Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
m88rs2000.c
Go to the documentation of this file.
1 /*
2  Driver for M88RS2000 demodulator and tuner
3 
4  Copyright (C) 2012 Malcolm Priestley ([email protected])
5  Beta Driver
6 
7  Include various calculation code from DS3000 driver.
8  Copyright (C) 2009 Konstantin Dimitrov.
9 
10  This program is free software; you can redistribute it and/or modify
11  it under the terms of the GNU General Public License as published by
12  the Free Software Foundation; either version 2 of the License, or
13  (at your option) any later version.
14 
15  This program is distributed in the hope that it will be useful,
16  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  GNU General Public License for more details.
19 
20  You should have received a copy of the GNU General Public License
21  along with this program; if not, write to the Free Software
22  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 
24 */
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/jiffies.h>
29 #include <linux/string.h>
30 #include <linux/slab.h>
31 #include <linux/types.h>
32 
33 
34 #include "dvb_frontend.h"
35 #include "m88rs2000.h"
36 
38  struct i2c_adapter *i2c;
39  const struct m88rs2000_config *config;
46  int errmode;
47 };
48 
49 static int m88rs2000_debug;
50 
51 module_param_named(debug, m88rs2000_debug, int, 0644);
52 MODULE_PARM_DESC(debug, "set debugging level (1=info (or-able)).");
53 
54 #define dprintk(level, args...) do { \
55  if (level & m88rs2000_debug) \
56  printk(KERN_DEBUG "m88rs2000-fe: " args); \
57 } while (0)
58 
59 #define deb_info(args...) dprintk(0x01, args)
60 #define info(format, arg...) \
61  printk(KERN_INFO "m88rs2000-fe: " format "\n" , ## arg)
62 
63 static int m88rs2000_writereg(struct m88rs2000_state *state, u8 tuner,
64  u8 reg, u8 data)
65 {
66  int ret;
67  u8 addr = (tuner == 0) ? state->config->tuner_addr :
68  state->config->demod_addr;
69  u8 buf[] = { reg, data };
70  struct i2c_msg msg = {
71  .addr = addr,
72  .flags = 0,
73  .buf = buf,
74  .len = 2
75  };
76 
77  ret = i2c_transfer(state->i2c, &msg, 1);
78 
79  if (ret != 1)
80  deb_info("%s: writereg error (reg == 0x%02x, val == 0x%02x, "
81  "ret == %i)\n", __func__, reg, data, ret);
82 
83  return (ret != 1) ? -EREMOTEIO : 0;
84 }
85 
86 static int m88rs2000_demod_write(struct m88rs2000_state *state, u8 reg, u8 data)
87 {
88  return m88rs2000_writereg(state, 1, reg, data);
89 }
90 
91 static int m88rs2000_tuner_write(struct m88rs2000_state *state, u8 reg, u8 data)
92 {
93  m88rs2000_demod_write(state, 0x81, 0x84);
94  udelay(10);
95  return m88rs2000_writereg(state, 0, reg, data);
96 
97 }
98 
99 static int m88rs2000_write(struct dvb_frontend *fe, const u8 buf[], int len)
100 {
101  struct m88rs2000_state *state = fe->demodulator_priv;
102 
103  if (len != 2)
104  return -EINVAL;
105 
106  return m88rs2000_writereg(state, 1, buf[0], buf[1]);
107 }
108 
109 static u8 m88rs2000_readreg(struct m88rs2000_state *state, u8 tuner, u8 reg)
