Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ip_output.c
Go to the documentation of this file.
1 /*
2  * INET An implementation of the TCP/IP protocol suite for the LINUX
3  * operating system. INET is implemented using the BSD Socket
4  * interface as the means of communication with the user level.
5  *
6  * The Internet Protocol (IP) output module.
7  *
8  * Authors: Ross Biro
9  * Fred N. van Kempen, <[email protected]>
10  * Donald Becker, <[email protected]>
11  * Alan Cox, <[email protected]>
12  * Richard Underwood
13  * Stefan Becker, <[email protected]>
14  * Jorge Cwik, <[email protected]>
15  * Arnt Gulbrandsen, <[email protected]>
16  * Hirokazu Takahashi, <[email protected]>
17  *
18  * See ip_input.c for original log
19  *
20  * Fixes:
21  * Alan Cox : Missing nonblock feature in ip_build_xmit.
22  * Mike Kilburn : htons() missing in ip_build_xmit.
23  * Bradford Johnson: Fix faulty handling of some frames when
24  * no route is found.
25  * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26  * (in case if packet not accepted by
27  * output firewall rules)
28  * Mike McLagan : Routing by source
29  * Alexey Kuznetsov: use new route cache
30  * Andi Kleen: Fix broken PMTU recovery and remove
31  * some redundant tests.
32  * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33  * Andi Kleen : Replace ip_reply with ip_send_reply.
34  * Andi Kleen : Split fast and slow ip_build_xmit path
35  * for decreased register pressure on x86
36  * and more readibility.
37  * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38  * silently drop skb instead of failing with -EPERM.
39  * Detlev Wengorz : Copy protocol for fragments.
40  * Hirokazu Takahashi: HW checksumming for outgoing UDP
41  * datagrams.
42  * Hirokazu Takahashi: sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85 
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__ void ip_send_check(struct iphdr *iph)
88 {
89  iph->check = 0;
90  iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
93 
95 {
96  struct iphdr *iph = ip_hdr(skb);
97 
98  iph->tot_len = htons(skb->len);
99  ip_send_check(iph);
100  return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101  skb_dst(skb)->dev, dst_output);
102 }
103 
105 {
106  int err;
107 
108  err = __ip_local_out(skb);
109  if (likely(err == 1))
110  err = dst_output(skb);
111 
112  return err;
113 }
115 
116 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117 {
118  int ttl = inet->uc_ttl;
119 
120  if (ttl < 0)
121  ttl = ip4_dst_hoplimit(dst);
122  return ttl;
123 }
124 
125 /*
126  * Add an ip header to a skbuff and send it out.
127  *
128  */
129 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
131 {
132  struct inet_sock *inet = inet_sk(sk);
133  struct rtable *rt = skb_rtable(skb);
134  struct iphdr *iph;
135 
136  /* Build the IP header. */
137  skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138  skb_reset_network_header(skb);
139  iph = ip_hdr(skb);
140  iph->version = 4;
141  iph->ihl = 5;
142  iph->tos = inet->tos;
143  if (ip_dont_fragment(sk, &rt->dst))
144  iph->frag_off = htons(IP_DF);
145  else
146  iph->frag_off = 0;
147  iph->ttl = ip_select_ttl(inet, &rt->dst);
148  iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149  iph->saddr = saddr;
150  iph->protocol = sk->sk_protocol;
151  ip_select_ident(iph, &rt->dst, sk);
152 
153  if (opt && opt->opt.optlen) {
154  iph->ihl += opt->opt.optlen>>2;
155  ip_options_build(skb, &opt->opt, daddr, rt, 0);
156  }
157 
158  skb->priority = sk->sk_priority;
159  skb->mark = sk->sk_mark;
160 
161  /* Send it out. */
162  return ip_local_out(skb);
163 }
165 
166 static inline int ip_finish_output2(struct sk_buff *skb)
167 {
168  struct dst_entry *dst = skb_dst(skb);
169  struct rtable *rt = (struct rtable *)dst;
170  struct net_device *dev = dst->dev;
171  unsigned int hh_len = LL_RESERVED_SPACE(dev);
172  struct neighbour *neigh;
173  u32 nexthop;
174 
175  if (rt->rt_type == RTN_MULTICAST) {
176  IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
177  } else if (rt->rt_type == RTN_BROADCAST)
178  IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
179 
180  /* Be paranoid, rather than too clever. */
181  if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
182  struct sk_buff *skb2;
183 
184  skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185  if (skb2 == NULL) {
186  kfree_skb(skb);
187  return -ENOMEM;
188  }
189  if (skb->sk)
190  skb_set_owner_w(skb2, skb->sk);
191  consume_skb(skb);
192  skb = skb2;
193  }
194 
195  rcu_read_lock_bh();
196  nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
197  neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
198  if (unlikely(!neigh))
199  neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
200  if (!IS_ERR(neigh)) {
201  int res = dst_neigh_output(dst, neigh, skb);
202 
203  rcu_read_unlock_bh();
204  return res;
205  }
206  rcu_read_unlock_bh();
207 
208  net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
209  __func__);
210  kfree_skb(skb);
211  return -EINVAL;
212 }
213 
214 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
215 {
216  struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
217 
218  return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
219  skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
220 }
221 
222 static int ip_finish_output(struct sk_buff *skb)
223 {
224 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
225  /* Policy lookup after SNAT yielded a new policy */
226  if (skb_dst(skb)->xfrm != NULL) {
227  IPCB(skb)->flags |= IPSKB_REROUTED;
228  return dst_output(skb);
229  }
230 #endif
231  if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
232  return ip_fragment(skb, ip_finish_output2);
233  else
234  return ip_finish_output2(skb);
235 }
236 
237 int ip_mc_output(struct sk_buff *skb)
238 {
239  struct sock *sk = skb->sk;
240  struct rtable *rt = skb_rtable(skb);
241  struct net_device *dev = rt->dst.dev;
242 
243  /*
244  * If the indicated interface is up and running, send the packet.
