Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kdb_support.c
Go to the documentation of this file.
1 /*
2  * Kernel Debugger Architecture Independent Support Functions
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License. See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9  * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
10  * 03/02/13 added new 2.5 kallsyms <[email protected]>
11  */
12 
13 #include <stdarg.h>
14 #include <linux/types.h>
15 #include <linux/sched.h>
16 #include <linux/mm.h>
17 #include <linux/kallsyms.h>
18 #include <linux/stddef.h>
19 #include <linux/vmalloc.h>
20 #include <linux/ptrace.h>
21 #include <linux/module.h>
22 #include <linux/highmem.h>
23 #include <linux/hardirq.h>
24 #include <linux/delay.h>
25 #include <linux/uaccess.h>
26 #include <linux/kdb.h>
27 #include <linux/slab.h>
28 #include "kdb_private.h"
29 
30 /*
31  * kdbgetsymval - Return the address of the given symbol.
32  *
33  * Parameters:
34  * symname Character string containing symbol name
35  * symtab Structure to receive results
36  * Returns:
37  * 0 Symbol not found, symtab zero filled
38  * 1 Symbol mapped to module/symbol/section, data in symtab
39  */
40 int kdbgetsymval(const char *symname, kdb_symtab_t *symtab)
41 {
42  if (KDB_DEBUG(AR))
43  kdb_printf("kdbgetsymval: symname=%s, symtab=%p\n", symname,
44  symtab);
45  memset(symtab, 0, sizeof(*symtab));
46  symtab->sym_start = kallsyms_lookup_name(symname);
47  if (symtab->sym_start) {
48  if (KDB_DEBUG(AR))
49  kdb_printf("kdbgetsymval: returns 1, "
50  "symtab->sym_start=0x%lx\n",
51  symtab->sym_start);
52  return 1;
53  }
54  if (KDB_DEBUG(AR))
55  kdb_printf("kdbgetsymval: returns 0\n");
56  return 0;
57 }
59 
60 static char *kdb_name_table[100]; /* arbitrary size */
61 
62 /*
63  * kdbnearsym - Return the name of the symbol with the nearest address
64  * less than 'addr'.
65  *
66  * Parameters:
67  * addr Address to check for symbol near
68  * symtab Structure to receive results
69  * Returns:
70  * 0 No sections contain this address, symtab zero filled
71  * 1 Address mapped to module/symbol/section, data in symtab
72  * Remarks:
73  * 2.6 kallsyms has a "feature" where it unpacks the name into a
74  * string. If that string is reused before the caller expects it
75  * then the caller sees its string change without warning. To
76  * avoid cluttering up the main kdb code with lots of kdb_strdup,
77  * tests and kfree calls, kdbnearsym maintains an LRU list of the
78  * last few unique strings. The list is sized large enough to
79  * hold active strings, no kdb caller of kdbnearsym makes more
80  * than ~20 later calls before using a saved value.
81  */
82 int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab)
83 {
84  int ret = 0;
85  unsigned long symbolsize = 0;
86  unsigned long offset = 0;
87 #define knt1_size 128 /* must be >= kallsyms table size */
88  char *knt1 = NULL;
89 
90  if (KDB_DEBUG(AR))
91  kdb_printf("kdbnearsym: addr=0x%lx, symtab=%p\n", addr, symtab);
92  memset(symtab, 0, sizeof(*symtab));
93 
94  if (addr < 4096)
95  goto out;
97  if (!knt1) {
98  kdb_printf("kdbnearsym: addr=0x%lx cannot kmalloc knt1\n",
99  addr);
100  goto out;
101  }
102  symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset,
103  (char **)(&symtab->mod_name), knt1);
104  if (offset > 8*1024*1024) {
105  symtab->sym_name = NULL;
106  addr = offset = symbolsize = 0;
107  }
108  symtab->sym_start = addr - offset;
109  symtab->sym_end = symtab->sym_start + symbolsize;
110  ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0';
111 
112  if (ret) {
113  int i;
114  /* Another 2.6 kallsyms "feature". Sometimes the sym_name is
115  * set but the buffer passed into kallsyms_lookup is not used,
116  * so it contains garbage. The caller has to work out which
117  * buffer needs to be saved.
