Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
i2c-designware-core.c
Go to the documentation of this file.
1 /*
2  * Synopsys DesignWare I2C adapter driver (master only).
3  *
4  * Based on the TI DAVINCI I2C adapter driver.
5  *
6  * Copyright (C) 2006 Texas Instruments.
7  * Copyright (C) 2007 MontaVista Software Inc.
8  * Copyright (C) 2009 Provigent Ltd.
9  *
10  * ----------------------------------------------------------------------------
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  * ----------------------------------------------------------------------------
26  *
27  */
28 #include <linux/export.h>
29 #include <linux/clk.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/i2c.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/delay.h>
37 #include "i2c-designware-core.h"
38 
39 /*
40  * Registers offset
41  */
42 #define DW_IC_CON 0x0
43 #define DW_IC_TAR 0x4
44 #define DW_IC_DATA_CMD 0x10
45 #define DW_IC_SS_SCL_HCNT 0x14
46 #define DW_IC_SS_SCL_LCNT 0x18
47 #define DW_IC_FS_SCL_HCNT 0x1c
48 #define DW_IC_FS_SCL_LCNT 0x20
49 #define DW_IC_INTR_STAT 0x2c
50 #define DW_IC_INTR_MASK 0x30
51 #define DW_IC_RAW_INTR_STAT 0x34
52 #define DW_IC_RX_TL 0x38
53 #define DW_IC_TX_TL 0x3c
54 #define DW_IC_CLR_INTR 0x40
55 #define DW_IC_CLR_RX_UNDER 0x44
56 #define DW_IC_CLR_RX_OVER 0x48
57 #define DW_IC_CLR_TX_OVER 0x4c
58 #define DW_IC_CLR_RD_REQ 0x50
59 #define DW_IC_CLR_TX_ABRT 0x54
60 #define DW_IC_CLR_RX_DONE 0x58
61 #define DW_IC_CLR_ACTIVITY 0x5c
62 #define DW_IC_CLR_STOP_DET 0x60
63 #define DW_IC_CLR_START_DET 0x64
64 #define DW_IC_CLR_GEN_CALL 0x68
65 #define DW_IC_ENABLE 0x6c
66 #define DW_IC_STATUS 0x70
67 #define DW_IC_TXFLR 0x74
68 #define DW_IC_RXFLR 0x78
69 #define DW_IC_TX_ABRT_SOURCE 0x80
70 #define DW_IC_COMP_PARAM_1 0xf4
71 #define DW_IC_COMP_TYPE 0xfc
72 #define DW_IC_COMP_TYPE_VALUE 0x44570140
73 
74 #define DW_IC_INTR_RX_UNDER 0x001
75 #define DW_IC_INTR_RX_OVER 0x002
76 #define DW_IC_INTR_RX_FULL 0x004
77 #define DW_IC_INTR_TX_OVER 0x008
78 #define DW_IC_INTR_TX_EMPTY 0x010
79 #define DW_IC_INTR_RD_REQ 0x020
80 #define DW_IC_INTR_TX_ABRT 0x040
81 #define DW_IC_INTR_RX_DONE 0x080
82 #define DW_IC_INTR_ACTIVITY 0x100
83 #define DW_IC_INTR_STOP_DET 0x200
84 #define DW_IC_INTR_START_DET 0x400
85 #define DW_IC_INTR_GEN_CALL 0x800
86 
87 #define DW_IC_INTR_DEFAULT_MASK (DW_IC_INTR_RX_FULL | \
88  DW_IC_INTR_TX_EMPTY | \
89  DW_IC_INTR_TX_ABRT | \
90  DW_IC_INTR_STOP_DET)
91 
92 #define DW_IC_STATUS_ACTIVITY 0x1
93 
94 #define DW_IC_ERR_TX_ABRT 0x1
95 
96 /*
97  * status codes
98  */
99 #define STATUS_IDLE 0x0
100 #define STATUS_WRITE_IN_PROGRESS 0x1
101 #define STATUS_READ_IN_PROGRESS 0x2
102 
103 #define TIMEOUT 20 /* ms */
104 
105 /*
106  * hardware abort codes from the DW_IC_TX_ABRT_SOURCE register
107  *
108  * only expected abort codes are listed here
109  * refer to the datasheet for the full list
110  */
111 #define ABRT_7B_ADDR_NOACK 0
112 #define ABRT_10ADDR1_NOACK 1
113 #define ABRT_10ADDR2_NOACK 2
114 #define ABRT_TXDATA_NOACK 3