245  */
246  IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
247 
248  skb->dev = dev;
249  skb->protocol = htons(ETH_P_IP);
250 
251  /*
252  * Multicasts are looped back for other local users
253  */
254 
255  if (rt->rt_flags&RTCF_MULTICAST) {
256  if (sk_mc_loop(sk)
257 #ifdef CONFIG_IP_MROUTE
258  /* Small optimization: do not loopback not local frames,
259  which returned after forwarding; they will be dropped
260  by ip_mr_input in any case.
261  Note, that local frames are looped back to be delivered
262  to local recipients.
263 
264  This check is duplicated in ip_mr_input at the moment.
265  */
266  &&
267  ((rt->rt_flags & RTCF_LOCAL) ||
268  !(IPCB(skb)->flags & IPSKB_FORWARDED))
269 #endif
270  ) {
271  struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
272  if (newskb)
274  newskb, NULL, newskb->dev,
276  }
277 
278  /* Multicasts with ttl 0 must not go beyond the host */
279 
280  if (ip_hdr(skb)->ttl == 0) {
281  kfree_skb(skb);
282  return 0;
283  }
284  }
285 
286  if (rt->rt_flags&RTCF_BROADCAST) {
287  struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
288  if (newskb)
290  NULL, newskb->dev, dev_loopback_xmit);
291  }
292 
294  skb->dev, ip_finish_output,
295  !(IPCB(skb)->flags & IPSKB_REROUTED));
296 }
297 
298 int ip_output(struct sk_buff *skb)
299 {
300  struct net_device *dev = skb_dst(skb)->dev;
301 
302  IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
303 
304  skb->dev = dev;
305  skb->protocol = htons(ETH_P_IP);
306 
308  ip_finish_output,
309  !(IPCB(skb)->flags & IPSKB_REROUTED));
310 }
311 
312 /*
313  * copy saddr and daddr, possibly using 64bit load/stores
314  * Equivalent to :
315  * iph->saddr = fl4->saddr;
316  * iph->daddr = fl4->daddr;
317  */
318 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
319 {
320  BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
321  offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
322  memcpy(&iph->saddr, &fl4->saddr,
323  sizeof(fl4->saddr) + sizeof(fl4->daddr));
324 }
325 
326 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
327 {
328  struct sock *sk = skb->sk;
329  struct inet_sock *inet = inet_sk(sk);
330  struct ip_options_rcu *inet_opt;
331  struct flowi4 *fl4;
332  struct rtable *rt;
333  struct iphdr *iph;
334  int res;
335 
336  /* Skip all of this if the packet is already routed,
337  * f.e. by something like SCTP.
338  */
339  rcu_read_lock();
340  inet_opt = rcu_dereference(inet->inet_opt);
341  fl4 = &fl->u.ip4;
342  rt = skb_rtable(skb);
343  if (rt != NULL)
344  goto packet_routed;
345 
346  /* Make sure we can route this packet. */
347  rt = (struct rtable *)__sk_dst_check(sk, 0);
348  if (rt == NULL) {
349  __be32 daddr;
350 
351  /* Use correct destination address if we have options. */
352  daddr = inet->inet_daddr;
353  if (inet_opt && inet_opt->opt.srr)
354  daddr = inet_opt->opt.faddr;
355 
356  /* If this fails, retransmit mechanism of transport layer will
357  * keep trying until route appears or the connection times
358  * itself out.
359  */
360  rt = ip_route_output_ports(sock_net(sk), fl4, sk,
361  daddr, inet->inet_saddr,
362  inet->inet_dport,
363  inet->inet_sport,
364  sk->sk_protocol,
365  RT_CONN_FLAGS(sk),
366  sk->sk_bound_dev_if);
367  if (IS_ERR(rt))
368  goto no_route;
369  sk_setup_caps(sk, &rt->dst);
370  }
371  skb_dst_set_noref(skb, &rt->dst);
372 
373 packet_routed:
374  if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
375  goto no_route;
376 
377  /* OK, we know where to send it, allocate and build IP header. */
378  skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
379  skb_reset_network_header(skb);
380  iph = ip_hdr(skb);
381  *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
382  if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
383  iph->frag_off = htons(IP_DF);
384  else
385  iph->frag_off = 0;
386  iph->ttl = ip_select_ttl(inet, &rt->dst);
387  iph->protocol = sk->sk_protocol;
388  ip_copy_addrs(iph, fl4);
389 
390  /* Transport layer set skb->h.foo itself. */
391 
392  if (inet_opt && inet_opt->opt.optlen) {
393  iph->ihl += inet_opt->opt.optlen >> 2;
394  ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
395  }
396 
397  ip_select_ident_more(iph, &rt->dst, sk,
398  (skb_shinfo(skb)->gso_segs ?: 1) - 1);
399 
400  skb->priority = sk->sk_priority;
401  skb->mark = sk->sk_mark;
402 
403  res = ip_local_out(skb);
404  rcu_read_unlock();
405  return res;
406 
407 no_route:
408  rcu_read_unlock();
409  IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
410  kfree_skb(skb);
411  return -EHOSTUNREACH;
412 }
414 
415 
416 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
417 {
418  to->pkt_type = from->pkt_type;
419  to->priority = from->priority;
420  to->protocol = from->protocol;
421  skb_dst_drop(to);
422  skb_dst_copy(to, from);
423  to->dev = from->dev;
424  to->mark = from->mark;
425 
426  /* Copy the flags to each fragment. */
427  IPCB(to)->flags = IPCB(from)->flags;
428 
429 #ifdef CONFIG_NET_SCHED
430  to->tc_index = from->tc_index;
431 #endif
432  nf_copy(to, from);
433 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
434  defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
435  to->nf_trace = from->nf_trace;
436 #endif
437 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
438  to->ipvs_property = from->ipvs_property;
439 #endif
440  skb_copy_secmark(to, from);
441 }
442 
443 /*
444  * This IP datagram is too large to be sent in one piece. Break it up into
445  * smaller pieces (each of size equal to IP header plus
446  * a block of the data of the original IP data part) that will yet fit in a
447  * single device frame, and queue such a frame for sending.