118  *
119  * What was Rusty smoking when he wrote that code?
120  */
121  if (symtab->sym_name != knt1) {
122  strncpy(knt1, symtab->sym_name, knt1_size);
123  knt1[knt1_size-1] = '\0';
124  }
125  for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) {
126  if (kdb_name_table[i] &&
127  strcmp(kdb_name_table[i], knt1) == 0)
128  break;
129  }
130  if (i >= ARRAY_SIZE(kdb_name_table)) {
131  debug_kfree(kdb_name_table[0]);
132  memcpy(kdb_name_table, kdb_name_table+1,
133  sizeof(kdb_name_table[0]) *
134  (ARRAY_SIZE(kdb_name_table)-1));
135  } else {
136  debug_kfree(knt1);
137  knt1 = kdb_name_table[i];
138  memcpy(kdb_name_table+i, kdb_name_table+i+1,
139  sizeof(kdb_name_table[0]) *
140  (ARRAY_SIZE(kdb_name_table)-i-1));
141  }
142  i = ARRAY_SIZE(kdb_name_table) - 1;
143  kdb_name_table[i] = knt1;
144  symtab->sym_name = kdb_name_table[i];
145  knt1 = NULL;
146  }
147 
148  if (symtab->mod_name == NULL)
149  symtab->mod_name = "kernel";
150  if (KDB_DEBUG(AR))
151  kdb_printf("kdbnearsym: returns %d symtab->sym_start=0x%lx, "
152  "symtab->mod_name=%p, symtab->sym_name=%p (%s)\n", ret,
153  symtab->sym_start, symtab->mod_name, symtab->sym_name,
154  symtab->sym_name);
155 
156 out:
157  debug_kfree(knt1);
158  return ret;
159 }
160 
162 {
163  int i;
164  for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) {
165  if (kdb_name_table[i]) {
166  debug_kfree(kdb_name_table[i]);
167  kdb_name_table[i] = NULL;
168  }
169  }
170 }
171 
172 static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1];
173 
174 /*
175  * kallsyms_symbol_complete
176  *
177  * Parameters:
178  * prefix_name prefix of a symbol name to lookup
179  * max_len maximum length that can be returned
180  * Returns:
181  * Number of symbols which match the given prefix.
182  * Notes:
183  * prefix_name is changed to contain the longest unique prefix that
184  * starts with this prefix (tab completion).
185  */
186 int kallsyms_symbol_complete(char *prefix_name, int max_len)
187 {
188  loff_t pos = 0;
189  int prefix_len = strlen(prefix_name), prev_len = 0;
190  int i, number = 0;
191  const char *name;
192 
193  while ((name = kdb_walk_kallsyms(&pos))) {
194  if (strncmp(name, prefix_name, prefix_len) == 0) {
195  strcpy(ks_namebuf, name);
196  /* Work out the longest name that matches the prefix */
197  if (++number == 1) {
198  prev_len = min_t(int, max_len-1,
199  strlen(ks_namebuf));
200  memcpy(ks_namebuf_prev, ks_namebuf, prev_len);
201  ks_namebuf_prev[prev_len] = '\0';
202  continue;
203  }
204  for (i = 0; i < prev_len; i++) {
205  if (ks_namebuf[i] != ks_namebuf_prev[i]) {
206  prev_len = i;
207  ks_namebuf_prev[i] = '\0';
208  break;
209  }
210  }
211  }
212  }
213  if (prev_len > prefix_len)
214  memcpy(prefix_name, ks_namebuf_prev, prev_len+1);
215  return number;
216 }
217 
218 /*
219  * kallsyms_symbol_next
220  *
221  * Parameters:
222  * prefix_name prefix of a symbol name to lookup
223  * flag 0 means search from the head, 1 means continue search.
