Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
i460-agp.c
Go to the documentation of this file.
1 /*
2  * For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of
3  * the "Intel 460GTX Chipset Software Developer's Manual":
4  * http://www.intel.com/design/archives/itanium/downloads/248704.htm
5  */
6 /*
7  * 460GX support by Chris Ahna <[email protected]>
8  * Clean up & simplification by David Mosberger-Tang <[email protected]>
9  */
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/string.h>
14 #include <linux/slab.h>
15 #include <linux/agp_backend.h>
16 #include <linux/log2.h>
17 
18 #include "agp.h"
19 
20 #define INTEL_I460_BAPBASE 0x98
21 #define INTEL_I460_GXBCTL 0xa0
22 #define INTEL_I460_AGPSIZ 0xa2
23 #define INTEL_I460_ATTBASE 0xfe200000
24 #define INTEL_I460_GATT_VALID (1UL << 24)
25 #define INTEL_I460_GATT_COHERENT (1UL << 25)
26 
27 /*
28  * The i460 can operate with large (4MB) pages, but there is no sane way to support this
29  * within the current kernel/DRM environment, so we disable the relevant code for now.
30  * See also comments in ia64_alloc_page()...
31  */
32 #define I460_LARGE_IO_PAGES 0
33 
34 #if I460_LARGE_IO_PAGES
35 # define I460_IO_PAGE_SHIFT i460.io_page_shift
36 #else
37 # define I460_IO_PAGE_SHIFT 12
38 #endif
39 
40 #define I460_IOPAGES_PER_KPAGE (PAGE_SIZE >> I460_IO_PAGE_SHIFT)
41 #define I460_KPAGES_PER_IOPAGE (1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT))
42 #define I460_SRAM_IO_DISABLE (1 << 4)
43 #define I460_BAPBASE_ENABLE (1 << 3)
44 #define I460_AGPSIZ_MASK 0x7
45 #define I460_4M_PS (1 << 1)
46 
47 /* Control bits for Out-Of-GART coherency and Burst Write Combining */
48 #define I460_GXBCTL_OOG (1UL << 0)
49 #define I460_GXBCTL_BWC (1UL << 2)
50 
51 /*
52  * gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the
53  * gatt_table and gatt_table_real pointers a "void *"...
54  */
55 #define RD_GATT(index) readl((u32 *) i460.gatt + (index))
56 #define WR_GATT(index, val) writel((val), (u32 *) i460.gatt + (index))
57 /*
58  * The 460 spec says we have to read the last location written to make sure that all
59  * writes have taken effect
60  */
61 #define WR_FLUSH_GATT(index) RD_GATT(index)
62 
63 static unsigned long i460_mask_memory (struct agp_bridge_data *bridge,
64  dma_addr_t addr, int type);
65 
66 static struct {
67  void *gatt; /* ioremap'd GATT area */
68 
69  /* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */
71 
72  /* BIOS configures chipset to one of 2 possible apbase values: */
74 
75  /* structure for tracking partial use of 4MB GART pages: */
76  struct lp_desc {
77  unsigned long *alloced_map; /* bitmap of kernel-pages in use */
78  int refcount; /* number of kernel pages using the large page */
79  u64 paddr; /* physical address of large page */
80  struct page *page; /* page pointer */
81  } *lp_desc;
82 } i460;
83 
84 static const struct aper_size_info_8 i460_sizes[3] =
85 {
86  /*
87  * The 32GB aperture is only available with a 4M GART page size. Due to the
88  * dynamic GART page size, we can't figure out page_order or num_entries until
89  * runtime.