448  */
449 
450 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
451 {
452  struct iphdr *iph;
453  int ptr;
454  struct net_device *dev;
455  struct sk_buff *skb2;
456  unsigned int mtu, hlen, left, len, ll_rs;
457  int offset;
458  __be16 not_last_frag;
459  struct rtable *rt = skb_rtable(skb);
460  int err = 0;
461 
462  dev = rt->dst.dev;
463 
464  /*
465  * Point into the IP datagram header.
466  */
467 
468  iph = ip_hdr(skb);
469 
470  if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) ||
471  (IPCB(skb)->frag_max_size &&
472  IPCB(skb)->frag_max_size > dst_mtu(&rt->dst)))) {
473  IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
475  htonl(ip_skb_dst_mtu(skb)));
476  kfree_skb(skb);
477  return -EMSGSIZE;
478  }
479 
480  /*
481  * Setup starting values.
482  */
483 
484  hlen = iph->ihl * 4;
485  mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
486 #ifdef CONFIG_BRIDGE_NETFILTER
487  if (skb->nf_bridge)
488  mtu -= nf_bridge_mtu_reduction(skb);
489 #endif
490  IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
491 
492  /* When frag_list is given, use it. First, check its validity:
493  * some transformers could create wrong frag_list or break existing
494  * one, it is not prohibited. In this case fall back to copying.
495  *
496  * LATER: this step can be merged to real generation of fragments,
497  * we can switch to copy when see the first bad fragment.
498  */
499  if (skb_has_frag_list(skb)) {
500  struct sk_buff *frag, *frag2;
501  int first_len = skb_pagelen(skb);
502 
503  if (first_len - hlen > mtu ||
504  ((first_len - hlen) & 7) ||
505  ip_is_fragment(iph) ||
506  skb_cloned(skb))
507  goto slow_path;
508 
509  skb_walk_frags(skb, frag) {
510  /* Correct geometry. */
511  if (frag->len > mtu ||
512  ((frag->len & 7) && frag->next) ||
513  skb_headroom(frag) < hlen)
514  goto slow_path_clean;
515 
516  /* Partially cloned skb? */
517  if (skb_shared(frag))
518  goto slow_path_clean;
519 
520  BUG_ON(frag->sk);
521  if (skb->sk) {
522  frag->sk = skb->sk;
523  frag->destructor = sock_wfree;
524  }
525  skb->truesize -= frag->truesize;
526  }
527 
528  /* Everything is OK. Generate! */
529 
530  err = 0;
531  offset = 0;
532  frag = skb_shinfo(skb)->frag_list;
533  skb_frag_list_init(skb);
534  skb->data_len = first_len - skb_headlen(skb);
535  skb->len = first_len;
536  iph->tot_len = htons(first_len);
537  iph->frag_off = htons(IP_MF);
538  ip_send_check(iph);
539 
540  for (;;) {
541  /* Prepare header of the next frame,
542  * before previous one went down. */
543  if (frag) {
544  frag->ip_summed = CHECKSUM_NONE;
545  skb_reset_transport_header(frag);
546  __skb_push(frag, hlen);
547  skb_reset_network_header(frag);
548  memcpy(skb_network_header(frag), iph, hlen);
549  iph = ip_hdr(frag);
550  iph->tot_len = htons(frag->len);
551  ip_copy_metadata(frag, skb);
552  if (offset == 0)
553  ip_options_fragment(frag);
554  offset += skb->len - hlen;
555  iph->frag_off = htons(offset>>3);
556  if (frag->next != NULL)
557  iph->frag_off |= htons(IP_MF);
558  /* Ready, complete checksum */
559  ip_send_check(iph);
560  }
561 
562  err = output(skb);
563 
564  if (!err)
565  IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
566  if (err || !frag)
567  break;
568 
569  skb = frag;
570  frag = skb->next;
571  skb->next = NULL;
572  }
573 
574  if (err == 0) {
575  IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
576  return 0;
577  }
578 
579  while (frag) {
580  skb = frag->next;
581  kfree_skb(frag);
582  frag = skb;
583  }
584  IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
585  return err;
586 
587 slow_path_clean:
588  skb_walk_frags(skb, frag2) {
589  if (frag2 == frag)
590  break;
591  frag2->sk = NULL;
592  frag2->destructor = NULL;
593  skb->truesize += frag2->truesize;
594  }
595  }
596 
597 slow_path:
598  left = skb->len - hlen; /* Space per frame */
599  ptr = hlen; /* Where to start from */
600 
601  /* for bridged IP traffic encapsulated inside f.e. a vlan header,
602  * we need to make room for the encapsulating header
603  */
604  ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
605 
606  /*
607  * Fragment the datagram.
608  */
609 
610  offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
611  not_last_frag = iph->frag_off & htons(IP_MF);
612 
613  /*
614  * Keep copying data until we run out.
615  */
616 
617  while (left > 0) {
618  len = left;
619  /* IF: it doesn't fit, use 'mtu' - the data space left */
620  if (len > mtu)
621  len = mtu;
622  /* IF: we are not sending up to and including the packet end
623  then align the next start on an eight byte boundary */
624  if (len < left) {
625  len &= ~7;
626  }
627  /*
628  * Allocate buffer.
