Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hugetlb.c
Go to the documentation of this file.
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28 
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34 
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
42 
43 __initdata LIST_HEAD(huge_boot_pages);
44 
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49 
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54 
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57  bool free = (spool->count == 0) && (spool->used_hpages == 0);
58 
59  spin_unlock(&spool->lock);
60 
61  /* If no pages are used, and no other handles to the subpool
62  * remain, free the subpool the subpool remain */
63  if (free)
64  kfree(spool);
65 }
66 
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69  struct hugepage_subpool *spool;
70 
71  spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72  if (!spool)
73  return NULL;
74 
75  spin_lock_init(&spool->lock);
76  spool->count = 1;
77  spool->max_hpages = nr_blocks;
78  spool->used_hpages = 0;
79 
80  return spool;
81 }
82 
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85  spin_lock(&spool->lock);
86  BUG_ON(!spool->count);
87  spool->count--;
88  unlock_or_release_subpool(spool);
89 }
90 
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92  long delta)
93 {
94  int ret = 0;
95 
96  if (!spool)
97  return 0;
98 
99  spin_lock(&spool->lock);
100  if ((spool->used_hpages + delta) <= spool->max_hpages) {
101  spool->used_hpages += delta;
102  } else {
103  ret = -ENOMEM;
104  }
105  spin_unlock(&spool->lock);
106 
107  return ret;
108 }
109 
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111  long delta)
112 {
113  if (!spool)
114  return;
115 
116  spin_lock(&spool->lock);
117  spool->used_hpages -= delta;
118  /* If hugetlbfs_put_super couldn't free spool due to
119  * an outstanding quota reference, free it now. */
120  unlock_or_release_subpool(spool);
121 }
122 
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125  return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127 
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130  return subpool_inode(vma->vm_file->f_dentry->d_inode);
131 }
132 
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  * across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantion_mutex. To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation mutex:
141  *
142  * down_write(&mm->mmap_sem);
143  * or
144  * down_read(&mm->mmap_sem);
145  * mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148  struct list_head link;
149  long from;
150  long to;
151 };
152 
153 static long region_add(struct list_head *head, long f, long t)
154 {
155  struct file_region *rg, *nrg, *trg;
156 
157  /* Locate the region we are either in or before. */
158  list_for_each_entry(rg, head, link)
159  if (f <= rg->to)
160  break;
161 
162  /* Round our left edge to the current segment if it encloses us. */
163  if (f > rg->from)
164  f = rg->from;
165 
166  /* Check for and consume any regions we now overlap with. */
167  nrg = rg;
168  list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169  if (&rg->link == head)
170  break;
171  if (rg->from > t)
172  break;
173 
174  /* If this area reaches higher then extend our area to
175  * include it completely. If this is not the first area
176  * which we intend to reuse, free it. */
177  if (rg->to > t)
178  t = rg->to;
179  if (rg != nrg) {
180  list_del(&rg->link);
181  kfree(rg);
182  }
183  }
184  nrg->from = f;
185  nrg->to = t;
186  return 0;
187 }
188 
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191  struct file_region *rg, *nrg;
192  long chg = 0;
193 
194  /* Locate the region we are before or in. */
195  list_for_each_entry(rg, head, link)
196  if (f <= rg->to)
197  break;
198 
199  /* If we are below the current region then a new region is required.
200  * Subtle, allocate a new region at the position but make it zero
201  * size such that we can guarantee to record the reservation. */
202  if (&rg->link == head || t < rg->from) {
203  nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204  if (!nrg)
205  return -ENOMEM;
206  nrg->from = f;
207  nrg->to = f;
208  INIT_LIST_HEAD(&nrg->link);
209  list_add(&nrg->link, rg->link.prev);
210 
211  return t - f;
212  }
213 
214  /* Round our left edge to the current segment if it encloses us. */
215  if (f > rg->from)
216  f = rg->from;
217  chg = t - f;
218 
219  /* Check for and consume any regions we now overlap with. */
220  list_for_each_entry(rg, rg->link.prev, link) {
221  if (&rg->link == head)
222  break;
223  if (rg->from > t)
224  return chg;
225 
226  /* We overlap with this area, if it extends further than
227  * us then we must extend ourselves. Account for its
228  * existing reservation. */
229  if (rg->to > t) {
230  chg += rg->to - t;
231  t = rg->to;
232  }
233  chg -= rg->to - rg->from;
234  }
235  return chg;
236 }
237 
238 static long region_truncate(struct list_head *head, long end)
239 {
240  struct file_region *rg, *trg;
241  long chg = 0;
242 
243  /* Locate the region we are either in or before. */
244  list_for_each_entry(rg, head, link)
245  if (end <= rg->to)
246  break;
247  if (&rg->link == head)
248  return 0;
249 
250  /* If we are in the middle of a region then adjust it. */
251  if (end > rg->from) {
252  chg = rg->to - end;
253  rg->to = end;
254  rg = list_entry(rg->link.next, typeof(*rg), link);
255  }
256 
257  /* Drop any remaining regions. */
258  list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259  if (&rg->link == head)
260  break;
261  chg += rg->to - rg->from;
262  list_del(&rg->link);
263  kfree(rg);
264  }
265  return chg;
266 }
267 
268 static long region_count(struct list_head *head, long f, long t)
269 {
270  struct file_region *rg;
271  long chg = 0;
272 
273  /* Locate each segment we overlap with, and count that overlap. */
274  list_for_each_entry(rg, head, link) {
275  long seg_from;
276  long seg_to;
277 
278  if (rg->to <= f)
279  continue;
280  if (rg->from >= t)
281  break;
282 
283  seg_from = max(rg->from, f);
284  seg_to = min(rg->to, t);
285 
286  chg += seg_to - seg_from;
287  }
288 
289  return chg;
290 }
291 
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297  struct vm_area_struct *vma, unsigned long address)
298 {
299  return ((address - vma->vm_start) >> huge_page_shift(h)) +
300  (vma->vm_pgoff >> huge_page_order(h));
301 }
302 
304  unsigned long address)
305 {
306  return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308 
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315  struct hstate *hstate;
316 
317  if (!is_vm_hugetlb_page(vma))
318  return PAGE_SIZE;
319 
320  hstate = hstate_vma(vma);
321 
322  return 1UL << (hstate->order + PAGE_SHIFT);
323 }
325 
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335  return vma_kernel_pagesize(vma);
336 }
337 #endif
338 
339 /*
340  * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347 
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping. A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated. A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369  return (unsigned long)vma->vm_private_data;
370 }
371 
372 static void set_vma_private_data(struct vm_area_struct *vma,
373  unsigned long value)
374 {
375  vma->vm_private_data = (void *)value;
376 }
377 
378 struct resv_map {
379  struct kref refs;
381 };
382 
383 static struct resv_map *resv_map_alloc(void)
384 {
385  struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386  if (!resv_map)
387  return NULL;
388 
389  kref_init(&resv_map->refs);
390  INIT_LIST_HEAD(&resv_map->regions);
391 
392  return resv_map;
393 }
394 
395 static void resv_map_release(struct kref *ref)
396 {
397  struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398 
399  /* Clear out any active regions before we release the map. */
400  region_truncate(&resv_map->regions, 0);
401  kfree(resv_map);
402 }
403 
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406  VM_BUG_ON(!is_vm_hugetlb_page(vma));
407  if (!(vma->vm_flags & VM_MAYSHARE))
408  return (struct resv_map *)(get_vma_private_data(vma) &
409  ~HPAGE_RESV_MASK);
410  return NULL;
411 }
412 
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415  VM_BUG_ON(!is_vm_hugetlb_page(vma));
416  VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417 
418  set_vma_private_data(vma, (get_vma_private_data(vma) &
419  HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421 
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424  VM_BUG_ON(!is_vm_hugetlb_page(vma));
425  VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426 
427  set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429 
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432  VM_BUG_ON(!is_vm_hugetlb_page(vma));
433 
434  return (get_vma_private_data(vma) & flag) != 0;
435 }
436 
437 /* Decrement the reserved pages in the hugepage pool by one */
438 static void decrement_hugepage_resv_vma(struct hstate *h,
439  struct vm_area_struct *vma)
440 {
441  if (vma->vm_flags & VM_NORESERVE)
442  return;
443 
444  if (vma->vm_flags & VM_MAYSHARE) {
445  /* Shared mappings always use reserves */
446  h->resv_huge_pages--;
447  } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448  /*
449  * Only the process that called mmap() has reserves for
450  * private mappings.
451  */
452  h->resv_huge_pages--;
453  }
454 }
455 
456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 {
459  VM_BUG_ON(!is_vm_hugetlb_page(vma));
460  if (!(vma->vm_flags & VM_MAYSHARE))
461  vma->vm_private_data = (void *)0;
462 }
463 
464 /* Returns true if the VMA has associated reserve pages */
465 static int vma_has_reserves(struct vm_area_struct *vma)
466 {
467  if (vma->vm_flags & VM_MAYSHARE)
468  return 1;
469  if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470  return 1;
471  return 0;
472 }
473 
474 static void copy_gigantic_page(struct page *dst, struct page *src)
475 {
476  int i;
477  struct hstate *h = page_hstate(src);
478  struct page *dst_base = dst;
479  struct page *src_base = src;
480 
481  for (i = 0; i < pages_per_huge_page(h); ) {
482  cond_resched();
483  copy_highpage(dst, src);
484 
485  i++;
486  dst = mem_map_next(dst, dst_base, i);
487  src = mem_map_next(src, src_base, i);
488  }
489 }
490 
491 void copy_huge_page(struct page *dst, struct page *src)
492 {
493  int i;
494  struct hstate *h = page_hstate(src);
495 
496  if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497  copy_gigantic_page(dst, src);
498  return;
499  }
500 
501  might_sleep();
502  for (i = 0; i < pages_per_huge_page(h); i++) {
503  cond_resched();
504  copy_highpage(dst + i, src + i);
505  }
506 }
507 
508 static void enqueue_huge_page(struct hstate *h, struct page *page)
509 {
510  int nid = page_to_nid(page);
511  list_move(&page->lru, &h->hugepage_freelists[nid]);
512  h->free_huge_pages++;
513  h->free_huge_pages_node[nid]++;
514 }
515 
516 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517 {
518  struct page *page;
519 
520  if (list_empty(&h->hugepage_freelists[nid]))
521  return NULL;
522  page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523  list_move(&page->lru, &h->hugepage_activelist);
524  set_page_refcounted(page);
525  h->free_huge_pages--;
526  h->free_huge_pages_node[nid]--;
527  return page;
528 }
529 
530 static struct page *dequeue_huge_page_vma(struct hstate *h,
531  struct vm_area_struct *vma,
532  unsigned long address, int avoid_reserve)
533 {
534  struct page *page = NULL;
535  struct mempolicy *mpol;
536  nodemask_t *nodemask;
537  struct zonelist *zonelist;
538  struct zone *zone;
539  struct zoneref *z;
540  unsigned int cpuset_mems_cookie;
541 
542 retry_cpuset:
543  cpuset_mems_cookie = get_mems_allowed();
544  zonelist = huge_zonelist(vma, address,
545  htlb_alloc_mask, &mpol, &nodemask);
546  /*
547  * A child process with MAP_PRIVATE mappings created by their parent
548  * have no page reserves. This check ensures that reservations are
549  * not "stolen". The child may still get SIGKILLed
550  */
551  if (!vma_has_reserves(vma) &&
552  h->free_huge_pages - h->resv_huge_pages == 0)
553  goto err;
554 
555  /* If reserves cannot be used, ensure enough pages are in the pool */
556  if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557  goto err;
558 
559  for_each_zone_zonelist_nodemask(zone, z, zonelist,
560  MAX_NR_ZONES - 1, nodemask) {
561  if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562  page = dequeue_huge_page_node(h, zone_to_nid(zone));
563  if (page) {
564  if (!avoid_reserve)
565  decrement_hugepage_resv_vma(h, vma);
566  break;
567  }
568  }
569  }
570 
571  mpol_cond_put(mpol);
572  if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573  goto retry_cpuset;
574  return page;
575 
576 err:
577  mpol_cond_put(mpol);
578  return NULL;
579 }
580 
581 static void update_and_free_page(struct hstate *h, struct page *page)
582 {
583  int i;
584 
585  VM_BUG_ON(h->order >= MAX_ORDER);
586 
587  h->nr_huge_pages--;
588  h->nr_huge_pages_node[page_to_nid(page)]--;
589  for (i = 0; i < pages_per_huge_page(h); i++) {
590  page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591  1 << PG_referenced | 1 << PG_dirty |
592  1 << PG_active | 1 << PG_reserved |
593  1 << PG_private | 1 << PG_writeback);
594  }
595  VM_BUG_ON(hugetlb_cgroup_from_page(page));
596  set_compound_page_dtor(page, NULL);
597  set_page_refcounted(page);
598  arch_release_hugepage(page);
599  __free_pages(page, huge_page_order(h));
600 }
601 
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604  struct hstate *h;
605 
606  for_each_hstate(h) {
607  if (huge_page_size(h) == size)
608  return h;
609  }
610  return NULL;
611 }
612 
613 static void free_huge_page(struct page *page)
614 {
615  /*
616  * Can't pass hstate in here because it is called from the
617  * compound page destructor.
