Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mon_bin.c
Go to the documentation of this file.
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni ([email protected])
7  * Copyright (C) 2006,2007 Pete Zaitcev ([email protected])
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/export.h>
15 #include <linux/usb.h>
16 #include <linux/poll.h>
17 #include <linux/compat.h>
18 #include <linux/mm.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
21 
22 #include <asm/uaccess.h>
23 
24 #include "usb_mon.h"
25 
26 /*
27  * Defined by USB 2.0 clause 9.3, table 9.2.
28  */
29 #define SETUP_LEN 8
30 
31 /* ioctl macros */
32 #define MON_IOC_MAGIC 0x92
33 
34 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
35 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
36 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
37 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
38 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
39 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
40 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
41 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
42 /* #9 was MON_IOCT_SETAPI */
43 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
44 
45 #ifdef CONFIG_COMPAT
46 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
47 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
48 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
49 #endif
50 
51 /*
52  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
53  * But it's all right. Just use a simple way to make sure the chunk is never
54  * smaller than a page.
55  *
56  * N.B. An application does not know our chunk size.
57  *
58  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
59  * page-sized chunks for the time being.
60  */
61 #define CHUNK_SIZE PAGE_SIZE
62 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
63 
64 /*
65  * The magic limit was calculated so that it allows the monitoring
66  * application to pick data once in two ticks. This way, another application,
67  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
68  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
69  * enormous overhead built into the bus protocol, so we need about 1000 KB.
70  *
71  * This is still too much for most cases, where we just snoop a few
72  * descriptor fetches for enumeration. So, the default is a "reasonable"
73  * amount for systems with HZ=250 and incomplete bus saturation.
74  *
75  * XXX What about multi-megabyte URBs which take minutes to transfer?
76  */
77 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
78 #define BUFF_DFL CHUNK_ALIGN(300*1024)
79 #define BUFF_MIN CHUNK_ALIGN(8*1024)
80 
81 /*
82  * The per-event API header (2 per URB).
83  *
84  * This structure is seen in userland as defined by the documentation.
85  */
86 struct mon_bin_hdr {
87  u64 id; /* URB ID - from submission to callback */
88  unsigned char type; /* Same as in text API; extensible. */
89  unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
90  unsigned char epnum; /* Endpoint number and transfer direction */
91  unsigned char devnum; /* Device address */
92  unsigned short busnum; /* Bus number */
93  char flag_setup;
94  char flag_data;
95  s64 ts_sec; /* gettimeofday */
96  s32 ts_usec; /* gettimeofday */
97  int status;
98  unsigned int len_urb; /* Length of data (submitted or actual) */
99  unsigned int len_cap; /* Delivered length */
100  union {
101  unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
102  struct iso_rec {
104  int numdesc;
105  } iso;
106  } s;
107  int interval;
109  unsigned int xfer_flags;
110  unsigned int ndesc; /* Actual number of ISO descriptors */
111 };
112 
113 /*
114  * ISO vector, packed into the head of data stream.
115  * This has to take 16 bytes to make sure that the end of buffer
116  * wrap is not happening in the middle of a descriptor.
117  */
120  unsigned int iso_off;
121  unsigned int iso_len;
123 };
124 
125 /* per file statistic */
129 };
130 
131 struct mon_bin_get {
132  struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
133  void __user *data;
134  size_t alloc; /* Length of data (can be zero) */
135 };
136 
138  u32 __user *offvec; /* Vector of events fetched */
139  u32 nfetch; /* Number of events to fetch (out: fetched) */
140  u32 nflush; /* Number of events to flush */
141 };
142 
143 #ifdef CONFIG_COMPAT
144 struct mon_bin_get32 {
145  u32 hdr32;
146  u32 data32;
147  u32 alloc32;
148 };
149 
150 struct mon_bin_mfetch32 {
151  u32 offvec32;
152  u32 nfetch32;
153  u32 nflush32;
154 };
155 #endif
156 
157 /* Having these two values same prevents wrapping of the mon_bin_hdr */
158 #define PKT_ALIGN 64
159 #define PKT_SIZE 64
160 
161 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
162 #define PKT_SZ_API1 64 /* API 1 size: extra fields */
163 
164 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
165 
166 /* max number of USB bus supported */
167 #define MON_BIN_MAX_MINOR 128
168 
169 /*
170  * The buffer: map of used pages.