90  */
91  {32768, 0, 0, 4},
92  {1024, 0, 0, 2},
93  {256, 0, 0, 1}
94 };
95 
96 static struct gatt_mask i460_masks[] =
97 {
98  {
100  .type = 0
101  }
102 };
103 
104 static int i460_fetch_size (void)
105 {
106  int i;
107  u8 temp;
108  struct aper_size_info_8 *values;
109 
110  /* Determine the GART page size */
111  pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp);
112  i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12;
113  pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift);
114 
115  if (i460.io_page_shift != I460_IO_PAGE_SHIFT) {
117  "I/O (GART) page-size %luKB doesn't match expected "
118  "size %luKB\n",
119  1UL << (i460.io_page_shift - 10),
120  1UL << (I460_IO_PAGE_SHIFT));
121  return 0;
122  }
123 
124  values = A_SIZE_8(agp_bridge->driver->aperture_sizes);
125 
126  pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
127 
128  /* Exit now if the IO drivers for the GART SRAMS are turned off */
129  if (temp & I460_SRAM_IO_DISABLE) {
130  printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n");
131  printk(KERN_ERR PFX "AGPGART operation not possible\n");
132  return 0;
133  }
134 
135  /* Make sure we don't try to create an 2 ^ 23 entry GATT */
136  if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) {
137  printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n");
138  return 0;
139  }
140 
141  /* Determine the proper APBASE register */
142  if (temp & I460_BAPBASE_ENABLE)
143  i460.dynamic_apbase = INTEL_I460_BAPBASE;
144  else
145  i460.dynamic_apbase = AGP_APBASE;
146 
147  for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
148  /*
149  * Dynamically calculate the proper num_entries and page_order values for
150  * the define aperture sizes. Take care not to shift off the end of
151  * values[i].size.
152  */
153  values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12);
154  values[i].page_order = ilog2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT);
155  }
156 
157  for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
158  /* Neglect control bits when matching up size_value */
159  if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) {
160  agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i);
161  agp_bridge->aperture_size_idx = i;
162  return values[i].size;
163  }
164  }
165 
166  return 0;
167 }
168 
169 /* There isn't anything to do here since 460 has no GART TLB. */
170 static void i460_tlb_flush (struct agp_memory *mem)
171 {
172  return;
173 }
174 
175 /*
176  * This utility function is needed to prevent corruption of the control bits
177  * which are stored along with the aperture size in 460's AGPSIZ register
178  */
179 static void i460_write_agpsiz (u8 size_value)
180 {
181  u8 temp;
182 
183  pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
184  pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ,
185  ((temp & ~I460_AGPSIZ_MASK) | size_value));
186 }
187 
188 static void i460_cleanup (void)
189 {
190  struct aper_size_info_8 *previous_size;
191 
192  previous_size = A_SIZE_8(agp_bridge->previous_size);
193  i460_write_agpsiz(previous_size->size_value);
194 
196  kfree(i460.lp_desc);
197 }
198 
199 static int i460_configure (void)
200 {
201  union {
202  u32 small[2];
203  u64 large;
204  } temp;
205  size_t size;
206  u8 scratch;
207  struct aper_size_info_8 *current_size;
208 
209  temp.large = 0;
210 
211  current_size = A_SIZE_8(agp_bridge->current_size);
212  i460_write_agpsiz(current_size->size_value);
213 
214  /*
215  * Do the necessary rigmarole to read all eight bytes of APBASE.
216  * This has to be done since the AGP aperture can be above 4GB on
217  * 460 based systems.
218  */
219  pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0]));
220  pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1]));
221 
222  /* Clear BAR control bits */
223  agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1);
224 
225  pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch);
226  pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL,
227  (scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC);
228 
229  /*
230  * Initialize partial allocation trackers if a GART page is bigger than a kernel
231  * page.
232  */
234  size = current_size->num_entries * sizeof(i460.lp_desc[0]);
235  i460.lp_desc = kzalloc(size, GFP_KERNEL);
236  if (!i460.lp_desc)
237  return -ENOMEM;
238  }
239  return 0;
240 }
241 
242 static int i460_create_gatt_table (struct agp_bridge_data *bridge)
243 {
244  int page_order, num_entries, i;
245  void *temp;
246 
247  /*
248  * Load up the fixed address of the GART SRAMS which hold our GATT table.
