x_cmdresult_t wridresult;
1571 
1572  result = hfa384x_usbctlx_complete_sync(hw,
1573  ctlx,
1575  (&completor,
1576  &ctlx->inbuf.wridresp,
1577  &wridresult));
1578  }
1579 
1580 done:
1581  return result;
1582 }
1583 
1584 /*----------------------------------------------------------------
1585 * hfa384x_dormem
1586 *
1587 * Constructs a readmem CTLX and issues it.
1588 *
1589 * NOTE: Any changes to the 'post-submit' code in this function
1590 * need to be carried over to hfa384x_cbrmem() since the handling
1591 * is virtually identical.
1592 *
1593 * Arguments:
1594 * hw device structure
1595 * mode DOWAIT or DOASYNC
1596 * page MAC address space page (CMD format)
1597 * offset MAC address space offset
1598 * data Ptr to data buffer to receive read
1599 * len Length of the data to read (max == 2048)
1600 * cmdcb command callback for async calls, NULL for DOWAIT calls
1601 * usercb user callback for async calls, NULL for DOWAIT calls
1602 * usercb_data user supplied data pointer for async calls
1603 *
1604 * Returns:
1605 * 0 success
1606 * -ETIMEDOUT timed out waiting for register ready or
1607 * command completion
1608 * >0 command indicated error, Status and Resp0-2 are
1609 * in hw structure.
1610 *
1611 * Side effects:
1612 *
1613 * Call context:
1614 * interrupt (DOASYNC)
1615 * process (DOWAIT or DOASYNC)
1616 ----------------------------------------------------------------*/
1617 static int
1618 hfa384x_dormem(hfa384x_t *hw,
1619  enum cmd_mode mode,
1620  u16 page,
1621  u16 offset,
1622  void *data,
1623  unsigned int len,
1624  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1625 {
1626  int result;
1627  hfa384x_usbctlx_t *ctlx;
1628 
1629  ctlx = usbctlx_alloc();
1630  if (ctlx == NULL) {
1631  result = -ENOMEM;
1632  goto done;
1633  }
1634 
1635  /* Initialize the command */
1636  ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1637  ctlx->outbuf.rmemreq.frmlen =
1638  cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1639  sizeof(ctlx->outbuf.rmemreq.page) + len);
1640  ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1641  ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1642 
1643  ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1644 
1645  pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1646  ctlx->outbuf.rmemreq.type,
1647  ctlx->outbuf.rmemreq.frmlen,
1648  ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1649 
1650  pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1651 
1652  ctlx->reapable = mode;
1653  ctlx->cmdcb = cmdcb;
1654  ctlx->usercb = usercb;
1655  ctlx->usercb_data = usercb_data;
1656 
1657  result = hfa384x_usbctlx_submit(hw, ctlx);
1658  if (result != 0) {
1659  kfree(ctlx);
1660  } else if (mode == DOWAIT) {
1661  usbctlx_rmem_completor_t completor;
1662 
1663  result =
1664  hfa384x_usbctlx_complete_sync(hw, ctlx,
1665  init_rmem_completor
1666  (&completor,
1667  &ctlx->inbuf.rmemresp, data,
1668  len));
1669  }
1670 
1671 done:
1672  return result;
1673 }
1674 
1675 /*----------------------------------------------------------------
1676 * hfa384x_dowmem
1677 *
1678 * Constructs a writemem CTLX and issues it.
1679 *
1680 * NOTE: Any changes to the 'post-submit' code in this function
1681 * need to be carried over to hfa384x_cbwmem() since the handling
1682 * is virtually identical.
1683 *
1684 * Arguments:
1685 * hw device structure
1686 * mode DOWAIT or DOASYNC
1687 * page MAC address space page (CMD format)
1688 * offset MAC address space offset
1689 * data Ptr to data buffer containing write data
1690 * len Length of the data to read (max == 2048)
1691 * cmdcb command callback for async calls, NULL for DOWAIT calls
1692 * usercb user callback for async calls, NULL for DOWAIT calls
1693 * usercb_data user supplied data pointer for async calls.
1694 *
1695 * Returns:
1696 * 0 success
1697 * -ETIMEDOUT timed out waiting for register ready or
1698 * command completion
1699 * >0 command indicated error, Status and Resp0-2 are
1700 * in hw structure.
1701 *
1702 * Side effects:
1703 *
1704 * Call context:
1705 * interrupt (DOWAIT)
1706 * process (DOWAIT or DOASYNC)
1707 ----------------------------------------------------------------*/
1708 static int
1709 hfa384x_dowmem(hfa384x_t *hw,
1710  enum cmd_mode mode,
1711  u16 page,
1712  u16 offset,
1713  void *data,
1714  unsigned int len,
1715  ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1716 {
1717  int result;
1718  hfa384x_usbctlx_t *ctlx;
1719 
1720  pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1721 
1722  ctlx = usbctlx_alloc();
1723  if (ctlx == NULL) {
1724  result = -ENOMEM;
1725  goto done;
1726  }
1727 
1728  /* Initialize the command */
1729  ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1730  ctlx->outbuf.wmemreq.frmlen =
1731  cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1732  sizeof(ctlx->outbuf.wmemreq.page) + len);
1733  ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1734  ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1735  memcpy(ctlx->outbuf.wmemreq.data, data, len);
1736 
1737  ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1738  sizeof(ctlx->outbuf.wmemreq.frmlen) +
1739  sizeof(ctlx->outbuf.wmemreq.offset) +
1740  sizeof(ctlx->outbuf.wmemreq.page) + len;
1741 
1742  ctlx->reapable = mode;
1743  ctlx->cmdcb = cmdcb;
1744  ctlx->usercb = usercb;
1745  ctlx->usercb_data = usercb_data;
1746 
1747  result = hfa384x_usbctlx_submit(hw, ctlx);
1748  if (result != 0) {
1749  kfree(ctlx);
1750  } else if (mode == DOWAIT) {
1751  usbctlx_wmem_completor_t completor;
1752  hfa384x_cmdresult_t wmemresult;
1753 
1754  result = hfa384x_usbctlx_complete_sync(hw,
1755  ctlx,
1757  (&completor,
1758  &ctlx->inbuf.wmemresp,
1759  &wmemresult));
1760  }
1761 
1762 done:
1763  return result;
1764 }
1765 
1766 /*----------------------------------------------------------------
1767 * hfa384x_drvr_commtallies
1768 *
1769 * Send a commtallies inquiry to the MAC. Note that this is an async
1770 * call that will result in an info frame arriving sometime later.
1771 *
1772 * Arguments:
1773 * hw device structure
1774 *
1775 * Returns:
1776 * zero success.
1777 *
1778 * Side effects:
1779 *
1780 * Call context:
1781 * process
1782 ----------------------------------------------------------------*/
1783 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1784 {
1785  hfa384x_metacmd_t cmd;
1786 
1787  cmd.cmd = HFA384x_CMDCODE_INQ;
1788  cmd.parm0 = HFA384x_IT_COMMTALLIES;
1789  cmd.parm1 = 0;
1790  cmd.parm2 = 0;
1791 
1792  hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1793 
1794  return 0;
1795 }
1796 
1797 /*----------------------------------------------------------------
1798 * hfa384x_drvr_disable
1799 *
1800 * Issues the disable command to stop communications on one of
1801 * the MACs 'ports'. Only macport 0 is valid for stations.
1802 * APs may also disable macports 1-6. Only ports that have been
1803 * previously enabled may be disabled.
1804 *
1805 * Arguments:
1806 * hw device structure
1807 * macport MAC port number (host order)
1808 *
1809 * Returns:
1810 * 0 success
1811 * >0 f/w reported failure - f/w status code
1812 * <0 driver reported error (timeout|bad arg)
1813 *
1814 * Side effects:
1815 *
1816 * Call context:
1817 * process
1818 ----------------------------------------------------------------*/
1819 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1820 {
1821  int result = 0;
1822 
1823  if ((!hw->isap && macport != 0) ||
1824  (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1825  !(hw->port_enabled[macport])) {
1826  result = -EINVAL;
1827  } else {
1828  result = hfa384x_cmd_disable(hw, macport);
1829  if (result == 0)
1830  hw->port_enabled[macport] = 0;
1831  }
1832  return result;
1833 }
1834 
1835 /*----------------------------------------------------------------
1836 * hfa384x_drvr_enable
1837 *
1838 * Issues the enable command to enable communications on one of
1839 * the MACs 'ports'. Only macport 0 is valid for stations.
1840 * APs may also enable macports 1-6. Only ports that are currently
1841 * disabled may be enabled.
1842 *
1843 * Arguments:
1844 * hw device structure
1845 * macport MAC port number
1846 *
1847 * Returns:
1848 * 0 success
1849 * >0 f/w reported failure - f/w status code
1850 * <0 driver reported error (timeout|bad arg)
1851 *
1852 * Side effects:
1853 *
1854 * Call context:
1855 * process
1856 ----------------------------------------------------------------*/
1857 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1858 {
1859  int result = 0;
1860 
1861  if ((!hw->isap && macport != 0) ||
1862  (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1863  (hw->port_enabled[macport])) {
1864  result = -EINVAL;
1865  } else {
1866  result = hfa384x_cmd_enable(hw, macport);
1867  if (result == 0)
1868  hw->port_enabled[macport] = 1;
1869  }
1870  return result;
1871 }
1872 
1873 /*----------------------------------------------------------------
1874 * hfa384x_drvr_flashdl_enable
1875 *
1876 * Begins the flash download state. Checks to see that we're not
1877 * already in a download state and that a port isn't enabled.
1878 * Sets the download state and retrieves the flash download
1879 * buffer location, buffer size, and timeout length.