618  */
619  struct hstate *h = page_hstate(page);
620  int nid = page_to_nid(page);
621  struct hugepage_subpool *spool =
622  (struct hugepage_subpool *)page_private(page);
623 
624  set_page_private(page, 0);
625  page->mapping = NULL;
626  BUG_ON(page_count(page));
627  BUG_ON(page_mapcount(page));
628 
629  spin_lock(&hugetlb_lock);
631  pages_per_huge_page(h), page);
632  if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633  /* remove the page from active list */
634  list_del(&page->lru);
635  update_and_free_page(h, page);
636  h->surplus_huge_pages--;
637  h->surplus_huge_pages_node[nid]--;
638  } else {
640  enqueue_huge_page(h, page);
641  }
642  spin_unlock(&hugetlb_lock);
643  hugepage_subpool_put_pages(spool, 1);
644 }
645 
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648  INIT_LIST_HEAD(&page->lru);
649  set_compound_page_dtor(page, free_huge_page);
650  spin_lock(&hugetlb_lock);
651  set_hugetlb_cgroup(page, NULL);
652  h->nr_huge_pages++;
653  h->nr_huge_pages_node[nid]++;
654  spin_unlock(&hugetlb_lock);
655  put_page(page); /* free it into the hugepage allocator */
656 }
657 
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660  int i;
661  int nr_pages = 1 << order;
662  struct page *p = page + 1;
663 
664  /* we rely on prep_new_huge_page to set the destructor */
665  set_compound_order(page, order);
666  __SetPageHead(page);
667  for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668  __SetPageTail(p);
669  set_page_count(p, 0);
670  p->first_page = page;
671  }
672 }
673 
674 /*
675  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676  * transparent huge pages. See the PageTransHuge() documentation for more
677  * details.
678  */
679 int PageHuge(struct page *page)
680 {
681  compound_page_dtor *dtor;
682 
683  if (!PageCompound(page))
684  return 0;
685 
686  page = compound_head(page);
687  dtor = get_compound_page_dtor(page);
688 
689  return dtor == free_huge_page;
690 }
692 
693 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
694 {
695  struct page *page;
696 
697  if (h->order >= MAX_ORDER)
698  return NULL;
699 
700  page = alloc_pages_exact_node(nid,
701  htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
703  huge_page_order(h));
704  if (page) {
705  if (arch_prepare_hugepage(page)) {
706  __free_pages(page, huge_page_order(h));
707  return NULL;
708  }
709  prep_new_huge_page(h, page, nid);
710  }
711 
712  return page;
713 }
714 
715 /*
716  * common helper functions for hstate_next_node_to_{alloc|free}.
717  * We may have allocated or freed a huge page based on a different
718  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
719  * be outside of *nodes_allowed. Ensure that we use an allowed
720  * node for alloc or free.
721  */
722 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
723 {
724  nid = next_node(nid, *nodes_allowed);
725  if (nid == MAX_NUMNODES)
726  nid = first_node(*nodes_allowed);
727  VM_BUG_ON(nid >= MAX_NUMNODES);
728 
729  return nid;
730 }
731 
732 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
733 {
734  if (!node_isset(nid, *nodes_allowed))
735  nid = next_node_allowed(nid, nodes_allowed);
736  return nid;
737 }
738 
739 /*
740  * returns the previously saved node ["this node"] from which to
741  * allocate a persistent huge page for the pool and advance the
742  * next node from which to allocate, handling wrap at end of node
743  * mask.
744  */
745 static int hstate_next_node_to_alloc(struct hstate *h,
746  nodemask_t *nodes_allowed)
747 {
748  int nid;
749 
750  VM_BUG_ON(!nodes_allowed);
751 
752  nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
753  h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
754 
755  return nid;
756 }
757 
758 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
759 {
760  struct page *page;
761  int start_nid;
762  int next_nid;
763  int ret = 0;
764 
765  start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
766  next_nid = start_nid;
767 
768  do {
769  page = alloc_fresh_huge_page_node(h, next_nid);
770  if (page) {
771  ret = 1;
772  break;
773  }
774  next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
775  } while (next_nid != start_nid);
776 
777  if (ret)
778  count_vm_event(HTLB_BUDDY_PGALLOC);
779  else
780  count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
781 
782  return ret;
783 }
784 
785 /*
786  * helper for free_pool_huge_page() - return the previously saved
787  * node ["this node"] from which to free a huge page. Advance the
788  * next node id whether or not we find a free huge page to free so
789  * that the next attempt to free addresses the next node.
790  */
791 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
792 {
793  int nid;
794 
795  VM_BUG_ON(!nodes_allowed);
796 
797  nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
798  h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
799 
800  return nid;
801 }
802 
803 /*
804  * Free huge page from pool from next node to free.
805  * Attempt to keep persistent huge pages more or less
806  * balanced over allowed nodes.
807  * Called with hugetlb_lock locked.
808  */
809 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
810  bool acct_surplus)
811 {
812  int start_nid;
813  int next_nid;
814  int ret = 0;
815 
816  start_nid = hstate_next_node_to_free(h, nodes_allowed);
817  next_nid = start_nid;
818 
819  do {
820  /*
821  * If we're returning unused surplus pages, only examine
822  * nodes with surplus pages.
823  */
824  if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
825  !list_empty(&h->hugepage_freelists[next_nid])) {
826  struct page *page =
827  list_entry(h->hugepage_freelists[next_nid].next,
828  struct page, lru);
829  list_del(&page->lru);
830  h->free_huge_pages--;
831  h->free_huge_pages_node[next_nid]--;
832  if (acct_surplus) {
833  h->surplus_huge_pages--;
834  h->surplus_huge_pages_node[next_nid]--;
835  }
836  update_and_free_page(h, page);
837  ret = 1;
838  break;
839  }
840  next_nid = hstate_next_node_to_free(h, nodes_allowed);
841  } while (next_nid != start_nid);
842 
843  return ret;
844 }
845 
846 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
847 {
848  struct page *page;
849  unsigned int r_nid;
850 
851  if (h->order >= MAX_ORDER)
852  return NULL;
853 
854  /*
855  * Assume we will successfully allocate the surplus page to
856  * prevent racing processes from causing the surplus to exceed
857  * overcommit
858  *
859  * This however introduces a different race, where a process B
860  * tries to grow the static hugepage pool while alloc_pages() is
861  * called by process A. B will only examine the per-node
862  * counters in determining if surplus huge pages can be
863  * converted to normal huge pages in adjust_pool_surplus(). A
864  * won't be able to increment the per-node counter, until the
865  * lock is dropped by B, but B doesn't drop hugetlb_lock until
866  * no more huge pages can be converted from surplus to normal
867  * state (and doesn't try to convert again). Thus, we have a
868  * case where a surplus huge page exists, the pool is grown, and
869  * the surplus huge page still exists after, even though it
870  * should just have been converted to a normal huge page. This
871  * does not leak memory, though, as the hugepage will be freed
872  * once it is out of use. It also does not allow the counters to
873  * go out of whack in adjust_pool_surplus() as we don't modify
874  * the node values until we've gotten the hugepage and only the
875  * per-node value is checked there.
876  */
877  spin_lock(&hugetlb_lock);
878  if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
879  spin_unlock(&hugetlb_lock);
880  return NULL;
881  } else {
882  h->nr_huge_pages++;
883  h->surplus_huge_pages++;
884  }
885  spin_unlock(&hugetlb_lock);
886 
887  if (nid == NUMA_NO_NODE)
888  page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
890  huge_page_order(h));
891  else
892  page = alloc_pages_exact_node(nid,
893  htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
895 
896  if (page && arch_prepare_hugepage(page)) {
897  __free_pages(page, huge_page_order(h));
898  page = NULL;
899  }
900 
901  spin_lock(&hugetlb_lock);
902  if (page) {
903  INIT_LIST_HEAD(&page->lru);
904  r_nid = page_to_nid(page);
905  set_compound_page_dtor(page, free_huge_page);
906  set_hugetlb_cgroup(page, NULL);
907  /*
908  * We incremented the global counters already
909  */
910  h->nr_huge_pages_node[r_nid]++;
911  h->surplus_huge_pages_node[r_nid]++;
912  __count_vm_event(HTLB_BUDDY_PGALLOC);
913  } else {
914  h->nr_huge_pages--;
915  h->surplus_huge_pages--;
916  __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
917  }
918  spin_unlock(&hugetlb_lock);
919 
920  return page;
921 }
922 
923 /*
924  * This allocation function is useful in the context where vma is irrelevant.
925  * E.g. soft-offlining uses this function because it only cares physical
926  * address of error page.
927  */
928 struct page *alloc_huge_page_node(struct hstate *h, int nid)
929 {
930  struct page *page;
931 
932  spin_lock(&hugetlb_lock);
933  page = dequeue_huge_page_node(h, nid);
934  spin_unlock(&hugetlb_lock);
935 
936  if (!page)
937  page = alloc_buddy_huge_page(h, nid);
938 
939  return page;
940 }
941 
942 /*
943  * Increase the hugetlb pool such that it can accommodate a reservation
944  * of size 'delta'.
945  */
946 static int gather_surplus_pages(struct hstate *h, int delta)
947 {
948  struct list_head surplus_list;
949  struct page *page, *tmp;
950  int ret, i;
951  int needed, allocated;
952  bool alloc_ok = true;
953 
954  needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
955  if (needed <= 0) {
956  h->resv_huge_pages += delta;
957  return 0;
958  }
959 
960  allocated = 0;
961  INIT_LIST_HEAD(&surplus_list);
962 
963  ret = -ENOMEM;
964 retry:
965  spin_unlock(&hugetlb_lock);
966  for (i = 0; i < needed; i++) {
967  page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
968  if (!page) {
969  alloc_ok = false;
970  break;
971  }
972  list_add(&page->lru, &surplus_list);
973  }
974  allocated += i;
975 
976  /*
977  * After retaking hugetlb_lock, we need to recalculate 'needed'
978  * because either resv_huge_pages or free_huge_pages may have changed.
979  */
980  spin_lock(&hugetlb_lock);
981  needed = (h->resv_huge_pages + delta) -
982  (h->free_huge_pages + allocated);
983  if (needed > 0) {
984  if (alloc_ok)
985  goto retry;
986  /*
987  * We were not able to allocate enough pages to
988  * satisfy the entire reservation so we free what
989  * we've allocated so far.
