Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mace.c
Go to the documentation of this file.
1 /*
2  * Network device driver for the MACE ethernet controller on
3  * Apple Powermacs. Assumes it's under a DBDMA controller.
4  *
5  * Copyright (C) 1996 Paul Mackerras.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/crc32.h>
18 #include <linux/spinlock.h>
19 #include <linux/bitrev.h>
20 #include <linux/slab.h>
21 #include <asm/prom.h>
22 #include <asm/dbdma.h>
23 #include <asm/io.h>
24 #include <asm/pgtable.h>
25 #include <asm/macio.h>
26 
27 #include "mace.h"
28 
29 static int port_aaui = -1;
30 
31 #define N_RX_RING 8
32 #define N_TX_RING 6
33 #define MAX_TX_ACTIVE 1
34 #define NCMDS_TX 1 /* dma commands per element in tx ring */
35 #define RX_BUFLEN (ETH_FRAME_LEN + 8)
36 #define TX_TIMEOUT HZ /* 1 second */
37 
38 /* Chip rev needs workaround on HW & multicast addr change */
39 #define BROKEN_ADDRCHG_REV 0x0941
40 
41 /* Bits in transmit DMA status */
42 #define TX_DMA_ERR 0x80
43 
44 struct mace_data {
45  volatile struct mace __iomem *mace;
46  volatile struct dbdma_regs __iomem *tx_dma;
48  volatile struct dbdma_regs __iomem *rx_dma;
50  volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
51  volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
53  int rx_fill;
54  int rx_empty;
56  int tx_fill;
57  int tx_empty;
58  unsigned char maccc;
59  unsigned char tx_fullup;
60  unsigned char tx_active;
61  unsigned char tx_bad_runt;
64  int port_aaui;
65  int chipid;
66  struct macio_dev *mdev;
68 };
69 
70 /*
71  * Number of bytes of private data per MACE: allow enough for
72  * the rx and tx dma commands plus a branch dma command each,
73  * and another 16 bytes to allow us to align the dma command
74  * buffers on a 16 byte boundary.
75  */
76 #define PRIV_BYTES (sizeof(struct mace_data) \
77  + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
78 
79 static int mace_open(struct net_device *dev);
80 static int mace_close(struct net_device *dev);
81 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
82 static void mace_set_multicast(struct net_device *dev);
83 static void mace_reset(struct net_device *dev);
84 static int mace_set_address(struct net_device *dev, void *addr);
85 static irqreturn_t mace_interrupt(int irq, void *dev_id);
86 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
87 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
88 static void mace_set_timeout(struct net_device *dev);
89 static void mace_tx_timeout(unsigned long data);
90 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
91 static inline void mace_clean_rings(struct mace_data *mp);
92 static void __mace_set_address(struct net_device *dev, void *addr);
93 
94 /*
95  * If we can't get a skbuff when we need it, we use this area for DMA.
96  */
97 static unsigned char *dummy_buf;
98 
99 static const struct net_device_ops mace_netdev_ops = {
100  .ndo_open = mace_open,
101  .ndo_stop = mace_close,
102  .ndo_start_xmit = mace_xmit_start,
103  .ndo_set_rx_mode = mace_set_multicast,
104  .ndo_set_mac_address = mace_set_address,
105  .ndo_change_mtu = eth_change_mtu,
106  .ndo_validate_addr = eth_validate_addr,
107 };
108 
109 static int __devinit mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
110 {
111  struct device_node *mace = macio_get_of_node(mdev);
112  struct net_device *dev;
113  struct mace_data *mp;
114  const unsigned char *addr;
115  int j, rev, rc = -EBUSY;
116 
117  if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
118  printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
119  mace->full_name);
120  return -ENODEV;
121  }
122 
123  addr = of_get_property(mace, "mac-address", NULL);
124  if (addr == NULL) {
125  addr = of_get_property(mace, "local-mac-address", NULL);
126  if (addr == NULL) {
127  printk(KERN_ERR "Can't get mac-address for MACE %s\n",
128  mace->full_name);
129  return -ENODEV;
130  }
131  }
132 
133  /*
134  * lazy allocate the driver-wide dummy buffer. (Note that we
135  * never have more than one MACE in the system anyway)
136  */
137  if (dummy_buf == NULL) {
138  dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
139  if (dummy_buf == NULL)
140  return -ENOMEM;
141  }
142 
143  if (macio_request_resources(mdev, "mace")) {
