Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
jsm_tty.c
Go to the documentation of this file.
1 /************************************************************************
2  * Copyright 2003 Digi International (www.digi.com)
3  *
4  * Copyright (C) 2004 IBM Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14  * PURPOSE. See the GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19  * MA 02111-1307, USA.
20  *
21  * Contact Information:
22  * Scott H Kilau <[email protected]>
23  * Ananda Venkatarman <[email protected]>
24  * Modifications:
25  * 01/19/06: changed jsm_input routine to use the dynamically allocated
26  * tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27  ***********************************************************************/
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 #include <linux/serial_reg.h>
31 #include <linux/delay.h> /* For udelay */
32 #include <linux/pci.h>
33 #include <linux/slab.h>
34 
35 #include "jsm.h"
36 
37 static DECLARE_BITMAP(linemap, MAXLINES);
38 
39 static void jsm_carrier(struct jsm_channel *ch);
40 
41 static inline int jsm_get_mstat(struct jsm_channel *ch)
42 {
43  unsigned char mstat;
44  unsigned result;
45 
46  jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n");
47 
48  mstat = (ch->ch_mostat | ch->ch_mistat);
49 
50  result = 0;
51 
52  if (mstat & UART_MCR_DTR)
53  result |= TIOCM_DTR;
54  if (mstat & UART_MCR_RTS)
55  result |= TIOCM_RTS;
56  if (mstat & UART_MSR_CTS)
57  result |= TIOCM_CTS;
58  if (mstat & UART_MSR_DSR)
59  result |= TIOCM_DSR;
60  if (mstat & UART_MSR_RI)
61  result |= TIOCM_RI;
62  if (mstat & UART_MSR_DCD)
63  result |= TIOCM_CD;
64 
65  jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
66  return result;
67 }
68 
69 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
70 {
71  return TIOCSER_TEMT;
72 }
73 
74 /*
75  * Return modem signals to ld.
76  */
77 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
78 {
79  int result;
80  struct jsm_channel *channel = (struct jsm_channel *)port;
81 
82  jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
83 
84  result = jsm_get_mstat(channel);
85 
86  if (result < 0)
87  return -ENXIO;
88 
89  jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
90 
91  return result;
92 }
93 
94 /*
95  * jsm_set_modem_info()
96  *
97  * Set modem signals, called by ld.
98  */
99 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
100 {
101  struct jsm_channel *channel = (struct jsm_channel *)port;
102 
103  jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
104 
105  if (mctrl & TIOCM_RTS)
106  channel->ch_mostat |= UART_MCR_RTS;
107  else
108  channel->ch_mostat &= ~UART_MCR_RTS;
109 
110  if (mctrl & TIOCM_DTR)
111  channel->ch_mostat |= UART_MCR_DTR;
112  else
113  channel->ch_mostat &= ~UART_MCR_DTR;
114 
115  channel->ch_bd->bd_ops->assert_modem_signals(channel);
116 
117  jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
118  udelay(10);
119 }
120 
121 /*
122  * jsm_tty_write()
123  *
124  * Take data from the user or kernel and send it out to the FEP.
125  * In here exists all the Transparent Print magic as well.