249  */
250  temp = agp_bridge->current_size;
251  page_order = A_SIZE_8(temp)->page_order;
252  num_entries = A_SIZE_8(temp)->num_entries;
253 
254  i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order);
255  if (!i460.gatt) {
256  printk(KERN_ERR PFX "ioremap failed\n");
257  return -ENOMEM;
258  }
259 
260  /* These are no good, the should be removed from the agp_bridge strucure... */
261  agp_bridge->gatt_table_real = NULL;
262  agp_bridge->gatt_table = NULL;
263  agp_bridge->gatt_bus_addr = 0;
264 
265  for (i = 0; i < num_entries; ++i)
266  WR_GATT(i, 0);
267  WR_FLUSH_GATT(i - 1);
268  return 0;
269 }
270 
271 static int i460_free_gatt_table (struct agp_bridge_data *bridge)
272 {
273  int num_entries, i;
274  void *temp;
275 
276  temp = agp_bridge->current_size;
277 
278  num_entries = A_SIZE_8(temp)->num_entries;
279 
280  for (i = 0; i < num_entries; ++i)
281  WR_GATT(i, 0);
282  WR_FLUSH_GATT(num_entries - 1);
283 
284  iounmap(i460.gatt);
285  return 0;
286 }
287 
288 /*
289  * The following functions are called when the I/O (GART) page size is smaller than
290  * PAGE_SIZE.
291  */
292 
293 static int i460_insert_memory_small_io_page (struct agp_memory *mem,
294  off_t pg_start, int type)
295 {
296  unsigned long paddr, io_pg_start, io_page_size;
297  int i, j, k, num_entries;
298  void *temp;
299 
300  pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n",
301  mem, pg_start, type, page_to_phys(mem->pages[0]));
302 
303  if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
304  return -EINVAL;
305 
306  io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
307 
308  temp = agp_bridge->current_size;
309  num_entries = A_SIZE_8(temp)->num_entries;
310 
311  if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) {
312  printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
313  return -EINVAL;
314  }
315 
316  j = io_pg_start;
317  while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) {
318  if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) {
319  pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n",
320  j, RD_GATT(j));
321  return -EBUSY;
322  }
323  j++;
324  }
325 
326  io_page_size = 1UL << I460_IO_PAGE_SHIFT;
327  for (i = 0, j = io_pg_start; i < mem->page_count; i++) {
328  paddr = page_to_phys(mem->pages[i]);
329  for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size)
330  WR_GATT(j, i460_mask_memory(agp_bridge, paddr, mem->type));
331  }
332  WR_FLUSH_GATT(j - 1);
333  return 0;
334 }
335 
336 static int i460_remove_memory_small_io_page(struct agp_memory *mem,
337  off_t pg_start, int type)
338 {
339  int i;
340 
341  pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n",
342  mem, pg_start, type);
343 
344  pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
345 
346  for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++)
347  WR_GATT(i, 0);
348  WR_FLUSH_GATT(i - 1);
349  return 0;
350 }
351 
352 #if I460_LARGE_IO_PAGES
353 
354 /*
355  * These functions are called when the I/O (GART) page size exceeds PAGE_SIZE.
356  *
357  * This situation is interesting since AGP memory allocations that are smaller than a
358  * single GART page are possible. The i460.lp_desc array tracks partial allocation of the
359  * large GART pages to work around this issue.
360  *
361  * i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page
362  * pg_num. i460.lp_desc[pg_num].paddr is the physical address of the large page and
363  * i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated).