144  printk(KERN_ERR "MACE: can't request IO resources !\n");
145  return -EBUSY;
146  }
147 
148  dev = alloc_etherdev(PRIV_BYTES);
149  if (!dev) {
150  rc = -ENOMEM;
151  goto err_release;
152  }
153  SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
154 
155  mp = netdev_priv(dev);
156  mp->mdev = mdev;
157  macio_set_drvdata(mdev, dev);
158 
159  dev->base_addr = macio_resource_start(mdev, 0);
160  mp->mace = ioremap(dev->base_addr, 0x1000);
161  if (mp->mace == NULL) {
162  printk(KERN_ERR "MACE: can't map IO resources !\n");
163  rc = -ENOMEM;
164  goto err_free;
165  }
166  dev->irq = macio_irq(mdev, 0);
167 
168  rev = addr[0] == 0 && addr[1] == 0xA0;
169  for (j = 0; j < 6; ++j) {
170  dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
171  }
172  mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
173  in_8(&mp->mace->chipid_lo);
174 
175 
176  mp = netdev_priv(dev);
177  mp->maccc = ENXMT | ENRCV;
178 
179  mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
180  if (mp->tx_dma == NULL) {
181  printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
182  rc = -ENOMEM;
183  goto err_unmap_io;
184  }
185  mp->tx_dma_intr = macio_irq(mdev, 1);
186 
187  mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
188  if (mp->rx_dma == NULL) {
189  printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
190  rc = -ENOMEM;
191  goto err_unmap_tx_dma;
192  }
193  mp->rx_dma_intr = macio_irq(mdev, 2);
194 
195  mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
196  mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
197 
198  memset((char *) mp->tx_cmds, 0,
199  (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
200  init_timer(&mp->tx_timeout);
201  spin_lock_init(&mp->lock);
202  mp->timeout_active = 0;
203 
204  if (port_aaui >= 0)
205  mp->port_aaui = port_aaui;
206  else {
207  /* Apple Network Server uses the AAUI port */
208  if (of_machine_is_compatible("AAPL,ShinerESB"))
209  mp->port_aaui = 1;
210  else {
211 #ifdef CONFIG_MACE_AAUI_PORT
212  mp->port_aaui = 1;
213 #else
214  mp->port_aaui = 0;
215 #endif
216  }
217  }
218 
219  dev->netdev_ops = &mace_netdev_ops;
220 
221  /*
222  * Most of what is below could be moved to mace_open()
223  */
224  mace_reset(dev);
225 
226  rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
227  if (rc) {
228  printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
229  goto err_unmap_rx_dma;
230  }
231  rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
232  if (rc) {
233  printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
234  goto err_free_irq;
235  }
236  rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
237  if (rc) {
238  printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
239  goto err_free_tx_irq;
240  }
241 
242  rc = register_netdev(dev);
243  if (rc) {
244  printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
245  goto err_free_rx_irq;
246  }
247 
248  printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
249  dev->name, dev->dev_addr,
250  mp->chipid >> 8, mp->chipid & 0xff);
251 
252  return 0;
253 
254  err_free_rx_irq:
255  free_irq(macio_irq(mdev, 2), dev);
256  err_free_tx_irq:
257  free_irq(macio_irq(mdev, 1), dev);
258  err_free_irq:
259  free_irq(macio_irq(mdev, 0), dev);
260  err_unmap_rx_dma:
261  iounmap(mp->rx_dma);
262  err_unmap_tx_dma:
263  iounmap(mp->tx_dma);
264  err_unmap_io:
265  iounmap(mp->mace);
266  err_free:
267  free_netdev(dev);
268  err_release:
270 
271  return rc;
272 }
273 
274 static int __devexit mace_remove(struct macio_dev *mdev)
275 {
276  struct net_device *dev = macio_get_drvdata(mdev);
277  struct mace_data *mp;
278 
279  BUG_ON(dev == NULL);
280 
281  macio_set_drvdata(mdev, NULL);
282 
283  mp = netdev_priv(dev);
284 
285  unregister_netdev(dev);
286 
287  free_irq(dev->irq, dev);
288  free_irq(mp->tx_dma_intr, dev);
289  free_irq(mp->rx_dma_intr, dev);
290 
291  iounmap(mp->rx_dma);
292  iounmap(mp->tx_dma);
293  iounmap(mp->mace);
294 
295  free_netdev(dev);
296 
298 
299  return 0;
300 }
301 
302 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
303 {
304  int i;
305 
306  out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
307 
308  /*
309  * Yes this looks peculiar, but apparently it needs to be this
310  * way on some machines.
