Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
calib.c
Go to the documentation of this file.
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license. When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  * Intel Linux Wireless <[email protected]>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  * * Redistributions of source code must retain the above copyright
41  * notice, this list of conditions and the following disclaimer.
42  * * Redistributions in binary form must reproduce the above copyright
43  * notice, this list of conditions and the following disclaimer in
44  * the documentation and/or other materials provided with the
45  * distribution.
46  * * Neither the name Intel Corporation nor the names of its
47  * contributors may be used to endorse or promote products derived
48  * from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62 
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65 
66 #include "iwl-trans.h"
67 
68 #include "dev.h"
69 #include "calib.h"
70 #include "agn.h"
71 
72 /*****************************************************************************
73  * INIT calibrations framework
74  *****************************************************************************/
75 
76 /* Opaque calibration results */
78  struct list_head list;
79  size_t cmd_len;
81  /* data follows */
82 };
83 
91 };
92 
94 {
95  struct iwl_host_cmd hcmd = {
97  .flags = CMD_SYNC,
98  };
99  struct iwl_calib_result *res;
100 
101  list_for_each_entry(res, &priv->calib_results, list) {
102  int ret;
103 
104  hcmd.len[0] = res->cmd_len;
105  hcmd.data[0] = &res->hdr;
106  hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
107  ret = iwl_dvm_send_cmd(priv, &hcmd);
108  if (ret) {
109  IWL_ERR(priv, "Error %d on calib cmd %d\n",
110  ret, res->hdr.op_code);
111  return ret;
112  }
113  }
114 
115  return 0;
116 }
117 
119  const struct iwl_calib_hdr *cmd, int len)
120 {
121  struct iwl_calib_result *res, *tmp;
122 
123  res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
124  GFP_ATOMIC);
125  if (!res)
126  return -ENOMEM;
127  memcpy(&res->hdr, cmd, len);
128  res->cmd_len = len;
129 
130  list_for_each_entry(tmp, &priv->calib_results, list) {
131  if (tmp->hdr.op_code == res->hdr.op_code) {
132  list_replace(&tmp->list, &res->list);
133  kfree(tmp);
134  return 0;
135  }
136  }
137 
138  /* wasn't in list already */
139  list_add_tail(&res->list, &priv->calib_results);
140 
141  return 0;
142 }
143 
145 {
146  struct iwl_calib_result *res, *tmp;
147 
148  list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
149  list_del(&res->list);
150  kfree(res);
151  }
152 }
153 
154 /*****************************************************************************
155  * RUNTIME calibrations framework
156  *****************************************************************************/
157 
158 /* "false alarms" are signals that our DSP tries to lock onto,
159  * but then determines that they are either noise, or transmissions
160  * from a distant wireless network (also "noise", really) that get
161  * "stepped on" by stronger transmissions within our own network.
162  * This algorithm attempts to set a sensitivity level that is high
163  * enough to receive all of our own network traffic, but not so
164  * high that our DSP gets too busy trying to lock onto non-network
165  * activity/noise. */
166 static int iwl_sens_energy_cck(struct iwl_priv *priv,
167  u32 norm_fa,
168  u32 rx_enable_time,
170 {
171  u32 max_nrg_cck = 0;
172  int i = 0;
173  u8 max_silence_rssi = 0;
174  u32 silence_ref = 0;
175  u8 silence_rssi_a = 0;
176  u8 silence_rssi_b = 0;
177  u8 silence_rssi_c = 0;
178  u32 val;
179 
180  /* "false_alarms" values below are cross-multiplications to assess the
181  * numbers of false alarms within the measured period of actual Rx
182  * (Rx is off when we're txing), vs the min/max expected false alarms
183  * (some should be expected if rx is sensitive enough) in a
184  * hypothetical listening period of 200 time units (TU), 204.8 msec:
185  *
186  * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
187  *
188  * */
189  u32 false_alarms = norm_fa * 200 * 1024;
190  u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
191  u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
192  struct iwl_sensitivity_data *data = NULL;
193  const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
194 
195  data = &(priv->sensitivity_data);
196 
197  data->nrg_auto_corr_silence_diff = 0;
198 
199  /* Find max silence rssi among all 3 receivers.