126  */
127 static void jsm_tty_write(struct uart_port *port)
128 {
129  struct jsm_channel *channel;
130  channel = container_of(port, struct jsm_channel, uart_port);
131  channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
132 }
133 
134 static void jsm_tty_start_tx(struct uart_port *port)
135 {
136  struct jsm_channel *channel = (struct jsm_channel *)port;
137 
138  jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
139 
140  channel->ch_flags &= ~(CH_STOP);
141  jsm_tty_write(port);
142 
143  jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
144 }
145 
146 static void jsm_tty_stop_tx(struct uart_port *port)
147 {
148  struct jsm_channel *channel = (struct jsm_channel *)port;
149 
150  jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
151 
152  channel->ch_flags |= (CH_STOP);
153 
154  jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
155 }
156 
157 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
158 {
159  unsigned long lock_flags;
160  struct jsm_channel *channel = (struct jsm_channel *)port;
161  struct ktermios *termios;
162 
163  spin_lock_irqsave(&port->lock, lock_flags);
164  termios = &port->state->port.tty->termios;
165  if (ch == termios->c_cc[VSTART])
166  channel->ch_bd->bd_ops->send_start_character(channel);
167 
168  if (ch == termios->c_cc[VSTOP])
169  channel->ch_bd->bd_ops->send_stop_character(channel);
170  spin_unlock_irqrestore(&port->lock, lock_flags);
171 }
172 
173 static void jsm_tty_stop_rx(struct uart_port *port)
174 {
175  struct jsm_channel *channel = (struct jsm_channel *)port;
176 
177  channel->ch_bd->bd_ops->disable_receiver(channel);
178 }
179 
180 static void jsm_tty_enable_ms(struct uart_port *port)
181 {
182  /* Nothing needed */
183 }
184 
185 static void jsm_tty_break(struct uart_port *port, int break_state)
186 {
187  unsigned long lock_flags;
188  struct jsm_channel *channel = (struct jsm_channel *)port;
189 
190  spin_lock_irqsave(&port->lock, lock_flags);
191  if (break_state == -1)
192  channel->ch_bd->bd_ops->send_break(channel);
193  else
194  channel->ch_bd->bd_ops->clear_break(channel, 0);
195 
196  spin_unlock_irqrestore(&port->lock, lock_flags);
197 }
198 
199 static int jsm_tty_open(struct uart_port *port)
200 {
201  struct jsm_board *brd;
202  struct jsm_channel *channel = (struct jsm_channel *)port;
203  struct ktermios *termios;
204 
205  /* Get board pointer from our array of majors we have allocated */
206  brd = channel->ch_bd;
207 
208  /*
209  * Allocate channel buffers for read/write/error.
210  * Set flag, so we don't get trounced on.
211  */
212  channel->ch_flags |= (CH_OPENING);
213 
214  /* Drop locks, as malloc with GFP_KERNEL can sleep */
215 
216  if (!channel->ch_rqueue) {
217  channel->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL);
218  if (!channel->ch_rqueue) {
219  jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
220  "unable to allocate read queue buf");
221  return -ENOMEM;
222  }
223  }
224  if (!channel->ch_equeue) {
225  channel->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL);
226  if (!channel->ch_equeue) {
227  jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
228  "unable to allocate error queue buf");
229  return -ENOMEM;
230  }
231  }
232 
233  channel->ch_flags &= ~(CH_OPENING);
234  /*
235  * Initialize if neither terminal is open.
236  */
237  jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev,
238  "jsm_open: initializing channel in open...\n");
239 
240  /*
241  * Flush input queues.