629  */
630 
631  if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
632  NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
633  err = -ENOMEM;
634  goto fail;
635  }
636 
637  /*
638  * Set up data on packet
639  */
640 
641  ip_copy_metadata(skb2, skb);
642  skb_reserve(skb2, ll_rs);
643  skb_put(skb2, len + hlen);
644  skb_reset_network_header(skb2);
645  skb2->transport_header = skb2->network_header + hlen;
646 
647  /*
648  * Charge the memory for the fragment to any owner
649  * it might possess
650  */
651 
652  if (skb->sk)
653  skb_set_owner_w(skb2, skb->sk);
654 
655  /*
656  * Copy the packet header into the new buffer.
657  */
658 
659  skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
660 
661  /*
662  * Copy a block of the IP datagram.
663  */
664  if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
665  BUG();
666  left -= len;
667 
668  /*
669  * Fill in the new header fields.
670  */
671  iph = ip_hdr(skb2);
672  iph->frag_off = htons((offset >> 3));
673 
674  /* ANK: dirty, but effective trick. Upgrade options only if
675  * the segment to be fragmented was THE FIRST (otherwise,
676  * options are already fixed) and make it ONCE
677  * on the initial skb, so that all the following fragments
678  * will inherit fixed options.
679  */
680  if (offset == 0)
681  ip_options_fragment(skb);
682 
683  /*
684  * Added AC : If we are fragmenting a fragment that's not the
685  * last fragment then keep MF on each bit
686  */
687  if (left > 0 || not_last_frag)
688  iph->frag_off |= htons(IP_MF);
689  ptr += len;
690  offset += len;
691 
692  /*
693  * Put this fragment into the sending queue.
694  */
695  iph->tot_len = htons(len + hlen);
696 
697  ip_send_check(iph);
698 
699  err = output(skb2);
700  if (err)
701  goto fail;
702 
703  IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
704  }
705  consume_skb(skb);
706  IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
707  return err;
708 
709 fail:
710  kfree_skb(skb);
711  IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
712  return err;
713 }
715 
716 int
717 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
718 {
719  struct iovec *iov = from;
720 
721  if (skb->ip_summed == CHECKSUM_PARTIAL) {
722  if (memcpy_fromiovecend(to, iov, offset, len) < 0)
723  return -EFAULT;
724  } else {
725  __wsum csum = 0;
726  if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
727  return -EFAULT;
728  skb->csum = csum_block_add(skb->csum, csum, odd);
729  }
730  return 0;
731 }
733 
734 static inline __wsum
735 csum_page(struct page *page, int offset, int copy)
736 {
737  char *kaddr;
738  __wsum csum;
739  kaddr = kmap(page);
740  csum = csum_partial(kaddr + offset, copy, 0);
741  kunmap(page);
742  return csum;
743 }
744 
745 static inline int ip_ufo_append_data(struct sock *sk,
746  struct sk_buff_head *queue,
747  int getfrag(void *from, char *to, int offset, int len,
748  int odd, struct sk_buff *skb),
749  void *from, int length, int hh_len, int fragheaderlen,
750  int transhdrlen, int maxfraglen, unsigned int flags)
751 {
752  struct sk_buff *skb;
753  int err;
754 
755  /* There is support for UDP fragmentation offload by network
756  * device, so create one single skb packet containing complete
757  * udp datagram
758  */
759  if ((skb = skb_peek_tail(queue)) == NULL) {
760  skb = sock_alloc_send_skb(sk,
761  hh_len + fragheaderlen + transhdrlen + 20,
762  (flags & MSG_DONTWAIT), &err);
763 
764  if (skb == NULL)
765  return err;
766 
767  /* reserve space for Hardware header */
768  skb_reserve(skb, hh_len);
769 
770  /* create space for UDP/IP header */
771  skb_put(skb, fragheaderlen + transhdrlen);
772 
773  /* initialize network header pointer */
774  skb_reset_network_header(skb);
775 
776  /* initialize protocol header pointer */
777  skb->transport_header = skb->network_header + fragheaderlen;
778 
780  skb->csum = 0;
781 
782  /* specify the length of each IP datagram fragment */
783  skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
784  skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
785  __skb_queue_tail(queue, skb);
786  }
787 
788  return skb_append_datato_frags(sk, skb, getfrag, from,
789  (length - transhdrlen));
790 }
791 
792 static int __ip_append_data(struct sock *sk,
793  struct flowi4 *fl4,
794  struct sk_buff_head *queue,
795  struct inet_cork *cork,
796  struct page_frag *pfrag,
797  int getfrag(void *from, char *to, int offset,
798  int len, int odd, struct sk_buff *skb),
799  void *from, int length, int transhdrlen,
800  unsigned int flags)
801 {
802  struct inet_sock *inet = inet_sk(sk);
803  struct sk_buff *skb;
804 
805  struct ip_options *opt = cork->opt;
806  int hh_len;
807  int exthdrlen;
808  int mtu;
809  int copy;
810  int err;
811  int offset = 0;
812  unsigned int maxfraglen, fragheaderlen;
813  int csummode = CHECKSUM_NONE;
814  struct rtable *rt = (struct rtable *)cork->dst;
815 
816  skb = skb_peek_tail(queue);
817 
818  exthdrlen = !skb ? rt->dst.header_len : 0;
819  mtu = cork->fragsize;
820 
821  hh_len = LL_RESERVED_SPACE(rt->dst.dev);
822 
823  fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
824  maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
825 
826  if (cork->length + length > 0xFFFF - fragheaderlen) {
827  ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
828  mtu-exthdrlen);
829  return -EMSGSIZE;
830  }
831 
832  /*
833  * transhdrlen > 0 means that this is the first fragment and we wish
834  * it won't be fragmented in the future.