224  * Returns:
225  * 1 if a symbol matches the given prefix.
226  * 0 if no string found
227  */
228 int kallsyms_symbol_next(char *prefix_name, int flag)
229 {
230  int prefix_len = strlen(prefix_name);
231  static loff_t pos;
232  const char *name;
233 
234  if (!flag)
235  pos = 0;
236 
237  while ((name = kdb_walk_kallsyms(&pos))) {
238  if (strncmp(name, prefix_name, prefix_len) == 0) {
239  strncpy(prefix_name, name, strlen(name)+1);
240  return 1;
241  }
242  }
243  return 0;
244 }
245 
246 /*
247  * kdb_symbol_print - Standard method for printing a symbol name and offset.
248  * Inputs:
249  * addr Address to be printed.
250  * symtab Address of symbol data, if NULL this routine does its
251  * own lookup.
252  * punc Punctuation for string, bit field.
253  * Remarks:
254  * The string and its punctuation is only printed if the address
255  * is inside the kernel, except that the value is always printed
256  * when requested.
257  */
258 void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p,
259  unsigned int punc)
260 {
261  kdb_symtab_t symtab, *symtab_p2;
262  if (symtab_p) {
263  symtab_p2 = (kdb_symtab_t *)symtab_p;
264  } else {
265  symtab_p2 = &symtab;
266  kdbnearsym(addr, symtab_p2);
267  }
268  if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE)))
269  return;
270  if (punc & KDB_SP_SPACEB)
271  kdb_printf(" ");
272  if (punc & KDB_SP_VALUE)
273  kdb_printf(kdb_machreg_fmt0, addr);
274  if (symtab_p2->sym_name) {
275  if (punc & KDB_SP_VALUE)
276  kdb_printf(" ");
277  if (punc & KDB_SP_PAREN)
278  kdb_printf("(");
279  if (strcmp(symtab_p2->mod_name, "kernel"))
280  kdb_printf("[%s]", symtab_p2->mod_name);
281  kdb_printf("%s", symtab_p2->sym_name);
282  if (addr != symtab_p2->sym_start)
283  kdb_printf("+0x%lx", addr - symtab_p2->sym_start);
284  if (punc & KDB_SP_SYMSIZE)
285  kdb_printf("/0x%lx",
286  symtab_p2->sym_end - symtab_p2->sym_start);
287  if (punc & KDB_SP_PAREN)
288  kdb_printf(")");
289  }
290  if (punc & KDB_SP_SPACEA)
291  kdb_printf(" ");
292  if (punc & KDB_SP_NEWLINE)
293  kdb_printf("\n");
294 }
295 
296 /*
297  * kdb_strdup - kdb equivalent of strdup, for disasm code.
298  * Inputs:
299  * str The string to duplicate.
300  * type Flags to kmalloc for the new string.
301  * Returns:
302  * Address of the new string, NULL if storage could not be allocated.
303  * Remarks:
304  * This is not in lib/string.c because it uses kmalloc which is not
305  * available when string.o is used in boot loaders.
306  */
307 char *kdb_strdup(const char *str, gfp_t type)
308 {
309  int n = strlen(str)+1;
310  char *s = kmalloc(n, type);
311  if (!s)
312  return NULL;
313  return strcpy(s, str);
314 }
315 
316 /*
317  * kdb_getarea_size - Read an area of data. The kdb equivalent of
318  * copy_from_user, with kdb messages for invalid addresses.
319  * Inputs:
320  * res Pointer to the area to receive the result.
321  * addr Address of the area to copy.
322  * size Size of the area.
323  * Returns:
324  * 0 for success, < 0 for error.
325  */
326 int kdb_getarea_size(void *res, unsigned long addr, size_t size)
327 {
328  int ret = probe_kernel_read((char *)res, (char *)addr, size);
329  if (ret) {
330  if (!KDB_STATE(SUPPRESS)) {
331  kdb_printf("kdb_getarea: Bad address 0x%lx\n", addr);
333  }
334  ret = KDB_BADADDR;
335  } else {
337  }
338  return ret;
339 }
340 
341 /*
342  * kdb_putarea_size - Write an area of data. The kdb equivalent of
343  * copy_to_user, with kdb messages for invalid addresses.