311  */
312  for (i = 200; i > 0; --i)
313  if (ld_le32(&dma->control) & RUN)
314  udelay(1);
315 }
316 
317 static void mace_reset(struct net_device *dev)
318 {
319  struct mace_data *mp = netdev_priv(dev);
320  volatile struct mace __iomem *mb = mp->mace;
321  int i;
322 
323  /* soft-reset the chip */
324  i = 200;
325  while (--i) {
326  out_8(&mb->biucc, SWRST);
327  if (in_8(&mb->biucc) & SWRST) {
328  udelay(10);
329  continue;
330  }
331  break;
332  }
333  if (!i) {
334  printk(KERN_ERR "mace: cannot reset chip!\n");
335  return;
336  }
337 
338  out_8(&mb->imr, 0xff); /* disable all intrs for now */
339  i = in_8(&mb->ir);
340  out_8(&mb->maccc, 0); /* turn off tx, rx */
341 
342  out_8(&mb->biucc, XMTSP_64);
343  out_8(&mb->utr, RTRD);
344  out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
345  out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
346  out_8(&mb->rcvfc, 0);
347 
348  /* load up the hardware address */
349  __mace_set_address(dev, dev->dev_addr);
350 
351  /* clear the multicast filter */
352  if (mp->chipid == BROKEN_ADDRCHG_REV)
353  out_8(&mb->iac, LOGADDR);
354  else {
355  out_8(&mb->iac, ADDRCHG | LOGADDR);
356  while ((in_8(&mb->iac) & ADDRCHG) != 0)
357  ;
358  }
359  for (i = 0; i < 8; ++i)
360  out_8(&mb->ladrf, 0);
361 
362  /* done changing address */
363  if (mp->chipid != BROKEN_ADDRCHG_REV)
364  out_8(&mb->iac, 0);
365 
366  if (mp->port_aaui)
367  out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
368  else
369  out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
370 }
371 
372 static void __mace_set_address(struct net_device *dev, void *addr)
373 {
374  struct mace_data *mp = netdev_priv(dev);
375  volatile struct mace __iomem *mb = mp->mace;
376  unsigned char *p = addr;
377  int i;
378 
379  /* load up the hardware address */
380  if (mp->chipid == BROKEN_ADDRCHG_REV)
381  out_8(&mb->iac, PHYADDR);
382  else {
383  out_8(&mb->iac, ADDRCHG | PHYADDR);
384  while ((in_8(&mb->iac) & ADDRCHG) != 0)
385  ;
386  }
387  for (i = 0; i < 6; ++i)
388  out_8(&mb->padr, dev->dev_addr[i] = p[i]);
389  if (mp->chipid != BROKEN_ADDRCHG_REV)
390  out_8(&mb->iac, 0);
391 }
392 
393 static int mace_set_address(struct net_device *dev, void *addr)
394 {
395  struct mace_data *mp = netdev_priv(dev);
396  volatile struct mace __iomem *mb = mp->mace;
397  unsigned long flags;
398 
399  spin_lock_irqsave(&mp->lock, flags);
400 
401  __mace_set_address(dev, addr);
402 
403  /* note: setting ADDRCHG clears ENRCV */
404  out_8(&mb->maccc, mp->maccc);
405 
406  spin_unlock_irqrestore(&mp->lock, flags);
407  return 0;
408 }
409 
410 static inline void mace_clean_rings(struct mace_data *mp)
411 {
412  int i;
413 
414  /* free some skb's */
415  for (i = 0; i < N_RX_RING; ++i) {
416  if (mp->rx_bufs[i] != NULL) {
417  dev_kfree_skb(mp->rx_bufs[i]);
418  mp->rx_bufs[i] = NULL;
419  }
420  }
421  for (i = mp->tx_empty; i != mp->tx_fill; ) {
422  dev_kfree_skb(mp->tx_bufs[i]);
423  if (++i >= N_TX_RING)
424  i = 0;
425  }
426 }
427 
428 static int mace_open(struct net_device *dev)
429 {
430  struct mace_data *mp = netdev_priv(dev);
431  volatile struct mace __iomem *mb = mp->mace;
432  volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
433  volatile struct dbdma_regs __iomem *td = mp->tx_dma;
434  volatile struct dbdma_cmd *cp;
435  int i;
436  struct sk_buff *skb;
437  unsigned char *data;
438 
439  /* reset the chip */
440  mace_reset(dev);
441 
442  /* initialize list of sk_buffs for receiving and set up recv dma */
443  mace_clean_rings(mp);
444  memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
445  cp = mp->rx_cmds;
446  for (i = 0; i < N_RX_RING - 1; ++i) {