990  */
991  goto free;
992  }
993  /*
994  * The surplus_list now contains _at_least_ the number of extra pages
995  * needed to accommodate the reservation. Add the appropriate number
996  * of pages to the hugetlb pool and free the extras back to the buddy
997  * allocator. Commit the entire reservation here to prevent another
998  * process from stealing the pages as they are added to the pool but
999  * before they are reserved.
1000  */
1001  needed += allocated;
1002  h->resv_huge_pages += delta;
1003  ret = 0;
1004 
1005  /* Free the needed pages to the hugetlb pool */
1006  list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1007  if ((--needed) < 0)
1008  break;
1009  /*
1010  * This page is now managed by the hugetlb allocator and has
1011  * no users -- drop the buddy allocator's reference.
1012  */
1013  put_page_testzero(page);
1014  VM_BUG_ON(page_count(page));
1015  enqueue_huge_page(h, page);
1016  }
1017 free:
1018  spin_unlock(&hugetlb_lock);
1019 
1020  /* Free unnecessary surplus pages to the buddy allocator */
1021  if (!list_empty(&surplus_list)) {
1022  list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1023  put_page(page);
1024  }
1025  }
1026  spin_lock(&hugetlb_lock);
1027 
1028  return ret;
1029 }
1030 
1031 /*
1032  * When releasing a hugetlb pool reservation, any surplus pages that were
1033  * allocated to satisfy the reservation must be explicitly freed if they were
1034  * never used.
1035  * Called with hugetlb_lock held.
1036  */
1037 static void return_unused_surplus_pages(struct hstate *h,
1038  unsigned long unused_resv_pages)
1039 {
1040  unsigned long nr_pages;
1041 
1042  /* Uncommit the reservation */
1043  h->resv_huge_pages -= unused_resv_pages;
1044 
1045  /* Cannot return gigantic pages currently */
1046  if (h->order >= MAX_ORDER)
1047  return;
1048 
1049  nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1050 
1051  /*
1052  * We want to release as many surplus pages as possible, spread
1053  * evenly across all nodes with memory. Iterate across these nodes
1054  * until we can no longer free unreserved surplus pages. This occurs
1055  * when the nodes with surplus pages have no free pages.
1056  * free_pool_huge_page() will balance the the freed pages across the
1057  * on-line nodes with memory and will handle the hstate accounting.
1058  */
1059  while (nr_pages--) {
1060  if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1061  break;
1062  }
1063 }
1064 
1065 /*
1066  * Determine if the huge page at addr within the vma has an associated
1067  * reservation. Where it does not we will need to logically increase
1068  * reservation and actually increase subpool usage before an allocation
1069  * can occur. Where any new reservation would be required the
1070  * reservation change is prepared, but not committed. Once the page
1071  * has been allocated from the subpool and instantiated the change should
1072  * be committed via vma_commit_reservation. No action is required on
1073  * failure.
1074  */
1075 static long vma_needs_reservation(struct hstate *h,
1076  struct vm_area_struct *vma, unsigned long addr)
1077 {
1078  struct address_space *mapping = vma->vm_file->f_mapping;
1079  struct inode *inode = mapping->host;
1080 
1081  if (vma->vm_flags & VM_MAYSHARE) {
1082  pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1083  return region_chg(&inode->i_mapping->private_list,
1084  idx, idx + 1);
1085 
1086  } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1087  return 1;
1088 
1089  } else {
1090  long err;
1091  pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1092  struct resv_map *reservations = vma_resv_map(vma);
1093 
1094  err = region_chg(&reservations->regions, idx, idx + 1);
1095  if (err < 0)
1096  return err;
1097  return 0;
1098  }
1099 }
1100 static void vma_commit_reservation(struct hstate *h,
1101  struct vm_area_struct *vma, unsigned long addr)
1102 {
1103  struct address_space *mapping = vma->vm_file->f_mapping;
1104  struct inode *inode = mapping->host;
1105 
1106  if (vma->vm_flags & VM_MAYSHARE) {
1107  pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108  region_add(&inode->i_mapping->private_list, idx, idx + 1);
1109 
1110  } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1111  pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1112  struct resv_map *reservations = vma_resv_map(vma);
1113 
1114  /* Mark this page used in the map. */
1115  region_add(&reservations->regions, idx, idx + 1);
1116  }
1117 }
1118 
1119 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1120  unsigned long addr, int avoid_reserve)
1121 {
1122  struct hugepage_subpool *spool = subpool_vma(vma);
1123  struct hstate *h = hstate_vma(vma);
1124  struct page *page;
1125  long chg;
1126  int ret, idx;
1127  struct hugetlb_cgroup *h_cg;
1128 
1129  idx = hstate_index(h);
1130  /*
1131  * Processes that did not create the mapping will have no
1132  * reserves and will not have accounted against subpool
1133  * limit. Check that the subpool limit can be made before
1134  * satisfying the allocation MAP_NORESERVE mappings may also
1135  * need pages and subpool limit allocated allocated if no reserve
1136  * mapping overlaps.
1137  */
1138  chg = vma_needs_reservation(h, vma, addr);
1139  if (chg < 0)
1140  return ERR_PTR(-ENOMEM);
1141  if (chg)
1142  if (hugepage_subpool_get_pages(spool, chg))
1143  return ERR_PTR(-ENOSPC);
1144 
1145  ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1146  if (ret) {
1147  hugepage_subpool_put_pages(spool, chg);
1148  return ERR_PTR(-ENOSPC);
1149  }
1150  spin_lock(&hugetlb_lock);
1151  page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1152  if (page) {
1153  /* update page cgroup details */
1154  hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1155  h_cg, page);
1156  spin_unlock(&hugetlb_lock);
1157  } else {
1158  spin_unlock(&hugetlb_lock);
1159  page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1160  if (!page) {
1162  pages_per_huge_page(h),
1163  h_cg);
1164  hugepage_subpool_put_pages(spool, chg);
1165  return ERR_PTR(-ENOSPC);
1166  }
1167  spin_lock(&hugetlb_lock);
1168  hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1169  h_cg, page);
1170  list_move(&page->lru, &h->hugepage_activelist);
1171  spin_unlock(&hugetlb_lock);
1172  }
1173 
1174  set_page_private(page, (unsigned long)spool);
1175 
1176  vma_commit_reservation(h, vma, addr);
1177  return page;
1178 }
1179 
1181 {
1182  struct huge_bootmem_page *m;
1183  int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1184 
1185  while (nr_nodes) {
1186  void *addr;
1187 
1189  NODE_DATA(hstate_next_node_to_alloc(h,
1190  &node_states[N_HIGH_MEMORY])),
1191  huge_page_size(h), huge_page_size(h), 0);
1192 
1193  if (addr) {
1194  /*
1195  * Use the beginning of the huge page to store the
1196  * huge_bootmem_page struct (until gather_bootmem
1197  * puts them into the mem_map).
1198  */
1199  m = addr;
1200  goto found;
1201  }
1202  nr_nodes--;
1203  }
1204  return 0;
1205 
1206 found:
1207  BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1208  /* Put them into a private list first because mem_map is not up yet */
1209  list_add(&m->list, &huge_boot_pages);
1210  m->hstate = h;
1211  return 1;
1212 }
1213 
1214 static void prep_compound_huge_page(struct page *page, int order)
1215 {
1216  if (unlikely(order > (MAX_ORDER - 1)))
1217  prep_compound_gigantic_page(page, order);
1218  else
1219  prep_compound_page(page, order);
1220 }
1221 
1222 /* Put bootmem huge pages into the standard lists after mem_map is up */
1223 static void __init gather_bootmem_prealloc(void)
1224 {
1225  struct huge_bootmem_page *m;
1226 
1227  list_for_each_entry(m, &huge_boot_pages, list) {
1228  struct hstate *h = m->hstate;
1229  struct page *page;
1230 
1231 #ifdef CONFIG_HIGHMEM
1232  page = pfn_to_page(m->phys >> PAGE_SHIFT);
1233  free_bootmem_late((unsigned long)m,
1234  sizeof(struct huge_bootmem_page));
1235 #else
1236  page = virt_to_page(m);
1237 #endif
1238  __ClearPageReserved(page);
1239  WARN_ON(page_count(page) != 1);
1240  prep_compound_huge_page(page, h->order);
1241  prep_new_huge_page(h, page, page_to_nid(page));
1242  /*
1243  * If we had gigantic hugepages allocated at boot time, we need
1244  * to restore the 'stolen' pages to totalram_pages in order to
1245  * fix confusing memory reports from free(1) and another
1246  * side-effects, like CommitLimit going negative.
1247  */
1248  if (h->order > (MAX_ORDER - 1))
1249  totalram_pages += 1 << h->order;
1250  }
1251 }
1252 
1253 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1254 {
1255  unsigned long i;
1256 
1257  for (i = 0; i < h->max_huge_pages; ++i) {
1258  if (h->order >= MAX_ORDER) {
1259  if (!alloc_bootmem_huge_page(h))
1260  break;
1261  } else if (!alloc_fresh_huge_page(h,
1263  break;
1264  }
1265  h->max_huge_pages = i;
1266 }
1267 
1268 static void __init hugetlb_init_hstates(void)
1269 {
1270  struct hstate *h;
1271 
1272  for_each_hstate(h) {
1273  /* oversize hugepages were init'ed in early boot */
1274  if (h->order < MAX_ORDER)
1275  hugetlb_hstate_alloc_pages(h);
1276  }
1277 }
1278 
1279 static char * __init memfmt(char *buf, unsigned long n)
1280 {
1281  if (n >= (1UL << 30))
1282  sprintf(buf, "%lu GB", n >> 30);
1283  else if (n >= (1UL << 20))
1284  sprintf(buf, "%lu MB", n >> 20);
1285  else
1286  sprintf(buf, "%lu KB", n >> 10);
1287  return buf;
1288 }
1289 
1290 static void __init report_hugepages(void)
1291 {
1292  struct hstate *h;
1293 
1294  for_each_hstate(h) {
1295  char buf[32];
1296  printk(KERN_INFO "HugeTLB registered %s page size, "
1297  "pre-allocated %ld pages\n",
1298  memfmt(buf, huge_page_size(h)),
1299  h->free_huge_pages);
1300  }
1301 }
1302 
1303 #ifdef CONFIG_HIGHMEM
1304 static void try_to_free_low(struct hstate *h, unsigned long count,
1305  nodemask_t *nodes_allowed)
1306 {
1307  int i;
1308 
1309  if (h->order >= MAX_ORDER)
1310  return;
1311 
1312  for_each_node_mask(i, *nodes_allowed) {
1313  struct page *page, *next;
1314  struct list_head *freel = &h->hugepage_freelists[i];
1315  list_for_each_entry_safe(page, next, freel, lru) {
1316  if (count >= h->nr_huge_pages)
1317  return;
1318  if (PageHighMem(page))
1319  continue;
1320  list_del(&page->lru);
1321  update_and_free_page(h, page);
1322  h->free_huge_pages--;
1323  h->free_huge_pages_node[page_to_nid(page)]--;
1324  }
1325  }
1326 }
1327 #else
1328 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1329  nodemask_t *nodes_allowed)
1330 {
1331 }
1332 #endif
1333 
1334 /*
1335  * Increment or decrement surplus_huge_pages. Keep node-specific counters
1336  * balanced by operating on them in a round-robin fashion.
1337  * Returns 1 if an adjustment was made.