200  * This is background noise, which may include transmissions from other
201  * networks, measured during silence before our network's beacon */
202  silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
203  ALL_BAND_FILTER) >> 8);
204  silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
205  ALL_BAND_FILTER) >> 8);
206  silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
207  ALL_BAND_FILTER) >> 8);
208 
209  val = max(silence_rssi_b, silence_rssi_c);
210  max_silence_rssi = max(silence_rssi_a, (u8) val);
211 
212  /* Store silence rssi in 20-beacon history table */
213  data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
214  data->nrg_silence_idx++;
216  data->nrg_silence_idx = 0;
217 
218  /* Find max silence rssi across 20 beacon history */
219  for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
220  val = data->nrg_silence_rssi[i];
221  silence_ref = max(silence_ref, val);
222  }
223  IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
224  silence_rssi_a, silence_rssi_b, silence_rssi_c,
225  silence_ref);
226 
227  /* Find max rx energy (min value!) among all 3 receivers,
228  * measured during beacon frame.
229  * Save it in 10-beacon history table. */
230  i = data->nrg_energy_idx;
231  val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
232  data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
233 
234  data->nrg_energy_idx++;
235  if (data->nrg_energy_idx >= 10)
236  data->nrg_energy_idx = 0;
237 
238  /* Find min rx energy (max value) across 10 beacon history.
239  * This is the minimum signal level that we want to receive well.
240  * Add backoff (margin so we don't miss slightly lower energy frames).
241  * This establishes an upper bound (min value) for energy threshold. */
242  max_nrg_cck = data->nrg_value[0];
243  for (i = 1; i < 10; i++)
244  max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
245  max_nrg_cck += 6;
246 
247  IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
248  rx_info->beacon_energy_a, rx_info->beacon_energy_b,
249  rx_info->beacon_energy_c, max_nrg_cck - 6);
250 
251  /* Count number of consecutive beacons with fewer-than-desired
252  * false alarms. */
253  if (false_alarms < min_false_alarms)
254  data->num_in_cck_no_fa++;
255  else
256  data->num_in_cck_no_fa = 0;
257  IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
258  data->num_in_cck_no_fa);
259 
260  /* If we got too many false alarms this time, reduce sensitivity */
261  if ((false_alarms > max_false_alarms) &&
263  IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
264  false_alarms, max_false_alarms);
265  IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
267  /* Store for "fewer than desired" on later beacon */
268  data->nrg_silence_ref = silence_ref;
269 
270  /* increase energy threshold (reduce nrg value)
271  * to decrease sensitivity */
272  data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
273  /* Else if we got fewer than desired, increase sensitivity */
274  } else if (false_alarms < min_false_alarms) {
276 
277  /* Compare silence level with silence level for most recent
278  * healthy number or too many false alarms */
280  (s32)silence_ref;
281 
282  IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
283  false_alarms, min_false_alarms,
285 
286  /* Increase value to increase sensitivity, but only if:
287  * 1a) previous beacon did *not* have *too many* false alarms
288  * 1b) AND there's a significant difference in Rx levels
289  * from a previous beacon with too many, or healthy # FAs
290  * OR 2) We've seen a lot of beacons (100) with too few
291  * false alarms */
292  if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
295 
296  IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
297  /* Increase nrg value to increase sensitivity */
298  val = data->nrg_th_cck + NRG_STEP_CCK;
299  data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
300  } else {
301  IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
302  }
303 
304  /* Else we got a healthy number of false alarms, keep status quo */
305  } else {
306  IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
308 
309  /* Store for use in "fewer than desired" with later beacon */
310  data->nrg_silence_ref = silence_ref;
311 
312  /* If previous beacon had too many false alarms,
313  * give it some extra margin by reducing sensitivity again
314  * (but don't go below measured energy of desired Rx) */
315  if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
316  IWL_DEBUG_CALIB(priv, "... increasing margin\n");
317  if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
318  data->nrg_th_cck -= NRG_MARGIN;
319  else
320  data->nrg_th_cck = max_nrg_cck;
321  }
322  }
323 
324  /* Make sure the energy threshold does not go above the measured
325  * energy of the desired Rx signals (reduced by backoff margin),
326  * or else we might start missing Rx frames.
327  * Lower value is higher energy, so we use max()!