110 {
111  int ret;
112  u8 b0[] = { reg };
113  u8 b1[] = { 0 };
114  u8 addr = (tuner == 0) ? state->config->tuner_addr :
115  state->config->demod_addr;
116  struct i2c_msg msg[] = {
117  {
118  .addr = addr,
119  .flags = 0,
120  .buf = b0,
121  .len = 1
122  }, {
123  .addr = addr,
124  .flags = I2C_M_RD,
125  .buf = b1,
126  .len = 1
127  }
128  };
129 
130  ret = i2c_transfer(state->i2c, msg, 2);
131 
132  if (ret != 2)
133  deb_info("%s: readreg error (reg == 0x%02x, ret == %i)\n",
134  __func__, reg, ret);
135 
136  return b1[0];
137 }
138 
139 static u8 m88rs2000_demod_read(struct m88rs2000_state *state, u8 reg)
140 {
141  return m88rs2000_readreg(state, 1, reg);
142 }
143 
144 static u8 m88rs2000_tuner_read(struct m88rs2000_state *state, u8 reg)
145 {
146  m88rs2000_demod_write(state, 0x81, 0x85);
147  udelay(10);
148  return m88rs2000_readreg(state, 0, reg);
149 }
150 
151 static int m88rs2000_set_symbolrate(struct dvb_frontend *fe, u32 srate)
152 {
153  struct m88rs2000_state *state = fe->demodulator_priv;
154  int ret;
155  u32 temp;
156  u8 b[3];
157 
158  if ((srate < 1000000) || (srate > 45000000))
159  return -EINVAL;
160 
161  temp = srate / 1000;
162  temp *= 11831;
163  temp /= 68;
164  temp -= 3;
165 
166  b[0] = (u8) (temp >> 16) & 0xff;
167  b[1] = (u8) (temp >> 8) & 0xff;
168  b[2] = (u8) temp & 0xff;
169  ret = m88rs2000_demod_write(state, 0x93, b[2]);
170  ret |= m88rs2000_demod_write(state, 0x94, b[1]);
171  ret |= m88rs2000_demod_write(state, 0x95, b[0]);
172 
173  deb_info("m88rs2000: m88rs2000_set_symbolrate\n");
174  return ret;
175 }
176 
177 static int m88rs2000_send_diseqc_msg(struct dvb_frontend *fe,
178  struct dvb_diseqc_master_cmd *m)
179 {
180  struct m88rs2000_state *state = fe->demodulator_priv;
181 
182  int i;
183  u8 reg;
184  deb_info("%s\n", __func__);
185  m88rs2000_demod_write(state, 0x9a, 0x30);
186  reg = m88rs2000_demod_read(state, 0xb2);
187  reg &= 0x3f;
188  m88rs2000_demod_write(state, 0xb2, reg);
189  for (i = 0; i < m->msg_len; i++)
190  m88rs2000_demod_write(state, 0xb3 + i, m->msg[i]);
191 
192  reg = m88rs2000_demod_read(state, 0xb1);
193  reg &= 0x87;
194  reg |= ((m->msg_len - 1) << 3) | 0x07;
195  reg &= 0x7f;
196  m88rs2000_demod_write(state, 0xb1, reg);
197 
198  for (i = 0; i < 15; i++) {
199  if ((m88rs2000_demod_read(state, 0xb1) & 0x40) == 0x0)
200  break;
201  msleep(20);
202  }
203 
204  reg = m88rs2000_demod_read(state, 0xb1);
205  if ((reg & 0x40) > 0x0) {
206  reg &= 0x7f;
207  reg |= 0x40;
208  m88rs2000_demod_write(state, 0xb1, reg);
209  }
210 
211  reg = m88rs2000_demod_read(state, 0xb2);
212  reg &= 0x3f;
213  reg |= 0x80;
214  m88rs2000_demod_write(state, 0xb2, reg);
215  m88rs2000_demod_write(state, 0x9a, 0xb0);
216 
217 
218  return 0;
219 }
220 
221 static int m88rs2000_send_diseqc_burst(struct dvb_frontend *fe,
222  fe_sec_mini_cmd_t burst)
223 {
224  struct m88rs2000_state *state = fe->demodulator_priv;
225  u8 reg0, reg1;