1338  */
1339 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1340  int delta)
1341 {
1342  int start_nid, next_nid;
1343  int ret = 0;
1344 
1345  VM_BUG_ON(delta != -1 && delta != 1);
1346 
1347  if (delta < 0)
1348  start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1349  else
1350  start_nid = hstate_next_node_to_free(h, nodes_allowed);
1351  next_nid = start_nid;
1352 
1353  do {
1354  int nid = next_nid;
1355  if (delta < 0) {
1356  /*
1357  * To shrink on this node, there must be a surplus page
1358  */
1359  if (!h->surplus_huge_pages_node[nid]) {
1360  next_nid = hstate_next_node_to_alloc(h,
1361  nodes_allowed);
1362  continue;
1363  }
1364  }
1365  if (delta > 0) {
1366  /*
1367  * Surplus cannot exceed the total number of pages
1368  */
1369  if (h->surplus_huge_pages_node[nid] >=
1370  h->nr_huge_pages_node[nid]) {
1371  next_nid = hstate_next_node_to_free(h,
1372  nodes_allowed);
1373  continue;
1374  }
1375  }
1376 
1377  h->surplus_huge_pages += delta;
1378  h->surplus_huge_pages_node[nid] += delta;
1379  ret = 1;
1380  break;
1381  } while (next_nid != start_nid);
1382 
1383  return ret;
1384 }
1385 
1386 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1387 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1388  nodemask_t *nodes_allowed)
1389 {
1390  unsigned long min_count, ret;
1391 
1392  if (h->order >= MAX_ORDER)
1393  return h->max_huge_pages;
1394 
1395  /*
1396  * Increase the pool size
1397  * First take pages out of surplus state. Then make up the
1398  * remaining difference by allocating fresh huge pages.
1399  *
1400  * We might race with alloc_buddy_huge_page() here and be unable
1401  * to convert a surplus huge page to a normal huge page. That is
1402  * not critical, though, it just means the overall size of the
1403  * pool might be one hugepage larger than it needs to be, but
1404  * within all the constraints specified by the sysctls.
1405  */
1406  spin_lock(&hugetlb_lock);
1407  while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1408  if (!adjust_pool_surplus(h, nodes_allowed, -1))
1409  break;
1410  }
1411 
1412  while (count > persistent_huge_pages(h)) {
1413  /*
1414  * If this allocation races such that we no longer need the
1415  * page, free_huge_page will handle it by freeing the page
1416  * and reducing the surplus.
1417  */
1418  spin_unlock(&hugetlb_lock);
1419  ret = alloc_fresh_huge_page(h, nodes_allowed);
1420  spin_lock(&hugetlb_lock);
1421  if (!ret)
1422  goto out;
1423 
1424  /* Bail for signals. Probably ctrl-c from user */
1425  if (signal_pending(current))
1426  goto out;
1427  }
1428 
1429  /*
1430  * Decrease the pool size
1431  * First return free pages to the buddy allocator (being careful
1432  * to keep enough around to satisfy reservations). Then place
1433  * pages into surplus state as needed so the pool will shrink
1434  * to the desired size as pages become free.
1435  *
1436  * By placing pages into the surplus state independent of the
1437  * overcommit value, we are allowing the surplus pool size to
1438  * exceed overcommit. There are few sane options here. Since
1439  * alloc_buddy_huge_page() is checking the global counter,
1440  * though, we'll note that we're not allowed to exceed surplus
1441  * and won't grow the pool anywhere else. Not until one of the
1442  * sysctls are changed, or the surplus pages go out of use.
1443  */
1444  min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1445  min_count = max(count, min_count);
1446  try_to_free_low(h, min_count, nodes_allowed);
1447  while (min_count < persistent_huge_pages(h)) {
1448  if (!free_pool_huge_page(h, nodes_allowed, 0))
1449  break;
1450  }
1451  while (count < persistent_huge_pages(h)) {
1452  if (!adjust_pool_surplus(h, nodes_allowed, 1))
1453  break;
1454  }
1455 out:
1456  ret = persistent_huge_pages(h);
1457  spin_unlock(&hugetlb_lock);
1458  return ret;
1459 }
1460 
1461 #define HSTATE_ATTR_RO(_name) \
1462  static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1463 
1464 #define HSTATE_ATTR(_name) \
1465  static struct kobj_attribute _name##_attr = \
1466  __ATTR(_name, 0644, _name##_show, _name##_store)
1467 
1468 static struct kobject *hugepages_kobj;
1469 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1470 
1471 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1472 
1473 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1474 {
1475  int i;
1476 
1477  for (i = 0; i < HUGE_MAX_HSTATE; i++)
1478  if (hstate_kobjs[i] == kobj) {
1479  if (nidp)
1480  *nidp = NUMA_NO_NODE;
1481  return &hstates[i];
1482  }
1483 
1484  return kobj_to_node_hstate(kobj, nidp);
1485 }
1486 
1487 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1488  struct kobj_attribute *attr, char *buf)
1489 {
1490  struct hstate *h;
1491  unsigned long nr_huge_pages;
1492  int nid;
1493 
1494  h = kobj_to_hstate(kobj, &nid);
1495  if (nid == NUMA_NO_NODE)
1496  nr_huge_pages = h->nr_huge_pages;
1497  else
1498  nr_huge_pages = h->nr_huge_pages_node[nid];
1499 
1500  return sprintf(buf, "%lu\n", nr_huge_pages);
1501 }
1502 
1503 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1504  struct kobject *kobj, struct kobj_attribute *attr,
1505  const char *buf, size_t len)
1506 {
1507  int err;
1508  int nid;
1509  unsigned long count;
1510  struct hstate *h;
1512 
1513  err = strict_strtoul(buf, 10, &count);
1514  if (err)
1515  goto out;
1516 
1517  h = kobj_to_hstate(kobj, &nid);
1518  if (h->order >= MAX_ORDER) {
1519  err = -EINVAL;
1520  goto out;
1521  }
1522 
1523  if (nid == NUMA_NO_NODE) {
1524  /*
1525  * global hstate attribute
1526  */
1527  if (!(obey_mempolicy &&
1528  init_nodemask_of_mempolicy(nodes_allowed))) {
1529  NODEMASK_FREE(nodes_allowed);
1530  nodes_allowed = &node_states[N_HIGH_MEMORY];
1531  }
1532  } else if (nodes_allowed) {
1533  /*
1534  * per node hstate attribute: adjust count to global,
1535  * but restrict alloc/free to the specified node.
1536  */
1537  count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1538  init_nodemask_of_node(nodes_allowed, nid);
1539  } else
1540  nodes_allowed = &node_states[N_HIGH_MEMORY];
1541 
1542  h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1543 
1544  if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1545  NODEMASK_FREE(nodes_allowed);
1546 
1547  return len;
1548 out:
1549  NODEMASK_FREE(nodes_allowed);
1550  return err;
1551 }
1552 
1553 static ssize_t nr_hugepages_show(struct kobject *kobj,
1554  struct kobj_attribute *attr, char *buf)
1555 {
1556  return nr_hugepages_show_common(kobj, attr, buf);
1557 }
1558 
1559 static ssize_t nr_hugepages_store(struct kobject *kobj,
1560  struct kobj_attribute *attr, const char *buf, size_t len)
1561 {
1562  return nr_hugepages_store_common(false, kobj, attr, buf, len);
1563 }
1564 HSTATE_ATTR(nr_hugepages);
1565 
1566 #ifdef CONFIG_NUMA
1567 
1568 /*
1569  * hstate attribute for optionally mempolicy-based constraint on persistent
1570  * huge page alloc/free.
1571  */
1572 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1573  struct kobj_attribute *attr, char *buf)
1574 {
1575  return nr_hugepages_show_common(kobj, attr, buf);
1576 }
1577 
1578 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1579  struct kobj_attribute *attr, const char *buf, size_t len)
1580 {
1581  return nr_hugepages_store_common(true, kobj, attr, buf, len);
1582 }
1583 HSTATE_ATTR(nr_hugepages_mempolicy);
1584 #endif
1585 
1586 
1587 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1588  struct kobj_attribute *attr, char *buf)
1589 {
1590  struct hstate *h = kobj_to_hstate(kobj, NULL);
1591  return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1592 }
1593 
1594 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1595  struct kobj_attribute *attr, const char *buf, size_t count)
1596 {
1597  int err;
1598  unsigned long input;
1599  struct hstate *h = kobj_to_hstate(kobj, NULL);
1600 
1601  if (h->order >= MAX_ORDER)
1602  return -EINVAL;
1603 
1604  err = strict_strtoul(buf, 10, &input);
1605  if (err)
1606  return err;
1607 
1608  spin_lock(&hugetlb_lock);
1609  h->nr_overcommit_huge_pages = input;
1610  spin_unlock(&hugetlb_lock);
1611 
1612  return count;
1613 }
1614 HSTATE_ATTR(nr_overcommit_hugepages);
1615 
1616 static ssize_t free_hugepages_show(struct kobject *kobj,
1617  struct kobj_attribute *attr, char *buf)
1618 {
1619  struct hstate *h;
1620  unsigned long free_huge_pages;
1621  int nid;
1622 
1623  h = kobj_to_hstate(kobj, &nid);
1624  if (nid == NUMA_NO_NODE)
1625  free_huge_pages = h->free_huge_pages;
1626  else
1627  free_huge_pages = h->free_huge_pages_node[nid];
1628 
1629  return sprintf(buf, "%lu\n", free_huge_pages);
1630 }
1631 HSTATE_ATTR_RO(free_hugepages);
1632 
1633 static ssize_t resv_hugepages_show(struct kobject *kobj,
1634  struct kobj_attribute *attr, char *buf)
1635 {
1636  struct hstate *h = kobj_to_hstate(kobj, NULL);
1637  return sprintf(buf, "%lu\n", h->resv_huge_pages);
1638 }
1639 HSTATE_ATTR_RO(resv_hugepages);
1640 
1641 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1642  struct kobj_attribute *attr, char *buf)
1643 {
1644  struct hstate *h;
1645  unsigned long surplus_huge_pages;
1646  int nid;
1647 
1648  h = kobj_to_hstate(kobj, &nid);
1649  if (nid == NUMA_NO_NODE)
1650  surplus_huge_pages = h->surplus_huge_pages;
1651  else
1652  surplus_huge_pages = h->surplus_huge_pages_node[nid];
1653 
1654  return sprintf(buf, "%lu\n", surplus_huge_pages);
1655 }
1656 HSTATE_ATTR_RO(surplus_hugepages);
1657 
1658 static struct attribute *hstate_attrs[] = {
1659  &nr_hugepages_attr.attr,
1660  &nr_overcommit_hugepages_attr.attr,
1661  &free_hugepages_attr.attr,
1662  &resv_hugepages_attr.attr,
1663  &surplus_hugepages_attr.attr,
1664 #ifdef CONFIG_NUMA
1665  &nr_hugepages_mempolicy_attr.attr,
1666 #endif
1667  NULL,
1668 };
1669 
1670 static struct attribute_group hstate_attr_group = {
1671  .attrs = hstate_attrs,
1672 };
1673 
1674 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1675  struct kobject **hstate_kobjs,
1676  struct attribute_group *hstate_attr_group)
1677 {
1678  int retval;
1679  int hi = hstate_index(h);
1680 
1681  hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1682  if (!hstate_kobjs[hi])
1683  return -ENOMEM;
1684 
1685  retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1686  if (retval)
1687  kobject_put(hstate_kobjs[hi]);
1688 
1689  return retval;
1690 }
1691 
1692 static void __init hugetlb_sysfs_init(void)
1693 {
1694  struct hstate *h;
1695  int err;
1696 
1697  hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1698  if (!hugepages_kobj)
1699  return;
1700 
1701  for_each_hstate(h) {
1702  err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1703  hstate_kobjs, &hstate_attr_group);
1704  if (err)
1705  printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1706  h->name);
1707  }
1708 }
1709 
1710 #ifdef CONFIG_NUMA
1711 
1712 /*
1713  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1714  * with node devices in node_devices[] using a parallel array. The array
1715  * index of a node device or _hstate == node id.
