Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mgag200_mode.c
Go to the documentation of this file.
1 /*
2  * Copyright 2010 Matt Turner.
3  * Copyright 2012 Red Hat
4  *
5  * This file is subject to the terms and conditions of the GNU General
6  * Public License version 2. See the file COPYING in the main
7  * directory of this archive for more details.
8  *
9  * Authors: Matthew Garrett
10  * Matt Turner
11  * Dave Airlie
12  */
13 
14 #include <linux/delay.h>
15 
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
18 
19 #include "mgag200_drv.h"
20 
21 #define MGAG200_LUT_SIZE 256
22 
23 /*
24  * This file contains setup code for the CRTC.
25  */
26 
27 static void mga_crtc_load_lut(struct drm_crtc *crtc)
28 {
29  struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
30  struct drm_device *dev = crtc->dev;
31  struct mga_device *mdev = dev->dev_private;
32  int i;
33 
34  if (!crtc->enabled)
35  return;
36 
38 
39  for (i = 0; i < MGAG200_LUT_SIZE; i++) {
40  /* VGA registers */
41  WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
42  WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
43  WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
44  }
45 }
46 
47 static inline void mga_wait_vsync(struct mga_device *mdev)
48 {
49  unsigned int count = 0;
50  unsigned int status = 0;
51 
52  do {
53  status = RREG32(MGAREG_Status);
54  count++;
55  } while ((status & 0x08) && (count < 250000));
56  count = 0;
57  status = 0;
58  do {
59  status = RREG32(MGAREG_Status);
60  count++;
61  } while (!(status & 0x08) && (count < 250000));
62 }
63 
64 static inline void mga_wait_busy(struct mga_device *mdev)
65 {
66  unsigned int count = 0;
67  unsigned int status = 0;
68  do {
69  status = RREG8(MGAREG_Status + 2);
70  count++;
71  } while ((status & 0x01) && (count < 500000));
72 }
73 
74 /*
75  * The core passes the desired mode to the CRTC code to see whether any
76  * CRTC-specific modifications need to be made to it. We're in a position
77  * to just pass that straight through, so this does nothing
78  */
79 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
80  const struct drm_display_mode *mode,
81  struct drm_display_mode *adjusted_mode)
82 {
83  return true;
84 }
85 
86 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
87 {
88  unsigned int vcomax, vcomin, pllreffreq;
89  unsigned int delta, tmpdelta, permitteddelta;
90  unsigned int testp, testm, testn;
91  unsigned int p, m, n;
92  unsigned int computed;
93 
94  m = n = p = 0;
95  vcomax = 320000;
96  vcomin = 160000;
97  pllreffreq = 25000;
98 
99  delta = 0xffffffff;
100  permitteddelta = clock * 5 / 1000;
101 
102  for (testp = 8; testp > 0; testp /= 2) {
103  if (clock * testp > vcomax)
104  continue;
105  if (clock * testp < vcomin)
106  continue;
107 
108  for (testn = 17; testn < 256; testn++) {
109  for (testm = 1; testm < 32; testm++) {
110  computed = (pllreffreq * testn) /
111  (testm * testp);
112  if (computed > clock)
113  tmpdelta = computed - clock;
114  else
115  tmpdelta = clock - computed;
116  if (tmpdelta < delta) {
117  delta = tmpdelta;
118  m = testm - 1;
119  n = testn - 1;
120  p = testp - 1;
121  }
122  }
123  }
124  }
125 
126  if (delta > permitteddelta) {
127  printk(KERN_WARNING "PLL delta too large\n");
128  return 1;
129  }
130 
134  return 0;
135 }
136 
137 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
138 {
139  unsigned int vcomax, vcomin, pllreffreq;
140  unsigned int delta, tmpdelta, permitteddelta;
141  unsigned int testp, testm, testn;
142  unsigned int p, m, n;
143  unsigned int computed;
144  int i, j, tmpcount, vcount;
145  bool pll_locked = false;
146  u8 tmp;
147 
148  m = n = p = 0;
149  vcomax = 550000;
150  vcomin = 150000;
151  pllreffreq = 48000;
152 
153  delta = 0xffffffff;
154  permitteddelta = clock * 5 / 1000;
155 
156  for (testp = 1; testp < 9; testp++) {
157  if (clock * testp > vcomax)
158  continue;
159  if (clock * testp < vcomin)
160  continue;
161 
162  for (testm = 1; testm < 17; testm++) {
163  for (testn = 1; testn < 151; testn++) {
164  computed = (pllreffreq * testn) /
165  (testm * testp);
166  if (computed > clock)
167  tmpdelta = computed - clock;
168  else
169  tmpdelta = clock - computed;
170  if (tmpdelta < delta) {
171  delta = tmpdelta;
172  n = testn - 1;
173  m = (testm - 1) | ((n >> 1) & 0x80);
174  p = testp - 1;
175  }
176  }
177  }
178  }
179 
180  for (i = 0; i <= 32 && pll_locked == false; i++) {
181  if (i > 0) {