344  * Inputs:
345  * addr Address of the area to write to.
346  * res Pointer to the area holding the data.
347  * size Size of the area.
348  * Returns:
349  * 0 for success, < 0 for error.
350  */
351 int kdb_putarea_size(unsigned long addr, void *res, size_t size)
352 {
353  int ret = probe_kernel_read((char *)addr, (char *)res, size);
354  if (ret) {
355  if (!KDB_STATE(SUPPRESS)) {
356  kdb_printf("kdb_putarea: Bad address 0x%lx\n", addr);
358  }
359  ret = KDB_BADADDR;
360  } else {
362  }
363  return ret;
364 }
365 
366 /*
367  * kdb_getphys - Read data from a physical address. Validate the
368  * address is in range, use kmap_atomic() to get data
369  * similar to kdb_getarea() - but for phys addresses
370  * Inputs:
371  * res Pointer to the word to receive the result
372  * addr Physical address of the area to copy
373  * size Size of the area
374  * Returns:
375  * 0 for success, < 0 for error.
376  */
377 static int kdb_getphys(void *res, unsigned long addr, size_t size)
378 {
379  unsigned long pfn;
380  void *vaddr;
381  struct page *page;
382 
383  pfn = (addr >> PAGE_SHIFT);
384  if (!pfn_valid(pfn))
385  return 1;
386  page = pfn_to_page(pfn);
387  vaddr = kmap_atomic(page);
388  memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size);
389  kunmap_atomic(vaddr);
390 
391  return 0;
392 }
393 
394 /*
395  * kdb_getphysword
396  * Inputs:
397  * word Pointer to the word to receive the result.
398  * addr Address of the area to copy.
399  * size Size of the area.
400  * Returns:
401  * 0 for success, < 0 for error.
402  */
403 int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size)
404 {
405  int diag;
406  __u8 w1;
407  __u16 w2;
408  __u32 w4;
409  __u64 w8;
410  *word = 0; /* Default value if addr or size is invalid */
411 
412  switch (size) {
413  case 1:
414  diag = kdb_getphys(&w1, addr, sizeof(w1));
415  if (!diag)
416  *word = w1;
417  break;
418  case 2:
419  diag = kdb_getphys(&w2, addr, sizeof(w2));
420  if (!diag)
421  *word = w2;
422  break;
423  case 4:
424  diag = kdb_getphys(&w4, addr, sizeof(w4));
425  if (!diag)
426  *word = w4;
427  break;
428  case 8:
429  if (size <= sizeof(*word)) {
430  diag = kdb_getphys(&w8, addr, sizeof(w8));
431  if (!diag)
432  *word = w8;
433  break;
434  }
435  /* drop through */
436  default:
437  diag = KDB_BADWIDTH;
438  kdb_printf("kdb_getphysword: bad width %ld\n", (long) size);
439  }
440  return diag;
441 }
442 
443 /*
444  * kdb_getword - Read a binary value. Unlike kdb_getarea, this treats
445  * data as numbers.
446  * Inputs:
447  * word Pointer to the word to receive the result.
448  * addr Address of the area to copy.
449  * size Size of the area.
450  * Returns:
451  * 0 for success, < 0 for error.