242  */
243  channel->ch_r_head = channel->ch_r_tail = 0;
244  channel->ch_e_head = channel->ch_e_tail = 0;
245 
246  brd->bd_ops->flush_uart_write(channel);
247  brd->bd_ops->flush_uart_read(channel);
248 
249  channel->ch_flags = 0;
250  channel->ch_cached_lsr = 0;
251  channel->ch_stops_sent = 0;
252 
253  termios = &port->state->port.tty->termios;
254  channel->ch_c_cflag = termios->c_cflag;
255  channel->ch_c_iflag = termios->c_iflag;
256  channel->ch_c_oflag = termios->c_oflag;
257  channel->ch_c_lflag = termios->c_lflag;
258  channel->ch_startc = termios->c_cc[VSTART];
259  channel->ch_stopc = termios->c_cc[VSTOP];
260 
261  /* Tell UART to init itself */
262  brd->bd_ops->uart_init(channel);
263 
264  /*
265  * Run param in case we changed anything
266  */
267  brd->bd_ops->param(channel);
268 
269  jsm_carrier(channel);
270 
271  channel->ch_open_count++;
272 
273  jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n");
274  return 0;
275 }
276 
277 static void jsm_tty_close(struct uart_port *port)
278 {
279  struct jsm_board *bd;
280  struct ktermios *ts;
281  struct jsm_channel *channel = (struct jsm_channel *)port;
282 
283  jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n");
284 
285  bd = channel->ch_bd;
286  ts = &port->state->port.tty->termios;
287 
288  channel->ch_flags &= ~(CH_STOPI);
289 
290  channel->ch_open_count--;
291 
292  /*
293  * If we have HUPCL set, lower DTR and RTS
294  */
295  if (channel->ch_c_cflag & HUPCL) {
296  jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev,
297  "Close. HUPCL set, dropping DTR/RTS\n");
298 
299  /* Drop RTS/DTR */
300  channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
301  bd->bd_ops->assert_modem_signals(channel);
302  }
303 
304  /* Turn off UART interrupts for this port */
305  channel->ch_bd->bd_ops->uart_off(channel);
306 
307  jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n");
308 }
309 
310 static void jsm_tty_set_termios(struct uart_port *port,
311  struct ktermios *termios,
312  struct ktermios *old_termios)
313 {
314  unsigned long lock_flags;
315  struct jsm_channel *channel = (struct jsm_channel *)port;
316 
317  spin_lock_irqsave(&port->lock, lock_flags);
318  channel->ch_c_cflag = termios->c_cflag;
319  channel->ch_c_iflag = termios->c_iflag;
320  channel->ch_c_oflag = termios->c_oflag;
321  channel->ch_c_lflag = termios->c_lflag;
322  channel->ch_startc = termios->c_cc[VSTART];
323  channel->ch_stopc = termios->c_cc[VSTOP];
324 
325  channel->ch_bd->bd_ops->param(channel);
326  jsm_carrier(channel);
327  spin_unlock_irqrestore(&port->lock, lock_flags);
328 }
329 
330 static const char *jsm_tty_type(struct uart_port *port)
331 {
332  return "jsm";
333 }
334 
335 static void jsm_tty_release_port(struct uart_port *port)
336 {
337 }
338 
339 static int jsm_tty_request_port(struct uart_port *port)
340 {
341  return 0;
342 }
343 
344 static void jsm_config_port(struct uart_port *port, int flags)
345 {
346  port->type = PORT_JSM;
347 }
348 
349 static struct uart_ops jsm_ops = {
350  .tx_empty = jsm_tty_tx_empty,
351  .set_mctrl = jsm_tty_set_mctrl,
352  .get_mctrl = jsm_tty_get_mctrl,
353  .stop_tx = jsm_tty_stop_tx,
354  .start_tx = jsm_tty_start_tx,
355  .send_xchar = jsm_tty_send_xchar,
356  .stop_rx = jsm_tty_stop_rx,
357  .enable_ms = jsm_tty_enable_ms,
358  .break_ctl = jsm_tty_break,
359  .startup = jsm_tty_open,
360  .shutdown = jsm_tty_close,
361  .set_termios = jsm_tty_set_termios,
362  .type = jsm_tty_type,
363  .release_port = jsm_tty_release_port,
364  .request_port = jsm_tty_request_port,
365  .config_port = jsm_config_port,
366 };
367 
368 /*
369  * jsm_tty_init()
370  *
371  * Init the tty subsystem. Called once per board after board has been
372  * downloaded and init'ed.
373  */
375 {
376  int i;
377  void __iomem *vaddr;
378  struct jsm_channel *ch;
379 
380  if (!brd)
381  return -ENXIO;
382 
383  jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
384 
385  /*
386  * Initialize board structure elements.
387  */
388 
389  brd->nasync = brd->maxports;
390 
391  /*
392  * Allocate channel memory that might not have been allocated
393  * when the driver was first loaded.