447  skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
448  if (!skb) {
449  data = dummy_buf;
450  } else {
451  skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
452  data = skb->data;
453  }
454  mp->rx_bufs[i] = skb;
455  st_le16(&cp->req_count, RX_BUFLEN);
456  st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
457  st_le32(&cp->phy_addr, virt_to_bus(data));
458  cp->xfer_status = 0;
459  ++cp;
460  }
461  mp->rx_bufs[i] = NULL;
462  st_le16(&cp->command, DBDMA_STOP);
463  mp->rx_fill = i;
464  mp->rx_empty = 0;
465 
466  /* Put a branch back to the beginning of the receive command list */
467  ++cp;
468  st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
469  st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds));
470 
471  /* start rx dma */
472  out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
473  out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
474  out_le32(&rd->control, (RUN << 16) | RUN);
475 
476  /* put a branch at the end of the tx command list */
477  cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
478  st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
479  st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds));
480 
481  /* reset tx dma */
482  out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
483  out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
484  mp->tx_fill = 0;
485  mp->tx_empty = 0;
486  mp->tx_fullup = 0;
487  mp->tx_active = 0;
488  mp->tx_bad_runt = 0;
489 
490  /* turn it on! */
491  out_8(&mb->maccc, mp->maccc);
492  /* enable all interrupts except receive interrupts */
493  out_8(&mb->imr, RCVINT);
494 
495  return 0;
496 }
497 
498 static int mace_close(struct net_device *dev)
499 {
500  struct mace_data *mp = netdev_priv(dev);
501  volatile struct mace __iomem *mb = mp->mace;
502  volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
503  volatile struct dbdma_regs __iomem *td = mp->tx_dma;
504 
505  /* disable rx and tx */
506  out_8(&mb->maccc, 0);
507  out_8(&mb->imr, 0xff); /* disable all intrs */
508 
509  /* disable rx and tx dma */
510  st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
511  st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
512 
513  mace_clean_rings(mp);
514 
515  return 0;
516 }
517 
518 static inline void mace_set_timeout(struct net_device *dev)
519 {
520  struct mace_data *mp = netdev_priv(dev);
521 
522  if (mp->timeout_active)
523  del_timer(&mp->tx_timeout);
524  mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
525  mp->tx_timeout.function = mace_tx_timeout;
526  mp->tx_timeout.data = (unsigned long) dev;
527  add_timer(&mp->tx_timeout);
528  mp->timeout_active = 1;
529 }
530 
531 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
532 {
533  struct mace_data *mp = netdev_priv(dev);
534  volatile struct dbdma_regs __iomem *td = mp->tx_dma;
535  volatile struct dbdma_cmd *cp, *np;
536  unsigned long flags;
537  int fill, next, len;
538 
539  /* see if there's a free slot in the tx ring */
540  spin_lock_irqsave(&mp->lock, flags);
541  fill = mp->tx_fill;
542  next = fill + 1;
543  if (next >= N_TX_RING)
544  next = 0;
545  if (next == mp->tx_empty) {
546  netif_stop_queue(dev);
547  mp->tx_fullup = 1;
548  spin_unlock_irqrestore(&mp->lock, flags);
549  return NETDEV_TX_BUSY; /* can't take it at the moment */
550  }
551  spin_unlock_irqrestore(&mp->lock, flags);
552 
553  /* partially fill in the dma command block */
554  len = skb->len;
555  if (len > ETH_FRAME_LEN) {
556  printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
557  len = ETH_FRAME_LEN;
558  }
559  mp->tx_bufs[fill] = skb;
560  cp = mp->tx_cmds + NCMDS_TX * fill;
561  st_le16(&cp->req_count, len);
562  st_le32(&cp->phy_addr, virt_to_bus(skb->data));