182  WREG8(MGAREG_CRTC_INDEX, 0x1e);
183  tmp = RREG8(MGAREG_CRTC_DATA);
184  if (tmp < 0xff)
185  WREG8(MGAREG_CRTC_DATA, tmp+1);
186  }
187 
188  /* set pixclkdis to 1 */
190  tmp = RREG8(DAC_DATA);
193 
195  tmp = RREG8(DAC_DATA);
198 
199  /* select PLL Set C */
201  tmp |= 0x3 << 2;
203 
205  tmp = RREG8(DAC_DATA);
206  tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
208 
209  udelay(500);
210 
211  /* reset the PLL */
213  tmp = RREG8(DAC_DATA);
214  tmp &= ~0x04;
216 
217  udelay(50);
218 
219  /* program pixel pll register */
223 
224  udelay(50);
225 
226  /* turn pll on */
228  tmp = RREG8(DAC_DATA);
229  tmp |= 0x04;
231 
232  udelay(500);
233 
234  /* select the pixel pll */
236  tmp = RREG8(DAC_DATA);
240 
242  tmp = RREG8(DAC_DATA);
246 
247  /* reset dotclock rate bit */
249  tmp = RREG8(MGAREG_SEQ_DATA);
250  tmp &= ~0x8;
251  WREG8(MGAREG_SEQ_DATA, tmp);
252 
254  tmp = RREG8(DAC_DATA);
257 
258  vcount = RREG8(MGAREG_VCOUNT);
259 
260  for (j = 0; j < 30 && pll_locked == false; j++) {
261  tmpcount = RREG8(MGAREG_VCOUNT);
262  if (tmpcount < vcount)
263  vcount = 0;
264  if ((tmpcount - vcount) > 2)
265  pll_locked = true;
266  else
267  udelay(5);
268  }
269  }
271  tmp = RREG8(DAC_DATA);
274  return 0;
275 }
276 
277 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
278 {
279  unsigned int vcomax, vcomin, pllreffreq;
280  unsigned int delta, tmpdelta, permitteddelta;
281  unsigned int testp, testm, testn;
282  unsigned int p, m, n;
283  unsigned int computed;
284  u8 tmp;
285 
286  m = n = p = 0;
287  vcomax = 550000;
288  vcomin = 150000;
289  pllreffreq = 50000;
290 
291  delta = 0xffffffff;
292  permitteddelta = clock * 5 / 1000;
293 
294  for (testp = 16; testp > 0; testp--) {
295  if (clock * testp > vcomax)
296  continue;
297  if (clock * testp < vcomin)
298  continue;
299 
300  for (testn = 1; testn < 257; testn++) {
301  for (testm = 1; testm < 17; testm++) {
302  computed = (pllreffreq * testn) /
303  (testm * testp);
304  if (computed > clock)
305  tmpdelta = computed - clock;
306  else
307  tmpdelta = clock - computed;
308  if (tmpdelta < delta) {
309  delta = tmpdelta;
310  n = testn - 1;
311  m = testm - 1;
312  p = testp - 1;
313  }
314  }
315  }
316  }
317 
319  tmp = RREG8(DAC_DATA);
322 
324  tmp |= 0x3 << 2;
326 
328  tmp = RREG8(DAC_DATA);
329  WREG_DAC(MGA1064_PIX_PLL_STAT, tmp & ~0x40);
330 
332  tmp = RREG8(DAC_DATA);
335 
339 
340  udelay(50);
341 
343  tmp = RREG8(DAC_DATA);
346 
347  udelay(500);
348 
350  tmp = RREG8(DAC_DATA);
354 
356  tmp = RREG8(DAC_DATA);
357  WREG_DAC(MGA1064_PIX_PLL_STAT, tmp | 0x40);
358 
360  tmp |= (0x3 << 2);
362 
364  tmp = RREG8(DAC_DATA);
367 
368  return 0;
369 }
370 
371 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
372 {
373  unsigned int vcomax, vcomin, pllreffreq;
374  unsigned int delta, tmpdelta, permitteddelta;
375  unsigned int testp, testm, testn;
376  unsigned int p, m, n;
377  unsigned int computed;
378  int i, j, tmpcount, vcount;
379  u8 tmp;
380  bool pll_locked = false;
381 
382  m = n = p = 0;
383  vcomax = 800000;
384  vcomin = 400000;
385  pllreffreq = 3333;
386 
387  delta = 0xffffffff;
388  permitteddelta = clock * 5 / 1000;
389 
390  for (testp = 16; testp > 0; testp--) {
391  if (clock * testp > vcomax)
392  continue;
393  if (clock * testp < vcomin)
394  continue;
395 
396  for (testm = 1; testm < 33; testm++) {
397  for (testn = 1; testn < 257; testn++) {
398  computed = (pllreffreq * testn) /
399  (testm * testp);
400  if (computed > clock)
401  tmpdelta = computed - clock;
402  else
403  tmpdelta = clock - computed;
404  if (tmpdelta < delta) {
405  delta = tmpdelta;
406  n = testn - 1;
407  m = (testm - 1) | ((n >> 1) & 0x80);
408  p = testp - 1;
409  }
410  if ((clock * testp) >= 600000)
411  p |= 80;
412  }
413  }
414  }
415  for (i = 0; i <= 32 && pll_locked == false; i++) {
417  tmp = RREG8(DAC_DATA);
420 
422  tmp |= 0x3 << 2;
424 
426  tmp = RREG8(DAC_DATA);
429 
430  udelay(500);
431 
435 
436  udelay(500);
437 
439  tmp = RREG8(DAC_DATA);
443 
445  tmp = RREG8(DAC_DATA);
449 
450  vcount = RREG8(MGAREG_VCOUNT);
451 
452  for (j = 0; j < 30 && pll_locked == false; j++) {
453  tmpcount = RREG8(MGAREG_VCOUNT);
454  if (tmpcount < vcount)
455  vcount = 0;
456  if ((tmpcount - vcount) > 2)
457  pll_locked = true;
458  else
459  udelay(5);
460  }
461  }
462 
463  return 0;
464 }
465 
466 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
467 {