394  */
395  for (i = 0; i < brd->nasync; i++) {
396  if (!brd->channels[i]) {
397 
398  /*
399  * Okay to malloc with GFP_KERNEL, we are not at
400  * interrupt context, and there are no locks held.
401  */
402  brd->channels[i] = kzalloc(sizeof(struct jsm_channel), GFP_KERNEL);
403  if (!brd->channels[i]) {
404  jsm_printk(CORE, ERR, &brd->pci_dev,
405  "%s:%d Unable to allocate memory for channel struct\n",
406  __FILE__, __LINE__);
407  }
408  }
409  }
410 
411  ch = brd->channels[0];
412  vaddr = brd->re_map_membase;
413 
414  /* Set up channel variables */
415  for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
416 
417  if (!brd->channels[i])
418  continue;
419 
420  spin_lock_init(&ch->ch_lock);
421 
422  if (brd->bd_uart_offset == 0x200)
423  ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i);
424 
425  ch->ch_bd = brd;
426  ch->ch_portnum = i;
427 
428  /* .25 second delay */
429  ch->ch_close_delay = 250;
430 
431  init_waitqueue_head(&ch->ch_flags_wait);
432  }
433 
434  jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
435  return 0;
436 }
437 
439 {
440  int i, rc;
441  unsigned int line;
442  struct jsm_channel *ch;
443 
444  if (!brd)
445  return -ENXIO;
446 
447  jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
448 
449  /*
450  * Initialize board structure elements.
451  */
452 
453  brd->nasync = brd->maxports;
454 
455  /* Set up channel variables */
456  for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
457 
458  if (!brd->channels[i])
459  continue;
460 
461  brd->channels[i]->uart_port.irq = brd->irq;
462  brd->channels[i]->uart_port.uartclk = 14745600;
463  brd->channels[i]->uart_port.type = PORT_JSM;
464  brd->channels[i]->uart_port.iotype = UPIO_MEM;
465  brd->channels[i]->uart_port.membase = brd->re_map_membase;
466  brd->channels[i]->uart_port.fifosize = 16;
467  brd->channels[i]->uart_port.ops = &jsm_ops;
468  line = find_first_zero_bit(linemap, MAXLINES);
469  if (line >= MAXLINES) {
470  printk(KERN_INFO "jsm: linemap is full, added device failed\n");
471  continue;
472  } else
473  set_bit(line, linemap);
474  brd->channels[i]->uart_port.line = line;
475  rc = uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port);
476  if (rc){
477  printk(KERN_INFO "jsm: Port %d failed. Aborting...\n", i);
478  return rc;
479  }
480  else
481  printk(KERN_INFO "jsm: Port %d added\n", i);
482  }
483 
484  jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
485  return 0;
486 }
487 
489 {
490  int i;
491  struct jsm_channel *ch;
492 
493  if (!brd)
494  return -ENXIO;
495 
496  jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
497 
498  /*
499  * Initialize board structure elements.
500  */
501 
502  brd->nasync = brd->maxports;
503 
504  /* Set up channel variables */
505  for (i = 0; i < brd->nasync; i++) {
506 
507  if (!brd->channels[i])
508  continue;
509 
510  ch = brd->channels[i];
511 
512  clear_bit(ch->uart_port.line, linemap);
513  uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
514  }
515 
516  jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
517  return 0;
518 }
519 
520 void jsm_input(struct jsm_channel *ch)
521 {
522  struct jsm_board *bd;
523  struct tty_struct *tp;
524  u32 rmask;
525  u16 head;
526  u16 tail;
527  int data_len;
528  unsigned long lock_flags;
529  int len = 0;
530  int n = 0;
531  int s = 0;
532  int i = 0;
533 
534  jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
535 
536  if (!ch)
537  return;
538 
539  tp = ch->uart_port.state->port.tty;
540 
541  bd = ch->ch_bd;
542  if(!bd)
543  return;
544 
545  spin_lock_irqsave(&ch->ch_lock, lock_flags);
546 
547  /*
548  *Figure the number of characters in the buffer.