563 
564  np = mp->tx_cmds + NCMDS_TX * next;
565  out_le16(&np->command, DBDMA_STOP);
566 
567  /* poke the tx dma channel */
568  spin_lock_irqsave(&mp->lock, flags);
569  mp->tx_fill = next;
570  if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
571  out_le16(&cp->xfer_status, 0);
572  out_le16(&cp->command, OUTPUT_LAST);
573  out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
574  ++mp->tx_active;
575  mace_set_timeout(dev);
576  }
577  if (++next >= N_TX_RING)
578  next = 0;
579  if (next == mp->tx_empty)
580  netif_stop_queue(dev);
581  spin_unlock_irqrestore(&mp->lock, flags);
582 
583  return NETDEV_TX_OK;
584 }
585 
586 static void mace_set_multicast(struct net_device *dev)
587 {
588  struct mace_data *mp = netdev_priv(dev);
589  volatile struct mace __iomem *mb = mp->mace;
590  int i;
591  u32 crc;
592  unsigned long flags;
593 
594  spin_lock_irqsave(&mp->lock, flags);
595  mp->maccc &= ~PROM;
596  if (dev->flags & IFF_PROMISC) {
597  mp->maccc |= PROM;
598  } else {
599  unsigned char multicast_filter[8];
600  struct netdev_hw_addr *ha;
601 
602  if (dev->flags & IFF_ALLMULTI) {
603  for (i = 0; i < 8; i++)
604  multicast_filter[i] = 0xff;
605  } else {
606  for (i = 0; i < 8; i++)
607  multicast_filter[i] = 0;
608  netdev_for_each_mc_addr(ha, dev) {
609  crc = ether_crc_le(6, ha->addr);
610  i = crc >> 26; /* bit number in multicast_filter */
611  multicast_filter[i >> 3] |= 1 << (i & 7);
612  }
613  }
614 #if 0
615  printk("Multicast filter :");
616  for (i = 0; i < 8; i++)
617  printk("%02x ", multicast_filter[i]);
618  printk("\n");
619 #endif
620 
621  if (mp->chipid == BROKEN_ADDRCHG_REV)
622  out_8(&mb->iac, LOGADDR);
623  else {
624  out_8(&mb->iac, ADDRCHG | LOGADDR);
625  while ((in_8(&mb->iac) & ADDRCHG) != 0)
626  ;
627  }
628  for (i = 0; i < 8; ++i)
629  out_8(&mb->ladrf, multicast_filter[i]);
630  if (mp->chipid != BROKEN_ADDRCHG_REV)
631  out_8(&mb->iac, 0);
632  }
633  /* reset maccc */
634  out_8(&mb->maccc, mp->maccc);
635  spin_unlock_irqrestore(&mp->lock, flags);
636 }
637 
638 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
639 {
640  volatile struct mace __iomem *mb = mp->mace;
641  static int mace_babbles, mace_jabbers;
642 
643  if (intr & MPCO)
644  dev->stats.rx_missed_errors += 256;
645  dev->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
646  if (intr & RNTPCO)
647  dev->stats.rx_length_errors += 256;
648  dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
649  if (intr & CERR)
650  ++dev->stats.tx_heartbeat_errors;
651  if (intr & BABBLE)
652  if (mace_babbles++ < 4)
653  printk(KERN_DEBUG "mace: babbling transmitter\n");
654  if (intr & JABBER)
655  if (mace_jabbers++ < 4)
656  printk(KERN_DEBUG "mace: jabbering transceiver\n");
657 }
658 
659 static irqreturn_t mace_interrupt(int irq, void *dev_id)
660 {
661  struct net_device *dev = (struct net_device *) dev_id;
662  struct mace_data *mp = netdev_priv(dev);
663  volatile struct mace __iomem *mb = mp->mace;
664  volatile struct dbdma_regs __iomem *td = mp->tx_dma;
665  volatile struct dbdma_cmd *cp;
666  int intr, fs, i, stat, x;
667  int xcount, dstat;
668  unsigned long flags;
669  /* static int mace_last_fs, mace_last_xcount; */
670 
671  spin_lock_irqsave(&mp->lock, flags);
672  intr = in_8(&mb->ir); /* read interrupt register */
673  in_8(&mb->xmtrc); /* get retries */
674  mace_handle_misc_intrs(mp, intr, dev);
675 
676  i = mp->tx_empty;
677  while (in_8(&mb->pr) & XMTSV) {
678  del_timer(&mp->tx_timeout);
679  mp->timeout_active = 0;
680  /*
681  * Clear any interrupt indication associated with this status
682  * word. This appears to unlatch any error indication from
683  * the DMA controller.