171  */
172 struct mon_pgmap {
173  struct page *pg;
174  unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
175 };
176 
177 /*
178  * This gets associated with an open file struct.
179  */
181  /* The buffer: one per open. */
182  spinlock_t b_lock; /* Protect b_cnt, b_in */
183  unsigned int b_size; /* Current size of the buffer - bytes */
184  unsigned int b_cnt; /* Bytes used */
185  unsigned int b_in, b_out; /* Offsets into buffer - bytes */
186  unsigned int b_read; /* Amount of read data in curr. pkt. */
187  struct mon_pgmap *b_vec; /* The map array */
188  wait_queue_head_t b_wait; /* Wait for data here */
189 
190  struct mutex fetch_lock; /* Protect b_read, b_out */
192 
193  /* A list of these is needed for "bus 0". Some time later. */
194  struct mon_reader r;
195 
196  /* Stats */
197  unsigned int cnt_lost;
198 };
199 
200 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
201  unsigned int offset)
202 {
203  return (struct mon_bin_hdr *)
204  (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
205 }
206 
207 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
208 
209 static unsigned char xfer_to_pipe[4] = {
210  PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
211 };
212 
213 static struct class *mon_bin_class;
214 static dev_t mon_bin_dev0;
215 static struct cdev mon_bin_cdev;
216 
217 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
218  unsigned int offset, unsigned int size);
219 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
220 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
221 static void mon_free_buff(struct mon_pgmap *map, int npages);
222 
223 /*
224  * This is a "chunked memcpy". It does not manipulate any counters.
225  */
226 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
227  unsigned int off, const unsigned char *from, unsigned int length)
228 {
229  unsigned int step_len;
230  unsigned char *buf;
231  unsigned int in_page;
232 
233  while (length) {
234  /*
235  * Determine step_len.
236  */
237  step_len = length;
238  in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239  if (in_page < step_len)
240  step_len = in_page;
241 
242  /*
243  * Copy data and advance pointers.
244  */
245  buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246  memcpy(buf, from, step_len);
247  if ((off += step_len) >= this->b_size) off = 0;
248  from += step_len;
249  length -= step_len;
250  }
251  return off;
252 }
253 
254 /*
255  * This is a little worse than the above because it's "chunked copy_to_user".
256  * The return value is an error code, not an offset.
257  */
258 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
259  char __user *to, int length)
260 {
261  unsigned int step_len;
262  unsigned char *buf;
263  unsigned int in_page;
264 
265  while (length) {
266  /*
267  * Determine step_len.
268  */
269  step_len = length;
270  in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
271  if (in_page < step_len)
272  step_len = in_page;
273 
274  /*
275  * Copy data and advance pointers.
276  */
277  buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
278  if (copy_to_user(to, buf, step_len))
279  return -EINVAL;
280  if ((off += step_len) >= this->b_size) off = 0;
281  to += step_len;
282  length -= step_len;
283  }
284  return 0;
285 }
286 
287 /*
288  * Allocate an (aligned) area in the buffer.
289  * This is called under b_lock.
290  * Returns ~0 on failure.
291  */
292 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
293  unsigned int size)
294 {
295  unsigned int offset;
296 
297  size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
298  if (rp->b_cnt + size > rp->b_size)
299  return ~0;
300  offset = rp->b_in;
301  rp->b_cnt += size;
302  if ((rp->b_in += size) >= rp->b_size)
303  rp->b_in -= rp->b_size;
304  return offset;
305 }
306 
307 /*
308  * This is the same thing as mon_buff_area_alloc, only it does not allow
309  * buffers to wrap. This is needed by applications which pass references
310  * into mmap-ed buffers up their stacks (libpcap can do that).
311  *
312  * Currently, we always have the header stuck with the data, although
313  * it is not strictly speaking necessary.
314  *
315  * When a buffer would wrap, we place a filler packet to mark the space.
316  */
317 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
318  unsigned int size)
319 {
320  unsigned int offset;
321  unsigned int fill_size;
322 
323  size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324  if (rp->b_cnt + size > rp->b_size)
325  return ~0;
326  if (rp->b_in + size > rp->b_size) {
327  /*
328  * This would wrap. Find if we still have space after
329  * skipping to the end of the buffer. If we do, place
330  * a filler packet and allocate a new packet.