468  unsigned int vcomax, vcomin, pllreffreq;
469  unsigned int delta, tmpdelta;
470  int testr, testn, testm, testo;
471  unsigned int p, m, n;
472  unsigned int computed, vco;
473  int tmp;
474  const unsigned int m_div_val[] = { 1, 2, 4, 8 };
475 
476  m = n = p = 0;
477  vcomax = 1488000;
478  vcomin = 1056000;
479  pllreffreq = 48000;
480 
481  delta = 0xffffffff;
482 
483  for (testr = 0; testr < 4; testr++) {
484  if (delta == 0)
485  break;
486  for (testn = 5; testn < 129; testn++) {
487  if (delta == 0)
488  break;
489  for (testm = 3; testm >= 0; testm--) {
490  if (delta == 0)
491  break;
492  for (testo = 5; testo < 33; testo++) {
493  vco = pllreffreq * (testn + 1) /
494  (testr + 1);
495  if (vco < vcomin)
496  continue;
497  if (vco > vcomax)
498  continue;
499  computed = vco / (m_div_val[testm] * (testo + 1));
500  if (computed > clock)
501  tmpdelta = computed - clock;
502  else
503  tmpdelta = clock - computed;
504  if (tmpdelta < delta) {
505  delta = tmpdelta;
506  m = testm | (testo << 3);
507  n = testn;
508  p = testr | (testr << 3);
509  }
510  }
511  }
512  }
513  }
514 
516  tmp = RREG8(DAC_DATA);
519 
521  tmp = RREG8(DAC_DATA);
524 
526  tmp |= (0x3<<2) | 0xc0;
528 
530  tmp = RREG8(DAC_DATA);
534 
535  udelay(500);
536 
540 
541  udelay(50);
542 
543  return 0;
544 }
545 
546 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
547 {
548  switch(mdev->type) {
549  case G200_SE_A:
550  case G200_SE_B:
551  return mga_g200se_set_plls(mdev, clock);
552  break;
553  case G200_WB:
554  return mga_g200wb_set_plls(mdev, clock);
555  break;
556  case G200_EV:
557  return mga_g200ev_set_plls(mdev, clock);
558  break;
559  case G200_EH:
560  return mga_g200eh_set_plls(mdev, clock);
561  break;
562  case G200_ER:
563  return mga_g200er_set_plls(mdev, clock);
564  break;
565  }
566  return 0;
567 }
568 
569 static void mga_g200wb_prepare(struct drm_crtc *crtc)
570 {
571  struct mga_device *mdev = crtc->dev->dev_private;
572  u8 tmp;
573  int iter_max;
574 
575  /* 1- The first step is to warn the BMC of an upcoming mode change.
576  * We are putting the misc<0> to output.*/
577 
579  tmp = RREG8(DAC_DATA);
580  tmp |= 0x10;
582 
583  /* we are putting a 1 on the misc<0> line */
585  tmp = RREG8(DAC_DATA);
586  tmp |= 0x10;
588 
589  /* 2- Second step to mask and further scan request
590  * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
591  */
593  tmp = RREG8(DAC_DATA);
594  tmp |= 0x80;
596 
597  /* 3a- the third step is to verifu if there is an active scan
598  * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
599  */
600  iter_max = 300;
601  while (!(tmp & 0x1) && iter_max) {
603  tmp = RREG8(DAC_DATA);
604  udelay(1000);
605  iter_max--;
606  }
607 
608  /* 3b- this step occurs only if the remove is actually scanning
609  * we are waiting for the end of the frame which is a 1 on
610  * remvsyncsts (XSPAREREG<1>)
611  */
612  if (iter_max) {
613  iter_max = 300;
614  while ((tmp & 0x2) && iter_max) {
616  tmp = RREG8(DAC_DATA);
617  udelay(1000);
618  iter_max--;
619  }
620  }
621 }
622 
623 static void mga_g200wb_commit(struct drm_crtc *crtc)
624 {
625  u8 tmp;
626  struct mga_device *mdev = crtc->dev->dev_private;
627 
628  /* 1- The first step is to ensure that the vrsten and hrsten are set */
630  tmp = RREG8(MGAREG_CRTCEXT_DATA);
631  WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
632 
633  /* 2- second step is to assert the rstlvl2 */
635  tmp = RREG8(DAC_DATA);
636  tmp |= 0x8;
637  WREG8(DAC_DATA, tmp);
638 
639  /* wait 10 us */
640  udelay(10);
641 
642  /* 3- deassert rstlvl2 */
643  tmp &= ~0x08;
645  WREG8(DAC_DATA, tmp);
646 
647  /* 4- remove mask of scan request */
649  tmp = RREG8(DAC_DATA);
650  tmp &= ~0x80;
651  WREG8(DAC_DATA, tmp);
652 
653  /* 5- put back a 0 on the misc<0> line */
655  tmp = RREG8(DAC_DATA);
656  tmp &= ~0x10;
658 }
659 
660 
661 void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
662 {
663  struct mga_device *mdev = crtc->dev->dev_private;
664  u32 addr;
665  int count;
666 
667  while (RREG8(0x1fda) & 0x08);
668  while (!(RREG8(0x1fda) & 0x08));
669 
670  count = RREG8(MGAREG_VCOUNT) + 2;
671  while (RREG8(MGAREG_VCOUNT) < count);
672 
673  addr = offset >> 2;
674  WREG_CRT(0x0d, (u8)(addr & 0xff));
675  WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
676  WREG_CRT(0xaf, (u8)(addr >> 16) & 0xf);
677 }
678 
679 
680 /* ast is different - we will force move buffers out of VRAM */