226  deb_info("%s\n", __func__);
227  m88rs2000_demod_write(state, 0x9a, 0x30);
228  msleep(50);
229  reg0 = m88rs2000_demod_read(state, 0xb1);
230  reg1 = m88rs2000_demod_read(state, 0xb2);
231  /* TODO complete this section */
232  m88rs2000_demod_write(state, 0xb2, reg1);
233  m88rs2000_demod_write(state, 0xb1, reg0);
234  m88rs2000_demod_write(state, 0x9a, 0xb0);
235 
236  return 0;
237 }
238 
239 static int m88rs2000_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
240 {
241  struct m88rs2000_state *state = fe->demodulator_priv;
242  u8 reg0, reg1;
243  m88rs2000_demod_write(state, 0x9a, 0x30);
244  reg0 = m88rs2000_demod_read(state, 0xb1);
245  reg1 = m88rs2000_demod_read(state, 0xb2);
246 
247  reg1 &= 0x3f;
248 
249  switch (tone) {
250  case SEC_TONE_ON:
251  reg0 |= 0x4;
252  reg0 &= 0xbc;
253  break;
254  case SEC_TONE_OFF:
255  reg1 |= 0x80;
256  break;
257  default:
258  break;
259  }
260  m88rs2000_demod_write(state, 0xb2, reg1);
261  m88rs2000_demod_write(state, 0xb1, reg0);
262  m88rs2000_demod_write(state, 0x9a, 0xb0);
263  return 0;
264 }
265 
266 struct inittab {
270 };
271 
273  {DEMOD_WRITE, 0x9a, 0x30},
274  {DEMOD_WRITE, 0x00, 0x01},
275  {WRITE_DELAY, 0x19, 0x00},
276  {DEMOD_WRITE, 0x00, 0x00},
277  {DEMOD_WRITE, 0x9a, 0xb0},
278  {DEMOD_WRITE, 0x81, 0xc1},
279  {TUNER_WRITE, 0x42, 0x73},
280  {TUNER_WRITE, 0x05, 0x07},
281  {TUNER_WRITE, 0x20, 0x27},
282  {TUNER_WRITE, 0x07, 0x02},
283  {TUNER_WRITE, 0x11, 0xff},
284  {TUNER_WRITE, 0x60, 0xf9},
285  {TUNER_WRITE, 0x08, 0x01},
286  {TUNER_WRITE, 0x00, 0x41},
287  {DEMOD_WRITE, 0x81, 0x81},
288  {DEMOD_WRITE, 0x86, 0xc6},
289  {DEMOD_WRITE, 0x9a, 0x30},
290  {DEMOD_WRITE, 0xf0, 0x22},
291  {DEMOD_WRITE, 0xf1, 0xbf},
292  {DEMOD_WRITE, 0xb0, 0x45},
293  {DEMOD_WRITE, 0xb2, 0x01}, /* set voltage pin always set 1*/
294  {DEMOD_WRITE, 0x9a, 0xb0},
295  {0xff, 0xaa, 0xff}
296 };
297 
299  {DEMOD_WRITE, 0x9a, 0x30},
300  {DEMOD_WRITE, 0xb0, 0x00},
301  {DEMOD_WRITE, 0xf1, 0x89},
302  {DEMOD_WRITE, 0x00, 0x01},
303  {DEMOD_WRITE, 0x9a, 0xb0},
304  {TUNER_WRITE, 0x00, 0x40},
305  {DEMOD_WRITE, 0x81, 0x81},
306  {0xff, 0xaa, 0xff}
307 };
308 
309 struct inittab tuner_reset[] = {
310  {TUNER_WRITE, 0x42, 0x73},
311  {TUNER_WRITE, 0x05, 0x07},
312  {TUNER_WRITE, 0x20, 0x27},
313  {TUNER_WRITE, 0x07, 0x02},
314  {TUNER_WRITE, 0x11, 0xff},
315  {TUNER_WRITE, 0x60, 0xf9},
316  {TUNER_WRITE, 0x08, 0x01},
317  {TUNER_WRITE, 0x00, 0x41},
318  {0xff, 0xaa, 0xff}
319 };
320 
321 struct inittab fe_reset[] = {
322  {DEMOD_WRITE, 0x00, 0x01},
323  {DEMOD_WRITE, 0xf1, 0xbf},
324  {DEMOD_WRITE, 0x00, 0x01},
325  {DEMOD_WRITE, 0x20, 0x81},
326  {DEMOD_WRITE, 0x21, 0x80},
327  {DEMOD_WRITE, 0x10, 0x33},
328  {DEMOD_WRITE, 0x11, 0x44},
329  {DEMOD_WRITE, 0x12, 0x07},
330  {DEMOD_WRITE, 0x18, 0x20},
331  {DEMOD_WRITE, 0x28, 0x04},
332  {DEMOD_WRITE, 0x29, 0x8e},
333  {DEMOD_WRITE, 0x3b, 0xff},
334  {DEMOD_WRITE, 0x32, 0x10},
335  {DEMOD_WRITE, 0x33, 0x02},
336  {DEMOD_WRITE, 0x34, 0x30},