1880 *
1881 * Arguments:
1882 * hw device structure
1883 *
1884 * Returns:
1885 * 0 success
1886 * >0 f/w reported error - f/w status code
1887 * <0 driver reported error
1888 *
1889 * Side effects:
1890 *
1891 * Call context:
1892 * process
1893 ----------------------------------------------------------------*/
1895 {
1896  int result = 0;
1897  int i;
1898 
1899  /* Check that a port isn't active */
1900  for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1901  if (hw->port_enabled[i]) {
1902  pr_debug("called when port enabled.\n");
1903  return -EINVAL;
1904  }
1905  }
1906 
1907  /* Check that we're not already in a download state */
1908  if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1909  return -EINVAL;
1910 
1911  /* Retrieve the buffer loc&size and timeout */
1913  &(hw->bufinfo), sizeof(hw->bufinfo));
1914  if (result)
1915  return result;
1916 
1917  hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1918  hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1919  hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1920  result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1921  &(hw->dltimeout));
1922  if (result)
1923  return result;
1924 
1925  hw->dltimeout = le16_to_cpu(hw->dltimeout);
1926 
1927  pr_debug("flashdl_enable\n");
1928 
1929  hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1930 
1931  return result;
1932 }
1933 
1934 /*----------------------------------------------------------------
1935 * hfa384x_drvr_flashdl_disable
1936 *
1937 * Ends the flash download state. Note that this will cause the MAC
1938 * firmware to restart.
1939 *
1940 * Arguments:
1941 * hw device structure
1942 *
1943 * Returns:
1944 * 0 success
1945 * >0 f/w reported error - f/w status code
1946 * <0 driver reported error
1947 *
1948 * Side effects:
1949 *
1950 * Call context:
1951 * process
1952 ----------------------------------------------------------------*/
1954 {
1955  /* Check that we're already in the download state */
1956  if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1957  return -EINVAL;
1958 
1959  pr_debug("flashdl_enable\n");
1960 
1961  /* There isn't much we can do at this point, so I don't */
1962  /* bother w/ the return value */
1964  hw->dlstate = HFA384x_DLSTATE_DISABLED;
1965 
1966  return 0;
1967 }
1968 
1969 /*----------------------------------------------------------------
1970 * hfa384x_drvr_flashdl_write
1971 *
1972 * Performs a FLASH download of a chunk of data. First checks to see
1973 * that we're in the FLASH download state, then sets the download
1974 * mode, uses the aux functions to 1) copy the data to the flash
1975 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1976 * compare. Lather rinse, repeat as many times an necessary to get
1977 * all the given data into flash.
1978 * When all data has been written using this function (possibly
1979 * repeatedly), call drvr_flashdl_disable() to end the download state
1980 * and restart the MAC.
1981 *
1982 * Arguments:
1983 * hw device structure
1984 * daddr Card address to write to. (host order)
1985 * buf Ptr to data to write.
1986 * len Length of data (host order).
1987 *
1988 * Returns:
1989 * 0 success
1990 * >0 f/w reported error - f/w status code
1991 * <0 driver reported error
1992 *
1993 * Side effects:
1994 *
1995 * Call context:
1996 * process
1997 ----------------------------------------------------------------*/
1998 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1999 {
2000  int result = 0;
2001  u32 dlbufaddr;
2002  int nburns;
2003  u32 burnlen;
2004  u32 burndaddr;
2005  u16 burnlo;
2006  u16 burnhi;
2007  int nwrites;
2008  u8 *writebuf;
2009  u16 writepage;
2010  u16 writeoffset;
2011  u32 writelen;
2012  int i;
2013  int j;
2014 
2015  pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2016 
2017  /* Check that we're in the flash download state */
2018  if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2019  return -EINVAL;
2020 
2021  printk(KERN_INFO "Download %d bytes to flash @0x%06x\n", len, daddr);
2022 
2023  /* Convert to flat address for arithmetic */
2024  /* NOTE: dlbuffer RID stores the address in AUX format */
2025  dlbufaddr =
2026  HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2027  pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2028  hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2029 
2030 #if 0
2031  printk(KERN_WARNING "dlbuf@0x%06lx len=%d to=%d\n", dlbufaddr,
2032  hw->bufinfo.len, hw->dltimeout);
2033 #endif
2034  /* Calculations to determine how many fills of the dlbuffer to do
2035  * and how many USB wmemreq's to do for each fill. At this point
2036  * in time, the dlbuffer size and the wmemreq size are the same.
2037  * Therefore, nwrites should always be 1. The extra complexity
2038  * here is a hedge against future changes.
2039  */
2040 
2041  /* Figure out how many times to do the flash programming */
2042  nburns = len / hw->bufinfo.len;
2043  nburns += (len % hw->bufinfo.len) ? 1 : 0;
2044 
2045  /* For each flash program cycle, how many USB wmemreq's are needed? */
2046  nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2047  nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2048 
2049  /* For each burn */
2050  for (i = 0; i < nburns; i++) {
2051  /* Get the dest address and len */
2052  burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2053  hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2054  burndaddr = daddr + (hw->bufinfo.len * i);
2055  burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2056  burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2057 
2058  printk(KERN_INFO "Writing %d bytes to flash @0x%06x\n",
2059  burnlen, burndaddr);
2060 
2061  /* Set the download mode */
2063  burnlo, burnhi, burnlen);
2064  if (result) {
2065  printk(KERN_ERR "download(NV,lo=%x,hi=%x,len=%x) "
2066  "cmd failed, result=%d. Aborting d/l\n",
2067  burnlo, burnhi, burnlen, result);
2068  goto exit_proc;
2069  }
2070 
2071  /* copy the data to the flash download buffer */
2072  for (j = 0; j < nwrites; j++) {
2073  writebuf = buf +
2074  (i * hw->bufinfo.len) +
2076 
2077  writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2078  (j * HFA384x_USB_RWMEM_MAXLEN));
2079  writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2080  (j * HFA384x_USB_RWMEM_MAXLEN));
2081 
2082  writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2083  writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2084  HFA384x_USB_RWMEM_MAXLEN : writelen;
2085 
2086  result = hfa384x_dowmem_wait(hw,
2087  writepage,
2088  writeoffset,
2089  writebuf, writelen);
2090  }
2091 
2092  /* set the download 'write flash' mode */
2093  result = hfa384x_cmd_download(hw,
2095  0, 0, 0);
2096  if (result) {
2098  "download(NVWRITE,lo=%x,hi=%x,len=%x) "
2099  "cmd failed, result=%d. Aborting d/l\n",
2100  burnlo, burnhi, burnlen, result);
2101  goto exit_proc;
2102  }
2103 
2104  /* TODO: We really should do a readback and compare. */
2105  }
2106 
2107 exit_proc:
2108 
2109  /* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
2110  /* actually disable programming mode. Remember, that will cause the */
2111  /* the firmware to effectively reset itself. */
2112 
2113  return result;
2114 }
2115 
2116 /*----------------------------------------------------------------
2117 * hfa384x_drvr_getconfig
2118 *
2119 * Performs the sequence necessary to read a config/info item.
2120 *
2121 * Arguments:
2122 * hw device structure
2123 * rid config/info record id (host order)
2124 * buf host side record buffer. Upon return it will
2125 * contain the body portion of the record (minus the
2126 * RID and len).
2127 * len buffer length (in bytes, should match record length)
2128 *
2129 * Returns:
2130 * 0 success
2131 * >0 f/w reported error - f/w status code
2132 * <0 driver reported error
2133 * -ENODATA length mismatch between argument and retrieved
2134 * record.
2135 *
2136 * Side effects:
2137 *
2138 * Call context:
2139 * process
2140 ----------------------------------------------------------------*/
2141 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2142 {
2143  return hfa384x_dorrid_wait(hw, rid, buf, len);
2144 }
2145 
2146 /*----------------------------------------------------------------
2147  * hfa384x_drvr_getconfig_async
2148  *
2149  * Performs the sequence necessary to perform an async read of
2150  * of a config/info item.
2151  *
2152  * Arguments:
2153  * hw device structure
2154  * rid config/info record id (host order)
2155  * buf host side record buffer. Upon return it will
2156  * contain the body portion of the record (minus the
2157  * RID and len).
2158  * len buffer length (in bytes, should match record length)
2159  * cbfn caller supplied callback, called when the command
2160  * is done (successful or not).
2161  * cbfndata pointer to some caller supplied data that will be
2162  * passed in as an argument to the cbfn.
2163  *
2164  * Returns:
2165  * nothing the cbfn gets a status argument identifying if
2166  * any errors occur.
2167  * Side effects:
2168  * Queues an hfa384x_usbcmd_t for subsequent execution.
2169  *
2170  * Call context:
2171  * Any
2172  ----------------------------------------------------------------*/
2173 int
2175  u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2176 {
2177  return hfa384x_dorrid_async(hw, rid, NULL, 0,
2178  hfa384x_cb_rrid, usercb, usercb_data);
2179 }
2180 
2181 /*----------------------------------------------------------------
2182  * hfa384x_drvr_setconfig_async
2183  *
2184  * Performs the sequence necessary to write a config/info item.
2185  *
2186  * Arguments:
2187  * hw device structure
2188  * rid config/info record id (in host order)
2189  * buf host side record buffer
2190  * len buffer length (in bytes)
2191  * usercb completion callback
2192  * usercb_data completion callback argument
2193  *
2194  * Returns:
2195  * 0 success
2196  * >0 f/w reported error - f/w status code
2197  * <0 driver reported error
2198  *
2199  * Side effects:
2200  *
2201  * Call context:
2202  * process
2203  ----------------------------------------------------------------*/
2204 int
2206  u16 rid,
2207  void *buf,
2208  u16 len, ctlx_usercb_t usercb, void *usercb_data)
2209 {
2210  return hfa384x_dowrid_async(hw, rid, buf, len,
2211  hfa384x_cb_status, usercb, usercb_data);
2212 }
2213 
2214 /*----------------------------------------------------------------
2215 * hfa384x_drvr_ramdl_disable
2216 *
2217 * Ends the ram download state.