1716  * This is here to avoid any static dependency of the node device driver, in
1717  * the base kernel, on the hugetlb module.
1718  */
1719 struct node_hstate {
1720  struct kobject *hugepages_kobj;
1721  struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1722 };
1723 struct node_hstate node_hstates[MAX_NUMNODES];
1724 
1725 /*
1726  * A subset of global hstate attributes for node devices
1727  */
1728 static struct attribute *per_node_hstate_attrs[] = {
1729  &nr_hugepages_attr.attr,
1730  &free_hugepages_attr.attr,
1731  &surplus_hugepages_attr.attr,
1732  NULL,
1733 };
1734 
1735 static struct attribute_group per_node_hstate_attr_group = {
1736  .attrs = per_node_hstate_attrs,
1737 };
1738 
1739 /*
1740  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1741  * Returns node id via non-NULL nidp.
1742  */
1743 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1744 {
1745  int nid;
1746 
1747  for (nid = 0; nid < nr_node_ids; nid++) {
1748  struct node_hstate *nhs = &node_hstates[nid];
1749  int i;
1750  for (i = 0; i < HUGE_MAX_HSTATE; i++)
1751  if (nhs->hstate_kobjs[i] == kobj) {
1752  if (nidp)
1753  *nidp = nid;
1754  return &hstates[i];
1755  }
1756  }
1757 
1758  BUG();
1759  return NULL;
1760 }
1761 
1762 /*
1763  * Unregister hstate attributes from a single node device.
1764  * No-op if no hstate attributes attached.
1765  */
1766 void hugetlb_unregister_node(struct node *node)
1767 {
1768  struct hstate *h;
1769  struct node_hstate *nhs = &node_hstates[node->dev.id];
1770 
1771  if (!nhs->hugepages_kobj)
1772  return; /* no hstate attributes */
1773 
1774  for_each_hstate(h) {
1775  int idx = hstate_index(h);
1776  if (nhs->hstate_kobjs[idx]) {
1777  kobject_put(nhs->hstate_kobjs[idx]);
1778  nhs->hstate_kobjs[idx] = NULL;
1779  }
1780  }
1781 
1782  kobject_put(nhs->hugepages_kobj);
1783  nhs->hugepages_kobj = NULL;
1784 }
1785 
1786 /*
1787  * hugetlb module exit: unregister hstate attributes from node devices
1788  * that have them.
1789  */
1790 static void hugetlb_unregister_all_nodes(void)
1791 {
1792  int nid;
1793 
1794  /*
1795  * disable node device registrations.
1796  */
1797  register_hugetlbfs_with_node(NULL, NULL);
1798 
1799  /*
1800  * remove hstate attributes from any nodes that have them.
1801  */
1802  for (nid = 0; nid < nr_node_ids; nid++)
1803  hugetlb_unregister_node(&node_devices[nid]);
1804 }
1805 
1806 /*
1807  * Register hstate attributes for a single node device.
1808  * No-op if attributes already registered.
1809  */
1810 void hugetlb_register_node(struct node *node)
1811 {
1812  struct hstate *h;
1813  struct node_hstate *nhs = &node_hstates[node->dev.id];
1814  int err;
1815 
1816  if (nhs->hugepages_kobj)
1817  return; /* already allocated */
1818 
1819  nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1820  &node->dev.kobj);
1821  if (!nhs->hugepages_kobj)
1822  return;
1823 
1824  for_each_hstate(h) {
1825  err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1826  nhs->hstate_kobjs,
1827  &per_node_hstate_attr_group);
1828  if (err) {
1829  printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1830  " for node %d\n",
1831  h->name, node->dev.id);
1832  hugetlb_unregister_node(node);
1833  break;
1834  }
1835  }
1836 }
1837 
1838 /*
1839  * hugetlb init time: register hstate attributes for all registered node
1840  * devices of nodes that have memory. All on-line nodes should have
1841  * registered their associated device by this time.
1842  */
1843 static void hugetlb_register_all_nodes(void)
1844 {
1845  int nid;
1846 
1848  struct node *node = &node_devices[nid];
1849  if (node->dev.id == nid)
1850  hugetlb_register_node(node);
1851  }
1852 
1853  /*
1854  * Let the node device driver know we're here so it can
1855  * [un]register hstate attributes on node hotplug.
1856  */
1857  register_hugetlbfs_with_node(hugetlb_register_node,
1858  hugetlb_unregister_node);
1859 }
1860 #else /* !CONFIG_NUMA */
1861 
1862 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1863 {
1864  BUG();
1865  if (nidp)
1866  *nidp = -1;
1867  return NULL;
1868 }
1869 
1870 static void hugetlb_unregister_all_nodes(void) { }
1871 
1872 static void hugetlb_register_all_nodes(void) { }
1873 
1874 #endif
1875 
1876 static void __exit hugetlb_exit(void)
1877 {
1878  struct hstate *h;
1879 
1880  hugetlb_unregister_all_nodes();
1881 
1882  for_each_hstate(h) {
1883  kobject_put(hstate_kobjs[hstate_index(h)]);
1884  }
1885 
1886  kobject_put(hugepages_kobj);
1887 }
1888 module_exit(hugetlb_exit);
1889 
1890 static int __init hugetlb_init(void)
1891 {
1892  /* Some platform decide whether they support huge pages at boot
1893  * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1894  * there is no such support
1895  */
1896  if (HPAGE_SHIFT == 0)
1897  return 0;
1898 
1899  if (!size_to_hstate(default_hstate_size)) {
1900  default_hstate_size = HPAGE_SIZE;
1901  if (!size_to_hstate(default_hstate_size))
1903  }
1904  default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1905  if (default_hstate_max_huge_pages)
1906  default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1907 
1908  hugetlb_init_hstates();
1909 
1910  gather_bootmem_prealloc();
1911 
1912  report_hugepages();
1913 
1914  hugetlb_sysfs_init();
1915 
1916  hugetlb_register_all_nodes();
1917 
1918  return 0;
1919 }
1920 module_init(hugetlb_init);
1921 
1922 /* Should be called on processing a hugepagesz=... option */
1923 void __init hugetlb_add_hstate(unsigned order)
1924 {
1925  struct hstate *h;
1926  unsigned long i;
1927 
1928  if (size_to_hstate(PAGE_SIZE << order)) {
1929  printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1930  return;
1931  }
1932  BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1933  BUG_ON(order == 0);
1934  h = &hstates[hugetlb_max_hstate++];
1935  h->order = order;
1936  h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1937  h->nr_huge_pages = 0;
1938  h->free_huge_pages = 0;
1939  for (i = 0; i < MAX_NUMNODES; ++i)
1940  INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1941  INIT_LIST_HEAD(&h->hugepage_activelist);
1942  h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1943  h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1944  snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1945  huge_page_size(h)/1024);
1946  /*
1947  * Add cgroup control files only if the huge page consists
1948  * of more than two normal pages. This is because we use
1949  * page[2].lru.next for storing cgoup details.
1950  */
1951  if (order >= HUGETLB_CGROUP_MIN_ORDER)
1952  hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1953 
1954  parsed_hstate = h;
1955 }
1956 
1957 static int __init hugetlb_nrpages_setup(char *s)
1958 {
1959  unsigned long *mhp;
1960  static unsigned long *last_mhp;
1961 
1962  /*
1963  * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1964  * so this hugepages= parameter goes to the "default hstate".
1965  */
1966  if (!hugetlb_max_hstate)
1967  mhp = &default_hstate_max_huge_pages;
1968  else
1969  mhp = &parsed_hstate->max_huge_pages;
1970 
1971  if (mhp == last_mhp) {
1972  printk(KERN_WARNING "hugepages= specified twice without "
1973  "interleaving hugepagesz=, ignoring\n");
1974  return 1;
1975  }
1976 
1977  if (sscanf(s, "%lu", mhp) <= 0)
1978  *mhp = 0;
1979 
1980  /*
1981  * Global state is always initialized later in hugetlb_init.
1982  * But we need to allocate >= MAX_ORDER hstates here early to still
1983  * use the bootmem allocator.
1984  */
1985  if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1986  hugetlb_hstate_alloc_pages(parsed_hstate);
1987 
1988  last_mhp = mhp;
1989 
1990  return 1;
1991 }
1992 __setup("hugepages=", hugetlb_nrpages_setup);
1993 
1994 static int __init hugetlb_default_setup(char *s)
1995 {
1996  default_hstate_size = memparse(s, &s);
1997  return 1;
1998 }
1999 __setup("default_hugepagesz=", hugetlb_default_setup);
2000 
2001 static unsigned int cpuset_mems_nr(unsigned int *array)
2002 {
2003  int node;
2004  unsigned int nr = 0;
2005 
2007  nr += array[node];
2008 
2009  return nr;
2010 }
2011 
2012 #ifdef CONFIG_SYSCTL
2013 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2014  struct ctl_table *table, int write,
2015  void __user *buffer, size_t *length, loff_t *ppos)
2016 {
2017  struct hstate *h = &default_hstate;
2018  unsigned long tmp;
2019  int ret;
2020 
2021  tmp = h->max_huge_pages;
2022 
2023  if (write && h->order >= MAX_ORDER)
2024  return -EINVAL;
2025 
2026  table->data = &tmp;
2027  table->maxlen = sizeof(unsigned long);
2028  ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2029  if (ret)
2030  goto out;
2031 
2032  if (write) {
2033  NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2035  if (!(obey_mempolicy &&
2036  init_nodemask_of_mempolicy(nodes_allowed))) {
2037  NODEMASK_FREE(nodes_allowed);
2038  nodes_allowed = &node_states[N_HIGH_MEMORY];
2039  }
2040  h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2041 
2042  if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2043  NODEMASK_FREE(nodes_allowed);
2044  }
2045 out:
2046  return ret;
2047 }
2048 
2049 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2050  void __user *buffer, size_t *length, loff_t *ppos)
2051 {
2052 
2053  return hugetlb_sysctl_handler_common(false, table, write,
2054  buffer, length, ppos);
2055 }
2056 
2057 #ifdef CONFIG_NUMA
2058 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2059  void __user *buffer, size_t *length, loff_t *ppos)
2060 {
2061  return hugetlb_sysctl_handler_common(true, table, write,
2062  buffer, length, ppos);
2063 }
2064 #endif /* CONFIG_NUMA */
2065 
2066 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2067  void __user *buffer,
2068  size_t *length, loff_t *ppos)
2069 {
2070  proc_dointvec(table, write, buffer, length, ppos);
2072  htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2073  else
2074  htlb_alloc_mask = GFP_HIGHUSER;
2075  return 0;
2076 }
2077 
2078 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2079  void __user *buffer,
2080  size_t *length, loff_t *ppos)
2081 {
2082  struct hstate *h = &default_hstate;
2083  unsigned long tmp;
2084  int ret;
2085 
2086  tmp = h->nr_overcommit_huge_pages;
2087 
2088  if (write && h->order >= MAX_ORDER)
2089  return -EINVAL;
2090 
2091  table->data = &tmp;
2092  table->maxlen = sizeof(unsigned long);
2093  ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2094  if (ret)
2095  goto out;
2096 
2097  if (write) {
2098  spin_lock(&hugetlb_lock);
2099  h->nr_overcommit_huge_pages = tmp;
2100  spin_unlock(&hugetlb_lock);
2101  }
2102 out:
2103  return ret;
2104 }
2105 
2106 #endif /* CONFIG_SYSCTL */
2107 
2109 {
2110  struct hstate *h = &default_hstate;
2111  seq_printf(m,
2112  "HugePages_Total: %5lu\n"
2113  "HugePages_Free: %5lu\n"
2114  "HugePages_Rsvd: %5lu\n"
2115  "HugePages_Surp: %5lu\n"
2116  "Hugepagesize: %8lu kB\n",
2117  h->nr_huge_pages,
2118  h->free_huge_pages,
2119  h->resv_huge_pages,
2120  h->surplus_huge_pages,
2121  1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2122 }
2123 
2124 int hugetlb_report_node_meminfo(int nid, char *buf)
2125 {
2126  struct hstate *h = &default_hstate;
2127  return sprintf(buf,
2128  "Node %d HugePages_Total: %5u\n"
2129  "Node %d HugePages_Free: %5u\n"
2130  "Node %d HugePages_Surp: %5u\n",
2131  nid, h->nr_huge_pages_node[nid],
2132  nid, h->free_huge_pages_node[nid],
2133  nid, h->surplus_huge_pages_node[nid]);
2134 }
2135 
2136 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2137 unsigned long hugetlb_total_pages(void)
2138 {
2139  struct hstate *h = &default_hstate;
2140  return h->nr_huge_pages * pages_per_huge_page(h);
2141 }
2142 
2143 static int hugetlb_acct_memory(struct hstate *h, long delta)
2144 {
2145  int ret = -ENOMEM;
2146 
2147  spin_lock(&hugetlb_lock);
2148  /*
2149  * When cpuset is configured, it breaks the strict hugetlb page
2150  * reservation as the accounting is done on a global variable. Such
2151  * reservation is completely rubbish in the presence of cpuset because
2152  * the reservation is not checked against page availability for the
2153  * current cpuset. Application can still potentially OOM'ed by kernel
2154  * with lack of free htlb page in cpuset that the task is in.