115 #define ABRT_GCALL_NOACK 4
116 #define ABRT_GCALL_READ 5
117 #define ABRT_SBYTE_ACKDET 7
118 #define ABRT_SBYTE_NORSTRT 9
119 #define ABRT_10B_RD_NORSTRT 10
120 #define ABRT_MASTER_DIS 11
121 #define ARB_LOST 12
122 
123 #define DW_IC_TX_ABRT_7B_ADDR_NOACK (1UL << ABRT_7B_ADDR_NOACK)
124 #define DW_IC_TX_ABRT_10ADDR1_NOACK (1UL << ABRT_10ADDR1_NOACK)
125 #define DW_IC_TX_ABRT_10ADDR2_NOACK (1UL << ABRT_10ADDR2_NOACK)
126 #define DW_IC_TX_ABRT_TXDATA_NOACK (1UL << ABRT_TXDATA_NOACK)
127 #define DW_IC_TX_ABRT_GCALL_NOACK (1UL << ABRT_GCALL_NOACK)
128 #define DW_IC_TX_ABRT_GCALL_READ (1UL << ABRT_GCALL_READ)
129 #define DW_IC_TX_ABRT_SBYTE_ACKDET (1UL << ABRT_SBYTE_ACKDET)
130 #define DW_IC_TX_ABRT_SBYTE_NORSTRT (1UL << ABRT_SBYTE_NORSTRT)
131 #define DW_IC_TX_ABRT_10B_RD_NORSTRT (1UL << ABRT_10B_RD_NORSTRT)
132 #define DW_IC_TX_ABRT_MASTER_DIS (1UL << ABRT_MASTER_DIS)
133 #define DW_IC_TX_ARB_LOST (1UL << ARB_LOST)
134 
135 #define DW_IC_TX_ABRT_NOACK (DW_IC_TX_ABRT_7B_ADDR_NOACK | \
136  DW_IC_TX_ABRT_10ADDR1_NOACK | \
137  DW_IC_TX_ABRT_10ADDR2_NOACK | \
138  DW_IC_TX_ABRT_TXDATA_NOACK | \
139  DW_IC_TX_ABRT_GCALL_NOACK)
140 
141 static char *abort_sources[] = {
143  "slave address not acknowledged (7bit mode)",
145  "first address byte not acknowledged (10bit mode)",
147  "second address byte not acknowledged (10bit mode)",
149  "data not acknowledged",
150  [ABRT_GCALL_NOACK] =
151  "no acknowledgement for a general call",
152  [ABRT_GCALL_READ] =
153  "read after general call",
155  "start byte acknowledged",
157  "trying to send start byte when restart is disabled",
159  "trying to read when restart is disabled (10bit mode)",
160  [ABRT_MASTER_DIS] =
161  "trying to use disabled adapter",
162  [ARB_LOST] =
163  "lost arbitration",
164 };
165 
167 {
168  u32 value;
169 
170  if (dev->accessor_flags & ACCESS_16BIT)
171  value = readw(dev->base + offset) |
172  (readw(dev->base + offset + 2) << 16);
173  else
174  value = readl(dev->base + offset);
175 
176  if (dev->accessor_flags & ACCESS_SWAP)
177  return swab32(value);
178  else
179  return value;
180 }
181 
182 void dw_writel(struct dw_i2c_dev *dev, u32 b, int offset)
183 {
184  if (dev->accessor_flags & ACCESS_SWAP)
185  b = swab32(b);
186 
187  if (dev->accessor_flags & ACCESS_16BIT) {
188  writew((u16)b, dev->base + offset);
189  writew((u16)(b >> 16), dev->base + offset + 2);
190  } else {
191  writel(b, dev->base + offset);
192  }
193 }
194 
195 static u32
196 i2c_dw_scl_hcnt(u32 ic_clk, u32 tSYMBOL, u32 tf, int cond, int offset)
197 {
198  /*
199  * DesignWare I2C core doesn't seem to have solid strategy to meet
200  * the tHD;STA timing spec. Configuring _HCNT based on tHIGH spec
201  * will result in violation of the tHD;STA spec.
202  */
203  if (cond)
204  /*
205  * Conditional expression:
206  *
207  * IC_[FS]S_SCL_HCNT + (1+4+3) >= IC_CLK * tHIGH
208  *
209  * This is based on the DW manuals, and represents an ideal
210  * configuration. The resulting I2C bus speed will be
211  * faster than any of the others.