2218 *
2219 * Arguments:
2220 * hw device structure
2221 *
2222 * Returns:
2223 * 0 success
2224 * >0 f/w reported error - f/w status code
2225 * <0 driver reported error
2226 *
2227 * Side effects:
2228 *
2229 * Call context:
2230 * process
2231 ----------------------------------------------------------------*/
2232 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2233 {
2234  /* Check that we're already in the download state */
2235  if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2236  return -EINVAL;
2237 
2238  pr_debug("ramdl_disable()\n");
2239 
2240  /* There isn't much we can do at this point, so I don't */
2241  /* bother w/ the return value */
2243  hw->dlstate = HFA384x_DLSTATE_DISABLED;
2244 
2245  return 0;
2246 }
2247 
2248 /*----------------------------------------------------------------
2249 * hfa384x_drvr_ramdl_enable
2250 *
2251 * Begins the ram download state. Checks to see that we're not
2252 * already in a download state and that a port isn't enabled.
2253 * Sets the download state and calls cmd_download with the
2254 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2255 *
2256 * Arguments:
2257 * hw device structure
2258 * exeaddr the card execution address that will be
2259 * jumped to when ramdl_disable() is called
2260 * (host order).
2261 *
2262 * Returns:
2263 * 0 success
2264 * >0 f/w reported error - f/w status code
2265 * <0 driver reported error
2266 *
2267 * Side effects:
2268 *
2269 * Call context:
2270 * process
2271 ----------------------------------------------------------------*/
2272 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2273 {
2274  int result = 0;
2275  u16 lowaddr;
2276  u16 hiaddr;
2277  int i;
2278 
2279  /* Check that a port isn't active */
2280  for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2281  if (hw->port_enabled[i]) {
2283  "Can't download with a macport enabled.\n");
2284  return -EINVAL;
2285  }
2286  }
2287 
2288  /* Check that we're not already in a download state */
2289  if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2290  printk(KERN_ERR "Download state not disabled.\n");
2291  return -EINVAL;
2292  }
2293 
2294  pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2295 
2296  /* Call the download(1,addr) function */
2297  lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2298  hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2299 
2301  lowaddr, hiaddr, 0);
2302 
2303  if (result == 0) {
2304  /* Set the download state */
2305  hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2306  } else {
2307  pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2308  lowaddr, hiaddr, result);
2309  }
2310 
2311  return result;
2312 }
2313 
2314 /*----------------------------------------------------------------
2315 * hfa384x_drvr_ramdl_write
2316 *
2317 * Performs a RAM download of a chunk of data. First checks to see
2318 * that we're in the RAM download state, then uses the [read|write]mem USB
2319 * commands to 1) copy the data, 2) readback and compare. The download
2320 * state is unaffected. When all data has been written using
2321 * this function, call drvr_ramdl_disable() to end the download state
2322 * and restart the MAC.
2323 *
2324 * Arguments:
2325 * hw device structure
2326 * daddr Card address to write to. (host order)
2327 * buf Ptr to data to write.
2328 * len Length of data (host order).
2329 *
2330 * Returns:
2331 * 0 success
2332 * >0 f/w reported error - f/w status code
2333 * <0 driver reported error
2334 *
2335 * Side effects:
2336 *
2337 * Call context:
2338 * process
2339 ----------------------------------------------------------------*/
2340 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2341 {
2342  int result = 0;
2343  int nwrites;
2344  u8 *data = buf;
2345  int i;
2346  u32 curraddr;
2347  u16 currpage;
2348  u16 curroffset;
2349  u16 currlen;
2350 
2351  /* Check that we're in the ram download state */
2352  if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2353  return -EINVAL;
2354 
2355  printk(KERN_INFO "Writing %d bytes to ram @0x%06x\n", len, daddr);
2356 
2357  /* How many dowmem calls? */
2358  nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2359  nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2360 
2361  /* Do blocking wmem's */
2362  for (i = 0; i < nwrites; i++) {
2363  /* make address args */
2364  curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2365  currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2366  curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2367  currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2368  if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2369  currlen = HFA384x_USB_RWMEM_MAXLEN;
2370 
2371  /* Do blocking ctlx */
2372  result = hfa384x_dowmem_wait(hw,
2373  currpage,
2374  curroffset,
2375  data +
2377  currlen);
2378 
2379  if (result)
2380  break;
2381 
2382  /* TODO: We really should have a readback. */
2383  }
2384 
2385  return result;
2386 }
2387 
2388 /*----------------------------------------------------------------
2389 * hfa384x_drvr_readpda
2390 *
2391 * Performs the sequence to read the PDA space. Note there is no
2392 * drvr_writepda() function. Writing a PDA is
2393 * generally implemented by a calling component via calls to
2394 * cmd_download and writing to the flash download buffer via the
2395 * aux regs.
2396 *
2397 * Arguments:
2398 * hw device structure
2399 * buf buffer to store PDA in
2400 * len buffer length
2401 *
2402 * Returns:
2403 * 0 success
2404 * >0 f/w reported error - f/w status code
2405 * <0 driver reported error
2406 * -ETIMEDOUT timout waiting for the cmd regs to become
2407 * available, or waiting for the control reg
2408 * to indicate the Aux port is enabled.
2409 * -ENODATA the buffer does NOT contain a valid PDA.
2410 * Either the card PDA is bad, or the auxdata
2411 * reads are giving us garbage.
2412 
2413 *
2414 * Side effects:
2415 *
2416 * Call context:
2417 * process or non-card interrupt.
2418 ----------------------------------------------------------------*/
2419 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2420 {
2421  int result = 0;
2422  u16 *pda = buf;
2423  int pdaok = 0;
2424  int morepdrs = 1;
2425  int currpdr = 0; /* word offset of the current pdr */
2426  size_t i;
2427  u16 pdrlen; /* pdr length in bytes, host order */
2428  u16 pdrcode; /* pdr code, host order */
2429  u16 currpage;
2430  u16 curroffset;
2431  struct pdaloc {
2432  u32 cardaddr;
2433  u16 auxctl;
2434  } pdaloc[] = {
2435  {
2436  HFA3842_PDA_BASE, 0}, {
2437  HFA3841_PDA_BASE, 0}, {
2439  };
2440 
2441  /* Read the pda from each known address. */
2442  for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2443  /* Make address */
2444  currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2445  curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2446 
2447  /* units of bytes */
2448  result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2449  len);
2450 
2451  if (result) {
2453  "Read from index %zd failed, continuing\n", i);
2454  continue;
2455  }
2456 
2457  /* Test for garbage */
2458  pdaok = 1; /* initially assume good */
2459  morepdrs = 1;
2460  while (pdaok && morepdrs) {
2461  pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2462  pdrcode = le16_to_cpu(pda[currpdr + 1]);
2463  /* Test the record length */
2464  if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2465  printk(KERN_ERR "pdrlen invalid=%d\n", pdrlen);
2466  pdaok = 0;
2467  break;
2468  }
2469  /* Test the code */
2470  if (!hfa384x_isgood_pdrcode(pdrcode)) {
2471  printk(KERN_ERR "pdrcode invalid=%d\n",
2472  pdrcode);
2473  pdaok = 0;
2474  break;
2475  }
2476  /* Test for completion */
2477  if (pdrcode == HFA384x_PDR_END_OF_PDA)
2478  morepdrs = 0;
2479 
2480  /* Move to the next pdr (if necessary) */
2481  if (morepdrs) {
2482  /* note the access to pda[], need words here */
2483  currpdr += le16_to_cpu(pda[currpdr]) + 1;
2484  }
2485  }
2486  if (pdaok) {
2488  "PDA Read from 0x%08x in %s space.\n",
2489  pdaloc[i].cardaddr,
2490  pdaloc[i].auxctl == 0 ? "EXTDS" :
2491  pdaloc[i].auxctl == 1 ? "NV" :
2492  pdaloc[i].auxctl == 2 ? "PHY" :
2493  pdaloc[i].auxctl == 3 ? "ICSRAM" :
2494  "<bogus auxctl>");
2495  break;
2496  }
2497  }
2498  result = pdaok ? 0 : -ENODATA;
2499 
2500  if (result)
2501  pr_debug("Failure: pda is not okay\n");
2502 
2503  return result;
2504 }
2505 
2506 /*----------------------------------------------------------------
2507 * hfa384x_drvr_setconfig
2508 *
2509 * Performs the sequence necessary to write a config/info item.
2510 *
2511 * Arguments:
2512 * hw device structure
2513 * rid config/info record id (in host order)
2514 * buf host side record buffer
2515 * len buffer length (in bytes)
2516 *
2517 * Returns:
2518 * 0 success
2519 * >0 f/w reported error - f/w status code
2520 * <0 driver reported error
2521 *
2522 * Side effects:
2523 *
2524 * Call context:
2525 * process
2526 ----------------------------------------------------------------*/
2527 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2528 {
2529  return hfa384x_dowrid_wait(hw, rid, buf, len);
2530 }
2531 
2532 /*----------------------------------------------------------------
2533 * hfa384x_drvr_start
2534 *
2535 * Issues the MAC initialize command, sets up some data structures,
2536 * and enables the interrupts. After this function completes, the
2537 * low-level stuff should be ready for any/all commands.