328  */
329  data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
330  IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
331 
332  data->nrg_prev_state = data->nrg_curr_state;
333 
334  /* Auto-correlation CCK algorithm */
335  if (false_alarms > min_false_alarms) {
336 
337  /* increase auto_corr values to decrease sensitivity
338  * so the DSP won't be disturbed by the noise
339  */
342  else {
343  val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
344  data->auto_corr_cck =
345  min((u32)ranges->auto_corr_max_cck, val);
346  }
348  data->auto_corr_cck_mrc =
349  min((u32)ranges->auto_corr_max_cck_mrc, val);
350  } else if ((false_alarms < min_false_alarms) &&
353 
354  /* Decrease auto_corr values to increase sensitivity */
355  val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
356  data->auto_corr_cck =
357  max((u32)ranges->auto_corr_min_cck, val);
359  data->auto_corr_cck_mrc =
360  max((u32)ranges->auto_corr_min_cck_mrc, val);
361  }
362 
363  return 0;
364 }
365 
366 
367 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
368  u32 norm_fa,
369  u32 rx_enable_time)
370 {
371  u32 val;
372  u32 false_alarms = norm_fa * 200 * 1024;
373  u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
374  u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
375  struct iwl_sensitivity_data *data = NULL;
376  const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
377 
378  data = &(priv->sensitivity_data);
379 
380  /* If we got too many false alarms this time, reduce sensitivity */
381  if (false_alarms > max_false_alarms) {
382 
383  IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
384  false_alarms, max_false_alarms);
385 
386  val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
387  data->auto_corr_ofdm =
388  min((u32)ranges->auto_corr_max_ofdm, val);
389 
391  data->auto_corr_ofdm_mrc =
392  min((u32)ranges->auto_corr_max_ofdm_mrc, val);
393 
395  data->auto_corr_ofdm_x1 =
396  min((u32)ranges->auto_corr_max_ofdm_x1, val);
397 
399  data->auto_corr_ofdm_mrc_x1 =
400  min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
401  }
402 
403  /* Else if we got fewer than desired, increase sensitivity */
404  else if (false_alarms < min_false_alarms) {
405 
406  IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
407  false_alarms, min_false_alarms);
408 
409  val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
410  data->auto_corr_ofdm =
411  max((u32)ranges->auto_corr_min_ofdm, val);
412 
414  data->auto_corr_ofdm_mrc =
415  max((u32)ranges->auto_corr_min_ofdm_mrc, val);
416 
418  data->auto_corr_ofdm_x1 =
419  max((u32)ranges->auto_corr_min_ofdm_x1, val);
420 
422  data->auto_corr_ofdm_mrc_x1 =
423  max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
424  } else {
425  IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
426  min_false_alarms, false_alarms, max_false_alarms);
427  }
428  return 0;
429 }
430 
431 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
432  struct iwl_sensitivity_data *data,
433  __le16 *tbl)
434 {
443 
445  cpu_to_le16((u16)data->auto_corr_cck);
448 
450  cpu_to_le16((u16)data->nrg_th_cck);
452  cpu_to_le16((u16)data->nrg_th_ofdm);
453 
459  cpu_to_le16(data->nrg_th_cca);
460 
461  IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
462  data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
464  data->nrg_th_ofdm);
465 
466  IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
467  data->auto_corr_cck, data->auto_corr_cck_mrc,
468  data->nrg_th_cck);
469 }
470 
471 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
472 static int iwl_sensitivity_write(struct iwl_priv *priv)
473 {
474  struct iwl_sensitivity_cmd cmd;
475  struct iwl_sensitivity_data *data = NULL;
476  struct iwl_host_cmd cmd_out = {
477  .id = SENSITIVITY_CMD,
478  .len = { sizeof(struct iwl_sensitivity_cmd), },
479  .flags = CMD_ASYNC,
480  .data = { &cmd, },
481  };
482 
483  data = &(priv->sensitivity_data);
484 
485  memset(&cmd, 0, sizeof(cmd));
486 
487  iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
488 
489  /* Update uCode's "work" table, and copy it to DSP */
491 
492  /* Don't send command to uCode if nothing has changed */
493  if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
494  sizeof(u16)*HD_TABLE_SIZE)) {
495  IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
496  return 0;
497  }
498 
499  /* Copy table for comparison next time */
500  memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
