Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
truncate.c
Go to the documentation of this file.
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002 Andrew Morton
7  * Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
21  do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include "internal.h"
24 
25 
40 void do_invalidatepage(struct page *page, unsigned long offset)
41 {
42  void (*invalidatepage)(struct page *, unsigned long);
43  invalidatepage = page->mapping->a_ops->invalidatepage;
44 #ifdef CONFIG_BLOCK
45  if (!invalidatepage)
46  invalidatepage = block_invalidatepage;
47 #endif
48  if (invalidatepage)
49  (*invalidatepage)(page, offset);
50 }
51 
52 static inline void truncate_partial_page(struct page *page, unsigned partial)
53 {
54  zero_user_segment(page, partial, PAGE_CACHE_SIZE);
55  cleancache_invalidate_page(page->mapping, page);
56  if (page_has_private(page))
57  do_invalidatepage(page, partial);
58 }
59 
60 /*
61  * This cancels just the dirty bit on the kernel page itself, it
62  * does NOT actually remove dirty bits on any mmap's that may be
63  * around. It also leaves the page tagged dirty, so any sync
64  * activity will still find it on the dirty lists, and in particular,
65  * clear_page_dirty_for_io() will still look at the dirty bits in
66  * the VM.
67  *
68  * Doing this should *normally* only ever be done when a page
69  * is truncated, and is not actually mapped anywhere at all. However,
70  * fs/buffer.c does this when it notices that somebody has cleaned
71  * out all the buffers on a page without actually doing it through
72  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
73  */
74 void cancel_dirty_page(struct page *page, unsigned int account_size)
75 {
76  if (TestClearPageDirty(page)) {
77  struct address_space *mapping = page->mapping;
78  if (mapping && mapping_cap_account_dirty(mapping)) {
80  dec_bdi_stat(mapping->backing_dev_info,
82  if (account_size)
83  task_io_account_cancelled_write(account_size);
84  }
85  }
86 }
88 
89 /*
90  * If truncate cannot remove the fs-private metadata from the page, the page
91  * becomes orphaned. It will be left on the LRU and may even be mapped into
92  * user pagetables if we're racing with filemap_fault().
93  *
94  * We need to bale out if page->mapping is no longer equal to the original
95  * mapping. This happens a) when the VM reclaimed the page while we waited on
96  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
97  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
98  */
99 static int
100 truncate_complete_page(struct address_space *mapping, struct page *page)
101 {
102  if (page->mapping != mapping)
103  return -EIO;
104 
105  if (page_has_private(page))
106  do_invalidatepage(page, 0);
107 
109 
110  ClearPageMappedToDisk(page);
112  return 0;
113 }
114 
115 /*
116  * This is for invalidate_mapping_pages(). That function can be called at
117  * any time, and is not supposed to throw away dirty pages. But pages can
118  * be marked dirty at any time too, so use remove_mapping which safely
119  * discards clean, unused pages.
120  *
121  * Returns non-zero if the page was successfully invalidated.
122  */
123 static int
124 invalidate_complete_page(struct address_space *mapping, struct page *page)
125 {
126  int ret;
127 
128  if (page->mapping != mapping)
129  return 0;
130 
131  if (page_has_private(page) && !try_to_release_page(page, 0))
132  return 0;
133 
134  ret = remove_mapping(mapping, page);
135 
136  return ret;
137 }
138 
139 int truncate_inode_page(struct address_space *mapping, struct page *page)
140 {
141  if (page_mapped(page)) {
142  unmap_mapping_range(mapping,
143  (loff_t)page->index << PAGE_CACHE_SHIFT,
144  PAGE_CACHE_SIZE, 0);
145  }
146  return truncate_complete_page(mapping, page);
147 }
148 
149 /*
150  * Used to get rid of pages on hardware memory corruption.
151  */
152 int generic_error_remove_page(struct address_space *mapping, struct page *page)
153 {
154  if (!mapping)
155  return -EINVAL;
156  /*
157  * Only punch for normal data pages for now.
158  * Handling other types like directories would need more auditing.
159  */
160  if (!S_ISREG(mapping->host->i_mode))
161  return -EIO;
162  return truncate_inode_page(mapping, page);
163 }
165 
166 /*
167  * Safely invalidate one page from its pagecache mapping.
168  * It only drops clean, unused pages. The page must be locked.
169  *
170  * Returns 1 if the page is successfully invalidated, otherwise 0.