337  {DEMOD_WRITE, 0x35, 0xff},
338  {DEMOD_WRITE, 0x38, 0x50},
339  {DEMOD_WRITE, 0x39, 0x68},
340  {DEMOD_WRITE, 0x3c, 0x7f},
341  {DEMOD_WRITE, 0x3d, 0x0f},
342  {DEMOD_WRITE, 0x45, 0x20},
343  {DEMOD_WRITE, 0x46, 0x24},
344  {DEMOD_WRITE, 0x47, 0x7c},
345  {DEMOD_WRITE, 0x48, 0x16},
346  {DEMOD_WRITE, 0x49, 0x04},
347  {DEMOD_WRITE, 0x4a, 0x01},
348  {DEMOD_WRITE, 0x4b, 0x78},
349  {DEMOD_WRITE, 0X4d, 0xd2},
350  {DEMOD_WRITE, 0x4e, 0x6d},
351  {DEMOD_WRITE, 0x50, 0x30},
352  {DEMOD_WRITE, 0x51, 0x30},
353  {DEMOD_WRITE, 0x54, 0x7b},
354  {DEMOD_WRITE, 0x56, 0x09},
355  {DEMOD_WRITE, 0x58, 0x59},
356  {DEMOD_WRITE, 0x59, 0x37},
357  {DEMOD_WRITE, 0x63, 0xfa},
358  {0xff, 0xaa, 0xff}
359 };
360 
361 struct inittab fe_trigger[] = {
362  {DEMOD_WRITE, 0x97, 0x04},
363  {DEMOD_WRITE, 0x99, 0x77},
364  {DEMOD_WRITE, 0x9b, 0x64},
365  {DEMOD_WRITE, 0x9e, 0x00},
366  {DEMOD_WRITE, 0x9f, 0xf8},
367  {DEMOD_WRITE, 0xa0, 0x20},
368  {DEMOD_WRITE, 0xa1, 0xe0},
369  {DEMOD_WRITE, 0xa3, 0x38},
370  {DEMOD_WRITE, 0x98, 0xff},
371  {DEMOD_WRITE, 0xc0, 0x0f},
372  {DEMOD_WRITE, 0x89, 0x01},
373  {DEMOD_WRITE, 0x00, 0x00},
374  {WRITE_DELAY, 0x0a, 0x00},
375  {DEMOD_WRITE, 0x00, 0x01},
376  {DEMOD_WRITE, 0x00, 0x00},
377  {DEMOD_WRITE, 0x9a, 0xb0},
378  {0xff, 0xaa, 0xff}
379 };
380 
381 static int m88rs2000_tab_set(struct m88rs2000_state *state,
382  struct inittab *tab)
383 {
384  int ret = 0;
385  u8 i;
386  if (tab == NULL)
387  return -EINVAL;
388 
389  for (i = 0; i < 255; i++) {
390  switch (tab[i].cmd) {
391  case 0x01:
392  ret = m88rs2000_demod_write(state, tab[i].reg,
393  tab[i].val);
394  break;
395  case 0x02:
396  ret = m88rs2000_tuner_write(state, tab[i].reg,
397  tab[i].val);
398  break;
399  case 0x10:
400  if (tab[i].reg > 0)
401  mdelay(tab[i].reg);
402  break;
403  case 0xff:
404  if (tab[i].reg == 0xaa && tab[i].val == 0xff)
405  return 0;
406  case 0x00:
407  break;
408  default:
409  return -EINVAL;
410  }
411  if (ret < 0)
412  return -ENODEV;
413  }
414  return 0;
415 }
416 
417 static int m88rs2000_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t volt)
418 {
419  struct m88rs2000_state *state = fe->demodulator_priv;
420  u8 data;
421 
422  data = m88rs2000_demod_read(state, 0xb2);
423  data |= 0x03; /* bit0 V/H, bit1 off/on */
424 
425  switch (volt) {
426  case SEC_VOLTAGE_18:
427  data &= ~0x03;
428  break;
429  case SEC_VOLTAGE_13:
430  data &= ~0x03;
431  data |= 0x01;
432  break;
433  case SEC_VOLTAGE_OFF:
434  break;
435  }
436 
437  m88rs2000_demod_write(state, 0xb2, data);
438 
439  return 0;
440 }
441 
442 static int m88rs2000_startup(struct m88rs2000_state *state)
443 {
444  int ret = 0;
445  u8 reg;
446 
447  reg = m88rs2000_tuner_read(state, 0x00);
448  if ((reg & 0x40) == 0)
449  ret = -ENODEV;
450 
451  return ret;
452 }
453 
454 static int m88rs2000_init(struct dvb_frontend *fe)
455 {
456  struct m88rs2000_state *state = fe->demodulator_priv;
457  int ret;
458 
459  deb_info("m88rs2000: init chip\n");