2538 *
2539 * Arguments:
2540 * hw device structure
2541 * Returns:
2542 * 0 success
2543 * >0 f/w reported error - f/w status code
2544 * <0 driver reported error
2545 *
2546 * Side effects:
2547 *
2548 * Call context:
2549 * process
2550 ----------------------------------------------------------------*/
2551 
2552 int hfa384x_drvr_start(hfa384x_t *hw)
2553 {
2554  int result, result1, result2;
2555  u16 status;
2556 
2557  might_sleep();
2558 
2559  /* Clear endpoint stalls - but only do this if the endpoint
2560  * is showing a stall status. Some prism2 cards seem to behave
2561  * badly if a clear_halt is called when the endpoint is already
2562  * ok
2563  */
2564  result =
2565  usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2566  if (result < 0) {
2567  printk(KERN_ERR "Cannot get bulk in endpoint status.\n");
2568  goto done;
2569  }
2570  if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2571  printk(KERN_ERR "Failed to reset bulk in endpoint.\n");
2572 
2573  result =
2574  usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2575  if (result < 0) {
2576  printk(KERN_ERR "Cannot get bulk out endpoint status.\n");
2577  goto done;
2578  }
2579  if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2580  printk(KERN_ERR "Failed to reset bulk out endpoint.\n");
2581 
2582  /* Synchronous unlink, in case we're trying to restart the driver */
2583  usb_kill_urb(&hw->rx_urb);
2584 
2585  /* Post the IN urb */
2586  result = submit_rx_urb(hw, GFP_KERNEL);
2587  if (result != 0) {
2589  "Fatal, failed to submit RX URB, result=%d\n", result);
2590  goto done;
2591  }
2592 
2593  /* Call initialize twice, with a 1 second sleep in between.
2594  * This is a nasty work-around since many prism2 cards seem to
2595  * need time to settle after an init from cold. The second
2596  * call to initialize in theory is not necessary - but we call
2597  * it anyway as a double insurance policy:
2598  * 1) If the first init should fail, the second may well succeed
2599  * and the card can still be used
2600  * 2) It helps ensures all is well with the card after the first
2601  * init and settle time.
2602  */
2603  result1 = hfa384x_cmd_initialize(hw);
2604  msleep(1000);
2605  result = result2 = hfa384x_cmd_initialize(hw);
2606  if (result1 != 0) {
2607  if (result2 != 0) {
2609  "cmd_initialize() failed on two attempts, results %d and %d\n",
2610  result1, result2);
2611  usb_kill_urb(&hw->rx_urb);
2612  goto done;
2613  } else {
2614  pr_debug("First cmd_initialize() failed (result %d),\n",
2615  result1);
2616  pr_debug("but second attempt succeeded. All should be ok\n");
2617  }
2618  } else if (result2 != 0) {
2619  printk(KERN_WARNING "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2620  result2);
2622  "Most likely the card will be functional\n");
2623  goto done;
2624  }
2625 
2626  hw->state = HFA384x_STATE_RUNNING;
2627 
2628 done:
2629  return result;
2630 }
2631 
2632 /*----------------------------------------------------------------
2633 * hfa384x_drvr_stop
2634 *
2635 * Shuts down the MAC to the point where it is safe to unload the
2636 * driver. Any subsystem that may be holding a data or function
2637 * ptr into the driver must be cleared/deinitialized.
2638 *
2639 * Arguments:
2640 * hw device structure
2641 * Returns:
2642 * 0 success
2643 * >0 f/w reported error - f/w status code
2644 * <0 driver reported error
2645 *
2646 * Side effects:
2647 *
2648 * Call context:
2649 * process
2650 ----------------------------------------------------------------*/
2651 int hfa384x_drvr_stop(hfa384x_t *hw)
2652 {
2653  int result = 0;
2654  int i;
2655 
2656  might_sleep();
2657 
2658  /* There's no need for spinlocks here. The USB "disconnect"
2659  * function sets this "removed" flag and then calls us.
2660  */
2661  if (!hw->wlandev->hwremoved) {
2662  /* Call initialize to leave the MAC in its 'reset' state */
2664 
2665  /* Cancel the rxurb */
2666  usb_kill_urb(&hw->rx_urb);
2667  }
2668 
2669  hw->link_status = HFA384x_LINK_NOTCONNECTED;
2670  hw->state = HFA384x_STATE_INIT;
2671 
2672  del_timer_sync(&hw->commsqual_timer);
2673 
2674  /* Clear all the port status */
2675  for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2676  hw->port_enabled[i] = 0;
2677 
2678  return result;
2679 }
2680 
2681 /*----------------------------------------------------------------
2682 * hfa384x_drvr_txframe
2683 *
2684 * Takes a frame from prism2sta and queues it for transmission.
2685 *
2686 * Arguments:
2687 * hw device structure
2688 * skb packet buffer struct. Contains an 802.11
2689 * data frame.
2690 * p80211_hdr points to the 802.11 header for the packet.
2691 * Returns:
2692 * 0 Success and more buffs available
2693 * 1 Success but no more buffs
2694 * 2 Allocation failure
2695 * 4 Buffer full or queue busy
2696 *
2697 * Side effects:
2698 *
2699 * Call context:
2700 * interrupt
2701 ----------------------------------------------------------------*/
2702 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2703  union p80211_hdr *p80211_hdr,
2704  struct p80211_metawep *p80211_wep)
2705 {
2706  int usbpktlen = sizeof(hfa384x_tx_frame_t);
2707  int result;
2708  int ret;
2709  char *ptr;
2710 
2711  if (hw->tx_urb.status == -EINPROGRESS) {
2712  printk(KERN_WARNING "TX URB already in use\n");
2713  result = 3;
2714  goto exit;
2715  }
2716 
2717  /* Build Tx frame structure */
2718  /* Set up the control field */
2719  memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2720 
2721  /* Setup the usb type field */
2722  hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2723 
2724  /* Set up the sw_support field to identify this frame */
2725  hw->txbuff.txfrm.desc.sw_support = 0x0123;
2726 
2727 /* Tx complete and Tx exception disable per dleach. Might be causing
2728  * buf depletion
2729  */
2730 /* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
2731 #if defined(DOBOTH)
2732  hw->txbuff.txfrm.desc.tx_control =
2735 #elif defined(DOEXC)
2736  hw->txbuff.txfrm.desc.tx_control =
2739 #else
2740  hw->txbuff.txfrm.desc.tx_control =
2743 #endif
2744  hw->txbuff.txfrm.desc.tx_control =
2745  cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2746 
2747  /* copy the header over to the txdesc */
2748  memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2749  sizeof(union p80211_hdr));
2750 
2751  /* if we're using host WEP, increase size by IV+ICV */
2752  if (p80211_wep->data) {
2753  hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2754  usbpktlen += 8;
2755  } else {
2756  hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2757  }
2758 
2759  usbpktlen += skb->len;
2760 
2761  /* copy over the WEP IV if we are using host WEP */
2762  ptr = hw->txbuff.txfrm.data;
2763  if (p80211_wep->data) {
2764  memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2765  ptr += sizeof(p80211_wep->iv);
2766  memcpy(ptr, p80211_wep->data, skb->len);
2767  } else {
2768  memcpy(ptr, skb->data, skb->len);
2769  }
2770  /* copy over the packet data */
2771  ptr += skb->len;
2772 
2773  /* copy over the WEP ICV if we are using host WEP */
2774  if (p80211_wep->data)
2775  memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2776 
2777  /* Send the USB packet */
2778  usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2779  hw->endp_out,
2780  &(hw->txbuff), ROUNDUP64(usbpktlen),
2781  hfa384x_usbout_callback, hw->wlandev);
2782  hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2783 
2784  result = 1;
2785  ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2786  if (ret != 0) {
2787  printk(KERN_ERR "submit_tx_urb() failed, error=%d\n", ret);
2788  result = 3;
2789  }
2790 
2791 exit:
2792  return result;
2793 }
2794 
2796 {
2797  hfa384x_t *hw = wlandev->priv;
2798  unsigned long flags;
2799 
2800  spin_lock_irqsave(&hw->ctlxq.lock, flags);
2801 
2802  if (!hw->wlandev->hwremoved) {
2803  int sched;
2804 
2805  sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2806  sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2807  if (sched)
2808  schedule_work(&hw->usb_work);
2809  }
2810 
2811  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2812 }
2813 
2814 /*----------------------------------------------------------------
2815 * hfa384x_usbctlx_reaper_task
2816 *
2817 * Tasklet to delete dead CTLX objects
2818 *
2819 * Arguments:
2820 * data ptr to a hfa384x_t
2821 *
2822 * Returns:
2823 *
2824 * Call context:
2825 * Interrupt
2826 ----------------------------------------------------------------*/
2827 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2828 {
2829  hfa384x_t *hw = (hfa384x_t *) data;
2830  struct list_head *entry;
2831  struct list_head *temp;
2832  unsigned long flags;
2833 
2834  spin_lock_irqsave(&hw->ctlxq.lock, flags);
2835 
2836  /* This list is guaranteed to be empty if someone
2837  * has unplugged the adapter.
2838  */
2839  list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2840  hfa384x_usbctlx_t *ctlx;
2841 
2842  ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2843  list_del(&ctlx->list);
2844  kfree(ctlx);
2845  }
2846 
2847  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2848 
2849 }
2850 
2851 /*----------------------------------------------------------------
2852 * hfa384x_usbctlx_completion_task
2853 *
2854 * Tasklet to call completion handlers for returned CTLXs
2855 *
2856 * Arguments:
2857 * data ptr to hfa384x_t
2858 *
2859 * Returns:
2860 * Nothing
2861 *
2862 * Call context:
2863 * Interrupt
2864 ----------------------------------------------------------------*/
2865 static void hfa384x_usbctlx_completion_task(unsigned long data)
2866 {
2867  hfa384x_t *hw = (hfa384x_t *) data;
2868  struct list_head *entry;
2869  struct list_head *temp;
2870  unsigned long flags;
2871 
2872  int reap = 0;
2873 
2874  spin_lock_irqsave(&hw->ctlxq.lock, flags);
2875 
2876  /* This list is guaranteed to be empty if someone
2877  * has unplugged the adapter ...