681 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
682  struct drm_framebuffer *fb,
683  int x, int y, int atomic)
684 {
685  struct mga_device *mdev = crtc->dev->dev_private;
686  struct drm_gem_object *obj;
687  struct mga_framebuffer *mga_fb;
688  struct mgag200_bo *bo;
689  int ret;
690  u64 gpu_addr;
691 
692  /* push the previous fb to system ram */
693  if (!atomic && fb) {
694  mga_fb = to_mga_framebuffer(fb);
695  obj = mga_fb->obj;
696  bo = gem_to_mga_bo(obj);
697  ret = mgag200_bo_reserve(bo, false);
698  if (ret)
699  return ret;
702  }
703 
704  mga_fb = to_mga_framebuffer(crtc->fb);
705  obj = mga_fb->obj;
706  bo = gem_to_mga_bo(obj);
707 
708  ret = mgag200_bo_reserve(bo, false);
709  if (ret)
710  return ret;
711 
712  ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
713  if (ret) {
715  return ret;
716  }
717 
718  if (&mdev->mfbdev->mfb == mga_fb) {
719  /* if pushing console in kmap it */
720  ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
721  if (ret)
722  DRM_ERROR("failed to kmap fbcon\n");
723 
724  }
726 
727  DRM_INFO("mga base %llx\n", gpu_addr);
728 
729  mga_set_start_address(crtc, (u32)gpu_addr);
730 
731  return 0;
732 }
733 
734 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
735  struct drm_framebuffer *old_fb)
736 {
737  return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
738 }
739 
740 static int mga_crtc_mode_set(struct drm_crtc *crtc,
741  struct drm_display_mode *mode,
742  struct drm_display_mode *adjusted_mode,
743  int x, int y, struct drm_framebuffer *old_fb)
744 {
745  struct drm_device *dev = crtc->dev;
746  struct mga_device *mdev = dev->dev_private;
747  int hdisplay, hsyncstart, hsyncend, htotal;
748  int vdisplay, vsyncstart, vsyncend, vtotal;
749  int pitch;
750  int option = 0, option2 = 0;
751  int i;
752  unsigned char misc = 0;
753  unsigned char ext_vga[6];
754  unsigned char ext_vga_index24;
755  unsigned char dac_index90 = 0;
756  u8 bppshift;
757 
758  static unsigned char dacvalue[] = {
759  /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
760  /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
761  /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
762  /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
763  /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
764  /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
765  /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
766  /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
767  /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
768  /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
769  };
770 
771  bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1];
772 
773  switch (mdev->type) {
774  case G200_SE_A:
775  case G200_SE_B:
776  dacvalue[MGA1064_VREF_CTL] = 0x03;
781  if (mdev->has_sdram)
782  option = 0x40049120;
783  else
784  option = 0x4004d120;
785  option2 = 0x00008000;
786  break;
787  case G200_WB:
788  dacvalue[MGA1064_VREF_CTL] = 0x07;
789  option = 0x41049120;
790  option2 = 0x0000b000;
791  break;
792  case G200_EV:
796  option = 0x00000120;
797  option2 = 0x0000b000;
798  break;
799  case G200_EH:
802  option = 0x00000120;
803  option2 = 0x0000b000;
804  break;
805  case G200_ER:
806  dac_index90 = 0;
807  break;
808  }
809 
810  switch (crtc->fb->bits_per_pixel) {
811  case 8:
813  break;
814  case 16:
815  if (crtc->fb->depth == 15)
817  else
819  break;
820  case 24:
822  break;
823  case 32:
825  break;
826  }
827 
828  if (mode->flags & DRM_MODE_FLAG_NHSYNC)
829  misc |= 0x40;
830  if (mode->flags & DRM_MODE_FLAG_NVSYNC)
831  misc |= 0x80;
832 
833 
834  for (i = 0; i < sizeof(dacvalue); i++) {
835  if ((i <= 0x03) ||
836  (i == 0x07) ||
837  (i == 0x0b) ||
838  (i == 0x0f) ||
839  ((i >= 0x13) && (i <= 0x17)) ||
840  (i == 0x1b) ||
841  (i == 0x1c) ||
842  ((i >= 0x1f) && (i <= 0x29)) ||
843  ((i >= 0x30) && (i <= 0x37)))
844  continue;
845  if (IS_G200_SE(mdev) &&
846  ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
847  continue;
848  if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) &&
849  (i >= 0x44) && (i <= 0x4e))
850  continue;
851 
852  WREG_DAC(i, dacvalue[i]);
853  }
854 
855  if (mdev->type == G200_ER) {
856  WREG_DAC(0x90, dac_index90);
857  }
858 
859 
860  if (option)
861  pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
862  if (option2)
863  pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
864 
865  WREG_SEQ(2, 0xf);
866  WREG_SEQ(3, 0);
867  WREG_SEQ(4, 0xe);