171  */
172 int invalidate_inode_page(struct page *page)
173 {
174  struct address_space *mapping = page_mapping(page);
175  if (!mapping)
176  return 0;
177  if (PageDirty(page) || PageWriteback(page))
178  return 0;
179  if (page_mapped(page))
180  return 0;
181  return invalidate_complete_page(mapping, page);
182 }
183 
205  loff_t lstart, loff_t lend)
206 {
207  const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
208  const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
209  struct pagevec pvec;
210  pgoff_t index;
211  pgoff_t end;
212  int i;
213 
214  cleancache_invalidate_inode(mapping);
215  if (mapping->nrpages == 0)
216  return;
217 
218  BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
219  end = (lend >> PAGE_CACHE_SHIFT);
220 
221  pagevec_init(&pvec, 0);
222  index = start;
223  while (index <= end && pagevec_lookup(&pvec, mapping, index,
224  min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
226  for (i = 0; i < pagevec_count(&pvec); i++) {
227  struct page *page = pvec.pages[i];
228 
229  /* We rely upon deletion not changing page->index */
230  index = page->index;
231  if (index > end)
232  break;
233 
234  if (!trylock_page(page))
235  continue;
236  WARN_ON(page->index != index);
237  if (PageWriteback(page)) {
238  unlock_page(page);
239  continue;
240  }
241  truncate_inode_page(mapping, page);
242  unlock_page(page);
243  }
244  pagevec_release(&pvec);
246  cond_resched();
247  index++;
248  }
249 
250  if (partial) {
251  struct page *page = find_lock_page(mapping, start - 1);
252  if (page) {
253  wait_on_page_writeback(page);
254  truncate_partial_page(page, partial);
255  unlock_page(page);
256  page_cache_release(page);
257  }
258  }
259 
260  index = start;
261  for ( ; ; ) {
262  cond_resched();
263  if (!pagevec_lookup(&pvec, mapping, index,
264  min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
265  if (index == start)
266  break;
267  index = start;
268  continue;
269  }
270  if (index == start && pvec.pages[0]->index > end) {
271  pagevec_release(&pvec);
272  break;
273  }
275  for (i = 0; i < pagevec_count(&pvec); i++) {
276  struct page *page = pvec.pages[i];
277 
278  /* We rely upon deletion not changing page->index */
279  index = page->index;
280  if (index > end)
281  break;
282 
283  lock_page(page);
284  WARN_ON(page->index != index);
285  wait_on_page_writeback(page);
286  truncate_inode_page(mapping, page);
287  unlock_page(page);
288  }
289  pagevec_release(&pvec);
291  index++;
292  }
293  cleancache_invalidate_inode(mapping);
294 }
296 
309 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
310 {
311  truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
312 }
314 
328 unsigned long invalidate_mapping_pages(struct address_space *mapping,
330 {
331  struct pagevec pvec;
332  pgoff_t index = start;
333  unsigned long ret;
334  unsigned long count = 0;
335  int i;
336 
337  /*
338  * Note: this function may get called on a shmem/tmpfs mapping:
339  * pagevec_lookup() might then return 0 prematurely (because it
340  * got a gangful of swap entries); but it's hardly worth worrying
341  * about - it can rarely have anything to free from such a mapping
342  * (most pages are dirty), and already skips over any difficulties.
343  */
344 
345  pagevec_init(&pvec, 0);
346  while (index <= end && pagevec_lookup(&pvec, mapping, index,
347  min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
349  for (i = 0; i < pagevec_count(&pvec); i++) {
350  struct page *page = pvec.pages[i];
351 
352  /* We rely upon deletion not changing page->index */
353  index = page->index;
354  if (index > end)
355  break;
356 
357  if (!trylock_page(page))
358  continue;
359  WARN_ON(page->index != index);
360  ret = invalidate_inode_page(page);
361  unlock_page(page);
362  /*
363  * Invalidation is a hint that the page is no longer
364  * of interest and try to speed up its reclaim.
365  */
366  if (!ret)
367  deactivate_page(page);
368  count += ret;
369  }
370  pagevec_release(&pvec);
372  cond_resched();
373  index++;
374  }
375  return count;
376 }
378 
379 /*
380  * This is like invalidate_complete_page(), except it ignores the page's
381  * refcount. We do this because invalidate_inode_pages2() needs stronger
382  * invalidation guarantees, and cannot afford to leave pages behind because
383  * shrink_page_list() has a temp ref on them, or because they're transiently
384  * sitting in the lru_cache_add() pagevecs.