684  */
685  intr = in_8(&mb->ir);
686  if (intr != 0)
687  mace_handle_misc_intrs(mp, intr, dev);
688  if (mp->tx_bad_runt) {
689  fs = in_8(&mb->xmtfs);
690  mp->tx_bad_runt = 0;
691  out_8(&mb->xmtfc, AUTO_PAD_XMIT);
692  continue;
693  }
694  dstat = ld_le32(&td->status);
695  /* stop DMA controller */
696  out_le32(&td->control, RUN << 16);
697  /*
698  * xcount is the number of complete frames which have been
699  * written to the fifo but for which status has not been read.
700  */
701  xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
702  if (xcount == 0 || (dstat & DEAD)) {
703  /*
704  * If a packet was aborted before the DMA controller has
705  * finished transferring it, it seems that there are 2 bytes
706  * which are stuck in some buffer somewhere. These will get
707  * transmitted as soon as we read the frame status (which
708  * reenables the transmit data transfer request). Turning
709  * off the DMA controller and/or resetting the MACE doesn't
710  * help. So we disable auto-padding and FCS transmission
711  * so the two bytes will only be a runt packet which should
712  * be ignored by other stations.
713  */
714  out_8(&mb->xmtfc, DXMTFCS);
715  }
716  fs = in_8(&mb->xmtfs);
717  if ((fs & XMTSV) == 0) {
718  printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
719  fs, xcount, dstat);
720  mace_reset(dev);
721  /*
722  * XXX mace likes to hang the machine after a xmtfs error.
723  * This is hard to reproduce, reseting *may* help
724  */
725  }
726  cp = mp->tx_cmds + NCMDS_TX * i;
727  stat = ld_le16(&cp->xfer_status);
728  if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
729  /*
730  * Check whether there were in fact 2 bytes written to
731  * the transmit FIFO.
732  */
733  udelay(1);
734  x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
735  if (x != 0) {
736  /* there were two bytes with an end-of-packet indication */
737  mp->tx_bad_runt = 1;
738  mace_set_timeout(dev);
739  } else {
740  /*
741  * Either there weren't the two bytes buffered up, or they
742  * didn't have an end-of-packet indication.
743  * We flush the transmit FIFO just in case (by setting the
744  * XMTFWU bit with the transmitter disabled).