212  *
213  * If your hardware is free from tHD;STA issue, try this one.
214  */
215  return (ic_clk * tSYMBOL + 5000) / 10000 - 8 + offset;
216  else
217  /*
218  * Conditional expression:
219  *
220  * IC_[FS]S_SCL_HCNT + 3 >= IC_CLK * (tHD;STA + tf)
221  *
222  * This is just experimental rule; the tHD;STA period turned
223  * out to be proportinal to (_HCNT + 3). With this setting,
224  * we could meet both tHIGH and tHD;STA timing specs.
225  *
226  * If unsure, you'd better to take this alternative.
227  *
228  * The reason why we need to take into account "tf" here,
229  * is the same as described in i2c_dw_scl_lcnt().
230  */
231  return (ic_clk * (tSYMBOL + tf) + 5000) / 10000 - 3 + offset;
232 }
233 
234 static u32 i2c_dw_scl_lcnt(u32 ic_clk, u32 tLOW, u32 tf, int offset)
235 {
236  /*
237  * Conditional expression:
238  *
239  * IC_[FS]S_SCL_LCNT + 1 >= IC_CLK * (tLOW + tf)
240  *
241  * DW I2C core starts counting the SCL CNTs for the LOW period
242  * of the SCL clock (tLOW) as soon as it pulls the SCL line.
243  * In order to meet the tLOW timing spec, we need to take into
244  * account the fall time of SCL signal (tf). Default tf value
245  * should be 0.3 us, for safety.
246  */
247  return ((ic_clk * (tLOW + tf) + 5000) / 10000) - 1 + offset;
248 }
249 
259 {
260  u32 input_clock_khz;
261  u32 hcnt, lcnt;
262  u32 reg;
263 
264  input_clock_khz = dev->get_clk_rate_khz(dev);
265 
266  reg = dw_readl(dev, DW_IC_COMP_TYPE);
268  /* Configure register endianess access */
269  dev->accessor_flags |= ACCESS_SWAP;
270  } else if (reg == (DW_IC_COMP_TYPE_VALUE & 0x0000ffff)) {
271  /* Configure register access mode 16bit */
273  } else if (reg != DW_IC_COMP_TYPE_VALUE) {
274  dev_err(dev->dev, "Unknown Synopsys component type: "
275  "0x%08x\n", reg);
276  return -ENODEV;
277  }
278 
279  /* Disable the adapter */
280  dw_writel(dev, 0, DW_IC_ENABLE);
281 
282  /* set standard and fast speed deviders for high/low periods */
283 
284  /* Standard-mode */
285  hcnt = i2c_dw_scl_hcnt(input_clock_khz,
286  40, /* tHD;STA = tHIGH = 4.0 us */
287  3, /* tf = 0.3 us */
288  0, /* 0: DW default, 1: Ideal */
289  0); /* No offset */
290  lcnt = i2c_dw_scl_lcnt(input_clock_khz,
291  47, /* tLOW = 4.7 us */
292  3, /* tf = 0.3 us */
293  0); /* No offset */
294  dw_writel(dev, hcnt, DW_IC_SS_SCL_HCNT);
295  dw_writel(dev, lcnt, DW_IC_SS_SCL_LCNT);
296  dev_dbg(dev->dev, "Standard-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);
297 
298  /* Fast-mode */
299  hcnt = i2c_dw_scl_hcnt(input_clock_khz,
300  6, /* tHD;STA = tHIGH = 0.6 us */
301  3, /* tf = 0.3 us */
302  0, /* 0: DW default, 1: Ideal */
303  0); /* No offset */
304  lcnt = i2c_dw_scl_lcnt(input_clock_khz,
305  13, /* tLOW = 1.3 us */
306  3, /* tf = 0.3 us */
307  0); /* No offset */
308  dw_writel(dev, hcnt, DW_IC_FS_SCL_HCNT);
309  dw_writel(dev, lcnt, DW_IC_FS_SCL_LCNT);
310  dev_dbg(dev->dev, "Fast-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);
311 
312  /* Configure Tx/Rx FIFO threshold levels */
313  dw_writel(dev, dev->tx_fifo_depth - 1, DW_IC_TX_TL);
314  dw_writel(dev, 0, DW_IC_RX_TL);
315 
316  /* configure the i2c master */