452  */
453 int kdb_getword(unsigned long *word, unsigned long addr, size_t size)
454 {
455  int diag;
456  __u8 w1;
457  __u16 w2;
458  __u32 w4;
459  __u64 w8;
460  *word = 0; /* Default value if addr or size is invalid */
461  switch (size) {
462  case 1:
463  diag = kdb_getarea(w1, addr);
464  if (!diag)
465  *word = w1;
466  break;
467  case 2:
468  diag = kdb_getarea(w2, addr);
469  if (!diag)
470  *word = w2;
471  break;
472  case 4:
473  diag = kdb_getarea(w4, addr);
474  if (!diag)
475  *word = w4;
476  break;
477  case 8:
478  if (size <= sizeof(*word)) {
479  diag = kdb_getarea(w8, addr);
480  if (!diag)
481  *word = w8;
482  break;
483  }
484  /* drop through */
485  default:
486  diag = KDB_BADWIDTH;
487  kdb_printf("kdb_getword: bad width %ld\n", (long) size);
488  }
489  return diag;
490 }
491 
492 /*
493  * kdb_putword - Write a binary value. Unlike kdb_putarea, this
494  * treats data as numbers.
495  * Inputs:
496  * addr Address of the area to write to..
497  * word The value to set.
498  * size Size of the area.
499  * Returns:
500  * 0 for success, < 0 for error.
501  */
502 int kdb_putword(unsigned long addr, unsigned long word, size_t size)
503 {
504  int diag;
505  __u8 w1;
506  __u16 w2;
507  __u32 w4;
508  __u64 w8;
509  switch (size) {
510  case 1:
511  w1 = word;
512  diag = kdb_putarea(addr, w1);
513  break;
514  case 2:
515  w2 = word;
516  diag = kdb_putarea(addr, w2);
517  break;
518  case 4:
519  w4 = word;
520  diag = kdb_putarea(addr, w4);
521  break;
522  case 8:
523  if (size <= sizeof(word)) {
524  w8 = word;
525  diag = kdb_putarea(addr, w8);
526  break;
527  }
528  /* drop through */
529  default:
530  diag = KDB_BADWIDTH;
531  kdb_printf("kdb_putword: bad width %ld\n", (long) size);
532  }
533  return diag;
534 }
535 
536 /*
537  * kdb_task_state_string - Convert a string containing any of the
538  * letters DRSTCZEUIMA to a mask for the process state field and
539  * return the value. If no argument is supplied, return the mask
540  * that corresponds to environment variable PS, DRSTCZEU by
541  * default.
542  * Inputs:
543  * s String to convert
544  * Returns:
545  * Mask for process state.
546  * Notes:
547  * The mask folds data from several sources into a single long value, so
548  * be careful not to overlap the bits. TASK_* bits are in the LSB,
549  * special cases like UNRUNNABLE are in the MSB. As of 2.6.10-rc1 there
550  * is no overlap between TASK_* and EXIT_* but that may not always be
551  * true, so EXIT_* bits are shifted left 16 bits before being stored in
552  * the mask.
553  */
554 
555 /* unrunnable is < 0 */
556 #define UNRUNNABLE (1UL << (8*sizeof(unsigned long) - 1))
557 #define RUNNING (1UL << (8*sizeof(unsigned long) - 2))
558 #define IDLE (1UL << (8*sizeof(unsigned long) - 3))
559 #define DAEMON (1UL << (8*sizeof(unsigned long) - 4))
560 
561 unsigned long kdb_task_state_string(const char *s)
562 {
563  long res = 0;
564  if (!s) {
565  s = kdbgetenv("PS");
566  if (!s)
567  s = "DRSTCZEU"; /* default value for ps */
568  }
569  while (*s) {
570  switch (*s) {
571  case 'D':
572  res |= TASK_UNINTERRUPTIBLE;
573  break;
574  case 'R':
575  res |= RUNNING;
576  break;
577  case 'S':
578  res |= TASK_INTERRUPTIBLE;
579  break;
580  case 'T':
581  res |= TASK_STOPPED;
582  break;
583  case 'C':
584  res |= TASK_TRACED;
585  break;
586  case 'Z':
587  res |= EXIT_ZOMBIE << 16;
588  break;
589  case 'E':
590  res |= EXIT_DEAD << 16;
591  break;
592  case 'U':
593  res |= UNRUNNABLE;
594  break;
595  case 'I':
596  res |= IDLE;
597  break;
598  case 'M':
599  res |= DAEMON;
600  break;
601  case 'A':
602  res = ~0UL;
603  break;
604  default:
605  kdb_printf("%s: unknown flag '%c' ignored\n",
606  __func__, *s);
607  break;
608  }
609  ++s;
610  }
611  return res;
612 }
613 
614 /*
615  * kdb_task_state_char - Return the character that represents the task state.