835  */
836  if (transhdrlen &&
837  length + fragheaderlen <= mtu &&
838  rt->dst.dev->features & NETIF_F_V4_CSUM &&
839  !exthdrlen)
840  csummode = CHECKSUM_PARTIAL;
841 
842  cork->length += length;
843  if (((length > mtu) || (skb && skb_is_gso(skb))) &&
844  (sk->sk_protocol == IPPROTO_UDP) &&
845  (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
846  err = ip_ufo_append_data(sk, queue, getfrag, from, length,
847  hh_len, fragheaderlen, transhdrlen,
848  maxfraglen, flags);
849  if (err)
850  goto error;
851  return 0;
852  }
853 
854  /* So, what's going on in the loop below?
855  *
856  * We use calculated fragment length to generate chained skb,
857  * each of segments is IP fragment ready for sending to network after
858  * adding appropriate IP header.
859  */
860 
861  if (!skb)
862  goto alloc_new_skb;
863 
864  while (length > 0) {
865  /* Check if the remaining data fits into current packet. */
866  copy = mtu - skb->len;
867  if (copy < length)
868  copy = maxfraglen - skb->len;
869  if (copy <= 0) {
870  char *data;
871  unsigned int datalen;
872  unsigned int fraglen;
873  unsigned int fraggap;
874  unsigned int alloclen;
875  struct sk_buff *skb_prev;
876 alloc_new_skb:
877  skb_prev = skb;
878  if (skb_prev)
879  fraggap = skb_prev->len - maxfraglen;
880  else
881  fraggap = 0;
882 
883  /*
884  * If remaining data exceeds the mtu,
885  * we know we need more fragment(s).
886  */
887  datalen = length + fraggap;
888  if (datalen > mtu - fragheaderlen)
889  datalen = maxfraglen - fragheaderlen;
890  fraglen = datalen + fragheaderlen;
891 
892  if ((flags & MSG_MORE) &&
893  !(rt->dst.dev->features&NETIF_F_SG))
894  alloclen = mtu;
895  else
896  alloclen = fraglen;
897 
898  alloclen += exthdrlen;
899 
900  /* The last fragment gets additional space at tail.
901  * Note, with MSG_MORE we overallocate on fragments,
902  * because we have no idea what fragment will be
903  * the last.
904  */
905  if (datalen == length + fraggap)
906  alloclen += rt->dst.trailer_len;
907 
908  if (transhdrlen) {
909  skb = sock_alloc_send_skb(sk,
910  alloclen + hh_len + 15,
911  (flags & MSG_DONTWAIT), &err);
912  } else {
913  skb = NULL;
914  if (atomic_read(&sk->sk_wmem_alloc) <=
915  2 * sk->sk_sndbuf)
916  skb = sock_wmalloc(sk,
917  alloclen + hh_len + 15, 1,
918  sk->sk_allocation);
919  if (unlikely(skb == NULL))
920  err = -ENOBUFS;
921  else
922  /* only the initial fragment is
923  time stamped */
924  cork->tx_flags = 0;
925  }
926  if (skb == NULL)
927  goto error;
928 
929  /*
930  * Fill in the control structures
931  */
932  skb->ip_summed = csummode;
933  skb->csum = 0;
934  skb_reserve(skb, hh_len);
935  skb_shinfo(skb)->tx_flags = cork->tx_flags;
936 
937  /*
938  * Find where to start putting bytes.
939  */
940  data = skb_put(skb, fraglen + exthdrlen);
941  skb_set_network_header(skb, exthdrlen);
942  skb->transport_header = (skb->network_header +
943  fragheaderlen);
944  data += fragheaderlen + exthdrlen;
945 
946  if (fraggap) {
948  skb_prev, maxfraglen,
949  data + transhdrlen, fraggap, 0);
950  skb_prev->csum = csum_sub(skb_prev->csum,
951  skb->csum);
952  data += fraggap;
953  pskb_trim_unique(skb_prev, maxfraglen);
954  }
955 
956  copy = datalen - transhdrlen - fraggap;
957  if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
958  err = -EFAULT;
959  kfree_skb(skb);
960  goto error;
961  }
962 
963  offset += copy;
964  length -= datalen - fraggap;
965  transhdrlen = 0;
966  exthdrlen = 0;
967  csummode = CHECKSUM_NONE;
968 
969  /*
970  * Put the packet on the pending queue.
971  */
972  __skb_queue_tail(queue, skb);
973  continue;
974  }
975 
976  if (copy > length)
977  copy = length;
978 
979  if (!(rt->dst.dev->features&NETIF_F_SG)) {
980  unsigned int off;
981 
982  off = skb->len;
983  if (getfrag(from, skb_put(skb, copy),
984  offset, copy, off, skb) < 0) {
985  __skb_trim(skb, off);
986  err = -EFAULT;
987  goto error;
988  }
989  } else {
990  int i = skb_shinfo(skb)->nr_frags;
991 
992  err = -ENOMEM;
993  if (!sk_page_frag_refill(sk, pfrag))
994  goto error;
995 
996  if (!skb_can_coalesce(skb, i, pfrag->page,
997  pfrag->offset)) {
998  err = -EMSGSIZE;
999  if (i == MAX_SKB_FRAGS)
1000  goto error;
1001 
1002  __skb_fill_page_desc(skb, i, pfrag->page,
1003  pfrag->offset, 0);
1004  skb_shinfo(skb)->nr_frags = ++i;
1005  get_page(pfrag->page);
1006  }
1007  copy = min_t(int, copy, pfrag->size - pfrag->offset);
1008  if (getfrag(from,
1009  page_address(pfrag->page) + pfrag->offset,
1010  offset, copy, skb->len, skb) < 0)
1011  goto error_efault;
1012 
1013  pfrag->offset += copy;
1014  skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1015  skb->len += copy;
1016  skb->data_len += copy;
1017  skb->truesize += copy;
1018  atomic_add(copy, &sk->sk_wmem_alloc);
1019  }
1020  offset += copy;
1021  length -= copy;
1022  }
1023 
1024  return 0;
1025 
1026 error_efault:
1027  err = -EFAULT;
1028 error:
1029  cork->length -= length;
1030  IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1031  return err;
1032 }
1033 
1034 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1035  struct ipcm_cookie *ipc, struct rtable **rtp)
1036 {
1037  struct inet_sock *inet = inet_sk(sk);
1038  struct ip_options_rcu *opt;
1039  struct rtable *rt;
1040 
1041  /*
1042  * setup for corking.