2878  */
2879  list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2880  hfa384x_usbctlx_t *ctlx;
2881 
2882  ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2883 
2884  /* Call the completion function that this
2885  * command was assigned, assuming it has one.
2886  */
2887  if (ctlx->cmdcb != NULL) {
2888  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2889  ctlx->cmdcb(hw, ctlx);
2890  spin_lock_irqsave(&hw->ctlxq.lock, flags);
2891 
2892  /* Make sure we don't try and complete
2893  * this CTLX more than once!
2894  */
2895  ctlx->cmdcb = NULL;
2896 
2897  /* Did someone yank the adapter out
2898  * while our list was (briefly) unlocked?
2899  */
2900  if (hw->wlandev->hwremoved) {
2901  reap = 0;
2902  break;
2903  }
2904  }
2905 
2906  /*
2907  * "Reapable" CTLXs are ones which don't have any
2908  * threads waiting for them to die. Hence they must
2909  * be delivered to The Reaper!
2910  */
2911  if (ctlx->reapable) {
2912  /* Move the CTLX off the "completing" list (hopefully)
2913  * on to the "reapable" list where the reaper task
2914  * can find it. And "reapable" means that this CTLX
2915  * isn't sitting on a wait-queue somewhere.
2916  */
2917  list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2918  reap = 1;
2919  }
2920 
2921  complete(&ctlx->done);
2922  }
2923  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2924 
2925  if (reap)
2926  tasklet_schedule(&hw->reaper_bh);
2927 }
2928 
2929 /*----------------------------------------------------------------
2930 * unlocked_usbctlx_cancel_async
2931 *
2932 * Mark the CTLX dead asynchronously, and ensure that the
2933 * next command on the queue is run afterwards.
2934 *
2935 * Arguments:
2936 * hw ptr to the hfa384x_t structure
2937 * ctlx ptr to a CTLX structure
2938 *
2939 * Returns:
2940 * 0 the CTLX's URB is inactive
2941 * -EINPROGRESS the URB is currently being unlinked
2942 *
2943 * Call context:
2944 * Either process or interrupt, but presumably interrupt
2945 ----------------------------------------------------------------*/
2946 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2947  hfa384x_usbctlx_t *ctlx)
2948 {
2949  int ret;
2950 
2951  /*
2952  * Try to delete the URB containing our request packet.
2953  * If we succeed, then its completion handler will be
2954  * called with a status of -ECONNRESET.
2955  */
2956  hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2957  ret = usb_unlink_urb(&hw->ctlx_urb);
2958 
2959  if (ret != -EINPROGRESS) {
2960  /*
2961  * The OUT URB had either already completed
2962  * or was still in the pending queue, so the
2963  * URB's completion function will not be called.
2964  * We will have to complete the CTLX ourselves.
2965  */
2966  ctlx->state = CTLX_REQ_FAILED;
2967  unlocked_usbctlx_complete(hw, ctlx);
2968  ret = 0;
2969  }
2970 
2971  return ret;
2972 }
2973 
2974 /*----------------------------------------------------------------
2975 * unlocked_usbctlx_complete
2976 *
2977 * A CTLX has completed. It may have been successful, it may not
2978 * have been. At this point, the CTLX should be quiescent. The URBs
2979 * aren't active and the timers should have been stopped.
2980 *
2981 * The CTLX is migrated to the "completing" queue, and the completing
2982 * tasklet is scheduled.
2983 *
2984 * Arguments:
2985 * hw ptr to a hfa384x_t structure
2986 * ctlx ptr to a ctlx structure
2987 *
2988 * Returns:
2989 * nothing
2990 *
2991 * Side effects:
2992 *
2993 * Call context:
2994 * Either, assume interrupt
2995 ----------------------------------------------------------------*/
2996 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2997 {
2998  /* Timers have been stopped, and ctlx should be in
2999  * a terminal state. Retire it from the "active"
3000  * queue.
3001  */
3002  list_move_tail(&ctlx->list, &hw->ctlxq.completing);
3003  tasklet_schedule(&hw->completion_bh);
3004 
3005  switch (ctlx->state) {
3006  case CTLX_COMPLETE:
3007  case CTLX_REQ_FAILED:
3008  /* This are the correct terminating states. */
3009  break;
3010 
3011  default:
3012  printk(KERN_ERR "CTLX[%d] not in a terminating state(%s)\n",
3013  le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state));
3014  break;
3015  } /* switch */
3016 }
3017 
3018 /*----------------------------------------------------------------
3019 * hfa384x_usbctlxq_run
3020 *
3021 * Checks to see if the head item is running. If not, starts it.
3022 *
3023 * Arguments:
3024 * hw ptr to hfa384x_t
3025 *
3026 * Returns:
3027 * nothing
3028 *
3029 * Side effects:
3030 *
3031 * Call context:
3032 * any
3033 ----------------------------------------------------------------*/
3034 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3035 {
3036  unsigned long flags;
3037 
3038  /* acquire lock */
3039  spin_lock_irqsave(&hw->ctlxq.lock, flags);
3040 
3041  /* Only one active CTLX at any one time, because there's no
3042  * other (reliable) way to match the response URB to the
3043  * correct CTLX.
3044  *
3045  * Don't touch any of these CTLXs if the hardware
3046  * has been removed or the USB subsystem is stalled.
3047  */
3048  if (!list_empty(&hw->ctlxq.active) ||
3049  test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3050  goto unlock;
3051 
3052  while (!list_empty(&hw->ctlxq.pending)) {
3053  hfa384x_usbctlx_t *head;
3054  int result;
3055 
3056  /* This is the first pending command */
3057  head = list_entry(hw->ctlxq.pending.next,
3058  hfa384x_usbctlx_t, list);
3059 
3060  /* We need to split this off to avoid a race condition */
3061  list_move_tail(&head->list, &hw->ctlxq.active);
3062 
3063  /* Fill the out packet */
3064  usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3065  hw->endp_out,
3066  &(head->outbuf), ROUNDUP64(head->outbufsize),
3067  hfa384x_ctlxout_callback, hw);
3068  hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3069 
3070  /* Now submit the URB and update the CTLX's state */
3071  result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3072  if (result == 0) {
3073  /* This CTLX is now running on the active queue */
3074  head->state = CTLX_REQ_SUBMITTED;
3075 
3076  /* Start the OUT wait timer */
3077  hw->req_timer_done = 0;
3078  hw->reqtimer.expires = jiffies + HZ;
3079  add_timer(&hw->reqtimer);
3080 
3081  /* Start the IN wait timer */
3082  hw->resp_timer_done = 0;
3083  hw->resptimer.expires = jiffies + 2 * HZ;
3084  add_timer(&hw->resptimer);
3085 
3086  break;
3087  }
3088 
3089  if (result == -EPIPE) {
3090  /* The OUT pipe needs resetting, so put
3091  * this CTLX back in the "pending" queue
3092  * and schedule a reset ...
3093  */
3095  "%s tx pipe stalled: requesting reset\n",
3096  hw->wlandev->netdev->name);
3097  list_move(&head->list, &hw->ctlxq.pending);
3098  set_bit(WORK_TX_HALT, &hw->usb_flags);
3099  schedule_work(&hw->usb_work);
3100  break;
3101  }
3102 
3103  if (result == -ESHUTDOWN) {
3104  printk(KERN_WARNING "%s urb shutdown!\n",
3105  hw->wlandev->netdev->name);
3106  break;
3107  }
3108 
3109  printk(KERN_ERR "Failed to submit CTLX[%d]: error=%d\n",
3110  le16_to_cpu(head->outbuf.type), result);
3111  unlocked_usbctlx_complete(hw, head);
3112  } /* while */
3113 
3114 unlock:
3115  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3116 }
3117 
3118 /*----------------------------------------------------------------
3119 * hfa384x_usbin_callback
3120 *
3121 * Callback for URBs on the BULKIN endpoint.
3122 *
3123 * Arguments:
3124 * urb ptr to the completed urb
3125 *
3126 * Returns:
3127 * nothing
3128 *
3129 * Side effects:
3130 *
3131 * Call context:
3132 * interrupt
3133 ----------------------------------------------------------------*/
3134 static void hfa384x_usbin_callback(struct urb *urb)
3135 {
3136  wlandevice_t *wlandev = urb->context;
3137  hfa384x_t *hw;
3138  hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) urb->transfer_buffer;
3139  struct sk_buff *skb = NULL;
3140  int result;
3141  int urb_status;
3142  u16 type;
3143 
3144  enum USBIN_ACTION {
3145  HANDLE,
3146  RESUBMIT,
3147  ABORT
3148  } action;
3149 
3150  if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3151  goto exit;
3152 
3153  hw = wlandev->priv;
3154  if (!hw)
3155  goto exit;
3156 
3157  skb = hw->rx_urb_skb;
3158  BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3159 
3160  hw->rx_urb_skb = NULL;
3161 
3162  /* Check for error conditions within the URB */
3163  switch (urb->status) {
3164  case 0:
3165  action = HANDLE;
3166 
3167  /* Check for short packet */
3168  if (urb->actual_length == 0) {
3169  ++(wlandev->linux_stats.rx_errors);
3170  ++(wlandev->linux_stats.rx_length_errors);
3171  action = RESUBMIT;
3172  }
3173  break;
3174 
3175  case -EPIPE:
3176  printk(KERN_WARNING "%s rx pipe stalled: requesting reset\n",
3177  wlandev->netdev->name);
3178  if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3179  schedule_work(&hw->usb_work);
3180  ++(wlandev->linux_stats.rx_errors);
3181  action = ABORT;
3182  break;
3183 
3184  case -EILSEQ:
3185  case -ETIMEDOUT:
3186  case -EPROTO:
3187  if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3188  !timer_pending(&hw->throttle)) {
3189  mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3190  }
3191  ++(wlandev->linux_stats.rx_errors);
3192  action = ABORT;
3193  break;
3194 
3195  case -EOVERFLOW:
3196  ++(wlandev->linux_stats.rx_over_errors);
3197  action = RESUBMIT;
3198  break;
3199 
3200  case -ENODEV:
3201  case -ESHUTDOWN:
3202  pr_debug("status=%d, device removed.\n", urb->status);
3203  action = ABORT;
3204  break;
3205 
3206  case -ENOENT:
3207  case -ECONNRESET:
3208  pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3209  action = ABORT;
3210  break;
3211 
3212  default:
3213  pr_debug("urb status=%d, transfer flags=0x%x\n",
3214  urb->status, urb->transfer_flags);
3215  ++(wlandev->linux_stats.rx_errors);
3216  action = RESUBMIT;
3217  break;
3218  }
3219 
3220  urb_status = urb->status;
3221 
3222  if (action != ABORT) {
3223  /* Repost the RX URB */
3224  result = submit_rx_urb(hw, GFP_ATOMIC);
3225 
3226  if (result != 0) {
3228  "Fatal, failed to resubmit rx_urb. error=%d\n",
3229  result);
3230  }
3231  }
3232 
3233  /* Handle any USB-IN packet */
3234  /* Note: the check of the sw_support field, the type field doesn't
3235  * have bit 12 set like the docs suggest.