501  sizeof(u16)*HD_TABLE_SIZE);
502 
503  return iwl_dvm_send_cmd(priv, &cmd_out);
504 }
505 
506 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
507 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
508 {
510  struct iwl_sensitivity_data *data = NULL;
511  struct iwl_host_cmd cmd_out = {
512  .id = SENSITIVITY_CMD,
513  .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
514  .flags = CMD_ASYNC,
515  .data = { &cmd, },
516  };
517 
518  data = &(priv->sensitivity_data);
519 
520  memset(&cmd, 0, sizeof(cmd));
521 
522  iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
523 
524  if (priv->cfg->base_params->hd_v2) {
525  cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
527  cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
535  cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
543  cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
547  } else {
548  cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
550  cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
558  cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
566  cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
570  }
571 
572  /* Update uCode's "work" table, and copy it to DSP */
574 
575  /* Don't send command to uCode if nothing has changed */
576  if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
577  sizeof(u16)*HD_TABLE_SIZE) &&
579  &(priv->enhance_sensitivity_tbl[0]),
580  sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
581  IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
582  return 0;
583  }
584 
585  /* Copy table for comparison next time */
586  memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
587  sizeof(u16)*HD_TABLE_SIZE);
588  memcpy(&(priv->enhance_sensitivity_tbl[0]),
589  &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
590  sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
591 
592  return iwl_dvm_send_cmd(priv, &cmd_out);
593 }
594 
595 void iwl_init_sensitivity(struct iwl_priv *priv)
596 {
597  int ret = 0;
598  int i;
599  struct iwl_sensitivity_data *data = NULL;
600  const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
601 
603  return;
604 
605  IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
606 
607  /* Clear driver's sensitivity algo data */
608  data = &(priv->sensitivity_data);
609 
610  if (ranges == NULL)
611  return;
612 
613  memset(data, 0, sizeof(struct iwl_sensitivity_data));
614 
615  data->num_in_cck_no_fa = 0;
618  data->nrg_silence_ref = 0;
619  data->nrg_silence_idx = 0;
620  data->nrg_energy_idx = 0;
621 
622  for (i = 0; i < 10; i++)
623  data->nrg_value[i] = 0;
624 
625  for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
626  data->nrg_silence_rssi[i] = 0;
627 
628  data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
634  data->nrg_th_cck = ranges->nrg_th_cck;
635  data->nrg_th_ofdm = ranges->nrg_th_ofdm;
636  data->barker_corr_th_min = ranges->barker_corr_th_min;
638  data->nrg_th_cca = ranges->nrg_th_cca;
639 
640  data->last_bad_plcp_cnt_ofdm = 0;
641  data->last_fa_cnt_ofdm = 0;
642  data->last_bad_plcp_cnt_cck = 0;
643  data->last_fa_cnt_cck = 0;
644 
645  if (priv->fw->enhance_sensitivity_table)
646  ret |= iwl_enhance_sensitivity_write(priv);
647  else
648  ret |= iwl_sensitivity_write(priv);
649  IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
650 }
651 
653 {
654  u32 rx_enable_time;
655  u32 fa_cck;
656  u32 fa_ofdm;
657  u32 bad_plcp_cck;
658  u32 bad_plcp_ofdm;
659  u32 norm_fa_ofdm;
660  u32 norm_fa_cck;
661  struct iwl_sensitivity_data *data = NULL;
662  struct statistics_rx_non_phy *rx_info;
663  struct statistics_rx_phy *ofdm, *cck;
664  struct statistics_general_data statis;
665 
667  return;
668 
669  data = &(priv->sensitivity_data);
670 
671  if (!iwl_is_any_associated(priv)) {
672  IWL_DEBUG_CALIB(priv, "<< - not associated\n");
673  return;
674  }
675 
676  spin_lock_bh(&priv->statistics.lock);
677  rx_info = &priv->statistics.rx_non_phy;
678  ofdm = &priv->statistics.rx_ofdm;
679  cck = &priv->statistics.rx_cck;
681  IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
682  spin_unlock_bh(&priv->statistics.lock);
683  return;
684  }
685 
686  /* Extract Statistics: */
687  rx_enable_time = le32_to_cpu(rx_info->channel_load);
688  fa_cck = le32_to_cpu(cck->false_alarm_cnt);
689  fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
690  bad_plcp_cck = le32_to_cpu(cck->plcp_err);
691  bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
692 
693  statis.beacon_silence_rssi_a =