331  */
332  fill_size = rp->b_size - rp->b_in;
333  if (rp->b_cnt + size + fill_size > rp->b_size)
334  return ~0;
335  mon_buff_area_fill(rp, rp->b_in, fill_size);
336 
337  offset = 0;
338  rp->b_in = size;
339  rp->b_cnt += size + fill_size;
340  } else if (rp->b_in + size == rp->b_size) {
341  offset = rp->b_in;
342  rp->b_in = 0;
343  rp->b_cnt += size;
344  } else {
345  offset = rp->b_in;
346  rp->b_in += size;
347  rp->b_cnt += size;
348  }
349  return offset;
350 }
351 
352 /*
353  * Return a few (kilo-)bytes to the head of the buffer.
354  * This is used if a data fetch fails.
355  */
356 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
357 {
358 
359  /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
360  rp->b_cnt -= size;
361  if (rp->b_in < size)
362  rp->b_in += rp->b_size;
363  rp->b_in -= size;
364 }
365 
366 /*
367  * This has to be called under both b_lock and fetch_lock, because
368  * it accesses both b_cnt and b_out.
369  */
370 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
371 {
372 
373  size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
374  rp->b_cnt -= size;
375  if ((rp->b_out += size) >= rp->b_size)
376  rp->b_out -= rp->b_size;
377 }
378 
379 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
380  unsigned int offset, unsigned int size)
381 {
382  struct mon_bin_hdr *ep;
383 
384  ep = MON_OFF2HDR(rp, offset);
385  memset(ep, 0, PKT_SIZE);
386  ep->type = '@';
387  ep->len_cap = size - PKT_SIZE;
388 }
389 
390 static inline char mon_bin_get_setup(unsigned char *setupb,
391  const struct urb *urb, char ev_type)
392 {
393 
394  if (urb->setup_packet == NULL)
395  return 'Z';
396  memcpy(setupb, urb->setup_packet, SETUP_LEN);
397  return 0;
398 }
399 
400 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
401  unsigned int offset, struct urb *urb, unsigned int length,
402  char *flag)
403 {
404  int i;
405  struct scatterlist *sg;
406  unsigned int this_len;
407 
408  *flag = 0;
409  if (urb->num_sgs == 0) {
410  if (urb->transfer_buffer == NULL) {
411  *flag = 'Z';
412  return length;
413  }
414  mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
415  length = 0;
416 
417  } else {
418  /* If IOMMU coalescing occurred, we cannot trust sg_page */
419  if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
420  *flag = 'D';
421  return length;
422  }
423 
424  /* Copy up to the first non-addressable segment */
425  for_each_sg(urb->sg, sg, urb->num_sgs, i) {
426  if (length == 0 || PageHighMem(sg_page(sg)))
427  break;
428  this_len = min_t(unsigned int, sg->length, length);
429  offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
430  this_len);
431  length -= this_len;
432  }
433  if (i == 0)
434  *flag = 'D';
435  }
436 
437  return length;
438 }
439 
440 /*
441  * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
442  * be used to determine the length of the whole contiguous buffer.
443  */
444 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
445  struct urb *urb, unsigned int ndesc)
446 {
447  struct usb_iso_packet_descriptor *fp;
448  unsigned int length;
449 
450  length = 0;
451  fp = urb->iso_frame_desc;
452  while (ndesc-- != 0) {
453  if (fp->actual_length != 0) {
454  if (fp->offset + fp->actual_length > length)
455  length = fp->offset + fp->actual_length;
456  }
457  fp++;
458  }
459  return length;
460 }
461 
462 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
463  unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
464 {
465  struct mon_bin_isodesc *dp;
466  struct usb_iso_packet_descriptor *fp;
467 
468  fp = urb->iso_frame_desc;
469  while (ndesc-- != 0) {
470  dp = (struct mon_bin_isodesc *)
471  (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
472  dp->iso_status = fp->status;
473  dp->iso_off = fp->offset;
474  dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
475  dp->_pad = 0;
476  if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
477  offset = 0;
478  fp++;
479  }
480 }
481 
482 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
483  char ev_type, int status)
484 {
485  const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
486  struct timeval ts;
487  unsigned long flags;
488  unsigned int urb_length;
489  unsigned int offset;
490  unsigned int length;
491  unsigned int delta;
492  unsigned int ndesc, lendesc;
493  unsigned char dir;
494  struct mon_bin_hdr *ep;
495  char data_tag = 0;
496 
498 
499  spin_lock_irqsave(&rp->b_lock, flags);
500 
501  /*
502  * Find the maximum allowable length, then allocate space.