745  */
746  out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
747  out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
748  udelay(1);
749  out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
750  out_8(&mb->xmtfc, AUTO_PAD_XMIT);
751  }
752  }
753  /* dma should have finished */
754  if (i == mp->tx_fill) {
755  printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
756  fs, xcount, dstat);
757  continue;
758  }
759  /* Update stats */
760  if (fs & (UFLO|LCOL|LCAR|RTRY)) {
761  ++dev->stats.tx_errors;
762  if (fs & LCAR)
763  ++dev->stats.tx_carrier_errors;
764  if (fs & (UFLO|LCOL|RTRY))
765  ++dev->stats.tx_aborted_errors;
766  } else {
767  dev->stats.tx_bytes += mp->tx_bufs[i]->len;
768  ++dev->stats.tx_packets;
769  }
770  dev_kfree_skb_irq(mp->tx_bufs[i]);
771  --mp->tx_active;
772  if (++i >= N_TX_RING)
773  i = 0;
774 #if 0
775  mace_last_fs = fs;
776  mace_last_xcount = xcount;
777 #endif
778  }
779 
780  if (i != mp->tx_empty) {
781  mp->tx_fullup = 0;
782  netif_wake_queue(dev);
783  }
784  mp->tx_empty = i;
785  i += mp->tx_active;
786  if (i >= N_TX_RING)
787  i -= N_TX_RING;
788  if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
789  do {
790  /* set up the next one */
791  cp = mp->tx_cmds + NCMDS_TX * i;
792  out_le16(&cp->xfer_status, 0);
793  out_le16(&cp->command, OUTPUT_LAST);
794  ++mp->tx_active;
795  if (++i >= N_TX_RING)
796  i = 0;
797  } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
798  out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
799  mace_set_timeout(dev);
800  }
801  spin_unlock_irqrestore(&mp->lock, flags);
802  return IRQ_HANDLED;
803 }
804 
805 static void mace_tx_timeout(unsigned long data)
806 {
807  struct net_device *dev = (struct net_device *) data;
808  struct mace_data *mp = netdev_priv(dev);
809  volatile struct mace __iomem *mb = mp->mace;
810  volatile struct dbdma_regs __iomem *td = mp->tx_dma;
811  volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
812  volatile struct dbdma_cmd *cp;
813  unsigned long flags;
814  int i;
815 
816  spin_lock_irqsave(&mp->lock, flags);
817  mp->timeout_active = 0;
818  if (mp->tx_active == 0 && !mp->tx_bad_runt)
819  goto out;
820 
821  /* update various counters */
822  mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
823 
824  cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
825 
826  /* turn off both tx and rx and reset the chip */
827  out_8(&mb->maccc, 0);
828  printk(KERN_ERR "mace: transmit timeout - resetting\n");
829  dbdma_reset(td);
830  mace_reset(dev);
831 
832  /* restart rx dma */
833  cp = bus_to_virt(ld_le32(&rd->cmdptr));
834  dbdma_reset(rd);
835  out_le16(&cp->xfer_status, 0);
836  out_le32(&rd->cmdptr, virt_to_bus(cp));
837  out_le32(&rd->control, (RUN << 16) | RUN);
838 
839  /* fix up the transmit side */
840  i = mp->tx_empty;
841  mp->tx_active = 0;
842  ++dev->stats.tx_errors;
843  if (mp->tx_bad_runt) {
844  mp->tx_bad_runt = 0;
845  } else if (i != mp->tx_fill) {
846  dev_kfree_skb(mp->tx_bufs[i]);
847  if (++i >= N_TX_RING)
848  i = 0;
849  mp->tx_empty = i;
850  }
851  mp->tx_fullup = 0;
852  netif_wake_queue(dev);
853  if (i != mp->tx_fill) {
854  cp = mp->tx_cmds + NCMDS_TX * i;
855  out_le16(&cp->xfer_status, 0);
856  out_le16(&cp->command, OUTPUT_LAST);
857  out_le32(&td->cmdptr, virt_to_bus(cp));
858  out_le32(&td->control, (RUN << 16) | RUN);
859  ++mp->tx_active;
860  mace_set_timeout(dev);
861  }
862 
863  /* turn it back on */
864  out_8(&mb->imr, RCVINT);
865  out_8(&mb->maccc, mp->maccc);
866 
867 out:
868  spin_unlock_irqrestore(&mp->lock, flags);
869 }
870 
871 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
872 {
873  return IRQ_HANDLED;
874 }
875 
876 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
877 {
878  struct net_device *dev = (struct net_device *) dev_id;
879  struct mace_data *mp = netdev_priv(dev);
880  volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
881  volatile struct dbdma_cmd *cp, *np;