3236  */
3237  type = le16_to_cpu(usbin->type);
3238  if (HFA384x_USB_ISRXFRM(type)) {
3239  if (action == HANDLE) {
3240  if (usbin->txfrm.desc.sw_support == 0x0123) {
3241  hfa384x_usbin_txcompl(wlandev, usbin);
3242  } else {
3243  skb_put(skb, sizeof(*usbin));
3244  hfa384x_usbin_rx(wlandev, skb);
3245  skb = NULL;
3246  }
3247  }
3248  goto exit;
3249  }
3250  if (HFA384x_USB_ISTXFRM(type)) {
3251  if (action == HANDLE)
3252  hfa384x_usbin_txcompl(wlandev, usbin);
3253  goto exit;
3254  }
3255  switch (type) {
3256  case HFA384x_USB_INFOFRM:
3257  if (action == ABORT)
3258  goto exit;
3259  if (action == HANDLE)
3260  hfa384x_usbin_info(wlandev, usbin);
3261  break;
3262 
3263  case HFA384x_USB_CMDRESP:
3264  case HFA384x_USB_WRIDRESP:
3265  case HFA384x_USB_RRIDRESP:
3266  case HFA384x_USB_WMEMRESP:
3267  case HFA384x_USB_RMEMRESP:
3268  /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3269  hfa384x_usbin_ctlx(hw, usbin, urb_status);
3270  break;
3271 
3272  case HFA384x_USB_BUFAVAIL:
3273  pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3274  usbin->bufavail.frmlen);
3275  break;
3276 
3277  case HFA384x_USB_ERROR:
3278  pr_debug("Received USB_ERROR packet, errortype=%d\n",
3279  usbin->usberror.errortype);
3280  break;
3281 
3282  default:
3283  pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3284  usbin->type, urb_status);
3285  break;
3286  } /* switch */
3287 
3288 exit:
3289 
3290  if (skb)
3291  dev_kfree_skb(skb);
3292 }
3293 
3294 /*----------------------------------------------------------------
3295 * hfa384x_usbin_ctlx
3296 *
3297 * We've received a URB containing a Prism2 "response" message.
3298 * This message needs to be matched up with a CTLX on the active
3299 * queue and our state updated accordingly.
3300 *
3301 * Arguments:
3302 * hw ptr to hfa384x_t
3303 * usbin ptr to USB IN packet
3304 * urb_status status of this Bulk-In URB
3305 *
3306 * Returns:
3307 * nothing
3308 *
3309 * Side effects:
3310 *
3311 * Call context:
3312 * interrupt
3313 ----------------------------------------------------------------*/
3314 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3315  int urb_status)
3316 {
3317  hfa384x_usbctlx_t *ctlx;
3318  int run_queue = 0;
3319  unsigned long flags;
3320 
3321 retry:
3322  spin_lock_irqsave(&hw->ctlxq.lock, flags);
3323 
3324  /* There can be only one CTLX on the active queue
3325  * at any one time, and this is the CTLX that the
3326  * timers are waiting for.
3327  */
3328  if (list_empty(&hw->ctlxq.active))
3329  goto unlock;
3330 
3331  /* Remove the "response timeout". It's possible that
3332  * we are already too late, and that the timeout is
3333  * already running. And that's just too bad for us,
3334  * because we could lose our CTLX from the active
3335  * queue here ...
3336  */
3337  if (del_timer(&hw->resptimer) == 0) {
3338  if (hw->resp_timer_done == 0) {
3339  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3340  goto retry;
3341  }
3342  } else {
3343  hw->resp_timer_done = 1;
3344  }
3345 
3346  ctlx = get_active_ctlx(hw);
3347 
3348  if (urb_status != 0) {
3349  /*
3350  * Bad CTLX, so get rid of it. But we only
3351  * remove it from the active queue if we're no
3352  * longer expecting the OUT URB to complete.
3353  */
3354  if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3355  run_queue = 1;
3356  } else {
3357  const u16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3358 
3359  /*
3360  * Check that our message is what we're expecting ...
3361  */
3362  if (ctlx->outbuf.type != intype) {
3364  "Expected IN[%d], received IN[%d] - ignored.\n",
3365  le16_to_cpu(ctlx->outbuf.type),
3366  le16_to_cpu(intype));
3367  goto unlock;
3368  }
3369 
3370  /* This URB has succeeded, so grab the data ... */
3371  memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3372 
3373  switch (ctlx->state) {
3374  case CTLX_REQ_SUBMITTED:
3375  /*
3376  * We have received our response URB before
3377  * our request has been acknowledged. Odd,
3378  * but our OUT URB is still alive...
3379  */
3380  pr_debug("Causality violation: please reboot Universe\n");
3381  ctlx->state = CTLX_RESP_COMPLETE;
3382  break;
3383 
3384  case CTLX_REQ_COMPLETE:
3385  /*
3386  * This is the usual path: our request
3387  * has already been acknowledged, and
3388  * now we have received the reply too.
3389  */
3390  ctlx->state = CTLX_COMPLETE;
3391  unlocked_usbctlx_complete(hw, ctlx);
3392  run_queue = 1;
3393  break;
3394 
3395  default:
3396  /*
3397  * Throw this CTLX away ...
3398  */
3400  "Matched IN URB, CTLX[%d] in invalid state(%s)."
3401  " Discarded.\n",
3402  le16_to_cpu(ctlx->outbuf.type),
3403  ctlxstr(ctlx->state));
3404  if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3405  run_queue = 1;
3406  break;
3407  } /* switch */
3408  }
3409 
3410 unlock:
3411  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3412 
3413  if (run_queue)
3414  hfa384x_usbctlxq_run(hw);
3415 }
3416 
3417 /*----------------------------------------------------------------
3418 * hfa384x_usbin_txcompl
3419 *
3420 * At this point we have the results of a previous transmit.
3421 *
3422 * Arguments:
3423 * wlandev wlan device
3424 * usbin ptr to the usb transfer buffer
3425 *
3426 * Returns:
3427 * nothing
3428 *
3429 * Side effects:
3430 *
3431 * Call context:
3432 * interrupt
3433 ----------------------------------------------------------------*/
3434 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3435  hfa384x_usbin_t *usbin)
3436 {
3437  u16 status;
3438 
3439  status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3440 
3441  /* Was there an error? */
3442  if (HFA384x_TXSTATUS_ISERROR(status))
3443  prism2sta_ev_txexc(wlandev, status);
3444  else
3445  prism2sta_ev_tx(wlandev, status);
3446 }
3447 
3448 /*----------------------------------------------------------------
3449 * hfa384x_usbin_rx
3450 *
3451 * At this point we have a successful received a rx frame packet.
3452 *
3453 * Arguments:
3454 * wlandev wlan device
3455 * usbin ptr to the usb transfer buffer
3456 *
3457 * Returns:
3458 * nothing
3459 *
3460 * Side effects:
3461 *
3462 * Call context:
3463 * interrupt
3464 ----------------------------------------------------------------*/
3465 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3466 {
3467  hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) skb->data;
3468  hfa384x_t *hw = wlandev->priv;
3469  int hdrlen;
3470  struct p80211_rxmeta *rxmeta;
3471  u16 data_len;
3472  u16 fc;
3473 
3474  /* Byte order convert once up front. */
3475  usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3476  usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3477 
3478  /* Now handle frame based on port# */
3479  switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3480  case 0:
3482 
3483  /* If exclude and we receive an unencrypted, drop it */
3484  if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3485  !WLAN_GET_FC_ISWEP(fc)) {
3486  goto done;
3487  }
3488 
3490 
3491  /* How much header data do we have? */
3492  hdrlen = p80211_headerlen(fc);
3493 
3494  /* Pull off the descriptor */
3495  skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3496 
3497  /* Now shunt the header block up against the data block
3498  * with an "overlapping" copy
3499  */
3500  memmove(skb_push(skb, hdrlen),
3501  &usbin->rxfrm.desc.frame_control, hdrlen);
3502 
3503  skb->dev = wlandev->netdev;
3504  skb->dev->last_rx = jiffies;
3505 
3506  /* And set the frame length properly */
3507  skb_trim(skb, data_len + hdrlen);
3508 
3509  /* The prism2 series does not return the CRC */
3510  memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3511 
3512  skb_reset_mac_header(skb);
3513 
3514  /* Attach the rxmeta, set some stuff */
3515  p80211skb_rxmeta_attach(wlandev, skb);
3516  rxmeta = P80211SKB_RXMETA(skb);
3517  rxmeta->mactime = usbin->rxfrm.desc.time;
3518  rxmeta->rxrate = usbin->rxfrm.desc.rate;
3519  rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3520  rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3521 
3522  prism2sta_ev_rx(wlandev, skb);
3523 
3524  break;
3525 
3526  case 7:
3527  if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3528  /* Copy to wlansnif skb */
3529  hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3530  dev_kfree_skb(skb);
3531  } else {
3532  pr_debug("Received monitor frame: FCSerr set\n");
3533  }
3534  break;
3535 
3536  default:
3537  printk(KERN_WARNING "Received frame on unsupported port=%d\n",
3539  goto done;
3540  break;
3541  }
3542 
3543 done:
3544  return;
3545 }
3546 
3547 /*----------------------------------------------------------------
3548 * hfa384x_int_rxmonitor
3549 *
3550 * Helper function for int_rx. Handles monitor frames.