460  /* Setup frontend from shutdown/cold */
461  ret = m88rs2000_tab_set(state, m88rs2000_setup);
462 
463  return ret;
464 }
465 
466 static int m88rs2000_sleep(struct dvb_frontend *fe)
467 {
468  struct m88rs2000_state *state = fe->demodulator_priv;
469  int ret;
470  /* Shutdown the frondend */
471  ret = m88rs2000_tab_set(state, m88rs2000_shutdown);
472  return ret;
473 }
474 
475 static int m88rs2000_read_status(struct dvb_frontend *fe, fe_status_t *status)
476 {
477  struct m88rs2000_state *state = fe->demodulator_priv;
478  u8 reg = m88rs2000_demod_read(state, 0x8c);
479 
480  *status = 0;
481 
482  if ((reg & 0x7) == 0x7) {
485  if (state->config->set_ts_params)
486  state->config->set_ts_params(fe, CALL_IS_READ);
487  }
488  return 0;
489 }
490 
491 /* Extact code for these unknown but lmedm04 driver uses interupt callbacks */
492 
493 static int m88rs2000_read_ber(struct dvb_frontend *fe, u32 *ber)
494 {
495  deb_info("m88rs2000_read_ber %d\n", *ber);
496  *ber = 0;
497  return 0;
498 }
499 
500 static int m88rs2000_read_signal_strength(struct dvb_frontend *fe,
501  u16 *strength)
502 {
503  *strength = 0;
504  return 0;
505 }
506 
507 static int m88rs2000_read_snr(struct dvb_frontend *fe, u16 *snr)
508 {
509  deb_info("m88rs2000_read_snr %d\n", *snr);
510  *snr = 0;
511  return 0;
512 }
513 
514 static int m88rs2000_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
515 {
516  deb_info("m88rs2000_read_ber %d\n", *ucblocks);
517  *ucblocks = 0;
518  return 0;
519 }
520 
521 static int m88rs2000_tuner_gate_ctrl(struct m88rs2000_state *state, u8 offset)
522 {
523  int ret;
524  ret = m88rs2000_tuner_write(state, 0x51, 0x1f - offset);
525  ret |= m88rs2000_tuner_write(state, 0x51, 0x1f);
526  ret |= m88rs2000_tuner_write(state, 0x50, offset);
527  ret |= m88rs2000_tuner_write(state, 0x50, 0x00);
528  msleep(20);
529  return ret;
530 }
531 
532 static int m88rs2000_set_tuner_rf(struct dvb_frontend *fe)
533 {
534  struct m88rs2000_state *state = fe->demodulator_priv;
535  int reg;
536  reg = m88rs2000_tuner_read(state, 0x3d);
537  reg &= 0x7f;
538  if (reg < 0x16)
539  reg = 0xa1;
540  else if (reg == 0x16)
541  reg = 0x99;
542  else
543  reg = 0xf9;
544 
545  m88rs2000_tuner_write(state, 0x60, reg);
546  reg = m88rs2000_tuner_gate_ctrl(state, 0x08);
547 
548  if (fe->ops.i2c_gate_ctrl)
549  fe->ops.i2c_gate_ctrl(fe, 0);
550  return reg;
551 }
552 
553 static int m88rs2000_set_tuner(struct dvb_frontend *fe, u16 *offset)
554 {
556  struct m88rs2000_state *state = fe->demodulator_priv;
557  int ret;
558  u32 frequency = c->frequency;
559  s32 offset_khz;
560  s32 tmp;
561  u32 symbol_rate = (c->symbol_rate / 1000);
562  u32 f3db, gdiv28;
563  u16 value, ndiv, lpf_coeff;
564  u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
565  u8 lo = 0x01, div4 = 0x0;
566 
567  /* Reset Tuner */
568  ret = m88rs2000_tab_set(state, tuner_reset);
569 
570  /* Calculate frequency divider */
571  if (frequency < 1060000) {
572  lo |= 0x10;
573  div4 = 0x1;