549  *Exit immediately if none.
550  */
551 
552  rmask = RQUEUEMASK;
553 
554  head = ch->ch_r_head & rmask;
555  tail = ch->ch_r_tail & rmask;
556 
557  data_len = (head - tail) & rmask;
558  if (data_len == 0) {
559  spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
560  return;
561  }
562 
563  jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
564 
565  /*
566  *If the device is not open, or CREAD is off, flush
567  *input data and return immediately.
568  */
569  if (!tp ||
570  !(tp->termios.c_cflag & CREAD) ) {
571 
572  jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
573  "input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum);
574  ch->ch_r_head = tail;
575 
576  /* Force queue flow control to be released, if needed */
578 
579  spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
580  return;
581  }
582 
583  /*
584  * If we are throttled, simply don't read any data.
585  */
586  if (ch->ch_flags & CH_STOPI) {
587  spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
588  jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
589  "Port %d throttled, not reading any data. head: %x tail: %x\n",
590  ch->ch_portnum, head, tail);
591  return;
592  }
593 
594  jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n");
595 
596  if (data_len <= 0) {
597  spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
598  jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n");
599  return;
600  }
601 
602  len = tty_buffer_request_room(tp, data_len);
603  n = len;
604 
605  /*
606  * n now contains the most amount of data we can copy,
607  * bounded either by the flip buffer size or the amount
608  * of data the card actually has pending...
609  */
610  while (n) {
611  s = ((head >= tail) ? head : RQUEUESIZE) - tail;
612  s = min(s, n);
613 
614  if (s <= 0)
615  break;
616 
617  /*
618  * If conditions are such that ld needs to see all
619  * UART errors, we will have to walk each character
620  * and error byte and send them to the buffer one at
621  * a time.
622  */
623 
624  if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
625  for (i = 0; i < s; i++) {
626  /*
627  * Give the Linux ld the flags in the
628  * format it likes.
629  */
630  if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
631  tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_BREAK);
632  else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
633  tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_PARITY);
634  else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
635  tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_FRAME);
636  else
637  tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
638  }
639  } else {
640  tty_insert_flip_string(tp, ch->ch_rqueue + tail, s) ;
641  }
642  tail += s;
643  n -= s;
644  /* Flip queue if needed */
645  tail &= rmask;
646  }
647 
648  ch->ch_r_tail = tail & rmask;
649  ch->ch_e_tail = tail & rmask;
651  spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
652 
653  /* Tell the tty layer its okay to "eat" the data now */
655 
656  jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
657 }
658 
659 static void jsm_carrier(struct jsm_channel *ch)
660 {
661  struct jsm_board *bd;
662 
663  int virt_carrier = 0;
664  int phys_carrier = 0;
665 
666  jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n");
667  if (!ch)
668  return;
669 
670  bd = ch->ch_bd;
671 
672  if (!bd)
673  return;
674 
675  if (ch->ch_mistat & UART_MSR_DCD) {
676  jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
677  "mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
678  phys_carrier = 1;
679  }
680 
681  if (ch->ch_c_cflag & CLOCAL)
682  virt_carrier = 1;
683 
684  jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
685  "DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier);
686 
687  /*
688  * Test for a VIRTUAL carrier transition to HIGH.
689  */
690  if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
691 
692  /*
693  * When carrier rises, wake any threads waiting
694  * for carrier in the open routine.
695  */
696 
697  jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
698  "carrier: virt DCD rose\n");
699 
700  if (waitqueue_active(&(ch->ch_flags_wait)))
702  }
703 
704  /*
705  * Test for a PHYSICAL carrier transition to HIGH.
706  */
707  if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
708 
709  /*
710  * When carrier rises, wake any threads waiting
711  * for carrier in the open routine.