3551 * Note that this function allocates space for the FCS and sets it
3552 * to 0xffffffff. The hfa384x doesn't give us the FCS value but the
3553 * higher layers expect it. 0xffffffff is used as a flag to indicate
3554 * the FCS is bogus.
3555 *
3556 * Arguments:
3557 * wlandev wlan device structure
3558 * rxfrm rx descriptor read from card in int_rx
3559 *
3560 * Returns:
3561 * nothing
3562 *
3563 * Side effects:
3564 * Allocates an skb and passes it up via the PF_PACKET interface.
3565 * Call context:
3566 * interrupt
3567 ----------------------------------------------------------------*/
3568 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3569  hfa384x_usb_rxfrm_t *rxfrm)
3570 {
3571  hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3572  unsigned int hdrlen = 0;
3573  unsigned int datalen = 0;
3574  unsigned int skblen = 0;
3575  u8 *datap;
3576  u16 fc;
3577  struct sk_buff *skb;
3578  hfa384x_t *hw = wlandev->priv;
3579 
3580  /* Remember the status, time, and data_len fields are in host order */
3581  /* Figure out how big the frame is */
3582  fc = le16_to_cpu(rxdesc->frame_control);
3583  hdrlen = p80211_headerlen(fc);
3584  datalen = le16_to_cpu(rxdesc->data_len);
3585 
3586  /* Allocate an ind message+framesize skb */
3587  skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3588 
3589  /* sanity check the length */
3590  if (skblen >
3591  (sizeof(struct p80211_caphdr) +
3593  pr_debug("overlen frm: len=%zd\n",
3594  skblen - sizeof(struct p80211_caphdr));
3595  }
3596 
3597  skb = dev_alloc_skb(skblen);
3598  if (skb == NULL) {
3600  "alloc_skb failed trying to allocate %d bytes\n",
3601  skblen);
3602  return;
3603  }
3604 
3605  /* only prepend the prism header if in the right mode */
3606  if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3607  (hw->sniffhdr != 0)) {
3608  struct p80211_caphdr *caphdr;
3609  /* The NEW header format! */
3610  datap = skb_put(skb, sizeof(struct p80211_caphdr));
3611  caphdr = (struct p80211_caphdr *) datap;
3612 
3613  caphdr->version = htonl(P80211CAPTURE_VERSION);
3614  caphdr->length = htonl(sizeof(struct p80211_caphdr));
3615  caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3616  caphdr->hosttime = __cpu_to_be64(jiffies);
3617  caphdr->phytype = htonl(4); /* dss_dot11_b */
3618  caphdr->channel = htonl(hw->sniff_channel);
3619  caphdr->datarate = htonl(rxdesc->rate);
3620  caphdr->antenna = htonl(0); /* unknown */
3621  caphdr->priority = htonl(0); /* unknown */
3622  caphdr->ssi_type = htonl(3); /* rssi_raw */
3623  caphdr->ssi_signal = htonl(rxdesc->signal);
3624  caphdr->ssi_noise = htonl(rxdesc->silence);
3625  caphdr->preamble = htonl(0); /* unknown */
3626  caphdr->encoding = htonl(1); /* cck */
3627  }
3628 
3629  /* Copy the 802.11 header to the skb
3630  (ctl frames may be less than a full header) */
3631  datap = skb_put(skb, hdrlen);
3632  memcpy(datap, &(rxdesc->frame_control), hdrlen);
3633 
3634  /* If any, copy the data from the card to the skb */
3635  if (datalen > 0) {
3636  datap = skb_put(skb, datalen);
3637  memcpy(datap, rxfrm->data, datalen);
3638 
3639  /* check for unencrypted stuff if WEP bit set. */
3640  if (*(datap - hdrlen + 1) & 0x40) /* wep set */
3641  if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3642  /* clear wep; it's the 802.2 header! */
3643  *(datap - hdrlen + 1) &= 0xbf;
3644  }
3645 
3646  if (hw->sniff_fcs) {
3647  /* Set the FCS */
3648  datap = skb_put(skb, WLAN_CRC_LEN);
3649  memset(datap, 0xff, WLAN_CRC_LEN);
3650  }
3651 
3652  /* pass it back up */
3653  prism2sta_ev_rx(wlandev, skb);
3654 
3655  return;
3656 }
3657 
3658 /*----------------------------------------------------------------
3659 * hfa384x_usbin_info
3660 *
3661 * At this point we have a successful received a Prism2 info frame.
3662 *
3663 * Arguments:
3664 * wlandev wlan device
3665 * usbin ptr to the usb transfer buffer
3666 *
3667 * Returns:
3668 * nothing
3669 *
3670 * Side effects:
3671 *
3672 * Call context:
3673 * interrupt
3674 ----------------------------------------------------------------*/
3675 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3676 {
3677  usbin->infofrm.info.framelen =
3678  le16_to_cpu(usbin->infofrm.info.framelen);
3679  prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3680 }
3681 
3682 /*----------------------------------------------------------------
3683 * hfa384x_usbout_callback
3684 *
3685 * Callback for URBs on the BULKOUT endpoint.
3686 *
3687 * Arguments:
3688 * urb ptr to the completed urb
3689 *
3690 * Returns:
3691 * nothing
3692 *
3693 * Side effects:
3694 *
3695 * Call context:
3696 * interrupt
3697 ----------------------------------------------------------------*/
3698 static void hfa384x_usbout_callback(struct urb *urb)
3699 {
3700  wlandevice_t *wlandev = urb->context;
3701  hfa384x_usbout_t *usbout = urb->transfer_buffer;
3702 
3703 #ifdef DEBUG_USB
3704  dbprint_urb(urb);
3705 #endif
3706 
3707  if (wlandev && wlandev->netdev) {
3708 
3709  switch (urb->status) {
3710  case 0:
3711  hfa384x_usbout_tx(wlandev, usbout);
3712  break;
3713 
3714  case -EPIPE:
3715  {
3716  hfa384x_t *hw = wlandev->priv;
3718  "%s tx pipe stalled: requesting reset\n",
3719  wlandev->netdev->name);
3720  if (!test_and_set_bit
3721  (WORK_TX_HALT, &hw->usb_flags))
3722  schedule_work(&hw->usb_work);
3723  ++(wlandev->linux_stats.tx_errors);
3724  break;
3725  }
3726 
3727  case -EPROTO:
3728  case -ETIMEDOUT:
3729  case -EILSEQ:
3730  {
3731  hfa384x_t *hw = wlandev->priv;
3732 
3733  if (!test_and_set_bit
3734  (THROTTLE_TX, &hw->usb_flags)
3735  && !timer_pending(&hw->throttle)) {
3736  mod_timer(&hw->throttle,
3737  jiffies + THROTTLE_JIFFIES);
3738  }
3739  ++(wlandev->linux_stats.tx_errors);
3740  netif_stop_queue(wlandev->netdev);
3741  break;
3742  }
3743 
3744  case -ENOENT:
3745  case -ESHUTDOWN:
3746  /* Ignorable errors */
3747  break;
3748 
3749  default:
3750  printk(KERN_INFO "unknown urb->status=%d\n",
3751  urb->status);
3752  ++(wlandev->linux_stats.tx_errors);
3753  break;
3754  } /* switch */
3755  }
3756 }
3757 
3758 /*----------------------------------------------------------------
3759 * hfa384x_ctlxout_callback
3760 *
3761 * Callback for control data on the BULKOUT endpoint.
3762 *
3763 * Arguments:
3764 * urb ptr to the completed urb
3765 *
3766 * Returns:
3767 * nothing
3768 *
3769 * Side effects:
3770 *
3771 * Call context:
3772 * interrupt
3773 ----------------------------------------------------------------*/
3774 static void hfa384x_ctlxout_callback(struct urb *urb)
3775 {
3776  hfa384x_t *hw = urb->context;
3777  int delete_resptimer = 0;
3778  int timer_ok = 1;
3779  int run_queue = 0;
3780  hfa384x_usbctlx_t *ctlx;
3781  unsigned long flags;
3782 
3783  pr_debug("urb->status=%d\n", urb->status);
3784 #ifdef DEBUG_USB
3785  dbprint_urb(urb);
3786 #endif
3787  if ((urb->status == -ESHUTDOWN) ||
3788  (urb->status == -ENODEV) || (hw == NULL))
3789  return;
3790 
3791 retry:
3792  spin_lock_irqsave(&hw->ctlxq.lock, flags);
3793 
3794  /*
3795  * Only one CTLX at a time on the "active" list, and
3796  * none at all if we are unplugged. However, we can
3797  * rely on the disconnect function to clean everything
3798  * up if someone unplugged the adapter.