2155  * Attempt to enforce strict accounting with cpuset is almost
2156  * impossible (or too ugly) because cpuset is too fluid that
2157  * task or memory node can be dynamically moved between cpusets.
2158  *
2159  * The change of semantics for shared hugetlb mapping with cpuset is
2160  * undesirable. However, in order to preserve some of the semantics,
2161  * we fall back to check against current free page availability as
2162  * a best attempt and hopefully to minimize the impact of changing
2163  * semantics that cpuset has.
2164  */
2165  if (delta > 0) {
2166  if (gather_surplus_pages(h, delta) < 0)
2167  goto out;
2168 
2169  if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2170  return_unused_surplus_pages(h, delta);
2171  goto out;
2172  }
2173  }
2174 
2175  ret = 0;
2176  if (delta < 0)
2177  return_unused_surplus_pages(h, (unsigned long) -delta);
2178 
2179 out:
2180  spin_unlock(&hugetlb_lock);
2181  return ret;
2182 }
2183 
2184 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2185 {
2186  struct resv_map *reservations = vma_resv_map(vma);
2187 
2188  /*
2189  * This new VMA should share its siblings reservation map if present.
2190  * The VMA will only ever have a valid reservation map pointer where
2191  * it is being copied for another still existing VMA. As that VMA
2192  * has a reference to the reservation map it cannot disappear until
2193  * after this open call completes. It is therefore safe to take a
2194  * new reference here without additional locking.
2195  */
2196  if (reservations)
2197  kref_get(&reservations->refs);
2198 }
2199 
2200 static void resv_map_put(struct vm_area_struct *vma)
2201 {
2202  struct resv_map *reservations = vma_resv_map(vma);
2203 
2204  if (!reservations)
2205  return;
2206  kref_put(&reservations->refs, resv_map_release);
2207 }
2208 
2209 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2210 {
2211  struct hstate *h = hstate_vma(vma);
2212  struct resv_map *reservations = vma_resv_map(vma);
2213  struct hugepage_subpool *spool = subpool_vma(vma);
2214  unsigned long reserve;
2215  unsigned long start;
2216  unsigned long end;
2217 
2218  if (reservations) {
2219  start = vma_hugecache_offset(h, vma, vma->vm_start);
2220  end = vma_hugecache_offset(h, vma, vma->vm_end);
2221 
2222  reserve = (end - start) -
2223  region_count(&reservations->regions, start, end);
2224 
2225  resv_map_put(vma);
2226 
2227  if (reserve) {
2228  hugetlb_acct_memory(h, -reserve);
2229  hugepage_subpool_put_pages(spool, reserve);
2230  }
2231  }
2232 }
2233 
2234 /*
2235  * We cannot handle pagefaults against hugetlb pages at all. They cause
2236  * handle_mm_fault() to try to instantiate regular-sized pages in the
2237  * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2238  * this far.
2239  */
2240 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2241 {
2242  BUG();
2243  return 0;
2244 }
2245 
2246 const struct vm_operations_struct hugetlb_vm_ops = {
2247  .fault = hugetlb_vm_op_fault,
2248  .open = hugetlb_vm_op_open,
2249  .close = hugetlb_vm_op_close,
2250 };
2251 
2252 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2253  int writable)
2254 {
2255  pte_t entry;
2256 
2257  if (writable) {
2258  entry =
2260  } else {
2261  entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2262  }
2263  entry = pte_mkyoung(entry);
2264  entry = pte_mkhuge(entry);
2265  entry = arch_make_huge_pte(entry, vma, page, writable);
2266 
2267  return entry;
2268 }
2269 
2270 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2271  unsigned long address, pte_t *ptep)
2272 {
2273  pte_t entry;
2274 
2275  entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2276  if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2277  update_mmu_cache(vma, address, ptep);
2278 }
2279 
2280 
2281 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2282  struct vm_area_struct *vma)
2283 {
2284  pte_t *src_pte, *dst_pte, entry;
2285  struct page *ptepage;
2286  unsigned long addr;
2287  int cow;
2288  struct hstate *h = hstate_vma(vma);
2289  unsigned long sz = huge_page_size(h);
2290 
2291  cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2292 
2293  for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2294  src_pte = huge_pte_offset(src, addr);
2295  if (!src_pte)
2296  continue;
2297  dst_pte = huge_pte_alloc(dst, addr, sz);
2298  if (!dst_pte)
2299  goto nomem;
2300 
2301  /* If the pagetables are shared don't copy or take references */
2302  if (dst_pte == src_pte)
2303  continue;
2304 
2305  spin_lock(&dst->page_table_lock);
2307  if (!huge_pte_none(huge_ptep_get(src_pte))) {
2308  if (cow)
2309  huge_ptep_set_wrprotect(src, addr, src_pte);
2310  entry = huge_ptep_get(src_pte);
2311  ptepage = pte_page(entry);
2312  get_page(ptepage);
2313  page_dup_rmap(ptepage);
2314  set_huge_pte_at(dst, addr, dst_pte, entry);
2315  }
2316  spin_unlock(&src->page_table_lock);
2317  spin_unlock(&dst->page_table_lock);
2318  }
2319  return 0;
2320 
2321 nomem:
2322  return -ENOMEM;
2323 }
2324 
2325 static int is_hugetlb_entry_migration(pte_t pte)
2326 {
2327  swp_entry_t swp;
2328 
2329  if (huge_pte_none(pte) || pte_present(pte))
2330  return 0;
2331  swp = pte_to_swp_entry(pte);
2332  if (non_swap_entry(swp) && is_migration_entry(swp))
2333  return 1;
2334  else
2335  return 0;
2336 }
2337 
2338 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2339 {
2340  swp_entry_t swp;
2341 
2342  if (huge_pte_none(pte) || pte_present(pte))
2343  return 0;
2344  swp = pte_to_swp_entry(pte);
2345  if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2346  return 1;
2347  else
2348  return 0;
2349 }
2350 
2351 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2352  unsigned long start, unsigned long end,
2353  struct page *ref_page)
2354 {
2355  int force_flush = 0;
2356  struct mm_struct *mm = vma->vm_mm;
2357  unsigned long address;
2358  pte_t *ptep;
2359  pte_t pte;
2360  struct page *page;
2361  struct hstate *h = hstate_vma(vma);
2362  unsigned long sz = huge_page_size(h);
2363  const unsigned long mmun_start = start; /* For mmu_notifiers */
2364  const unsigned long mmun_end = end; /* For mmu_notifiers */
2365 
2366  WARN_ON(!is_vm_hugetlb_page(vma));
2367  BUG_ON(start & ~huge_page_mask(h));
2368  BUG_ON(end & ~huge_page_mask(h));
2369 
2370  tlb_start_vma(tlb, vma);
2371  mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2372 again:
2373  spin_lock(&mm->page_table_lock);
2374  for (address = start; address < end; address += sz) {
2375  ptep = huge_pte_offset(mm, address);
2376  if (!ptep)
2377  continue;
2378 
2379  if (huge_pmd_unshare(mm, &address, ptep))
2380  continue;
2381 
2382  pte = huge_ptep_get(ptep);
2383  if (huge_pte_none(pte))
2384  continue;
2385 
2386  /*
2387  * HWPoisoned hugepage is already unmapped and dropped reference
2388  */
2389  if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2390  continue;
2391 
2392  page = pte_page(pte);
2393  /*
2394  * If a reference page is supplied, it is because a specific
2395  * page is being unmapped, not a range. Ensure the page we
2396  * are about to unmap is the actual page of interest.
2397  */
2398  if (ref_page) {
2399  if (page != ref_page)
2400  continue;
2401 
2402  /*
2403  * Mark the VMA as having unmapped its page so that
2404  * future faults in this VMA will fail rather than
2405  * looking like data was lost
2406  */
2407  set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2408  }
2409 
2410  pte = huge_ptep_get_and_clear(mm, address, ptep);
2411  tlb_remove_tlb_entry(tlb, ptep, address);
2412  if (pte_dirty(pte))
2413  set_page_dirty(page);
2414 
2415  page_remove_rmap(page);
2416  force_flush = !__tlb_remove_page(tlb, page);
2417  if (force_flush)
2418  break;
2419  /* Bail out after unmapping reference page if supplied */
2420  if (ref_page)
2421  break;
2422  }
2423  spin_unlock(&mm->page_table_lock);
2424  /*
2425  * mmu_gather ran out of room to batch pages, we break out of
2426  * the PTE lock to avoid doing the potential expensive TLB invalidate
2427  * and page-free while holding it.
2428  */
2429  if (force_flush) {
2430  force_flush = 0;
2431  tlb_flush_mmu(tlb);
2432  if (address < end && !ref_page)
2433  goto again;
2434  }
2435  mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2436  tlb_end_vma(tlb, vma);
2437 }
2438 
2440  struct vm_area_struct *vma, unsigned long start,
2441  unsigned long end, struct page *ref_page)
2442 {
2443  __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2444 
2445  /*
2446  * Clear this flag so that x86's huge_pmd_share page_table_shareable
2447  * test will fail on a vma being torn down, and not grab a page table
2448  * on its way out. We're lucky that the flag has such an appropriate
2449  * name, and can in fact be safely cleared here. We could clear it
2450  * before the __unmap_hugepage_range above, but all that's necessary
2451  * is to clear it before releasing the i_mmap_mutex. This works
2452  * because in the context this is called, the VMA is about to be
2453  * destroyed and the i_mmap_mutex is held.
2454  */
2455  vma->vm_flags &= ~VM_MAYSHARE;
2456 }
2457 
2458 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2459  unsigned long end, struct page *ref_page)
2460 {
2461  struct mm_struct *mm;
2462  struct mmu_gather tlb;
2463 
2464  mm = vma->vm_mm;
2465 
2466  tlb_gather_mmu(&tlb, mm, 0);
2467  __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2468  tlb_finish_mmu(&tlb, start, end);
2469 }
2470 
2471 /*
2472  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2473  * mappping it owns the reserve page for. The intention is to unmap the page
2474  * from other VMAs and let the children be SIGKILLed if they are faulting the
2475  * same region.