695  statis.beacon_silence_rssi_b =
697  statis.beacon_silence_rssi_c =
699  statis.beacon_energy_a =
700  le32_to_cpu(rx_info->beacon_energy_a);
701  statis.beacon_energy_b =
702  le32_to_cpu(rx_info->beacon_energy_b);
703  statis.beacon_energy_c =
704  le32_to_cpu(rx_info->beacon_energy_c);
705 
706  spin_unlock_bh(&priv->statistics.lock);
707 
708  IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
709 
710  if (!rx_enable_time) {
711  IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
712  return;
713  }
714 
715  /* These statistics increase monotonically, and do not reset
716  * at each beacon. Calculate difference from last value, or just
717  * use the new statistics value if it has reset or wrapped around. */
718  if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
719  data->last_bad_plcp_cnt_cck = bad_plcp_cck;
720  else {
721  bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
722  data->last_bad_plcp_cnt_cck += bad_plcp_cck;
723  }
724 
725  if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
726  data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
727  else {
728  bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
729  data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
730  }
731 
732  if (data->last_fa_cnt_ofdm > fa_ofdm)
733  data->last_fa_cnt_ofdm = fa_ofdm;
734  else {
735  fa_ofdm -= data->last_fa_cnt_ofdm;
736  data->last_fa_cnt_ofdm += fa_ofdm;
737  }
738 
739  if (data->last_fa_cnt_cck > fa_cck)
740  data->last_fa_cnt_cck = fa_cck;
741  else {
742  fa_cck -= data->last_fa_cnt_cck;
743  data->last_fa_cnt_cck += fa_cck;
744  }
745 
746  /* Total aborted signal locks */
747  norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
748  norm_fa_cck = fa_cck + bad_plcp_cck;
749 
750  IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
751  bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
752 
753  iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
754  iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
755  if (priv->fw->enhance_sensitivity_table)
756  iwl_enhance_sensitivity_write(priv);
757  else
758  iwl_sensitivity_write(priv);
759 }
760 
761 static inline u8 find_first_chain(u8 mask)
762 {
763  if (mask & ANT_A)
764  return CHAIN_A;
765  if (mask & ANT_B)
766  return CHAIN_B;
767  return CHAIN_C;
768 }
769 
774 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
775  struct iwl_chain_noise_data *data)
776 {
777  u32 active_chains = 0;
778  u32 max_average_sig;
779  u16 max_average_sig_antenna_i;
780  u8 num_tx_chains;
781  u8 first_chain;
782  u16 i = 0;
783 
784  average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
785  average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
786  average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
787 
788  if (average_sig[0] >= average_sig[1]) {
789  max_average_sig = average_sig[0];
790  max_average_sig_antenna_i = 0;
791  active_chains = (1 << max_average_sig_antenna_i);
792  } else {
793  max_average_sig = average_sig[1];
794  max_average_sig_antenna_i = 1;
795  active_chains = (1 << max_average_sig_antenna_i);
796  }
797 
798  if (average_sig[2] >= max_average_sig) {
799  max_average_sig = average_sig[2];
800  max_average_sig_antenna_i = 2;
801  active_chains = (1 << max_average_sig_antenna_i);
802  }
803 
804  IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
805  average_sig[0], average_sig[1], average_sig[2]);
806  IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
807  max_average_sig, max_average_sig_antenna_i);
808 
809  /* Compare signal strengths for all 3 receivers. */
810  for (i = 0; i < NUM_RX_CHAINS; i++) {
811  if (i != max_average_sig_antenna_i) {
812  s32 rssi_delta = (max_average_sig - average_sig[i]);
813 
814  /* If signal is very weak, compared with
815  * strongest, mark it as disconnected. */
816  if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
817  data->disconn_array[i] = 1;
818  else
819  active_chains |= (1 << i);
820  IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
821  "disconn_array[i] = %d\n",
822  i, rssi_delta, data->disconn_array[i]);
823  }
824  }
825 
826  /*
827  * The above algorithm sometimes fails when the ucode
828  * reports 0 for all chains. It's not clear why that
829  * happens to start with, but it is then causing trouble
830  * because this can make us enable more chains than the
831  * hardware really has.
832  *
833  * To be safe, simply mask out any chains that we know
834  * are not on the device.