1043  */
1044  opt = ipc->opt;
1045  if (opt) {
1046  if (cork->opt == NULL) {
1047  cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1048  sk->sk_allocation);
1049  if (unlikely(cork->opt == NULL))
1050  return -ENOBUFS;
1051  }
1052  memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1053  cork->flags |= IPCORK_OPT;
1054  cork->addr = ipc->addr;
1055  }
1056  rt = *rtp;
1057  if (unlikely(!rt))
1058  return -EFAULT;
1059  /*
1060  * We steal reference to this route, caller should not release it
1061  */
1062  *rtp = NULL;
1063  cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1064  rt->dst.dev->mtu : dst_mtu(&rt->dst);
1065  cork->dst = &rt->dst;
1066  cork->length = 0;
1067  cork->tx_flags = ipc->tx_flags;
1068 
1069  return 0;
1070 }
1071 
1072 /*
1073  * ip_append_data() and ip_append_page() can make one large IP datagram
1074  * from many pieces of data. Each pieces will be holded on the socket
1075  * until ip_push_pending_frames() is called. Each piece can be a page
1076  * or non-page data.
1077  *
1078  * Not only UDP, other transport protocols - e.g. raw sockets - can use
1079  * this interface potentially.
1080  *
1081  * LATER: length must be adjusted by pad at tail, when it is required.
1082  */
1083 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1084  int getfrag(void *from, char *to, int offset, int len,
1085  int odd, struct sk_buff *skb),
1086  void *from, int length, int transhdrlen,
1087  struct ipcm_cookie *ipc, struct rtable **rtp,
1088  unsigned int flags)
1089 {
1090  struct inet_sock *inet = inet_sk(sk);
1091  int err;
1092 
1093  if (flags&MSG_PROBE)
1094  return 0;
1095 
1096  if (skb_queue_empty(&sk->sk_write_queue)) {
1097  err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1098  if (err)
1099  return err;
1100  } else {
1101  transhdrlen = 0;
1102  }
1103 
1104  return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1105  sk_page_frag(sk), getfrag,
1106  from, length, transhdrlen, flags);
1107 }
1108 
1109 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1110  int offset, size_t size, int flags)
1111 {
1112  struct inet_sock *inet = inet_sk(sk);
1113  struct sk_buff *skb;
1114  struct rtable *rt;
1115  struct ip_options *opt = NULL;
1116  struct inet_cork *cork;
1117  int hh_len;
1118  int mtu;
1119  int len;
1120  int err;
1121  unsigned int maxfraglen, fragheaderlen, fraggap;
1122 
1123  if (inet->hdrincl)
1124  return -EPERM;
1125 
1126  if (flags&MSG_PROBE)
1127  return 0;
1128 
1129  if (skb_queue_empty(&sk->sk_write_queue))
1130  return -EINVAL;
1131 
1132  cork = &inet->cork.base;
1133  rt = (struct rtable *)cork->dst;
1134  if (cork->flags & IPCORK_OPT)
1135  opt = cork->opt;
1136 
1137  if (!(rt->dst.dev->features&NETIF_F_SG))
1138  return -EOPNOTSUPP;
1139 
1140  hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1141  mtu = cork->fragsize;
1142 
1143  fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1144  maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1145 
1146  if (cork->length + size > 0xFFFF - fragheaderlen) {
1147  ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1148  return -EMSGSIZE;
1149  }
1150 
1151  if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1152  return -EINVAL;
1153 
1154  cork->length += size;
1155  if ((size + skb->len > mtu) &&
1156  (sk->sk_protocol == IPPROTO_UDP) &&
1157  (rt->dst.dev->features & NETIF_F_UFO)) {
1158  skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1159  skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1160  }
1161 
1162 
1163  while (size > 0) {
1164  int i;
1165 
1166  if (skb_is_gso(skb))
1167  len = size;
1168  else {
1169 
1170  /* Check if the remaining data fits into current packet. */
1171  len = mtu - skb->len;
1172  if (len < size)
1173  len = maxfraglen - skb->len;
1174  }
1175  if (len <= 0) {
1176  struct sk_buff *skb_prev;
1177  int alloclen;
1178 
1179  skb_prev = skb;
1180  fraggap = skb_prev->len - maxfraglen;
1181 
1182  alloclen = fragheaderlen + hh_len + fraggap + 15;
1183  skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1184  if (unlikely(!skb)) {
1185  err = -ENOBUFS;
1186  goto error;
1187  }
1188 
1189  /*
1190  * Fill in the control structures
1191  */
1192  skb->ip_summed = CHECKSUM_NONE;
1193  skb->csum = 0;
1194  skb_reserve(skb, hh_len);
1195 
1196  /*
1197  * Find where to start putting bytes.