364  */
365 
366 static int i460_alloc_large_page (struct lp_desc *lp)
367 {
368  unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT;
369  size_t map_size;
370 
371  lp->page = alloc_pages(GFP_KERNEL, order);
372  if (!lp->page) {
373  printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n");
374  return -ENOMEM;
375  }
376 
377  map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8;
378  lp->alloced_map = kzalloc(map_size, GFP_KERNEL);
379  if (!lp->alloced_map) {
380  __free_pages(lp->page, order);
381  printk(KERN_ERR PFX "Out of memory, we're in trouble...\n");
382  return -ENOMEM;
383  }
384 
385  lp->paddr = page_to_phys(lp->page);
386  lp->refcount = 0;
387  atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
388  return 0;
389 }
390 
391 static void i460_free_large_page (struct lp_desc *lp)
392 {
393  kfree(lp->alloced_map);
394  lp->alloced_map = NULL;
395 
396  __free_pages(lp->page, I460_IO_PAGE_SHIFT - PAGE_SHIFT);
397  atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
398 }
399 
400 static int i460_insert_memory_large_io_page (struct agp_memory *mem,
401  off_t pg_start, int type)
402 {
404  struct lp_desc *start, *end, *lp;
405  void *temp;
406 
407  if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
408  return -EINVAL;
409 
410  temp = agp_bridge->current_size;
411  num_entries = A_SIZE_8(temp)->num_entries;
412 
413  /* Figure out what pg_start means in terms of our large GART pages */
414  start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
415  end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
416  start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
417  end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
418 
419  if (end > i460.lp_desc + num_entries) {
420  printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
421  return -EINVAL;
422  }
423 
424  /* Check if the requested region of the aperture is free */
425  for (lp = start; lp <= end; ++lp) {
426  if (!lp->alloced_map)
427  continue; /* OK, the entire large page is available... */
428 
429  for (idx = ((lp == start) ? start_offset : 0);
430  idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
431  idx++)
432  {
433  if (test_bit(idx, lp->alloced_map))
434  return -EBUSY;
435  }
436  }
437 
438  for (lp = start, i = 0; lp <= end; ++lp) {
439  if (!lp->alloced_map) {
440  /* Allocate new GART pages... */
441  if (i460_alloc_large_page(lp) < 0)
442  return -ENOMEM;
443  pg = lp - i460.lp_desc;
444  WR_GATT(pg, i460_mask_memory(agp_bridge,
445  lp->paddr, 0));
446  WR_FLUSH_GATT(pg);
447  }
448 
449  for (idx = ((lp == start) ? start_offset : 0);
450  idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
451  idx++, i++)
452  {
453  mem->pages[i] = lp->page;
454  __set_bit(idx, lp->alloced_map);
455  ++lp->refcount;
456  }
457  }
458  return 0;
459 }
460 
461 static int i460_remove_memory_large_io_page (struct agp_memory *mem,
462  off_t pg_start, int type)
463 {
465  struct lp_desc *start, *end, *lp;
466  void *temp;
467 
468  temp = agp_bridge->current_size;
469  num_entries = A_SIZE_8(temp)->num_entries;
470 
471  /* Figure out what pg_start means in terms of our large GART pages */
472  start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
473  end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
474  start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
475  end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
476 
477  for (i = 0, lp = start; lp <= end; ++lp) {
478  for (idx = ((lp == start) ? start_offset : 0);
479  idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
480  idx++, i++)
481  {
482  mem->pages[i] = NULL;
483  __clear_bit(idx, lp->alloced_map);
484  --lp->refcount;
485  }
486 
487  /* Free GART pages if they are unused */
488  if (lp->refcount == 0) {
489  pg = lp - i460.lp_desc;
490  WR_GATT(pg, 0);
491  WR_FLUSH_GATT(pg);
492  i460_free_large_page(lp);
493  }
494  }
495  return 0;
496 }
497 
498 /* Wrapper routines to call the approriate {small_io_page,large_io_page} function */
499 
500 static int i460_insert_memory (struct agp_memory *mem,
501  off_t pg_start, int type)
502 {
503  if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
504  return i460_insert_memory_small_io_page(mem, pg_start, type);
505  else
506  return i460_insert_memory_large_io_page(mem, pg_start, type);
507 }
508 
509 static int i460_remove_memory (struct agp_memory *mem,
510  off_t pg_start, int type)
511 {
512  if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
513  return i460_remove_memory_small_io_page(mem, pg_start, type);
514  else
515  return i460_remove_memory_large_io_page(mem, pg_start, type);
516 }
517 
518 /*
519  * If the I/O (GART) page size is bigger than the kernel page size, we don't want to
520  * allocate memory until we know where it is to be bound in the aperture (a
521  * multi-kernel-page alloc might fit inside of an already allocated GART page).
522  *
523  * Let's just hope nobody counts on the allocated AGP memory being there before bind time
524  * (I don't think current drivers do)...