616  * Inputs:
617  * p struct task for the process
618  * Returns:
619  * One character to represent the task state.
620  */
621 char kdb_task_state_char (const struct task_struct *p)
622 {
623  int cpu;
624  char state;
625  unsigned long tmp;
626 
627  if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
628  return 'E';
629 
630  cpu = kdb_process_cpu(p);
631  state = (p->state == 0) ? 'R' :
632  (p->state < 0) ? 'U' :
633  (p->state & TASK_UNINTERRUPTIBLE) ? 'D' :
634  (p->state & TASK_STOPPED) ? 'T' :
635  (p->state & TASK_TRACED) ? 'C' :
636  (p->exit_state & EXIT_ZOMBIE) ? 'Z' :
637  (p->exit_state & EXIT_DEAD) ? 'E' :
638  (p->state & TASK_INTERRUPTIBLE) ? 'S' : '?';
639  if (is_idle_task(p)) {
640  /* Idle task. Is it really idle, apart from the kdb
641  * interrupt? */
642  if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) {
643  if (cpu != kdb_initial_cpu)
644  state = 'I'; /* idle task */
645  }
646  } else if (!p->mm && state == 'S') {
647  state = 'M'; /* sleeping system daemon */
648  }
649  return state;
650 }
651 
652 /*
653  * kdb_task_state - Return true if a process has the desired state
654  * given by the mask.
655  * Inputs:
656  * p struct task for the process
657  * mask mask from kdb_task_state_string to select processes
658  * Returns:
659  * True if the process matches at least one criteria defined by the mask.
660  */
661 unsigned long kdb_task_state(const struct task_struct *p, unsigned long mask)
662 {
663  char state[] = { kdb_task_state_char(p), '\0' };
664  return (mask & kdb_task_state_string(state)) != 0;
665 }
666 
667 /*
668  * kdb_print_nameval - Print a name and its value, converting the
669  * value to a symbol lookup if possible.
670  * Inputs:
671  * name field name to print
672  * val value of field
673  */
674 void kdb_print_nameval(const char *name, unsigned long val)
675 {
677  kdb_printf(" %-11.11s ", name);
678  if (kdbnearsym(val, &symtab))
679  kdb_symbol_print(val, &symtab,
680  KDB_SP_VALUE|KDB_SP_SYMSIZE|KDB_SP_NEWLINE);
681  else
682  kdb_printf("0x%lx\n", val);
683 }
684 
685 /* Last ditch allocator for debugging, so we can still debug even when
686  * the GFP_ATOMIC pool has been exhausted. The algorithms are tuned
687  * for space usage, not for speed. One smallish memory pool, the free
688  * chain is always in ascending address order to allow coalescing,
689  * allocations are done in brute force best fit.
690  */
691 
693  u32 next; /* offset of next header from start of pool */
695  void *caller;
696 };
697 
698 /* The memory returned by this allocator must be aligned, which means
699  * so must the header size. Do not assume that sizeof(struct
700  * debug_alloc_header) is a multiple of the alignment, explicitly
701  * calculate the overhead of this header, including the alignment.
702  * The rest of this code must not use sizeof() on any header or
703  * pointer to a header.
704  */
705 #define dah_align 8
706 #define dah_overhead ALIGN(sizeof(struct debug_alloc_header), dah_align)
707 
708 static u64 debug_alloc_pool_aligned[256*1024/dah_align]; /* 256K pool */
709 static char *debug_alloc_pool = (char *)debug_alloc_pool_aligned;
710 static u32 dah_first, dah_first_call = 1, dah_used, dah_used_max;
711 
712 /* Locking is awkward. The debug code is called from all contexts,
713  * including non maskable interrupts. A normal spinlock is not safe
714  * in NMI context. Try to get the debug allocator lock, if it cannot
715  * be obtained after a second then give up. If the lock could not be
716  * previously obtained on this cpu then only try once.