317  dw_writel(dev, dev->master_cfg , DW_IC_CON);
318  return 0;
319 }
321 
322 /*
323  * Waiting for bus not busy
324  */
325 static int i2c_dw_wait_bus_not_busy(struct dw_i2c_dev *dev)
326 {
327  int timeout = TIMEOUT;
328 
330  if (timeout <= 0) {
331  dev_warn(dev->dev, "timeout waiting for bus ready\n");
332  return -ETIMEDOUT;
333  }
334  timeout--;
335  mdelay(1);
336  }
337 
338  return 0;
339 }
340 
341 static void i2c_dw_xfer_init(struct dw_i2c_dev *dev)
342 {
343  struct i2c_msg *msgs = dev->msgs;
344  u32 ic_con;
345 
346  /* Disable the adapter */
347  dw_writel(dev, 0, DW_IC_ENABLE);
348 
349  /* set the slave (target) address */
350  dw_writel(dev, msgs[dev->msg_write_idx].addr, DW_IC_TAR);
351 
352  /* if the slave address is ten bit address, enable 10BITADDR */
353  ic_con = dw_readl(dev, DW_IC_CON);
354  if (msgs[dev->msg_write_idx].flags & I2C_M_TEN)
355  ic_con |= DW_IC_CON_10BITADDR_MASTER;
356  else
357  ic_con &= ~DW_IC_CON_10BITADDR_MASTER;
358  dw_writel(dev, ic_con, DW_IC_CON);
359 
360  /* Enable the adapter */
361  dw_writel(dev, 1, DW_IC_ENABLE);
362 
363  /* Enable interrupts */
365 }
366 
367 /*
368  * Initiate (and continue) low level master read/write transaction.
369  * This function is only called from i2c_dw_isr, and pumping i2c_msg
370  * messages into the tx buffer. Even if the size of i2c_msg data is
371  * longer than the size of the tx buffer, it handles everything.
372  */
373 static void
374 i2c_dw_xfer_msg(struct dw_i2c_dev *dev)
375 {
376  struct i2c_msg *msgs = dev->msgs;
377  u32 intr_mask;
378  int tx_limit, rx_limit;
379  u32 addr = msgs[dev->msg_write_idx].addr;
380  u32 buf_len = dev->tx_buf_len;
381  u8 *buf = dev->tx_buf;
382 
383  intr_mask = DW_IC_INTR_DEFAULT_MASK;
384 
385  for (; dev->msg_write_idx < dev->msgs_num; dev->msg_write_idx++) {
386  /*
387  * if target address has changed, we need to
388  * reprogram the target address in the i2c
389  * adapter when we are done with this transfer
390  */
391  if (msgs[dev->msg_write_idx].addr != addr) {
392  dev_err(dev->dev,
393  "%s: invalid target address\n", __func__);
394  dev->msg_err = -EINVAL;
395  break;
396  }
397 
398  if (msgs[dev->msg_write_idx].len == 0) {
399  dev_err(dev->dev,
400  "%s: invalid message length\n", __func__);
401  dev->msg_err = -EINVAL;
402  break;
403  }
404 
405  if (!(dev->status & STATUS_WRITE_IN_PROGRESS)) {
406  /* new i2c_msg */
407  buf = msgs[dev->msg_write_idx].buf;
408  buf_len = msgs[dev->msg_write_idx].len;
409  }
410 
411  tx_limit = dev->tx_fifo_depth - dw_readl(dev, DW_IC_TXFLR);
412  rx_limit = dev->rx_fifo_depth - dw_readl(dev, DW_IC_RXFLR);
413 
414  while (buf_len > 0 && tx_limit > 0 && rx_limit > 0) {
415  if (msgs[dev->msg_write_idx].flags & I2C_M_RD) {
416  dw_writel(dev, 0x100, DW_IC_DATA_CMD);
417  rx_limit--;
418  } else
419  dw_writel(dev, *buf++, DW_IC_DATA_CMD);
420  tx_limit--; buf_len--;
421  }
422 
423  dev->tx_buf = buf;
424  dev->tx_buf_len = buf_len;
425 
426  if (buf_len > 0) {
427  /* more bytes to be written */
429  break;
430  } else
432  }
433 
434  /*
435  * If i2c_msg index search is completed, we don't need TX_EMPTY
436  * interrupt any more.