868 
869  pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8);
870  if (crtc->fb->bits_per_pixel == 24)
871  pitch = pitch >> (4 - bppshift);
872  else
873  pitch = pitch >> (4 - bppshift);
874 
875  hdisplay = mode->hdisplay / 8 - 1;
876  hsyncstart = mode->hsync_start / 8 - 1;
877  hsyncend = mode->hsync_end / 8 - 1;
878  htotal = mode->htotal / 8 - 1;
879 
880  /* Work around hardware quirk */
881  if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
882  htotal++;
883 
884  vdisplay = mode->vdisplay - 1;
885  vsyncstart = mode->vsync_start - 1;
886  vsyncend = mode->vsync_end - 1;
887  vtotal = mode->vtotal - 2;
888 
889  WREG_GFX(0, 0);
890  WREG_GFX(1, 0);
891  WREG_GFX(2, 0);
892  WREG_GFX(3, 0);
893  WREG_GFX(4, 0);
894  WREG_GFX(5, 0x40);
895  WREG_GFX(6, 0x5);
896  WREG_GFX(7, 0xf);
897  WREG_GFX(8, 0xf);
898 
899  WREG_CRT(0, htotal - 4);
900  WREG_CRT(1, hdisplay);
901  WREG_CRT(2, hdisplay);
902  WREG_CRT(3, (htotal & 0x1F) | 0x80);
903  WREG_CRT(4, hsyncstart);
904  WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
905  WREG_CRT(6, vtotal & 0xFF);
906  WREG_CRT(7, ((vtotal & 0x100) >> 8) |
907  ((vdisplay & 0x100) >> 7) |
908  ((vsyncstart & 0x100) >> 6) |
909  ((vdisplay & 0x100) >> 5) |
910  ((vdisplay & 0x100) >> 4) | /* linecomp */
911  ((vtotal & 0x200) >> 4)|
912  ((vdisplay & 0x200) >> 3) |
913  ((vsyncstart & 0x200) >> 2));
914  WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
915  ((vdisplay & 0x200) >> 3));
916  WREG_CRT(10, 0);
917  WREG_CRT(11, 0);
918  WREG_CRT(12, 0);
919  WREG_CRT(13, 0);
920  WREG_CRT(14, 0);
921  WREG_CRT(15, 0);
922  WREG_CRT(16, vsyncstart & 0xFF);
923  WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
924  WREG_CRT(18, vdisplay & 0xFF);
925  WREG_CRT(19, pitch & 0xFF);
926  WREG_CRT(20, 0);
927  WREG_CRT(21, vdisplay & 0xFF);
928  WREG_CRT(22, (vtotal + 1) & 0xFF);
929  WREG_CRT(23, 0xc3);
930  WREG_CRT(24, vdisplay & 0xFF);
931 
932  ext_vga[0] = 0;
933  ext_vga[5] = 0;
934 
935  /* TODO interlace */
936 
937  ext_vga[0] |= (pitch & 0x300) >> 4;
938  ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
939  ((hdisplay & 0x100) >> 7) |
940  ((hsyncstart & 0x100) >> 6) |
941  (htotal & 0x40);
942  ext_vga[2] = ((vtotal & 0xc00) >> 10) |
943  ((vdisplay & 0x400) >> 8) |
944  ((vdisplay & 0xc00) >> 7) |
945  ((vsyncstart & 0xc00) >> 5) |
946  ((vdisplay & 0x400) >> 3);
947  if (crtc->fb->bits_per_pixel == 24)
948  ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
949  else
950  ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
951  ext_vga[4] = 0;
952  if (mdev->type == G200_WB)
953  ext_vga[1] |= 0x88;
954 
955  ext_vga_index24 = 0x05;
956 
957  /* Set pixel clocks */
958  misc = 0x2d;
959  WREG8(MGA_MISC_OUT, misc);
960 
961  mga_crtc_set_plls(mdev, mode->clock);
962 
963  for (i = 0; i < 6; i++) {
964  WREG_ECRT(i, ext_vga[i]);
965  }
966 
967  if (mdev->type == G200_ER)
968  WREG_ECRT(24, ext_vga_index24);
969 
970  if (mdev->type == G200_EV) {
971  WREG_ECRT(6, 0);
972  }
973 
974  WREG_ECRT(0, ext_vga[0]);
975  /* Enable mga pixel clock */
976  misc = 0x2d;
977 
978  WREG8(MGA_MISC_OUT, misc);
979 
980  if (adjusted_mode)
981  memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
982 
983  mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
984 
985  /* reset tagfifo */
986  if (mdev->type == G200_ER) {
987  u32 mem_ctl = RREG32(MGAREG_MEMCTL);
988  u8 seq1;
989 
990  /* screen off */
991  WREG8(MGAREG_SEQ_INDEX, 0x01);
992  seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
993  WREG8(MGAREG_SEQ_DATA, seq1);
994 
995  WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
996  udelay(1000);
997  WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
998 
999  WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1000  }
1001 
1002 
1003  if (IS_G200_SE(mdev)) {
1004  if (mdev->reg_1e24 >= 0x02) {
1005  u8 hi_pri_lvl;
1006  u32 bpp;
1007  u32 mb;
1008 
1009  if (crtc->fb->bits_per_pixel > 16)
1010  bpp = 32;
1011  else if (crtc->fb->bits_per_pixel > 8)
1012  bpp = 16;
1013  else
1014  bpp = 8;
1015 
1016  mb = (mode->clock * bpp) / 1000;
1017  if (mb > 3100)
1018  hi_pri_lvl = 0;
1019  else if (mb > 2600)
1020  hi_pri_lvl = 1;
1021  else if (mb > 1900)
1022  hi_pri_lvl = 2;
1023  else if (mb > 1160)
1024  hi_pri_lvl = 3;
1025  else if (mb > 440)
1026  hi_pri_lvl = 4;
1027  else
1028  hi_pri_lvl = 5;
1029 
1030  WREG8(0x1fde, 0x06);
1031  WREG8(0x1fdf, hi_pri_lvl);
1032  } else {