717  *
718  * sparse has no annotation for "this function _sometimes_ acquires a
719  * lock", so fudge the acquire/release notation.
720  */
721 static DEFINE_SPINLOCK(dap_lock);
722 static int get_dap_lock(void)
723  __acquires(dap_lock)
724 {
725  static int dap_locked = -1;
726  int count;
727  if (dap_locked == smp_processor_id())
728  count = 1;
729  else
730  count = 1000;
731  while (1) {
732  if (spin_trylock(&dap_lock)) {
733  dap_locked = -1;
734  return 1;
735  }
736  if (!count--)
737  break;
738  udelay(1000);
739  }
740  dap_locked = smp_processor_id();
741  __acquire(dap_lock);
742  return 0;
743 }
744 
745 void *debug_kmalloc(size_t size, gfp_t flags)
746 {
747  unsigned int rem, h_offset;
748  struct debug_alloc_header *best, *bestprev, *prev, *h;
749  void *p = NULL;
750  if (!get_dap_lock()) {
751  __release(dap_lock); /* we never actually got it */
752  return NULL;
753  }
754  h = (struct debug_alloc_header *)(debug_alloc_pool + dah_first);
755  if (dah_first_call) {
756  h->size = sizeof(debug_alloc_pool_aligned) - dah_overhead;
757  dah_first_call = 0;
758  }
759  size = ALIGN(size, dah_align);
760  prev = best = bestprev = NULL;
761  while (1) {
762  if (h->size >= size && (!best || h->size < best->size)) {
763  best = h;
764  bestprev = prev;
765  if (h->size == size)
766  break;
767  }
768  if (!h->next)
769  break;
770  prev = h;
771  h = (struct debug_alloc_header *)(debug_alloc_pool + h->next);
772  }
773  if (!best)
774  goto out;
775  rem = best->size - size;
776  /* The pool must always contain at least one header */
777  if (best->next == 0 && bestprev == NULL && rem < dah_overhead)
778  goto out;
779  if (rem >= dah_overhead) {
780  best->size = size;
781  h_offset = ((char *)best - debug_alloc_pool) +
782  dah_overhead + best->size;
783  h = (struct debug_alloc_header *)(debug_alloc_pool + h_offset);
784  h->size = rem - dah_overhead;
785  h->next = best->next;
786  } else
787  h_offset = best->next;
788  best->caller = __builtin_return_address(0);
789  dah_used += best->size;
790  dah_used_max = max(dah_used, dah_used_max);
791  if (bestprev)
792  bestprev->next = h_offset;
793  else
794  dah_first = h_offset;
795  p = (char *)best + dah_overhead;
796  memset(p, POISON_INUSE, best->size - 1);
797  *((char *)p + best->size - 1) = POISON_END;
798 out:
799  spin_unlock(&dap_lock);
800  return p;
801 }
802 
803 void debug_kfree(void *p)
804 {
805  struct debug_alloc_header *h;
806  unsigned int h_offset;
807  if (!p)
808  return;
809  if ((char *)p < debug_alloc_pool ||
810  (char *)p >= debug_alloc_pool + sizeof(debug_alloc_pool_aligned)) {
811  kfree(p);
812  return;
813  }
814  if (!get_dap_lock()) {
815  __release(dap_lock); /* we never actually got it */
816  return; /* memory leak, cannot be helped */
817  }
818  h = (struct debug_alloc_header *)((char *)p - dah_overhead);
819  memset(p, POISON_FREE, h->size - 1);
820  *((char *)p + h->size - 1) = POISON_END;
821  h->caller = NULL;
822  dah_used -= h->size;
823  h_offset = (char *)h - debug_alloc_pool;
824  if (h_offset < dah_first) {
825  h->next = dah_first;
826  dah_first = h_offset;
827  } else {
828  struct debug_alloc_header *prev;