385  */
386 static int
387 invalidate_complete_page2(struct address_space *mapping, struct page *page)
388 {
389  if (page->mapping != mapping)
390  return 0;
391 
392  if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
393  return 0;
394 
395  spin_lock_irq(&mapping->tree_lock);
396  if (PageDirty(page))
397  goto failed;
398 
399  BUG_ON(page_has_private(page));
401  spin_unlock_irq(&mapping->tree_lock);
403 
404  if (mapping->a_ops->freepage)
405  mapping->a_ops->freepage(page);
406 
407  page_cache_release(page); /* pagecache ref */
408  return 1;
409 failed:
410  spin_unlock_irq(&mapping->tree_lock);
411  return 0;
412 }
413 
414 static int do_launder_page(struct address_space *mapping, struct page *page)
415 {
416  if (!PageDirty(page))
417  return 0;
418  if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
419  return 0;
420  return mapping->a_ops->launder_page(page);
421 }
422 
436 {
437  struct pagevec pvec;
438  pgoff_t index;
439  int i;
440  int ret = 0;
441  int ret2 = 0;
442  int did_range_unmap = 0;
443 
444  cleancache_invalidate_inode(mapping);
445  pagevec_init(&pvec, 0);
446  index = start;
447  while (index <= end && pagevec_lookup(&pvec, mapping, index,
448  min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
450  for (i = 0; i < pagevec_count(&pvec); i++) {
451  struct page *page = pvec.pages[i];
452 
453  /* We rely upon deletion not changing page->index */
454  index = page->index;
455  if (index > end)
456  break;
457 
458  lock_page(page);
459  WARN_ON(page->index != index);
460  if (page->mapping != mapping) {
461  unlock_page(page);
462  continue;
463  }
464  wait_on_page_writeback(page);
465  if (page_mapped(page)) {
466  if (!did_range_unmap) {
467  /*
468  * Zap the rest of the file in one hit.
469  */
470  unmap_mapping_range(mapping,
471  (loff_t)index << PAGE_CACHE_SHIFT,
472  (loff_t)(1 + end - index)
473  << PAGE_CACHE_SHIFT,
474  0);
475  did_range_unmap = 1;
476  } else {
477  /*
478  * Just zap this page
479  */
480  unmap_mapping_range(mapping,
481  (loff_t)index << PAGE_CACHE_SHIFT,
482  PAGE_CACHE_SIZE, 0);
483  }
484  }
485  BUG_ON(page_mapped(page));
486  ret2 = do_launder_page(mapping, page);
487  if (ret2 == 0) {
488  if (!invalidate_complete_page2(mapping, page))
489  ret2 = -EBUSY;
490  }
491  if (ret2 < 0)
492  ret = ret2;
493  unlock_page(page);
494  }
495  pagevec_release(&pvec);
497  cond_resched();
498  index++;
499  }
500  cleancache_invalidate_inode(mapping);
501  return ret;
502 }
504 
515 {
516  return invalidate_inode_pages2_range(mapping, 0, -1);
517 }
519 
536 void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
537 {
538  struct address_space *mapping = inode->i_mapping;
539  loff_t holebegin = round_up(newsize, PAGE_SIZE);
540 
541  /*
542  * unmap_mapping_range is called twice, first simply for
543  * efficiency so that truncate_inode_pages does fewer
544  * single-page unmaps. However after this first call, and
545  * before truncate_inode_pages finishes, it is possible for
546  * private pages to be COWed, which remain after
547  * truncate_inode_pages finishes, hence the second
548  * unmap_mapping_range call must be made for correctness.
549  */
550  unmap_mapping_range(mapping, holebegin, 0, 1);
551  truncate_inode_pages(mapping, newsize);
552  unmap_mapping_range(mapping, holebegin, 0, 1);
553 }
555 
568 void truncate_setsize(struct inode *inode, loff_t newsize)
569 {
570  loff_t oldsize;
571 
572  oldsize = inode->i_size;
573  i_size_write(inode, newsize);
574 
575  truncate_pagecache(inode, oldsize, newsize);
576 }
578 
587 int vmtruncate(struct inode *inode, loff_t newsize)
588 {
589  int error;
590 
591  error = inode_newsize_ok(inode, newsize);
592  if (error)
593  return error;
594 
595  truncate_setsize(inode, newsize);
596  if (inode->i_op->truncate)
597  inode->i_op->truncate(inode);
598  return 0;
599 }
601 
615 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
616 {
617  struct address_space *mapping = inode->i_mapping;
618  loff_t unmap_start = round_up(lstart, PAGE_SIZE);
619  loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
620  /*
621  * This rounding is currently just for example: unmap_mapping_range
622  * expands its hole outwards, whereas we want it to contract the hole
623  * inwards. However, existing callers of truncate_pagecache_range are
624  * doing their own page rounding first; and truncate_inode_pages_range
625  * currently BUGs if lend is not pagealigned-1 (it handles partial
626  * page at start of hole, but not partial page at end of hole). Note
627  * unmap_mapping_range allows holelen 0 for all, and we allow lend -1.
628  */
629 
630  /*
631  * Unlike in truncate_pagecache, unmap_mapping_range is called only
632  * once (before truncating pagecache), and without "even_cows" flag:
633  * hole-punching should not remove private COWed pages from the hole.
634  */
635  if ((u64)unmap_end > (u64)unmap_start)
636  unmap_mapping_range(mapping, unmap_start,
637  1 + unmap_end - unmap_start, 0);
638  truncate_inode_pages_range(mapping, lstart, lend);
639 }