1033  if (mdev->reg_1e24 >= 0x01)
1034  WREG8(0x1fdf, 0x03);
1035  else
1036  WREG8(0x1fdf, 0x04);
1037  }
1038  }
1039  return 0;
1040 }
1041 
1042 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1043 static int mga_suspend(struct drm_crtc *crtc)
1044 {
1045  struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1046  struct drm_device *dev = crtc->dev;
1047  struct mga_device *mdev = dev->dev_private;
1048  struct pci_dev *pdev = dev->pdev;
1049  int option;
1050 
1051  if (mdev->suspended)
1052  return 0;
1053 
1054  WREG_SEQ(1, 0x20);
1055  WREG_ECRT(1, 0x30);
1056  /* Disable the pixel clock */
1057  WREG_DAC(0x1a, 0x05);
1058  /* Power down the DAC */
1059  WREG_DAC(0x1e, 0x18);
1060  /* Power down the pixel PLL */
1061  WREG_DAC(0x1a, 0x0d);
1062 
1063  /* Disable PLLs and clocks */
1064  pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1065  option &= ~(0x1F8024);
1066  pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1068  pci_disable_device(pdev);
1069 
1070  mdev->suspended = true;
1071 
1072  return 0;
1073 }
1074 
1075 static int mga_resume(struct drm_crtc *crtc)
1076 {
1077  struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1078  struct drm_device *dev = crtc->dev;
1079  struct mga_device *mdev = dev->dev_private;
1080  struct pci_dev *pdev = dev->pdev;
1081  int option;
1082 
1083  if (!mdev->suspended)
1084  return 0;
1085 
1086  pci_set_power_state(pdev, PCI_D0);
1087  pci_enable_device(pdev);
1088 
1089  /* Disable sysclk */
1090  pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1091  option &= ~(0x4);
1092  pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1093 
1094  mdev->suspended = false;
1095 
1096  return 0;
1097 }
1098 
1099 #endif
1100 
1101 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1102 {
1103  struct drm_device *dev = crtc->dev;
1104  struct mga_device *mdev = dev->dev_private;
1105  u8 seq1 = 0, crtcext1 = 0;
1106 
1107  switch (mode) {
1108  case DRM_MODE_DPMS_ON:
1109  seq1 = 0;
1110  crtcext1 = 0;
1111  mga_crtc_load_lut(crtc);
1112  break;
1113  case DRM_MODE_DPMS_STANDBY:
1114  seq1 = 0x20;
1115  crtcext1 = 0x10;
1116  break;
1117  case DRM_MODE_DPMS_SUSPEND:
1118  seq1 = 0x20;
1119  crtcext1 = 0x20;
1120  break;
1121  case DRM_MODE_DPMS_OFF:
1122  seq1 = 0x20;
1123  crtcext1 = 0x30;
1124  break;
1125  }
1126 
1127 #if 0
1128  if (mode == DRM_MODE_DPMS_OFF) {
1129  mga_suspend(crtc);
1130  }
1131 #endif
1132  WREG8(MGAREG_SEQ_INDEX, 0x01);
1133  seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1134  mga_wait_vsync(mdev);
1135  mga_wait_busy(mdev);
1136  WREG8(MGAREG_SEQ_DATA, seq1);
1137  msleep(20);
1138  WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1139  crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1140  WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1141 
1142 #if 0
1143  if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1144  mga_resume(crtc);
1146  }
1147 #endif
1148 }
1149 
1150 /*
1151  * This is called before a mode is programmed. A typical use might be to
1152  * enable DPMS during the programming to avoid seeing intermediate stages,
1153  * but that's not relevant to us
1154  */
1155 static void mga_crtc_prepare(struct drm_crtc *crtc)
1156 {
1157  struct drm_device *dev = crtc->dev;
1158  struct mga_device *mdev = dev->dev_private;
1159  u8 tmp;
1160 
1161  /* mga_resume(crtc);*/
1162 
1163  WREG8(MGAREG_CRTC_INDEX, 0x11);
1164  tmp = RREG8(MGAREG_CRTC_DATA);
1165  WREG_CRT(0x11, tmp | 0x80);
1166 
1167  if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1168  WREG_SEQ(0, 1);
1169  msleep(50);
1170  WREG_SEQ(1, 0x20);
1171  msleep(20);
1172  } else {
1173  WREG8(MGAREG_SEQ_INDEX, 0x1);
1174  tmp = RREG8(MGAREG_SEQ_DATA);
1175 
1176  /* start sync reset */
1177  WREG_SEQ(0, 1);
1178  WREG_SEQ(1, tmp | 0x20);
1179  }
1180 
1181  if (mdev->type == G200_WB)
1182  mga_g200wb_prepare(crtc);
1183 
1184  WREG_CRT(17, 0);
1185 }
1186 
1187 /*
1188  * This is called after a mode is programmed. It should reverse anything done
1189  * by the prepare function
1190  */
1191 static void mga_crtc_commit(struct drm_crtc *crtc)
1192 {
1193  struct drm_device *dev = crtc->dev;
1194  struct mga_device *mdev = dev->dev_private;
1195  struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1196  u8 tmp;
1197 
1198  if (mdev->type == G200_WB)
1199  mga_g200wb_commit(crtc);
1200 
1201  if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1202  msleep(50);
1203  WREG_SEQ(1, 0x0);