437  */
438  if (dev->msg_write_idx == dev->msgs_num)
439  intr_mask &= ~DW_IC_INTR_TX_EMPTY;
440 
441  if (dev->msg_err)
442  intr_mask = 0;
443 
444  dw_writel(dev, intr_mask, DW_IC_INTR_MASK);
445 }
446 
447 static void
448 i2c_dw_read(struct dw_i2c_dev *dev)
449 {
450  struct i2c_msg *msgs = dev->msgs;
451  int rx_valid;
452 
453  for (; dev->msg_read_idx < dev->msgs_num; dev->msg_read_idx++) {
454  u32 len;
455  u8 *buf;
456 
457  if (!(msgs[dev->msg_read_idx].flags & I2C_M_RD))
458  continue;
459 
460  if (!(dev->status & STATUS_READ_IN_PROGRESS)) {
461  len = msgs[dev->msg_read_idx].len;
462  buf = msgs[dev->msg_read_idx].buf;
463  } else {
464  len = dev->rx_buf_len;
465  buf = dev->rx_buf;
466  }
467 
468  rx_valid = dw_readl(dev, DW_IC_RXFLR);
469 
470  for (; len > 0 && rx_valid > 0; len--, rx_valid--)
471  *buf++ = dw_readl(dev, DW_IC_DATA_CMD);
472 
473  if (len > 0) {
475  dev->rx_buf_len = len;
476  dev->rx_buf = buf;
477  return;
478  } else
480  }
481 }
482 
483 static int i2c_dw_handle_tx_abort(struct dw_i2c_dev *dev)
484 {
485  unsigned long abort_source = dev->abort_source;
486  int i;
487 
488  if (abort_source & DW_IC_TX_ABRT_NOACK) {
489  for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
490  dev_dbg(dev->dev,
491  "%s: %s\n", __func__, abort_sources[i]);
492  return -EREMOTEIO;
493  }
494 
495  for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
496  dev_err(dev->dev, "%s: %s\n", __func__, abort_sources[i]);
497 
498  if (abort_source & DW_IC_TX_ARB_LOST)
499  return -EAGAIN;
500  else if (abort_source & DW_IC_TX_ABRT_GCALL_READ)
501  return -EINVAL; /* wrong msgs[] data */
502  else
503  return -EIO;
504 }
505 
506 /*
507  * Prepare controller for a transaction and call i2c_dw_xfer_msg
508  */
509 int
510 i2c_dw_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
511 {
512  struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
513  int ret;
514 
515  dev_dbg(dev->dev, "%s: msgs: %d\n", __func__, num);
516 
517  mutex_lock(&dev->lock);
518  pm_runtime_get_sync(dev->dev);
519 
521  dev->msgs = msgs;
522  dev->msgs_num = num;
523  dev->cmd_err = 0;
524  dev->msg_write_idx = 0;
525  dev->msg_read_idx = 0;
526  dev->msg_err = 0;
527  dev->status = STATUS_IDLE;
528  dev->abort_source = 0;
529 
530  ret = i2c_dw_wait_bus_not_busy(dev);
531  if (ret < 0)
532  goto done;
533 
534  /* start the transfers */
535  i2c_dw_xfer_init(dev);
536 
537  /* wait for tx to complete */
539  if (ret == 0) {
540  dev_err(dev->dev, "controller timed out\n");
541  i2c_dw_init(dev);
542  ret = -ETIMEDOUT;
543  goto done;
544  } else if (ret < 0)
545  goto done;
546 
547  if (dev->msg_err) {
548  ret = dev->msg_err;
549  goto done;
550  }
551 
552  /* no error */
553  if (likely(!dev->cmd_err)) {
554  /* Disable the adapter */
555  dw_writel(dev, 0, DW_IC_ENABLE);
556  ret = num;
557  goto done;
558  }
559 
560  /* We have an error */
561  if (dev->cmd_err == DW_IC_ERR_TX_ABRT) {
562  ret = i2c_dw_handle_tx_abort(dev);
563  goto done;
564  }
565  ret = -EIO;
566 
567 done:
568  pm_runtime_put(dev->dev);
569  mutex_unlock(&dev->lock);
570 
571  return ret;
572 }
574 
576 {
577  struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
578  return dev->functionality;
579 }
581 
582 static u32 i2c_dw_read_clear_intrbits(struct dw_i2c_dev *dev)
583 {
584  u32 stat;
585 
586  /*
587  * The IC_INTR_STAT register just indicates "enabled" interrupts.
588  * Ths unmasked raw version of interrupt status bits are available
589  * in the IC_RAW_INTR_STAT register.