2476  */
2477 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2478  struct page *page, unsigned long address)
2479 {
2480  struct hstate *h = hstate_vma(vma);
2481  struct vm_area_struct *iter_vma;
2482  struct address_space *mapping;
2483  pgoff_t pgoff;
2484 
2485  /*
2486  * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2487  * from page cache lookup which is in HPAGE_SIZE units.
2488  */
2489  address = address & huge_page_mask(h);
2490  pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2491  vma->vm_pgoff;
2492  mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2493 
2494  /*
2495  * Take the mapping lock for the duration of the table walk. As
2496  * this mapping should be shared between all the VMAs,
2497  * __unmap_hugepage_range() is called as the lock is already held
2498  */
2499  mutex_lock(&mapping->i_mmap_mutex);
2500  vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2501  /* Do not unmap the current VMA */
2502  if (iter_vma == vma)
2503  continue;
2504 
2505  /*
2506  * Unmap the page from other VMAs without their own reserves.
2507  * They get marked to be SIGKILLed if they fault in these
2508  * areas. This is because a future no-page fault on this VMA
2509  * could insert a zeroed page instead of the data existing
2510  * from the time of fork. This would look like data corruption
2511  */
2512  if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2513  unmap_hugepage_range(iter_vma, address,
2514  address + huge_page_size(h), page);
2515  }
2516  mutex_unlock(&mapping->i_mmap_mutex);
2517 
2518  return 1;
2519 }
2520 
2521 /*
2522  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2523  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2524  * cannot race with other handlers or page migration.
2525  * Keep the pte_same checks anyway to make transition from the mutex easier.
2526  */
2527 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2528  unsigned long address, pte_t *ptep, pte_t pte,
2529  struct page *pagecache_page)
2530 {
2531  struct hstate *h = hstate_vma(vma);
2532  struct page *old_page, *new_page;
2533  int avoidcopy;
2534  int outside_reserve = 0;
2535  unsigned long mmun_start; /* For mmu_notifiers */
2536  unsigned long mmun_end; /* For mmu_notifiers */
2537 
2538  old_page = pte_page(pte);
2539 
2540 retry_avoidcopy:
2541  /* If no-one else is actually using this page, avoid the copy
2542  * and just make the page writable */
2543  avoidcopy = (page_mapcount(old_page) == 1);
2544  if (avoidcopy) {
2545  if (PageAnon(old_page))
2546  page_move_anon_rmap(old_page, vma, address);
2547  set_huge_ptep_writable(vma, address, ptep);
2548  return 0;
2549  }
2550 
2551  /*
2552  * If the process that created a MAP_PRIVATE mapping is about to
2553  * perform a COW due to a shared page count, attempt to satisfy
2554  * the allocation without using the existing reserves. The pagecache
2555  * page is used to determine if the reserve at this address was
2556  * consumed or not. If reserves were used, a partial faulted mapping
2557  * at the time of fork() could consume its reserves on COW instead
2558  * of the full address range.
2559  */
2560  if (!(vma->vm_flags & VM_MAYSHARE) &&
2561  is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2562  old_page != pagecache_page)
2563  outside_reserve = 1;
2564 
2565  page_cache_get(old_page);
2566 
2567  /* Drop page_table_lock as buddy allocator may be called */
2568  spin_unlock(&mm->page_table_lock);
2569  new_page = alloc_huge_page(vma, address, outside_reserve);
2570 
2571  if (IS_ERR(new_page)) {
2572  long err = PTR_ERR(new_page);
2573  page_cache_release(old_page);
2574 
2575  /*
2576  * If a process owning a MAP_PRIVATE mapping fails to COW,
2577  * it is due to references held by a child and an insufficient
2578  * huge page pool. To guarantee the original mappers
2579  * reliability, unmap the page from child processes. The child
2580  * may get SIGKILLed if it later faults.
2581  */
2582  if (outside_reserve) {
2583  BUG_ON(huge_pte_none(pte));
2584  if (unmap_ref_private(mm, vma, old_page, address)) {
2585  BUG_ON(huge_pte_none(pte));
2586  spin_lock(&mm->page_table_lock);
2587  ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2588  if (likely(pte_same(huge_ptep_get(ptep), pte)))
2589  goto retry_avoidcopy;
2590  /*
2591  * race occurs while re-acquiring page_table_lock, and
2592  * our job is done.
2593  */
2594  return 0;
2595  }
2596  WARN_ON_ONCE(1);
2597  }
2598 
2599  /* Caller expects lock to be held */
2600  spin_lock(&mm->page_table_lock);
2601  if (err == -ENOMEM)
2602  return VM_FAULT_OOM;
2603  else
2604  return VM_FAULT_SIGBUS;
2605  }
2606 
2607  /*
2608  * When the original hugepage is shared one, it does not have
2609  * anon_vma prepared.
2610  */
2611  if (unlikely(anon_vma_prepare(vma))) {
2612  page_cache_release(new_page);
2613  page_cache_release(old_page);
2614  /* Caller expects lock to be held */
2615  spin_lock(&mm->page_table_lock);
2616  return VM_FAULT_OOM;
2617  }
2618 
2619  copy_user_huge_page(new_page, old_page, address, vma,
2620  pages_per_huge_page(h));
2621  __SetPageUptodate(new_page);
2622 
2623  mmun_start = address & huge_page_mask(h);
2624  mmun_end = mmun_start + huge_page_size(h);
2625  mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2626  /*
2627  * Retake the page_table_lock to check for racing updates
2628  * before the page tables are altered
2629  */
2630  spin_lock(&mm->page_table_lock);
2631  ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2632  if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2633  /* Break COW */
2634  huge_ptep_clear_flush(vma, address, ptep);
2635  set_huge_pte_at(mm, address, ptep,
2636  make_huge_pte(vma, new_page, 1));
2637  page_remove_rmap(old_page);
2638  hugepage_add_new_anon_rmap(new_page, vma, address);
2639  /* Make the old page be freed below */
2640  new_page = old_page;
2641  }
2642  spin_unlock(&mm->page_table_lock);
2643  mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2644  /* Caller expects lock to be held */
2645  spin_lock(&mm->page_table_lock);
2646  page_cache_release(new_page);
2647  page_cache_release(old_page);
2648  return 0;
2649 }
2650 
2651 /* Return the pagecache page at a given address within a VMA */
2652 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2653  struct vm_area_struct *vma, unsigned long address)
2654 {
2655  struct address_space *mapping;
2656  pgoff_t idx;
2657 
2658  mapping = vma->vm_file->f_mapping;
2659  idx = vma_hugecache_offset(h, vma, address);
2660 
2661  return find_lock_page(mapping, idx);
2662 }
2663 
2664 /*
2665  * Return whether there is a pagecache page to back given address within VMA.
2666  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2667  */
2668 static bool hugetlbfs_pagecache_present(struct hstate *h,
2669  struct vm_area_struct *vma, unsigned long address)
2670 {
2671  struct address_space *mapping;
2672  pgoff_t idx;
2673  struct page *page;
2674 
2675  mapping = vma->vm_file->f_mapping;
2676  idx = vma_hugecache_offset(h, vma, address);
2677 
2678  page = find_get_page(mapping, idx);
2679  if (page)
2680  put_page(page);
2681  return page != NULL;
2682 }
2683 
2684 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2685  unsigned long address, pte_t *ptep, unsigned int flags)
2686 {
2687  struct hstate *h = hstate_vma(vma);
2688  int ret = VM_FAULT_SIGBUS;
2689  int anon_rmap = 0;
2690  pgoff_t idx;
2691  unsigned long size;
2692  struct page *page;
2693  struct address_space *mapping;
2694  pte_t new_pte;
2695 
2696  /*
2697  * Currently, we are forced to kill the process in the event the
2698  * original mapper has unmapped pages from the child due to a failed
2699  * COW. Warn that such a situation has occurred as it may not be obvious
2700  */
2701  if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2703  "PID %d killed due to inadequate hugepage pool\n",
2704  current->pid);
2705  return ret;
2706  }
2707 
2708  mapping = vma->vm_file->f_mapping;
2709  idx = vma_hugecache_offset(h, vma, address);
2710 
2711  /*
2712  * Use page lock to guard against racing truncation
2713  * before we get page_table_lock.
2714  */
2715 retry:
2716  page = find_lock_page(mapping, idx);
2717  if (!page) {
2718  size = i_size_read(mapping->host) >> huge_page_shift(h);
2719  if (idx >= size)
2720  goto out;
2721  page = alloc_huge_page(vma, address, 0);
2722  if (IS_ERR(page)) {
2723  ret = PTR_ERR(page);
2724  if (ret == -ENOMEM)
2725  ret = VM_FAULT_OOM;
2726  else
2727  ret = VM_FAULT_SIGBUS;
2728  goto out;
2729  }
2730  clear_huge_page(page, address, pages_per_huge_page(h));
2731  __SetPageUptodate(page);
2732 
2733  if (vma->vm_flags & VM_MAYSHARE) {
2734  int err;
2735  struct inode *inode = mapping->host;
2736 
2737  err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2738  if (err) {
2739  put_page(page);
2740  if (err == -EEXIST)
2741  goto retry;
2742  goto out;
2743  }
2744 
2745  spin_lock(&inode->i_lock);
2746  inode->i_blocks += blocks_per_huge_page(h);
2747  spin_unlock(&inode->i_lock);
2748  } else {
2749  lock_page(page);
2750  if (unlikely(anon_vma_prepare(vma))) {
2751  ret = VM_FAULT_OOM;
2752  goto backout_unlocked;
2753  }
2754  anon_rmap = 1;
2755  }
2756  } else {
2757  /*
2758  * If memory error occurs between mmap() and fault, some process
2759  * don't have hwpoisoned swap entry for errored virtual address.
2760  * So we need to block hugepage fault by PG_hwpoison bit check.
2761  */
2762  if (unlikely(PageHWPoison(page))) {
2763  ret = VM_FAULT_HWPOISON |
2764  VM_FAULT_SET_HINDEX(hstate_index(h));
2765  goto backout_unlocked;
2766  }
2767  }
2768 
2769  /*
2770  * If we are going to COW a private mapping later, we examine the
2771  * pending reservations for this page now. This will ensure that
2772  * any allocations necessary to record that reservation occur outside
2773  * the spinlock.
2774  */
2775  if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2776  if (vma_needs_reservation(h, vma, address) < 0) {
2777  ret = VM_FAULT_OOM;
2778  goto backout_unlocked;
2779  }
2780 
2781  spin_lock(&mm->page_table_lock);
2782  size = i_size_read(mapping->host) >> huge_page_shift(h);
2783  if (idx >= size)
2784  goto backout;
2785 
2786  ret = 0;
2787  if (!huge_pte_none(huge_ptep_get(ptep)))
2788  goto backout;
2789 
2790  if (anon_rmap)
2791  hugepage_add_new_anon_rmap(page, vma, address);
2792  else
2793  page_dup_rmap(page);
2794  new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2795  && (vma->vm_flags & VM_SHARED)));
2796  set_huge_pte_at(mm, address, ptep, new_pte);
2797 
2798  if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2799  /* Optimization, do the COW without a second fault */
2800  ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2801  }
2802 
2803  spin_unlock(&mm->page_table_lock);
2804  unlock_page(page);
2805 out:
2806  return ret;
2807 
2808 backout:
2809  spin_unlock(&mm->page_table_lock);
2810 backout_unlocked:
2811  unlock_page(page);
2812  put_page(page);
2813  goto out;
2814 }
2815 
2816 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2817  unsigned long address, unsigned int flags)
2818 {
2819  pte_t *ptep;
2820  pte_t entry;
2821  int ret;
2822  struct page *page = NULL;
2823  struct page *pagecache_page = NULL;
2824  static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2825  struct hstate *h = hstate_vma(vma);
2826 
2827  address &= huge_page_mask(h);
2828 
2829  ptep = huge_pte_offset(mm, address);
2830  if (ptep) {
2831  entry = huge_ptep_get(ptep);
2832  if (unlikely(is_hugetlb_entry_migration(entry))) {
2833  migration_entry_wait(mm, (pmd_t *)ptep, address);
2834  return 0;
2835  } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2836  return VM_FAULT_HWPOISON_LARGE |
2837  VM_FAULT_SET_HINDEX(hstate_index(h));
2838  }
2839 
2840  ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2841  if (!ptep)
2842  return VM_FAULT_OOM;
2843 
2844  /*
2845  * Serialize hugepage allocation and instantiation, so that we don't
2846  * get spurious allocation failures if two CPUs race to instantiate
2847  * the same page in the page cache.