1204  msleep(20);
1205  WREG_SEQ(0, 0x3);
1206  } else {
1207  WREG8(MGAREG_SEQ_INDEX, 0x1);
1208  tmp = RREG8(MGAREG_SEQ_DATA);
1209 
1210  tmp &= ~0x20;
1211  WREG_SEQ(0x1, tmp);
1212  WREG_SEQ(0, 3);
1213  }
1214  crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1215 }
1216 
1217 /*
1218  * The core can pass us a set of gamma values to program. We actually only
1219  * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1220  * but it's a requirement that we provide the function
1221  */
1222 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1224 {
1225  struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1226  int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
1227  int i;
1228 
1229  for (i = start; i < end; i++) {
1230  mga_crtc->lut_r[i] = red[i] >> 8;
1231  mga_crtc->lut_g[i] = green[i] >> 8;
1232  mga_crtc->lut_b[i] = blue[i] >> 8;
1233  }
1234  mga_crtc_load_lut(crtc);
1235 }
1236 
1237 /* Simple cleanup function */
1238 static void mga_crtc_destroy(struct drm_crtc *crtc)
1239 {
1240  struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1241 
1242  drm_crtc_cleanup(crtc);
1243  kfree(mga_crtc);
1244 }
1245 
1246 /* These provide the minimum set of functions required to handle a CRTC */
1247 static const struct drm_crtc_funcs mga_crtc_funcs = {
1248  .gamma_set = mga_crtc_gamma_set,
1249  .set_config = drm_crtc_helper_set_config,
1250  .destroy = mga_crtc_destroy,
1251 };
1252 
1253 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1254  .dpms = mga_crtc_dpms,
1255  .mode_fixup = mga_crtc_mode_fixup,
1256  .mode_set = mga_crtc_mode_set,
1257  .mode_set_base = mga_crtc_mode_set_base,
1258  .prepare = mga_crtc_prepare,
1259  .commit = mga_crtc_commit,
1260  .load_lut = mga_crtc_load_lut,
1261 };
1262 
1263 /* CRTC setup */
1264 static void mga_crtc_init(struct drm_device *dev)
1265 {
1266  struct mga_device *mdev = dev->dev_private;
1267  struct mga_crtc *mga_crtc;
1268  int i;
1269 
1270  mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1271  (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1272  GFP_KERNEL);
1273 
1274  if (mga_crtc == NULL)
1275  return;
1276 
1277  drm_crtc_init(dev, &mga_crtc->base, &mga_crtc_funcs);
1278 
1280  mdev->mode_info.crtc = mga_crtc;
1281 
1282  for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1283  mga_crtc->lut_r[i] = i;
1284  mga_crtc->lut_g[i] = i;
1285  mga_crtc->lut_b[i] = i;
1286  }
1287 
1288  drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1289 }
1290 
1292 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1293  u16 blue, int regno)
1294 {
1295  struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1296 
1297  mga_crtc->lut_r[regno] = red >> 8;
1298  mga_crtc->lut_g[regno] = green >> 8;
1299  mga_crtc->lut_b[regno] = blue >> 8;
1300 }
1301 
1303 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1304  u16 *blue, int regno)
1305 {
1306  struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1307 
1308  *red = (u16)mga_crtc->lut_r[regno] << 8;
1309  *green = (u16)mga_crtc->lut_g[regno] << 8;
1310  *blue = (u16)mga_crtc->lut_b[regno] << 8;
1311 }
1312 
1313 /*
1314  * The encoder comes after the CRTC in the output pipeline, but before
1315  * the connector. It's responsible for ensuring that the digital
1316  * stream is appropriately converted into the output format. Setup is
1317  * very simple in this case - all we have to do is inform qemu of the
1318  * colour depth in order to ensure that it displays appropriately
1319  */
1320 
1321 /*
1322  * These functions are analagous to those in the CRTC code, but are intended
1323  * to handle any encoder-specific limitations
1324  */
1325 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
1326  const struct drm_display_mode *mode,
1327  struct drm_display_mode *adjusted_mode)
1328 {
1329  return true;
1330 }
1331 
1332 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1333  struct drm_display_mode *mode,
1334  struct drm_display_mode *adjusted_mode)
1335 {
1336 
1337 }
1338 
1339 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1340 {
1341  return;
1342 }
1343 
1344 static void mga_encoder_prepare(struct drm_encoder *encoder)
1345 {
1346 }
1347 
1348 static void mga_encoder_commit(struct drm_encoder *encoder)
1349 {
1350 }
1351 
1352 void mga_encoder_destroy(struct drm_encoder *encoder)
1353 {
1354  struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1355  drm_encoder_cleanup(encoder);
1356  kfree(mga_encoder);