712  */
713 
714  jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
715  "carrier: physical DCD rose\n");
716 
717  if (waitqueue_active(&(ch->ch_flags_wait)))
719  }
720 
721  /*
722  * Test for a PHYSICAL transition to low, so long as we aren't
723  * currently ignoring physical transitions (which is what "virtual
724  * carrier" indicates).
725  *
726  * The transition of the virtual carrier to low really doesn't
727  * matter... it really only means "ignore carrier state", not
728  * "make pretend that carrier is there".
729  */
730  if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
731  && (phys_carrier == 0)) {
732  /*
733  * When carrier drops:
734  *
735  * Drop carrier on all open units.
736  *
737  * Flush queues, waking up any task waiting in the
738  * line discipline.
739  *
740  * Send a hangup to the control terminal.
741  *
742  * Enable all select calls.
743  */
744  if (waitqueue_active(&(ch->ch_flags_wait)))
746  }
747 
748  /*
749  * Make sure that our cached values reflect the current reality.
750  */
751  if (virt_carrier == 1)
752  ch->ch_flags |= CH_FCAR;
753  else
754  ch->ch_flags &= ~CH_FCAR;
755 
756  if (phys_carrier == 1)
757  ch->ch_flags |= CH_CD;
758  else
759  ch->ch_flags &= ~CH_CD;
760 }
761 
762 
764 {
765  struct board_ops *bd_ops = ch->ch_bd->bd_ops;
766  int qleft;
767 
768  /* Store how much space we have left in the queue */
769  if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
770  qleft += RQUEUEMASK + 1;
771 
772  /*
773  * Check to see if we should enforce flow control on our queue because
774  * the ld (or user) isn't reading data out of our queue fast enuf.
775  *
776  * NOTE: This is done based on what the current flow control of the
777  * port is set for.
778  *
779  * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
780  * This will cause the UART's FIFO to back up, and force
781  * the RTS signal to be dropped.
782  * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
783  * the other side, in hopes it will stop sending data to us.
784  * 3) NONE - Nothing we can do. We will simply drop any extra data
785  * that gets sent into us when the queue fills up.
786  */
787  if (qleft < 256) {
788  /* HWFLOW */
789  if (ch->ch_c_cflag & CRTSCTS) {
790  if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
791  bd_ops->disable_receiver(ch);
792  ch->ch_flags |= (CH_RECEIVER_OFF);
793  jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
794  "Internal queue hit hilevel mark (%d)! Turning off interrupts.\n",
795  qleft);
796  }
797  }
798  /* SWFLOW */
799  else if (ch->ch_c_iflag & IXOFF) {
800  if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
801  bd_ops->send_stop_character(ch);
802  ch->ch_stops_sent++;
803  jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
804  "Sending stop char! Times sent: %x\n", ch->ch_stops_sent);
805  }
806  }
807  }
808 
809  /*
810  * Check to see if we should unenforce flow control because
811  * ld (or user) finally read enuf data out of our queue.
812  *
813  * NOTE: This is done based on what the current flow control of the
814  * port is set for.
815  *
816  * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
817  * This will cause the UART's FIFO to raise RTS back up,
818  * which will allow the other side to start sending data again.
819  * 2) SWFLOW (IXOFF) - Send a start character to
820  * the other side, so it will start sending data to us again.
821  * 3) NONE - Do nothing. Since we didn't do anything to turn off the
822  * other side, we don't need to do anything now.
823  */
824  if (qleft > (RQUEUESIZE / 2)) {
825  /* HWFLOW */
826  if (ch->ch_c_cflag & CRTSCTS) {
827  if (ch->ch_flags & CH_RECEIVER_OFF) {
828  bd_ops->enable_receiver(ch);
829  ch->ch_flags &= ~(CH_RECEIVER_OFF);
830  jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
831  "Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n",
832  qleft);
833  }
834  }
835  /* SWFLOW */
836  else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
837  ch->ch_stops_sent = 0;
838  bd_ops->send_start_character(ch);
839  jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n");
840  }
841  }
842 }