574  ndiv = (frequency * 14 * 4) / FE_CRYSTAL_KHZ;
575  } else
576  ndiv = (frequency * 14 * 2) / FE_CRYSTAL_KHZ;
577  ndiv = ndiv + ndiv % 2;
578  ndiv = ndiv - 1024;
579 
580  ret = m88rs2000_tuner_write(state, 0x10, 0x80 | lo);
581 
582  /* Set frequency divider */
583  ret |= m88rs2000_tuner_write(state, 0x01, (ndiv >> 8) & 0xf);
584  ret |= m88rs2000_tuner_write(state, 0x02, ndiv & 0xff);
585 
586  ret |= m88rs2000_tuner_write(state, 0x03, 0x06);
587  ret |= m88rs2000_tuner_gate_ctrl(state, 0x10);
588  if (ret < 0)
589  return -ENODEV;
590 
591  /* Tuner Frequency Range */
592  ret = m88rs2000_tuner_write(state, 0x10, lo);
593 
594  ret |= m88rs2000_tuner_gate_ctrl(state, 0x08);
595 
596  /* Tuner RF */
597  ret |= m88rs2000_set_tuner_rf(fe);
598 
599  gdiv28 = (FE_CRYSTAL_KHZ / 1000 * 1694 + 500) / 1000;
600  ret |= m88rs2000_tuner_write(state, 0x04, gdiv28 & 0xff);
601  ret |= m88rs2000_tuner_gate_ctrl(state, 0x04);
602  if (ret < 0)
603  return -ENODEV;
604 
605  value = m88rs2000_tuner_read(state, 0x26);
606 
607  f3db = (symbol_rate * 135) / 200 + 2000;
608  f3db += FREQ_OFFSET_LOW_SYM_RATE;
609  if (f3db < 7000)
610  f3db = 7000;
611  if (f3db > 40000)
612  f3db = 40000;
613 
614  gdiv28 = gdiv28 * 207 / (value * 2 + 151);
615  mlpf_max = gdiv28 * 135 / 100;
616  mlpf_min = gdiv28 * 78 / 100;
617  if (mlpf_max > 63)
618  mlpf_max = 63;
619 
620  lpf_coeff = 2766;
621 
622  nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
623  (FE_CRYSTAL_KHZ / 1000) + 1) / 2;
624  if (nlpf > 23)
625  nlpf = 23;
626  if (nlpf < 1)
627  nlpf = 1;
628 
629  lpf_mxdiv = (nlpf * (FE_CRYSTAL_KHZ / 1000)
630  * lpf_coeff * 2 / f3db + 1) / 2;
631 
632  if (lpf_mxdiv < mlpf_min) {
633  nlpf++;
634  lpf_mxdiv = (nlpf * (FE_CRYSTAL_KHZ / 1000)
635  * lpf_coeff * 2 / f3db + 1) / 2;
636  }
637 
638  if (lpf_mxdiv > mlpf_max)
639  lpf_mxdiv = mlpf_max;
640 
641  ret = m88rs2000_tuner_write(state, 0x04, lpf_mxdiv);
642  ret |= m88rs2000_tuner_write(state, 0x06, nlpf);
643 
644  ret |= m88rs2000_tuner_gate_ctrl(state, 0x04);
645 
646  ret |= m88rs2000_tuner_gate_ctrl(state, 0x01);
647 
648  msleep(80);
649  /* calculate offset assuming 96000kHz*/
650  offset_khz = (ndiv - ndiv % 2 + 1024) * FE_CRYSTAL_KHZ
651  / 14 / (div4 + 1) / 2;
652 
653  offset_khz -= frequency;
654 
655  tmp = offset_khz;
656  tmp *= 65536;
657 
658  tmp = (2 * tmp + 96000) / (2 * 96000);
659  if (tmp < 0)
660  tmp += 65536;
661 
662  *offset = tmp & 0xffff;
663 
664  if (fe->ops.i2c_gate_ctrl)
665  fe->ops.i2c_gate_ctrl(fe, 0);
666 
667  return (ret < 0) ? -EINVAL : 0;
668 }
669 
670 static int m88rs2000_set_fec(struct m88rs2000_state *state,
672 {
673  u16 fec_set;
674  switch (fec) {
675  /* This is not confirmed kept for reference */
676 /* case FEC_1_2:
677  fec_set = 0x88;
678  break;
679  case FEC_2_3:
680  fec_set = 0x68;
681  break;
682  case FEC_3_4:
683  fec_set = 0x48;
684  break;
685  case FEC_5_6:
686  fec_set = 0x28;
687  break;
688  case FEC_7_8:
689  fec_set = 0x18;
690  break; */