835  */
836  active_chains &= priv->eeprom_data->valid_rx_ant;
837 
838  num_tx_chains = 0;
839  for (i = 0; i < NUM_RX_CHAINS; i++) {
840  /* loops on all the bits of
841  * priv->hw_setting.valid_tx_ant */
842  u8 ant_msk = (1 << i);
843  if (!(priv->eeprom_data->valid_tx_ant & ant_msk))
844  continue;
845 
846  num_tx_chains++;
847  if (data->disconn_array[i] == 0)
848  /* there is a Tx antenna connected */
849  break;
850  if (num_tx_chains == priv->hw_params.tx_chains_num &&
851  data->disconn_array[i]) {
852  /*
853  * If all chains are disconnected
854  * connect the first valid tx chain
855  */
856  first_chain =
857  find_first_chain(priv->eeprom_data->valid_tx_ant);
858  data->disconn_array[first_chain] = 0;
859  active_chains |= BIT(first_chain);
860  IWL_DEBUG_CALIB(priv,
861  "All Tx chains are disconnected W/A - declare %d as connected\n",
862  first_chain);
863  break;
864  }
865  }
866 
867  if (active_chains != priv->eeprom_data->valid_rx_ant &&
868  active_chains != priv->chain_noise_data.active_chains)
869  IWL_DEBUG_CALIB(priv,
870  "Detected that not all antennas are connected! "
871  "Connected: %#x, valid: %#x.\n",
872  active_chains,
873  priv->eeprom_data->valid_rx_ant);
874 
875  /* Save for use within RXON, TX, SCAN commands, etc. */
876  data->active_chains = active_chains;
877  IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
878  active_chains);
879 }
880 
881 static void iwlagn_gain_computation(struct iwl_priv *priv,
882  u32 average_noise[NUM_RX_CHAINS],
883  u8 default_chain)
884 {
885  int i;
886  s32 delta_g;
887  struct iwl_chain_noise_data *data = &priv->chain_noise_data;
888 
889  /*
890  * Find Gain Code for the chains based on "default chain"
891  */
892  for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
893  if ((data->disconn_array[i])) {
894  data->delta_gain_code[i] = 0;
895  continue;
896  }
897 
898  delta_g = (priv->cfg->base_params->chain_noise_scale *
899  ((s32)average_noise[default_chain] -
900  (s32)average_noise[i])) / 1500;
901 
902  /* bound gain by 2 bits value max, 3rd bit is sign */
903  data->delta_gain_code[i] =
904  min(abs(delta_g),
906 
907  if (delta_g < 0)
908  /*
909  * set negative sign ...
910  * note to Intel developers: This is uCode API format,
911  * not the format of any internal device registers.
912  * Do not change this format for e.g. 6050 or similar
913  * devices. Change format only if more resolution
914  * (i.e. more than 2 bits magnitude) is needed.
915  */
916  data->delta_gain_code[i] |= (1 << 2);
917  }
918 
919  IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n",
920  data->delta_gain_code[1], data->delta_gain_code[2]);
921 
922  if (!data->radio_write) {
924 
925  memset(&cmd, 0, sizeof(cmd));
926 
927  iwl_set_calib_hdr(&cmd.hdr,
929  cmd.delta_gain_1 = data->delta_gain_code[1];
930  cmd.delta_gain_2 = data->delta_gain_code[2];
932  CMD_ASYNC, sizeof(cmd), &cmd);
933 
934  data->radio_write = 1;
936  }
937 }
938 
939 /*
940  * Accumulate 16 beacons of signal and noise statistics for each of
941  * 3 receivers/antennas/rx-chains, then figure out:
942  * 1) Which antennas are connected.
943  * 2) Differential rx gain settings to balance the 3 receivers.
944  */
946 {
947  struct iwl_chain_noise_data *data = NULL;
948 
952  u32 chain_sig_a;
953  u32 chain_sig_b;
954  u32 chain_sig_c;
955  u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
956  u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
957  u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
958  u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
959  u16 i = 0;
960  u16 rxon_chnum = INITIALIZATION_VALUE;
961  u16 stat_chnum = INITIALIZATION_VALUE;
962  u8 rxon_band24;
963  u8 stat_band24;
964  struct statistics_rx_non_phy *rx_info;
965 
966  /*
967  * MULTI-FIXME:
968  * When we support multiple interfaces on different channels,
969  * this must be modified/fixed.