829  unsigned int prev_offset;
830  prev = (struct debug_alloc_header *)(debug_alloc_pool +
831  dah_first);
832  while (1) {
833  if (!prev->next || prev->next > h_offset)
834  break;
835  prev = (struct debug_alloc_header *)
836  (debug_alloc_pool + prev->next);
837  }
838  prev_offset = (char *)prev - debug_alloc_pool;
839  if (prev_offset + dah_overhead + prev->size == h_offset) {
840  prev->size += dah_overhead + h->size;
842  *((char *)h + dah_overhead - 1) = POISON_END;
843  h = prev;
844  h_offset = prev_offset;
845  } else {
846  h->next = prev->next;
847  prev->next = h_offset;
848  }
849  }
850  if (h_offset + dah_overhead + h->size == h->next) {
851  struct debug_alloc_header *next;
852  next = (struct debug_alloc_header *)
853  (debug_alloc_pool + h->next);
854  h->size += dah_overhead + next->size;
855  h->next = next->next;
856  memset(next, POISON_FREE, dah_overhead - 1);
857  *((char *)next + dah_overhead - 1) = POISON_END;
858  }
859  spin_unlock(&dap_lock);
860 }
861 
862 void debug_kusage(void)
863 {
864  struct debug_alloc_header *h_free, *h_used;
865 #ifdef CONFIG_IA64
866  /* FIXME: using dah for ia64 unwind always results in a memory leak.
867  * Fix that memory leak first, then set debug_kusage_one_time = 1 for
868  * all architectures.
869  */
870  static int debug_kusage_one_time;
871 #else
872  static int debug_kusage_one_time = 1;
873 #endif
874  if (!get_dap_lock()) {
875  __release(dap_lock); /* we never actually got it */
876  return;
877  }
878  h_free = (struct debug_alloc_header *)(debug_alloc_pool + dah_first);
879  if (dah_first == 0 &&
880  (h_free->size == sizeof(debug_alloc_pool_aligned) - dah_overhead ||
881  dah_first_call))
882  goto out;
883  if (!debug_kusage_one_time)
884  goto out;
885  debug_kusage_one_time = 0;
886  kdb_printf("%s: debug_kmalloc memory leak dah_first %d\n",
887  __func__, dah_first);
888  if (dah_first) {
889  h_used = (struct debug_alloc_header *)debug_alloc_pool;
890  kdb_printf("%s: h_used %p size %d\n", __func__, h_used,
891  h_used->size);
892  }
893  do {
894  h_used = (struct debug_alloc_header *)
895  ((char *)h_free + dah_overhead + h_free->size);
896  kdb_printf("%s: h_used %p size %d caller %p\n",
897  __func__, h_used, h_used->size, h_used->caller);
898  h_free = (struct debug_alloc_header *)
899  (debug_alloc_pool + h_free->next);
900  } while (h_free->next);
901  h_used = (struct debug_alloc_header *)
902  ((char *)h_free + dah_overhead + h_free->size);
903  if ((char *)h_used - debug_alloc_pool !=
904  sizeof(debug_alloc_pool_aligned))
905  kdb_printf("%s: h_used %p size %d caller %p\n",
906  __func__, h_used, h_used->size, h_used->caller);
907 out:
908  spin_unlock(&dap_lock);
909 }
910 
911 /* Maintain a small stack of kdb_flags to allow recursion without disturbing
912  * the global kdb state.
913  */
914 
915 static int kdb_flags_stack[4], kdb_flags_index;
916 
917 void kdb_save_flags(void)
918 {
919  BUG_ON(kdb_flags_index >= ARRAY_SIZE(kdb_flags_stack));
920  kdb_flags_stack[kdb_flags_index++] = kdb_flags;
921 }
922 
924 {
925  BUG_ON(kdb_flags_index <= 0);
926  kdb_flags = kdb_flags_stack[--kdb_flags_index];
927 }