691  case FEC_AUTO:
692  default:
693  fec_set = 0x08;
694  }
695  m88rs2000_demod_write(state, 0x76, fec_set);
696 
697  return 0;
698 }
699 
700 
701 static fe_code_rate_t m88rs2000_get_fec(struct m88rs2000_state *state)
702 {
703  u8 reg;
704  m88rs2000_demod_write(state, 0x9a, 0x30);
705  reg = m88rs2000_demod_read(state, 0x76);
706  m88rs2000_demod_write(state, 0x9a, 0xb0);
707 
708  switch (reg) {
709  case 0x88:
710  return FEC_1_2;
711  case 0x68:
712  return FEC_2_3;
713  case 0x48:
714  return FEC_3_4;
715  case 0x28:
716  return FEC_5_6;
717  case 0x18:
718  return FEC_7_8;
719  case 0x08:
720  default:
721  break;
722  }
723 
724  return FEC_AUTO;
725 }
726 
727 static int m88rs2000_set_frontend(struct dvb_frontend *fe)
728 {
729  struct m88rs2000_state *state = fe->demodulator_priv;
732  int i, ret;
733  u16 offset = 0;
734  u8 reg;
735 
736  state->no_lock_count = 0;
737 
738  if (c->delivery_system != SYS_DVBS) {
739  deb_info("%s: unsupported delivery "
740  "system selected (%d)\n",
741  __func__, c->delivery_system);
742  return -EOPNOTSUPP;
743  }
744 
745  /* Set Tuner */
746  ret = m88rs2000_set_tuner(fe, &offset);
747  if (ret < 0)
748  return -ENODEV;
749 
750  ret = m88rs2000_demod_write(state, 0x9a, 0x30);
751  /* Unknown usually 0xc6 sometimes 0xc1 */
752  reg = m88rs2000_demod_read(state, 0x86);
753  ret |= m88rs2000_demod_write(state, 0x86, reg);
754  /* Offset lower nibble always 0 */
755  ret |= m88rs2000_demod_write(state, 0x9c, (offset >> 8));
756  ret |= m88rs2000_demod_write(state, 0x9d, offset & 0xf0);
757 
758 
759  /* Reset Demod */
760  ret = m88rs2000_tab_set(state, fe_reset);
761  if (ret < 0)
762  return -ENODEV;
763 
764  /* Unknown */
765  reg = m88rs2000_demod_read(state, 0x70);
766  ret = m88rs2000_demod_write(state, 0x70, reg);
767 
768  /* Set FEC */
769  ret |= m88rs2000_set_fec(state, c->fec_inner);
770  ret |= m88rs2000_demod_write(state, 0x85, 0x1);
771  ret |= m88rs2000_demod_write(state, 0x8a, 0xbf);
772  ret |= m88rs2000_demod_write(state, 0x8d, 0x1e);
773  ret |= m88rs2000_demod_write(state, 0x90, 0xf1);
774  ret |= m88rs2000_demod_write(state, 0x91, 0x08);
775 
776  if (ret < 0)
777  return -ENODEV;
778 
779  /* Set Symbol Rate */
780  ret = m88rs2000_set_symbolrate(fe, c->symbol_rate);
781  if (ret < 0)
782  return -ENODEV;
783 
784  /* Set up Demod */
785  ret = m88rs2000_tab_set(state, fe_trigger);
786  if (ret < 0)
787  return -ENODEV;
788 
789  for (i = 0; i < 25; i++) {
790  reg = m88rs2000_demod_read(state, 0x8c);
791  if ((reg & 0x7) == 0x7) {
792  status = FE_HAS_LOCK;
793  break;
794  }
795  state->no_lock_count++;
796  if (state->no_lock_count == 15) {
797  reg = m88rs2000_demod_read(state, 0x70);
798  reg ^= 0x4;
799  m88rs2000_demod_write(state, 0x70, reg);
800  state->no_lock_count = 0;
801  }
802  if (state->no_lock_count == 20)
803  m88rs2000_set_tuner_rf(fe);
804  msleep(20);
805  }
806 
807  if (status & FE_HAS_LOCK) {
808  state->fec_inner = m88rs2000_get_fec(state);