1357 }
1358 
1359 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1360  .dpms = mga_encoder_dpms,
1361  .mode_fixup = mga_encoder_mode_fixup,
1362  .mode_set = mga_encoder_mode_set,
1363  .prepare = mga_encoder_prepare,
1364  .commit = mga_encoder_commit,
1365 };
1366 
1367 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1368  .destroy = mga_encoder_destroy,
1369 };
1370 
1371 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1372 {
1373  struct drm_encoder *encoder;
1374  struct mga_encoder *mga_encoder;
1375 
1376  mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1377  if (!mga_encoder)
1378  return NULL;
1379 
1380  encoder = &mga_encoder->base;
1381  encoder->possible_crtcs = 0x1;
1382 
1383  drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1385  drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1386 
1387  return encoder;
1388 }
1389 
1390 
1391 static int mga_vga_get_modes(struct drm_connector *connector)
1392 {
1393  struct mga_connector *mga_connector = to_mga_connector(connector);
1394  struct edid *edid;
1395  int ret = 0;
1396 
1397  edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1398  if (edid) {
1399  drm_mode_connector_update_edid_property(connector, edid);
1400  ret = drm_add_edid_modes(connector, edid);
1401  kfree(edid);
1402  }
1403  return ret;
1404 }
1405 
1406 static int mga_vga_mode_valid(struct drm_connector *connector,
1407  struct drm_display_mode *mode)
1408 {
1409  /* FIXME: Add bandwidth and g200se limitations */
1410 
1411  if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1412  mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1413  mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1414  mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1415  return MODE_BAD;
1416  }
1417 
1418  return MODE_OK;
1419 }
1420 
1422  *connector)
1423 {
1424  int enc_id = connector->encoder_ids[0];
1425  struct drm_mode_object *obj;
1426  struct drm_encoder *encoder;
1427 
1428  /* pick the encoder ids */
1429  if (enc_id) {
1430  obj =
1431  drm_mode_object_find(connector->dev, enc_id,
1433  if (!obj)
1434  return NULL;
1435  encoder = obj_to_encoder(obj);
1436  return encoder;
1437  }
1438  return NULL;
1439 }
1440 
1441 static enum drm_connector_status mga_vga_detect(struct drm_connector
1442  *connector, bool force)
1443 {
1445 }
1446 
1447 static void mga_connector_destroy(struct drm_connector *connector)
1448 {
1449  struct mga_connector *mga_connector = to_mga_connector(connector);
1450  mgag200_i2c_destroy(mga_connector->i2c);
1451  drm_connector_cleanup(connector);
1452  kfree(connector);
1453 }
1454 
1456  .get_modes = mga_vga_get_modes,
1457  .mode_valid = mga_vga_mode_valid,
1458  .best_encoder = mga_connector_best_encoder,
1459 };
1460 
1462  .dpms = drm_helper_connector_dpms,
1463  .detect = mga_vga_detect,
1465  .destroy = mga_connector_destroy,
1466 };
1467 
1468 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1469 {
1470  struct drm_connector *connector;
1471  struct mga_connector *mga_connector;
1472 
1473  mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1474  if (!mga_connector)
1475  return NULL;
1476 
1477  connector = &mga_connector->base;
1478 
1479  drm_connector_init(dev, connector,
1480  &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1481 
1482  drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1483 
1484  mga_connector->i2c = mgag200_i2c_create(dev);
1485  if (!mga_connector->i2c)
1486  DRM_ERROR("failed to add ddc bus\n");
1487 
1488  return connector;
1489 }
1490 
1491 
1493 {
1494  struct drm_encoder *encoder;
1495  struct drm_connector *connector;
1496  int ret;
1497 
1498  mdev->mode_info.mode_config_initialized = true;
1499 
1500  mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1501  mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1502 
1503  mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1504 
1505  mga_crtc_init(mdev->dev);
1506 
1507  encoder = mga_encoder_init(mdev->dev);
1508  if (!encoder) {
1509  DRM_ERROR("mga_encoder_init failed\n");
1510  return -1;
1511  }
1512 
1513  connector = mga_vga_init(mdev->dev);
1514  if (!connector) {
1515  DRM_ERROR("mga_vga_init failed\n");
1516  return -1;
1517  }
1518 
1519  drm_mode_connector_attach_encoder(connector, encoder);
1520 
1521  ret = mgag200_fbdev_init(mdev);
1522  if (ret) {
1523  DRM_ERROR("mga_fbdev_init failed\n");
1524  return ret;
1525  }
1526 
1527  return 0;
1528 }
1529 
1531 {
1532 
1533 }