882  int i, nb, stat, next;
883  struct sk_buff *skb;
884  unsigned frame_status;
885  static int mace_lost_status;
886  unsigned char *data;
887  unsigned long flags;
888 
889  spin_lock_irqsave(&mp->lock, flags);
890  for (i = mp->rx_empty; i != mp->rx_fill; ) {
891  cp = mp->rx_cmds + i;
892  stat = ld_le16(&cp->xfer_status);
893  if ((stat & ACTIVE) == 0) {
894  next = i + 1;
895  if (next >= N_RX_RING)
896  next = 0;
897  np = mp->rx_cmds + next;
898  if (next != mp->rx_fill &&
899  (ld_le16(&np->xfer_status) & ACTIVE) != 0) {
900  printk(KERN_DEBUG "mace: lost a status word\n");
901  ++mace_lost_status;
902  } else
903  break;
904  }
905  nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count);
906  out_le16(&cp->command, DBDMA_STOP);
907  /* got a packet, have a look at it */
908  skb = mp->rx_bufs[i];
909  if (!skb) {
910  ++dev->stats.rx_dropped;
911  } else if (nb > 8) {
912  data = skb->data;
913  frame_status = (data[nb-3] << 8) + data[nb-4];
914  if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
915  ++dev->stats.rx_errors;
916  if (frame_status & RS_OFLO)
917  ++dev->stats.rx_over_errors;
918  if (frame_status & RS_FRAMERR)
919  ++dev->stats.rx_frame_errors;
920  if (frame_status & RS_FCSERR)
921  ++dev->stats.rx_crc_errors;
922  } else {
923  /* Mace feature AUTO_STRIP_RCV is on by default, dropping the
924  * FCS on frames with 802.3 headers. This means that Ethernet
925  * frames have 8 extra octets at the end, while 802.3 frames
926  * have only 4. We need to correctly account for this. */
927  if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
928  nb -= 4;
929  else /* Ethernet header; mace includes FCS */
930  nb -= 8;
931  skb_put(skb, nb);
932  skb->protocol = eth_type_trans(skb, dev);
933  dev->stats.rx_bytes += skb->len;
934  netif_rx(skb);
935  mp->rx_bufs[i] = NULL;
936  ++dev->stats.rx_packets;
937  }
938  } else {
939  ++dev->stats.rx_errors;
940  ++dev->stats.rx_length_errors;
941  }
942 
943  /* advance to next */
944  if (++i >= N_RX_RING)
945  i = 0;
946  }
947  mp->rx_empty = i;
948 
949  i = mp->rx_fill;
950  for (;;) {
951  next = i + 1;
952  if (next >= N_RX_RING)
953  next = 0;
954  if (next == mp->rx_empty)
955  break;
956  cp = mp->rx_cmds + i;
957  skb = mp->rx_bufs[i];
958  if (!skb) {
959  skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
960  if (skb) {
961  skb_reserve(skb, 2);
962  mp->rx_bufs[i] = skb;
963  }
964  }
965  st_le16(&cp->req_count, RX_BUFLEN);
966  data = skb? skb->data: dummy_buf;
967  st_le32(&cp->phy_addr, virt_to_bus(data));
968  out_le16(&cp->xfer_status, 0);
969  out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
970 #if 0
971  if ((ld_le32(&rd->status) & ACTIVE) != 0) {
972  out_le32(&rd->control, (PAUSE << 16) | PAUSE);
973  while ((in_le32(&rd->status) & ACTIVE) != 0)
974  ;
975  }
976 #endif
977  i = next;
978  }
979  if (i != mp->rx_fill) {
980  out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
981  mp->rx_fill = i;
982  }
983  spin_unlock_irqrestore(&mp->lock, flags);
984  return IRQ_HANDLED;
985 }
986 
987 static struct of_device_id mace_match[] =
988 {
989  {
990  .name = "mace",
991  },
992  {},
993 };
994 MODULE_DEVICE_TABLE (of, mace_match);
995 
996 static struct macio_driver mace_driver =
997 {
998  .driver = {
999  .name = "mace",
1000  .owner = THIS_MODULE,
1001  .of_match_table = mace_match,
1002  },
1003  .probe = mace_probe,
1004  .remove = mace_remove,
1005 };
1006 
1007 
1008 static int __init mace_init(void)
1009 {
1010  return macio_register_driver(&mace_driver);
1011 }
1012 
1013 static void __exit mace_cleanup(void)
1014 {
1015  macio_unregister_driver(&mace_driver);
1016 
1017  kfree(dummy_buf);
1018  dummy_buf = NULL;
1019 }
1020 
1021 MODULE_AUTHOR("Paul Mackerras");
1022 MODULE_DESCRIPTION("PowerMac MACE driver.");
1023 module_param(port_aaui, int, 0);
1024 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1025 MODULE_LICENSE("GPL");
1026 
1027 module_init(mace_init);
1028 module_exit(mace_cleanup);