503  */
504  urb_length = (ev_type == 'S') ?
505  urb->transfer_buffer_length : urb->actual_length;
506  length = urb_length;
507 
508  if (usb_endpoint_xfer_isoc(epd)) {
509  if (urb->number_of_packets < 0) {
510  ndesc = 0;
511  } else if (urb->number_of_packets >= ISODESC_MAX) {
512  ndesc = ISODESC_MAX;
513  } else {
514  ndesc = urb->number_of_packets;
515  }
516  if (ev_type == 'C' && usb_urb_dir_in(urb))
517  length = mon_bin_collate_isodesc(rp, urb, ndesc);
518  } else {
519  ndesc = 0;
520  }
521  lendesc = ndesc*sizeof(struct mon_bin_isodesc);
522 
523  /* not an issue unless there's a subtle bug in a HCD somewhere */
524  if (length >= urb->transfer_buffer_length)
525  length = urb->transfer_buffer_length;
526 
527  if (length >= rp->b_size/5)
528  length = rp->b_size/5;
529 
530  if (usb_urb_dir_in(urb)) {
531  if (ev_type == 'S') {
532  length = 0;
533  data_tag = '<';
534  }
535  /* Cannot rely on endpoint number in case of control ep.0 */
536  dir = USB_DIR_IN;
537  } else {
538  if (ev_type == 'C') {
539  length = 0;
540  data_tag = '>';
541  }
542  dir = 0;
543  }
544 
545  if (rp->mmap_active) {
546  offset = mon_buff_area_alloc_contiguous(rp,
547  length + PKT_SIZE + lendesc);
548  } else {
549  offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
550  }
551  if (offset == ~0) {
552  rp->cnt_lost++;
553  spin_unlock_irqrestore(&rp->b_lock, flags);
554  return;
555  }
556 
557  ep = MON_OFF2HDR(rp, offset);
558  if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
559 
560  /*
561  * Fill the allocated area.
562  */
563  memset(ep, 0, PKT_SIZE);
564  ep->type = ev_type;
565  ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
566  ep->epnum = dir | usb_endpoint_num(epd);
567  ep->devnum = urb->dev->devnum;
568  ep->busnum = urb->dev->bus->busnum;
569  ep->id = (unsigned long) urb;
570  ep->ts_sec = ts.tv_sec;
571  ep->ts_usec = ts.tv_usec;
572  ep->status = status;
573  ep->len_urb = urb_length;
574  ep->len_cap = length + lendesc;
575  ep->xfer_flags = urb->transfer_flags;
576 
577  if (usb_endpoint_xfer_int(epd)) {
578  ep->interval = urb->interval;
579  } else if (usb_endpoint_xfer_isoc(epd)) {
580  ep->interval = urb->interval;
581  ep->start_frame = urb->start_frame;
582  ep->s.iso.error_count = urb->error_count;
583  ep->s.iso.numdesc = urb->number_of_packets;
584  }
585 
586  if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
587  ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
588  } else {
589  ep->flag_setup = '-';
590  }
591 
592  if (ndesc != 0) {
593  ep->ndesc = ndesc;
594  mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
595  if ((offset += lendesc) >= rp->b_size)
596  offset -= rp->b_size;
597  }
598 
599  if (length != 0) {
600  length = mon_bin_get_data(rp, offset, urb, length,
601  &ep->flag_data);
602  if (length > 0) {
603  delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
604  ep->len_cap -= length;
605  delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
606  mon_buff_area_shrink(rp, delta);
607  }
608  } else {
609  ep->flag_data = data_tag;
610  }
611 
612  spin_unlock_irqrestore(&rp->b_lock, flags);
613 
614  wake_up(&rp->b_wait);
615 }
616 
617 static void mon_bin_submit(void *data, struct urb *urb)
618 {
619  struct mon_reader_bin *rp = data;
620  mon_bin_event(rp, urb, 'S', -EINPROGRESS);
621 }
622 
623 static void mon_bin_complete(void *data, struct urb *urb, int status)
624 {
625  struct mon_reader_bin *rp = data;
626  mon_bin_event(rp, urb, 'C', status);
627 }
628 
629 static void mon_bin_error(void *data, struct urb *urb, int error)
630 {
631  struct mon_reader_bin *rp = data;
632  struct timeval ts;
633  unsigned long flags;