1198  */
1199  skb_put(skb, fragheaderlen + fraggap);
1200  skb_reset_network_header(skb);
1201  skb->transport_header = (skb->network_header +
1202  fragheaderlen);
1203  if (fraggap) {
1204  skb->csum = skb_copy_and_csum_bits(skb_prev,
1205  maxfraglen,
1206  skb_transport_header(skb),
1207  fraggap, 0);
1208  skb_prev->csum = csum_sub(skb_prev->csum,
1209  skb->csum);
1210  pskb_trim_unique(skb_prev, maxfraglen);
1211  }
1212 
1213  /*
1214  * Put the packet on the pending queue.
1215  */
1216  __skb_queue_tail(&sk->sk_write_queue, skb);
1217  continue;
1218  }
1219 
1220  i = skb_shinfo(skb)->nr_frags;
1221  if (len > size)
1222  len = size;
1223  if (skb_can_coalesce(skb, i, page, offset)) {
1224  skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1225  } else if (i < MAX_SKB_FRAGS) {
1226  get_page(page);
1227  skb_fill_page_desc(skb, i, page, offset, len);
1228  } else {
1229  err = -EMSGSIZE;
1230  goto error;
1231  }
1232 
1233  if (skb->ip_summed == CHECKSUM_NONE) {
1234  __wsum csum;
1235  csum = csum_page(page, offset, len);
1236  skb->csum = csum_block_add(skb->csum, csum, skb->len);
1237  }
1238 
1239  skb->len += len;
1240  skb->data_len += len;
1241  skb->truesize += len;
1242  atomic_add(len, &sk->sk_wmem_alloc);
1243  offset += len;
1244  size -= len;
1245  }
1246  return 0;
1247 
1248 error:
1249  cork->length -= size;
1250  IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1251  return err;
1252 }
1253 
1254 static void ip_cork_release(struct inet_cork *cork)
1255 {
1256  cork->flags &= ~IPCORK_OPT;
1257  kfree(cork->opt);
1258  cork->opt = NULL;
1259  dst_release(cork->dst);
1260  cork->dst = NULL;
1261 }
1262 
1263 /*
1264  * Combined all pending IP fragments on the socket as one IP datagram
1265  * and push them out.
1266  */
1267 struct sk_buff *__ip_make_skb(struct sock *sk,
1268  struct flowi4 *fl4,
1269  struct sk_buff_head *queue,
1270  struct inet_cork *cork)
1271 {
1272  struct sk_buff *skb, *tmp_skb;
1273  struct sk_buff **tail_skb;
1274  struct inet_sock *inet = inet_sk(sk);
1275  struct net *net = sock_net(sk);
1276  struct ip_options *opt = NULL;
1277  struct rtable *rt = (struct rtable *)cork->dst;
1278  struct iphdr *iph;
1279  __be16 df = 0;
1280  __u8 ttl;
1281 
1282  if ((skb = __skb_dequeue(queue)) == NULL)
1283  goto out;
1284  tail_skb = &(skb_shinfo(skb)->frag_list);
1285 
1286  /* move skb->data to ip header from ext header */
1287  if (skb->data < skb_network_header(skb))
1288  __skb_pull(skb, skb_network_offset(skb));
1289  while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1290  __skb_pull(tmp_skb, skb_network_header_len(skb));
1291  *tail_skb = tmp_skb;
1292  tail_skb = &(tmp_skb->next);
1293  skb->len += tmp_skb->len;
1294  skb->data_len += tmp_skb->len;
1295  skb->truesize += tmp_skb->truesize;
1296  tmp_skb->destructor = NULL;
1297  tmp_skb->sk = NULL;
1298  }
1299 
1300  /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1301  * to fragment the frame generated here. No matter, what transforms
1302  * how transforms change size of the packet, it will come out.
1303  */
1304  if (inet->pmtudisc < IP_PMTUDISC_DO)
1305  skb->local_df = 1;
1306 
1307  /* DF bit is set when we want to see DF on outgoing frames.
1308  * If local_df is set too, we still allow to fragment this frame
1309  * locally. */
1310  if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1311  (skb->len <= dst_mtu(&rt->dst) &&
1312  ip_dont_fragment(sk, &rt->dst)))
1313  df = htons(IP_DF);
1314 
1315  if (cork->flags & IPCORK_OPT)
1316  opt = cork->opt;
1317 
1318  if (rt->rt_type == RTN_MULTICAST)
1319  ttl = inet->mc_ttl;
1320  else
1321  ttl = ip_select_ttl(inet, &rt->dst);
1322 
1323  iph = (struct iphdr *)skb->data;
1324  iph->version = 4;
1325  iph->ihl = 5;
1326  iph->tos = inet->tos;
1327  iph->frag_off = df;
1328  iph->ttl = ttl;
1329  iph->protocol = sk->sk_protocol;
1330  ip_copy_addrs(iph, fl4);
1331  ip_select_ident(iph, &rt->dst, sk);
1332 
1333  if (opt) {
1334  iph->ihl += opt->optlen>>2;
1335  ip_options_build(skb, opt, cork->addr, rt, 0);
1336  }
1337 
1338  skb->priority = sk->sk_priority;
1339  skb->mark = sk->sk_mark;
1340  /*
1341  * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1342  * on dst refcount
1343  */
1344  cork->dst = NULL;
1345  skb_dst_set(skb, &rt->dst);
1346 
1347  if (iph->protocol == IPPROTO_ICMP)
1348  icmp_out_count(net, ((struct icmphdr *)
1349  skb_transport_header(skb))->type);
1350 
1351  ip_cork_release(cork);
1352 out:
1353  return skb;
1354 }
1355 
1356 int ip_send_skb(struct net *net, struct sk_buff *skb)
1357 {
1358  int err;
1359 
1360  err = ip_local_out(skb);
1361  if (err) {
1362  if (err > 0)
1363  err = net_xmit_errno(err);
1364  if (err)
1366  }
1367 
1368  return err;
1369 }
1370 
1371 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1372 {
1373  struct sk_buff *skb;
1374 
1375  skb = ip_finish_skb(sk, fl4);
1376  if (!skb)
1377  return 0;
1378 
1379  /* Netfilter gets whole the not fragmented skb. */
1380  return ip_send_skb(sock_net(sk), skb);
1381 }
1382 
1383 /*
1384  * Throw away all pending data on the socket.