2848  */
2849  mutex_lock(&hugetlb_instantiation_mutex);
2850  entry = huge_ptep_get(ptep);
2851  if (huge_pte_none(entry)) {
2852  ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2853  goto out_mutex;
2854  }
2855 
2856  ret = 0;
2857 
2858  /*
2859  * If we are going to COW the mapping later, we examine the pending
2860  * reservations for this page now. This will ensure that any
2861  * allocations necessary to record that reservation occur outside the
2862  * spinlock. For private mappings, we also lookup the pagecache
2863  * page now as it is used to determine if a reservation has been
2864  * consumed.
2865  */
2866  if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2867  if (vma_needs_reservation(h, vma, address) < 0) {
2868  ret = VM_FAULT_OOM;
2869  goto out_mutex;
2870  }
2871 
2872  if (!(vma->vm_flags & VM_MAYSHARE))
2873  pagecache_page = hugetlbfs_pagecache_page(h,
2874  vma, address);
2875  }
2876 
2877  /*
2878  * hugetlb_cow() requires page locks of pte_page(entry) and
2879  * pagecache_page, so here we need take the former one
2880  * when page != pagecache_page or !pagecache_page.
2881  * Note that locking order is always pagecache_page -> page,
2882  * so no worry about deadlock.
2883  */
2884  page = pte_page(entry);
2885  get_page(page);
2886  if (page != pagecache_page)
2887  lock_page(page);
2888 
2889  spin_lock(&mm->page_table_lock);
2890  /* Check for a racing update before calling hugetlb_cow */
2891  if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2892  goto out_page_table_lock;
2893 
2894 
2895  if (flags & FAULT_FLAG_WRITE) {
2896  if (!pte_write(entry)) {
2897  ret = hugetlb_cow(mm, vma, address, ptep, entry,
2898  pagecache_page);
2899  goto out_page_table_lock;
2900  }
2901  entry = pte_mkdirty(entry);
2902  }
2903  entry = pte_mkyoung(entry);
2904  if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2905  flags & FAULT_FLAG_WRITE))
2906  update_mmu_cache(vma, address, ptep);
2907 
2908 out_page_table_lock:
2909  spin_unlock(&mm->page_table_lock);
2910 
2911  if (pagecache_page) {
2912  unlock_page(pagecache_page);
2913  put_page(pagecache_page);
2914  }
2915  if (page != pagecache_page)
2916  unlock_page(page);
2917  put_page(page);
2918 
2919 out_mutex:
2920  mutex_unlock(&hugetlb_instantiation_mutex);
2921 
2922  return ret;
2923 }
2924 
2925 /* Can be overriden by architectures */
2926 __attribute__((weak)) struct page *
2927 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2928  pud_t *pud, int write)
2929 {
2930  BUG();
2931  return NULL;
2932 }
2933 
2934 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2935  struct page **pages, struct vm_area_struct **vmas,
2936  unsigned long *position, int *length, int i,
2937  unsigned int flags)
2938 {
2939  unsigned long pfn_offset;
2940  unsigned long vaddr = *position;
2941  int remainder = *length;
2942  struct hstate *h = hstate_vma(vma);
2943 
2944  spin_lock(&mm->page_table_lock);
2945  while (vaddr < vma->vm_end && remainder) {
2946  pte_t *pte;
2947  int absent;
2948  struct page *page;
2949 
2950  /*
2951  * Some archs (sparc64, sh*) have multiple pte_ts to
2952  * each hugepage. We have to make sure we get the
2953  * first, for the page indexing below to work.
2954  */
2955  pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2956  absent = !pte || huge_pte_none(huge_ptep_get(pte));
2957 
2958  /*
2959  * When coredumping, it suits get_dump_page if we just return
2960  * an error where there's an empty slot with no huge pagecache
2961  * to back it. This way, we avoid allocating a hugepage, and
2962  * the sparse dumpfile avoids allocating disk blocks, but its
2963  * huge holes still show up with zeroes where they need to be.
2964  */
2965  if (absent && (flags & FOLL_DUMP) &&
2966  !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2967  remainder = 0;
2968  break;
2969  }
2970 
2971  if (absent ||
2972  ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2973  int ret;
2974 
2975  spin_unlock(&mm->page_table_lock);
2976  ret = hugetlb_fault(mm, vma, vaddr,
2977  (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2978  spin_lock(&mm->page_table_lock);
2979  if (!(ret & VM_FAULT_ERROR))
2980  continue;
2981 
2982  remainder = 0;
2983  break;
2984  }
2985 
2986  pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2987  page = pte_page(huge_ptep_get(pte));
2988 same_page:
2989  if (pages) {
2990  pages[i] = mem_map_offset(page, pfn_offset);
2991  get_page(pages[i]);
2992  }
2993 
2994  if (vmas)
2995  vmas[i] = vma;
2996 
2997  vaddr += PAGE_SIZE;
2998  ++pfn_offset;
2999  --remainder;
3000  ++i;
3001  if (vaddr < vma->vm_end && remainder &&
3002  pfn_offset < pages_per_huge_page(h)) {
3003  /*
3004  * We use pfn_offset to avoid touching the pageframes
3005  * of this compound page.
3006  */
3007  goto same_page;
3008  }
3009  }
3010  spin_unlock(&mm->page_table_lock);
3011  *length = remainder;
3012  *position = vaddr;
3013 
3014  return i ? i : -EFAULT;
3015 }
3016 
3018  unsigned long address, unsigned long end, pgprot_t newprot)
3019 {
3020  struct mm_struct *mm = vma->vm_mm;
3021  unsigned long start = address;
3022  pte_t *ptep;
3023  pte_t pte;
3024  struct hstate *h = hstate_vma(vma);
3025 
3026  BUG_ON(address >= end);
3027  flush_cache_range(vma, address, end);
3028 
3029  mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3030  spin_lock(&mm->page_table_lock);
3031  for (; address < end; address += huge_page_size(h)) {
3032  ptep = huge_pte_offset(mm, address);
3033  if (!ptep)
3034  continue;
3035  if (huge_pmd_unshare(mm, &address, ptep))
3036  continue;
3037  if (!huge_pte_none(huge_ptep_get(ptep))) {
3038  pte = huge_ptep_get_and_clear(mm, address, ptep);
3039  pte = pte_mkhuge(pte_modify(pte, newprot));
3040  set_huge_pte_at(mm, address, ptep, pte);
3041  }
3042  }
3043  spin_unlock(&mm->page_table_lock);
3044  /*
3045  * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3046  * may have cleared our pud entry and done put_page on the page table:
3047  * once we release i_mmap_mutex, another task can do the final put_page
3048  * and that page table be reused and filled with junk.
3049  */
3050  flush_tlb_range(vma, start, end);
3051  mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3052 }
3053 
3054 int hugetlb_reserve_pages(struct inode *inode,
3055  long from, long to,
3056  struct vm_area_struct *vma,
3058 {
3059  long ret, chg;
3060  struct hstate *h = hstate_inode(inode);
3061  struct hugepage_subpool *spool = subpool_inode(inode);
3062 
3063  /*
3064  * Only apply hugepage reservation if asked. At fault time, an
3065  * attempt will be made for VM_NORESERVE to allocate a page
3066  * without using reserves
3067  */
3068  if (vm_flags & VM_NORESERVE)
3069  return 0;
3070 
3071  /*
3072  * Shared mappings base their reservation on the number of pages that
3073  * are already allocated on behalf of the file. Private mappings need
3074  * to reserve the full area even if read-only as mprotect() may be
3075  * called to make the mapping read-write. Assume !vma is a shm mapping
3076  */
3077  if (!vma || vma->vm_flags & VM_MAYSHARE)
3078  chg = region_chg(&inode->i_mapping->private_list, from, to);
3079  else {
3080  struct resv_map *resv_map = resv_map_alloc();
3081  if (!resv_map)
3082  return -ENOMEM;
3083 
3084  chg = to - from;
3085 
3086  set_vma_resv_map(vma, resv_map);
3087  set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3088  }
3089 
3090  if (chg < 0) {
3091  ret = chg;
3092  goto out_err;
3093  }
3094 
3095  /* There must be enough pages in the subpool for the mapping */
3096  if (hugepage_subpool_get_pages(spool, chg)) {
3097  ret = -ENOSPC;
3098  goto out_err;
3099  }
3100 
3101  /*
3102  * Check enough hugepages are available for the reservation.
3103  * Hand the pages back to the subpool if there are not
3104  */
3105  ret = hugetlb_acct_memory(h, chg);
3106  if (ret < 0) {
3107  hugepage_subpool_put_pages(spool, chg);
3108  goto out_err;
3109  }
3110 
3111  /*
3112  * Account for the reservations made. Shared mappings record regions
3113  * that have reservations as they are shared by multiple VMAs.
3114  * When the last VMA disappears, the region map says how much
3115  * the reservation was and the page cache tells how much of
3116  * the reservation was consumed. Private mappings are per-VMA and
3117  * only the consumed reservations are tracked. When the VMA
3118  * disappears, the original reservation is the VMA size and the
3119  * consumed reservations are stored in the map. Hence, nothing
3120  * else has to be done for private mappings here
3121  */
3122  if (!vma || vma->vm_flags & VM_MAYSHARE)
3123  region_add(&inode->i_mapping->private_list, from, to);
3124  return 0;
3125 out_err:
3126  if (vma)
3127  resv_map_put(vma);
3128  return ret;
3129 }
3130 
3131 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3132 {
3133  struct hstate *h = hstate_inode(inode);
3134  long chg = region_truncate(&inode->i_mapping->private_list, offset);
3135  struct hugepage_subpool *spool = subpool_inode(inode);
3136 
3137  spin_lock(&inode->i_lock);
3138  inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3139  spin_unlock(&inode->i_lock);
3140 
3141  hugepage_subpool_put_pages(spool, (chg - freed));
3142  hugetlb_acct_memory(h, -(chg - freed));
3143 }
3144 
3145 #ifdef CONFIG_MEMORY_FAILURE
3146 
3147 /* Should be called in hugetlb_lock */
3148 static int is_hugepage_on_freelist(struct page *hpage)
3149 {
3150  struct page *page;
3151  struct page *tmp;
3152  struct hstate *h = page_hstate(hpage);
3153  int nid = page_to_nid(hpage);
3154 
3155  list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3156  if (page == hpage)
3157  return 1;
3158  return 0;
3159 }
3160 
3161 /*
3162  * This function is called from memory failure code.
3163  * Assume the caller holds page lock of the head page.
3164  */
3165 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3166 {
3167  struct hstate *h = page_hstate(hpage);
3168  int nid = page_to_nid(hpage);
3169  int ret = -EBUSY;
3170 
3171  spin_lock(&hugetlb_lock);
3172  if (is_hugepage_on_freelist(hpage)) {
3173  list_del(&hpage->lru);
3174  set_page_refcounted(hpage);
3175  h->free_huge_pages--;
3176  h->free_huge_pages_node[nid]--;
3177  ret = 0;
3178  }
3179  spin_unlock(&hugetlb_lock);
3180  return ret;
3181 }
3182 #endif