809  /* Uknown suspect SNR level */
810  reg = m88rs2000_demod_read(state, 0x65);
811  }
812 
813  state->tuner_frequency = c->frequency;
814  state->symbol_rate = c->symbol_rate;
815  return 0;
816 }
817 
818 static int m88rs2000_get_frontend(struct dvb_frontend *fe)
819 {
821  struct m88rs2000_state *state = fe->demodulator_priv;
822  c->fec_inner = state->fec_inner;
823  c->frequency = state->tuner_frequency;
824  c->symbol_rate = state->symbol_rate;
825  return 0;
826 }
827 
828 static int m88rs2000_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
829 {
830  struct m88rs2000_state *state = fe->demodulator_priv;
831 
832  if (enable)
833  m88rs2000_demod_write(state, 0x81, 0x84);
834  else
835  m88rs2000_demod_write(state, 0x81, 0x81);
836  udelay(10);
837  return 0;
838 }
839 
840 static void m88rs2000_release(struct dvb_frontend *fe)
841 {
842  struct m88rs2000_state *state = fe->demodulator_priv;
843  kfree(state);
844 }
845 
846 static struct dvb_frontend_ops m88rs2000_ops = {
847  .delsys = { SYS_DVBS },
848  .info = {
849  .name = "M88RS2000 DVB-S",
850  .frequency_min = 950000,
851  .frequency_max = 2150000,
852  .frequency_stepsize = 1000, /* kHz for QPSK frontends */
853  .frequency_tolerance = 5000,
854  .symbol_rate_min = 1000000,
855  .symbol_rate_max = 45000000,
856  .symbol_rate_tolerance = 500, /* ppm */
859  FE_CAN_QPSK |
861  },
862 
863  .release = m88rs2000_release,
864  .init = m88rs2000_init,
865  .sleep = m88rs2000_sleep,
866  .write = m88rs2000_write,
867  .i2c_gate_ctrl = m88rs2000_i2c_gate_ctrl,
868  .read_status = m88rs2000_read_status,
869  .read_ber = m88rs2000_read_ber,
870  .read_signal_strength = m88rs2000_read_signal_strength,
871  .read_snr = m88rs2000_read_snr,
872  .read_ucblocks = m88rs2000_read_ucblocks,
873  .diseqc_send_master_cmd = m88rs2000_send_diseqc_msg,
874  .diseqc_send_burst = m88rs2000_send_diseqc_burst,
875  .set_tone = m88rs2000_set_tone,
876  .set_voltage = m88rs2000_set_voltage,
877 
878  .set_frontend = m88rs2000_set_frontend,
879  .get_frontend = m88rs2000_get_frontend,
880 };
881 
883  struct i2c_adapter *i2c)
884 {
885  struct m88rs2000_state *state = NULL;
886 
887  /* allocate memory for the internal state */
888  state = kzalloc(sizeof(struct m88rs2000_state), GFP_KERNEL);
889  if (state == NULL)
890  goto error;
891 
892  /* setup the state */
893  state->config = config;
894  state->i2c = i2c;
895  state->tuner_frequency = 0;
896  state->symbol_rate = 0;
897  state->fec_inner = 0;
898 
899  if (m88rs2000_startup(state) < 0)
900  goto error;
901 
902  /* create dvb_frontend */
903  memcpy(&state->frontend.ops, &m88rs2000_ops,
904  sizeof(struct dvb_frontend_ops));
905  state->frontend.demodulator_priv = state;
906  return &state->frontend;
907 
908 error:
909  kfree(state);
910 
911  return NULL;
912 }
914 
915 MODULE_DESCRIPTION("M88RS2000 DVB-S Demodulator driver");
916 MODULE_AUTHOR("Malcolm Priestley [email protected]");
917 MODULE_LICENSE("GPL");
918 MODULE_VERSION("1.13");
919