1385  */
1386 static void __ip_flush_pending_frames(struct sock *sk,
1387  struct sk_buff_head *queue,
1388  struct inet_cork *cork)
1389 {
1390  struct sk_buff *skb;
1391 
1392  while ((skb = __skb_dequeue_tail(queue)) != NULL)
1393  kfree_skb(skb);
1394 
1395  ip_cork_release(cork);
1396 }
1397 
1399 {
1400  __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1401 }
1402 
1403 struct sk_buff *ip_make_skb(struct sock *sk,
1404  struct flowi4 *fl4,
1405  int getfrag(void *from, char *to, int offset,
1406  int len, int odd, struct sk_buff *skb),
1407  void *from, int length, int transhdrlen,
1408  struct ipcm_cookie *ipc, struct rtable **rtp,
1409  unsigned int flags)
1410 {
1411  struct inet_cork cork;
1412  struct sk_buff_head queue;
1413  int err;
1414 
1415  if (flags & MSG_PROBE)
1416  return NULL;
1417 
1418  __skb_queue_head_init(&queue);
1419 
1420  cork.flags = 0;
1421  cork.addr = 0;
1422  cork.opt = NULL;
1423  err = ip_setup_cork(sk, &cork, ipc, rtp);
1424  if (err)
1425  return ERR_PTR(err);
1426 
1427  err = __ip_append_data(sk, fl4, &queue, &cork,
1428  &current->task_frag, getfrag,
1429  from, length, transhdrlen, flags);
1430  if (err) {
1431  __ip_flush_pending_frames(sk, &queue, &cork);
1432  return ERR_PTR(err);
1433  }
1434 
1435  return __ip_make_skb(sk, fl4, &queue, &cork);
1436 }
1437 
1438 /*
1439  * Fetch data from kernel space and fill in checksum if needed.
1440  */
1441 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1442  int len, int odd, struct sk_buff *skb)
1443 {
1444  __wsum csum;
1445 
1446  csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1447  skb->csum = csum_block_add(skb->csum, csum, odd);
1448  return 0;
1449 }
1450 
1451 /*
1452  * Generic function to send a packet as reply to another packet.
1453  * Used to send some TCP resets/acks so far.
1454  *
1455  * Use a fake percpu inet socket to avoid false sharing and contention.
1456  */
1457 static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = {
1458  .sk = {
1459  .__sk_common = {
1460  .skc_refcnt = ATOMIC_INIT(1),
1461  },
1462  .sk_wmem_alloc = ATOMIC_INIT(1),
1463  .sk_allocation = GFP_ATOMIC,
1464  .sk_flags = (1UL << SOCK_USE_WRITE_QUEUE),
1465  },
1466  .pmtudisc = IP_PMTUDISC_WANT,
1467  .uc_ttl = -1,
1468 };
1469 
1470 void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr,
1471  __be32 saddr, const struct ip_reply_arg *arg,
1472  unsigned int len)
1473 {
1474  struct ip_options_data replyopts;
1475  struct ipcm_cookie ipc;
1476  struct flowi4 fl4;
1477  struct rtable *rt = skb_rtable(skb);
1478  struct sk_buff *nskb;
1479  struct sock *sk;
1480  struct inet_sock *inet;
1481 
1482  if (ip_options_echo(&replyopts.opt.opt, skb))
1483  return;
1484 
1485  ipc.addr = daddr;
1486  ipc.opt = NULL;
1487  ipc.tx_flags = 0;
1488 
1489  if (replyopts.opt.opt.optlen) {
1490  ipc.opt = &replyopts.opt;
1491 
1492  if (replyopts.opt.opt.srr)
1493  daddr = replyopts.opt.opt.faddr;
1494  }
1495 
1496  flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1497  RT_TOS(arg->tos),
1498  RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1499  ip_reply_arg_flowi_flags(arg),
1500  daddr, saddr,
1501  tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1502  security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1503  rt = ip_route_output_key(net, &fl4);
1504  if (IS_ERR(rt))
1505  return;
1506 
1507  inet = &get_cpu_var(unicast_sock);
1508 
1509  inet->tos = arg->tos;
1510  sk = &inet->sk;
1511  sk->sk_priority = skb->priority;
1512  sk->sk_protocol = ip_hdr(skb)->protocol;
1513  sk->sk_bound_dev_if = arg->bound_dev_if;
1514  sock_net_set(sk, net);
1515  __skb_queue_head_init(&sk->sk_write_queue);
1517  ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1518  &ipc, &rt, MSG_DONTWAIT);
1519  nskb = skb_peek(&sk->sk_write_queue);
1520  if (nskb) {
1521  if (arg->csumoffset >= 0)
1522  *((__sum16 *)skb_transport_header(nskb) +
1523  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1524  arg->csum));
1525  nskb->ip_summed = CHECKSUM_NONE;
1526  skb_orphan(nskb);
1527  skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1528  ip_push_pending_frames(sk, &fl4);
1529  }
1530 
1531  put_cpu_var(unicast_sock);
1532 
1533  ip_rt_put(rt);
1534 }
1535 
1536 void __init ip_init(void)
1537 {
1538  ip_rt_init();
1539  inet_initpeers();
1540 
1541 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1543 #endif
1544 }