590  *
591  * That is,
592  * stat = dw_readl(IC_INTR_STAT);
593  * equals to,
594  * stat = dw_readl(IC_RAW_INTR_STAT) & dw_readl(IC_INTR_MASK);
595  *
596  * The raw version might be useful for debugging purposes.
597  */
598  stat = dw_readl(dev, DW_IC_INTR_STAT);
599 
600  /*
601  * Do not use the IC_CLR_INTR register to clear interrupts, or
602  * you'll miss some interrupts, triggered during the period from
603  * dw_readl(IC_INTR_STAT) to dw_readl(IC_CLR_INTR).
604  *
605  * Instead, use the separately-prepared IC_CLR_* registers.
606  */
607  if (stat & DW_IC_INTR_RX_UNDER)
609  if (stat & DW_IC_INTR_RX_OVER)
611  if (stat & DW_IC_INTR_TX_OVER)
613  if (stat & DW_IC_INTR_RD_REQ)
615  if (stat & DW_IC_INTR_TX_ABRT) {
616  /*
617  * The IC_TX_ABRT_SOURCE register is cleared whenever
618  * the IC_CLR_TX_ABRT is read. Preserve it beforehand.
619  */
622  }
623  if (stat & DW_IC_INTR_RX_DONE)
625  if (stat & DW_IC_INTR_ACTIVITY)
627  if (stat & DW_IC_INTR_STOP_DET)
629  if (stat & DW_IC_INTR_START_DET)
631  if (stat & DW_IC_INTR_GEN_CALL)
633 
634  return stat;
635 }
636 
637 /*
638  * Interrupt service routine. This gets called whenever an I2C interrupt
639  * occurs.
640  */
641 irqreturn_t i2c_dw_isr(int this_irq, void *dev_id)
642 {
643  struct dw_i2c_dev *dev = dev_id;
644  u32 stat, enabled;
645 
646  enabled = dw_readl(dev, DW_IC_ENABLE);
647  stat = dw_readl(dev, DW_IC_RAW_INTR_STAT);
648  dev_dbg(dev->dev, "%s: %s enabled= 0x%x stat=0x%x\n", __func__,
649  dev->adapter.name, enabled, stat);
650  if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY))
651  return IRQ_NONE;
652 
653  stat = i2c_dw_read_clear_intrbits(dev);
654 
655  if (stat & DW_IC_INTR_TX_ABRT) {
656  dev->cmd_err |= DW_IC_ERR_TX_ABRT;
657  dev->status = STATUS_IDLE;
658 
659  /*
660  * Anytime TX_ABRT is set, the contents of the tx/rx
661  * buffers are flushed. Make sure to skip them.
662  */
663  dw_writel(dev, 0, DW_IC_INTR_MASK);
664  goto tx_aborted;
665  }
666 
667  if (stat & DW_IC_INTR_RX_FULL)
668  i2c_dw_read(dev);
669 
670  if (stat & DW_IC_INTR_TX_EMPTY)
671  i2c_dw_xfer_msg(dev);
672 
673  /*
674  * No need to modify or disable the interrupt mask here.
675  * i2c_dw_xfer_msg() will take care of it according to
676  * the current transmit status.
677  */
678 
679 tx_aborted:
680  if ((stat & (DW_IC_INTR_TX_ABRT | DW_IC_INTR_STOP_DET)) || dev->msg_err)
681  complete(&dev->cmd_complete);
682 
683  return IRQ_HANDLED;
684 }
686 
687 void i2c_dw_enable(struct dw_i2c_dev *dev)
688 {
689  /* Enable the adapter */
690  dw_writel(dev, 1, DW_IC_ENABLE);
691 }
693 
695 {
696  return dw_readl(dev, DW_IC_ENABLE);
697 }
699 
700 void i2c_dw_disable(struct dw_i2c_dev *dev)
701 {
702  /* Disable controller */
703  dw_writel(dev, 0, DW_IC_ENABLE);
704 
705  /* Disable all interupts */
706  dw_writel(dev, 0, DW_IC_INTR_MASK);
707  dw_readl(dev, DW_IC_CLR_INTR);
708 }
710 
711 void i2c_dw_clear_int(struct dw_i2c_dev *dev)
712 {
713  dw_readl(dev, DW_IC_CLR_INTR);
714 }
716 
718 {
719  dw_writel(dev, 0, DW_IC_INTR_MASK);
720 }
722 
724 {
725  return dw_readl(dev, DW_IC_COMP_PARAM_1);
726 }