525  */
526 static struct page *i460_alloc_page (struct agp_bridge_data *bridge)
527 {
528  void *page;
529 
530  if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
532  } else
533  /* Returning NULL would cause problems */
534  /* AK: really dubious code. */
535  page = (void *)~0UL;
536  return page;
537 }
538 
539 static void i460_destroy_page (struct page *page, int flags)
540 {
541  if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
542  agp_generic_destroy_page(page, flags);
543  }
544 }
545 
546 #endif /* I460_LARGE_IO_PAGES */
547 
548 static unsigned long i460_mask_memory (struct agp_bridge_data *bridge,
549  dma_addr_t addr, int type)
550 {
551  /* Make sure the returned address is a valid GATT entry */
552  return bridge->driver->masks[0].mask
553  | (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xfffff000) >> 12);
554 }
555 
557  .owner = THIS_MODULE,
558  .aperture_sizes = i460_sizes,
559  .size_type = U8_APER_SIZE,
560  .num_aperture_sizes = 3,
561  .configure = i460_configure,
562  .fetch_size = i460_fetch_size,
563  .cleanup = i460_cleanup,
564  .tlb_flush = i460_tlb_flush,
565  .mask_memory = i460_mask_memory,
566  .masks = i460_masks,
567  .agp_enable = agp_generic_enable,
568  .cache_flush = global_cache_flush,
569  .create_gatt_table = i460_create_gatt_table,
570  .free_gatt_table = i460_free_gatt_table,
571 #if I460_LARGE_IO_PAGES
572  .insert_memory = i460_insert_memory,
573  .remove_memory = i460_remove_memory,
574  .agp_alloc_page = i460_alloc_page,
575  .agp_destroy_page = i460_destroy_page,
576 #else
577  .insert_memory = i460_insert_memory_small_io_page,
578  .remove_memory = i460_remove_memory_small_io_page,
579  .agp_alloc_page = agp_generic_alloc_page,
580  .agp_alloc_pages = agp_generic_alloc_pages,
581  .agp_destroy_page = agp_generic_destroy_page,
582  .agp_destroy_pages = agp_generic_destroy_pages,
583 #endif
584  .alloc_by_type = agp_generic_alloc_by_type,
585  .free_by_type = agp_generic_free_by_type,
586  .agp_type_to_mask_type = agp_generic_type_to_mask_type,
587  .cant_use_aperture = true,
588 };
589 
590 static int __devinit agp_intel_i460_probe(struct pci_dev *pdev,
591  const struct pci_device_id *ent)
592 {
593  struct agp_bridge_data *bridge;
594  u8 cap_ptr;
595 
596  cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP);
597  if (!cap_ptr)
598  return -ENODEV;
599 
600  bridge = agp_alloc_bridge();
601  if (!bridge)
602  return -ENOMEM;
603 
604  bridge->driver = &intel_i460_driver;
605  bridge->dev = pdev;
606  bridge->capndx = cap_ptr;
607 
608  printk(KERN_INFO PFX "Detected Intel 460GX chipset\n");
609 
610  pci_set_drvdata(pdev, bridge);
611  return agp_add_bridge(bridge);
612 }
613 
614 static void __devexit agp_intel_i460_remove(struct pci_dev *pdev)
615 {
616  struct agp_bridge_data *bridge = pci_get_drvdata(pdev);
617 
618  agp_remove_bridge(bridge);
619  agp_put_bridge(bridge);
620 }
621 
622 static struct pci_device_id agp_intel_i460_pci_table[] = {
623  {
624  .class = (PCI_CLASS_BRIDGE_HOST << 8),
625  .class_mask = ~0,
630  },
631  { }
632 };
633 
634 MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table);
635 
636 static struct pci_driver agp_intel_i460_pci_driver = {
637  .name = "agpgart-intel-i460",
638  .id_table = agp_intel_i460_pci_table,
639  .probe = agp_intel_i460_probe,
640  .remove = __devexit_p(agp_intel_i460_remove),
641 };
642 
643 static int __init agp_intel_i460_init(void)
644 {
645  if (agp_off)
646  return -EINVAL;
647  return pci_register_driver(&agp_intel_i460_pci_driver);
648 }
649 
650 static void __exit agp_intel_i460_cleanup(void)
651 {
652  pci_unregister_driver(&agp_intel_i460_pci_driver);
653 }
654 
655 module_init(agp_intel_i460_init);
656 module_exit(agp_intel_i460_cleanup);
657 
658 MODULE_AUTHOR("Chris Ahna <[email protected]>");
659 MODULE_LICENSE("GPL and additional rights");