3799  */
3800  if (list_empty(&hw->ctlxq.active)) {
3801  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3802  return;
3803  }
3804 
3805  /*
3806  * Having something on the "active" queue means
3807  * that we have timers to worry about ...
3808  */
3809  if (del_timer(&hw->reqtimer) == 0) {
3810  if (hw->req_timer_done == 0) {
3811  /*
3812  * This timer was actually running while we
3813  * were trying to delete it. Let it terminate
3814  * gracefully instead.
3815  */
3816  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3817  goto retry;
3818  }
3819  } else {
3820  hw->req_timer_done = 1;
3821  }
3822 
3823  ctlx = get_active_ctlx(hw);
3824 
3825  if (urb->status == 0) {
3826  /* Request portion of a CTLX is successful */
3827  switch (ctlx->state) {
3828  case CTLX_REQ_SUBMITTED:
3829  /* This OUT-ACK received before IN */
3830  ctlx->state = CTLX_REQ_COMPLETE;
3831  break;
3832 
3833  case CTLX_RESP_COMPLETE:
3834  /* IN already received before this OUT-ACK,
3835  * so this command must now be complete.
3836  */
3837  ctlx->state = CTLX_COMPLETE;
3838  unlocked_usbctlx_complete(hw, ctlx);
3839  run_queue = 1;
3840  break;
3841 
3842  default:
3843  /* This is NOT a valid CTLX "success" state! */
3845  "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3846  le16_to_cpu(ctlx->outbuf.type),
3847  ctlxstr(ctlx->state), urb->status);
3848  break;
3849  } /* switch */
3850  } else {
3851  /* If the pipe has stalled then we need to reset it */
3852  if ((urb->status == -EPIPE) &&
3853  !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3855  "%s tx pipe stalled: requesting reset\n",
3856  hw->wlandev->netdev->name);
3857  schedule_work(&hw->usb_work);
3858  }
3859 
3860  /* If someone cancels the OUT URB then its status
3861  * should be either -ECONNRESET or -ENOENT.
3862  */
3863  ctlx->state = CTLX_REQ_FAILED;
3864  unlocked_usbctlx_complete(hw, ctlx);
3865  delete_resptimer = 1;
3866  run_queue = 1;
3867  }
3868 
3869 delresp:
3870  if (delete_resptimer) {
3871  timer_ok = del_timer(&hw->resptimer);
3872  if (timer_ok != 0)
3873  hw->resp_timer_done = 1;
3874  }
3875 
3876  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3877 
3878  if (!timer_ok && (hw->resp_timer_done == 0)) {
3879  spin_lock_irqsave(&hw->ctlxq.lock, flags);
3880  goto delresp;
3881  }
3882 
3883  if (run_queue)
3884  hfa384x_usbctlxq_run(hw);
3885 }
3886 
3887 /*----------------------------------------------------------------
3888 * hfa384x_usbctlx_reqtimerfn
3889 *
3890 * Timer response function for CTLX request timeouts. If this
3891 * function is called, it means that the callback for the OUT
3892 * URB containing a Prism2.x XXX_Request was never called.
3893 *
3894 * Arguments:
3895 * data a ptr to the hfa384x_t
3896 *
3897 * Returns:
3898 * nothing
3899 *
3900 * Side effects:
3901 *
3902 * Call context:
3903 * interrupt
3904 ----------------------------------------------------------------*/
3905 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3906 {
3907  hfa384x_t *hw = (hfa384x_t *) data;
3908  unsigned long flags;
3909 
3910  spin_lock_irqsave(&hw->ctlxq.lock, flags);
3911 
3912  hw->req_timer_done = 1;
3913 
3914  /* Removing the hardware automatically empties
3915  * the active list ...
3916  */
3917  if (!list_empty(&hw->ctlxq.active)) {
3918  /*
3919  * We must ensure that our URB is removed from
3920  * the system, if it hasn't already expired.
3921  */
3922  hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3923  if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3924  hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3925 
3926  ctlx->state = CTLX_REQ_FAILED;
3927 
3928  /* This URB was active, but has now been
3929  * cancelled. It will now have a status of
3930  * -ECONNRESET in the callback function.
3931  *
3932  * We are cancelling this CTLX, so we're
3933  * not going to need to wait for a response.
3934  * The URB's callback function will check
3935  * that this timer is truly dead.
3936  */
3937  if (del_timer(&hw->resptimer) != 0)
3938  hw->resp_timer_done = 1;
3939  }
3940  }
3941 
3942  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3943 }
3944 
3945 /*----------------------------------------------------------------
3946 * hfa384x_usbctlx_resptimerfn
3947 *
3948 * Timer response function for CTLX response timeouts. If this
3949 * function is called, it means that the callback for the IN
3950 * URB containing a Prism2.x XXX_Response was never called.
3951 *
3952 * Arguments:
3953 * data a ptr to the hfa384x_t
3954 *
3955 * Returns:
3956 * nothing
3957 *
3958 * Side effects:
3959 *
3960 * Call context:
3961 * interrupt
3962 ----------------------------------------------------------------*/
3963 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3964 {
3965  hfa384x_t *hw = (hfa384x_t *) data;
3966  unsigned long flags;
3967 
3968  spin_lock_irqsave(&hw->ctlxq.lock, flags);
3969 
3970  hw->resp_timer_done = 1;
3971 
3972  /* The active list will be empty if the
3973  * adapter has been unplugged ...
3974  */
3975  if (!list_empty(&hw->ctlxq.active)) {
3976  hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3977 
3978  if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3979  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3980  hfa384x_usbctlxq_run(hw);
3981  return;
3982  }
3983  }
3984  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3985 }
3986 
3987 /*----------------------------------------------------------------
3988 * hfa384x_usb_throttlefn
3989 *
3990 *
3991 * Arguments:
3992 * data ptr to hw
3993 *
3994 * Returns:
3995 * Nothing
3996 *
3997 * Side effects:
3998 *
3999 * Call context:
4000 * Interrupt
4001 ----------------------------------------------------------------*/
4002 static void hfa384x_usb_throttlefn(unsigned long data)
4003 {
4004  hfa384x_t *hw = (hfa384x_t *) data;
4005  unsigned long flags;
4006 
4007  spin_lock_irqsave(&hw->ctlxq.lock, flags);
4008 
4009  /*
4010  * We need to check BOTH the RX and the TX throttle controls,
4011  * so we use the bitwise OR instead of the logical OR.
4012  */
4013  pr_debug("flags=0x%lx\n", hw->usb_flags);
4014  if (!hw->wlandev->hwremoved &&
4015  ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
4016  !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
4017  |
4018  (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
4019  !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
4020  )) {
4021  schedule_work(&hw->usb_work);
4022  }
4023 
4024  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4025 }
4026 
4027 /*----------------------------------------------------------------
4028 * hfa384x_usbctlx_submit
4029 *
4030 * Called from the doxxx functions to submit a CTLX to the queue
4031 *
4032 * Arguments:
4033 * hw ptr to the hw struct
4034 * ctlx ctlx structure to enqueue
4035 *
4036 * Returns:
4037 * -ENODEV if the adapter is unplugged
4038 * 0
4039 *
4040 * Side effects:
4041 *
4042 * Call context:
4043 * process or interrupt
4044 ----------------------------------------------------------------*/
4045 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4046 {
4047  unsigned long flags;
4048 
4049  spin_lock_irqsave(&hw->ctlxq.lock, flags);
4050 
4051  if (hw->wlandev->hwremoved) {
4052  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4053  return -ENODEV;
4054  }
4055 
4056  ctlx->state = CTLX_PENDING;
4057  list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4058  spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4059  hfa384x_usbctlxq_run(hw);
4060 
4061  return 0;
4062 }
4063 
4064 /*----------------------------------------------------------------
4065 * hfa384x_usbout_tx
4066 *
4067 * At this point we have finished a send of a frame. Mark the URB
4068 * as available and call ev_alloc to notify higher layers we're
4069 * ready for more.
4070 *
4071 * Arguments:
4072 * wlandev wlan device
4073 * usbout ptr to the usb transfer buffer
4074 *
4075 * Returns:
4076 * nothing
4077 *
4078 * Side effects:
4079 *
4080 * Call context:
4081 * interrupt
4082 ----------------------------------------------------------------*/
4083 static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4084 {
4085  prism2sta_ev_alloc(wlandev);
4086 }
4087 
4088 /*----------------------------------------------------------------
4089 * hfa384x_isgood_pdrcore
4090 *
4091 * Quick check of PDR codes.
4092 *
4093 * Arguments:
4094 * pdrcode PDR code number (host order)
4095 *
4096 * Returns:
4097 * zero not good.
4098 * one is good.
4099 *
4100 * Side effects:
4101 *
4102 * Call context:
4103 ----------------------------------------------------------------*/
4104 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4105 {
4106  switch (pdrcode) {
4109  case HFA384x_PDR_PDAVER:
4115  case HFA384x_PDR_NICID:
4117  case HFA384x_PDR_REGDOMAIN:
4120  case HFA384x_PDR_TEMPTYPE:
4129  case HFA384x_PDR_USB_ID:
4130  case HFA384x_PDR_PCI_ID:
4133  case HFA384x_PDR_RFENRGY:
4136  /* code is OK */
4137  return 1;
4138  break;
4139  default:
4140  if (pdrcode < 0x1000) {
4141  /* code is OK, but we don't know exactly what it is */
4142  pr_debug("Encountered unknown PDR#=0x%04x, "
4143  "assuming it's ok.\n", pdrcode);
4144  return 1;
4145  } else {
4146  /* bad code */
4147  pr_debug("Encountered unknown PDR#=0x%04x, "
4148  "(>=0x1000), assuming it's bad.\n", pdrcode);
4149  return 0;
4150  }
4151  break;
4152  }
4153  return 0; /* avoid compiler warnings */
4154 }