970  */
971  struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
972 
974  return;
975 
976  data = &(priv->chain_noise_data);
977 
978  /*
979  * Accumulate just the first "chain_noise_num_beacons" after
980  * the first association, then we're done forever.
981  */
982  if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
983  if (data->state == IWL_CHAIN_NOISE_ALIVE)
984  IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
985  return;
986  }
987 
988  spin_lock_bh(&priv->statistics.lock);
989 
990  rx_info = &priv->statistics.rx_non_phy;
991 
993  IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
994  spin_unlock_bh(&priv->statistics.lock);
995  return;
996  }
997 
998  rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
999  rxon_chnum = le16_to_cpu(ctx->staging.channel);
1000  stat_band24 =
1002  stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
1003 
1004  /* Make sure we accumulate data for just the associated channel
1005  * (even if scanning). */
1006  if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1007  IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1008  rxon_chnum, rxon_band24);
1009  spin_unlock_bh(&priv->statistics.lock);
1010  return;
1011  }
1012 
1013  /*
1014  * Accumulate beacon statistics values across
1015  * "chain_noise_num_beacons"
1016  */
1017  chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1019  chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1021  chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1023 
1024  chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1025  chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1026  chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1027 
1028  spin_unlock_bh(&priv->statistics.lock);
1029 
1030  data->beacon_count++;
1031 
1032  data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1033  data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1034  data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1035 
1036  data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1037  data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1038  data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1039 
1040  IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1041  rxon_chnum, rxon_band24, data->beacon_count);
1042  IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1043  chain_sig_a, chain_sig_b, chain_sig_c);
1044  IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1045  chain_noise_a, chain_noise_b, chain_noise_c);
1046 
1047  /* If this is the "chain_noise_num_beacons", determine:
1048  * 1) Disconnected antennas (using signal strengths)
1049  * 2) Differential gain (using silence noise) to balance receivers */
1050  if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1051  return;
1052 
1053  /* Analyze signal for disconnected antenna */
1054  if (priv->cfg->bt_params &&
1055  priv->cfg->bt_params->advanced_bt_coexist) {
1056  /* Disable disconnected antenna algorithm for advanced
1057  bt coex, assuming valid antennas are connected */
1058  data->active_chains = priv->eeprom_data->valid_rx_ant;
1059  for (i = 0; i < NUM_RX_CHAINS; i++)
1060  if (!(data->active_chains & (1<<i)))
1061  data->disconn_array[i] = 1;
1062  } else
1063  iwl_find_disconn_antenna(priv, average_sig, data);
1064 
1065  /* Analyze noise for rx balance */
1066  average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1067  average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1068  average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1069 
1070  for (i = 0; i < NUM_RX_CHAINS; i++) {
1071  if (!(data->disconn_array[i]) &&
1072  (average_noise[i] <= min_average_noise)) {
1073  /* This means that chain i is active and has
1074  * lower noise values so far: */
1075  min_average_noise = average_noise[i];
1076  min_average_noise_antenna_i = i;
1077  }
1078  }
1079 
1080  IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1081  average_noise[0], average_noise[1],
1082  average_noise[2]);
1083 
1084  IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1085  min_average_noise, min_average_noise_antenna_i);
1086 
1087  iwlagn_gain_computation(
1088  priv, average_noise,
1089  find_first_chain(priv->eeprom_data->valid_rx_ant));
1090 
1091  /* Some power changes may have been made during the calibration.
1092  * Update and commit the RXON
1093  */
1094  iwl_update_chain_flags(priv);
1095 
1096  data->state = IWL_CHAIN_NOISE_DONE;
1097  iwl_power_update_mode(priv, false);
1098 }
1099 
1101 {
1102  int i;
1103  memset(&(priv->sensitivity_data), 0,
1104  sizeof(struct iwl_sensitivity_data));
1105  memset(&(priv->chain_noise_data), 0,
1106  sizeof(struct iwl_chain_noise_data));
1107  for (i = 0; i < NUM_RX_CHAINS; i++)
1108  priv->chain_noise_data.delta_gain_code[i] =
1110 
1111  /* Ask for statistics now, the uCode will send notification
1112  * periodically after association */
1114 }