634  unsigned int offset;
635  struct mon_bin_hdr *ep;
636 
638 
639  spin_lock_irqsave(&rp->b_lock, flags);
640 
641  offset = mon_buff_area_alloc(rp, PKT_SIZE);
642  if (offset == ~0) {
643  /* Not incrementing cnt_lost. Just because. */
644  spin_unlock_irqrestore(&rp->b_lock, flags);
645  return;
646  }
647 
648  ep = MON_OFF2HDR(rp, offset);
649 
650  memset(ep, 0, PKT_SIZE);
651  ep->type = 'E';
652  ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
653  ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
654  ep->epnum |= usb_endpoint_num(&urb->ep->desc);
655  ep->devnum = urb->dev->devnum;
656  ep->busnum = urb->dev->bus->busnum;
657  ep->id = (unsigned long) urb;
658  ep->ts_sec = ts.tv_sec;
659  ep->ts_usec = ts.tv_usec;
660  ep->status = error;
661 
662  ep->flag_setup = '-';
663  ep->flag_data = 'E';
664 
665  spin_unlock_irqrestore(&rp->b_lock, flags);
666 
667  wake_up(&rp->b_wait);
668 }
669 
670 static int mon_bin_open(struct inode *inode, struct file *file)
671 {
672  struct mon_bus *mbus;
673  struct mon_reader_bin *rp;
674  size_t size;
675  int rc;
676 
677  mutex_lock(&mon_lock);
678  if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
679  mutex_unlock(&mon_lock);
680  return -ENODEV;
681  }
682  if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
683  printk(KERN_ERR TAG ": consistency error on open\n");
684  mutex_unlock(&mon_lock);
685  return -ENODEV;
686  }
687 
688  rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
689  if (rp == NULL) {
690  rc = -ENOMEM;
691  goto err_alloc;
692  }
693  spin_lock_init(&rp->b_lock);
695  mutex_init(&rp->fetch_lock);
696  rp->b_size = BUFF_DFL;
697 
698  size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
699  if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
700  rc = -ENOMEM;
701  goto err_allocvec;
702  }
703 
704  if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
705  goto err_allocbuff;
706 
707  rp->r.m_bus = mbus;
708  rp->r.r_data = rp;
709  rp->r.rnf_submit = mon_bin_submit;
710  rp->r.rnf_error = mon_bin_error;
711  rp->r.rnf_complete = mon_bin_complete;
712 
713  mon_reader_add(mbus, &rp->r);
714 
715  file->private_data = rp;
716  mutex_unlock(&mon_lock);
717  return 0;
718 
719 err_allocbuff:
720  kfree(rp->b_vec);
721 err_allocvec:
722  kfree(rp);
723 err_alloc:
724  mutex_unlock(&mon_lock);
725  return rc;
726 }
727 
728 /*
729  * Extract an event from buffer and copy it to user space.
730  * Wait if there is no event ready.
731  * Returns zero or error.
732  */
733 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
734  struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
735  void __user *data, unsigned int nbytes)
736 {
737  unsigned long flags;
738  struct mon_bin_hdr *ep;
739  size_t step_len;
740  unsigned int offset;
741  int rc;
742 
743  mutex_lock(&rp->fetch_lock);
744 
745  if ((rc = mon_bin_wait_event(file, rp)) < 0) {
746  mutex_unlock(&rp->fetch_lock);
747  return rc;
748  }
749 
750  ep = MON_OFF2HDR(rp, rp->b_out);
751 
752  if (copy_to_user(hdr, ep, hdrbytes)) {
753  mutex_unlock(&rp->fetch_lock);
754  return -EFAULT;
755  }
756 
757  step_len = min(ep->len_cap, nbytes);
758  if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
759 
760  if (copy_from_buf(rp, offset, data, step_len)) {
761  mutex_unlock(&rp->fetch_lock);
762  return -EFAULT;
763  }
764 
765  spin_lock_irqsave(&rp->b_lock, flags);
766  mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
767  spin_unlock_irqrestore(&rp->b_lock, flags);
768  rp->b_read = 0;
769 
770  mutex_unlock(&rp->fetch_lock);
771  return 0;
772 }
773 
774 static int mon_bin_release(struct inode *inode, struct file *file)
775 {
776  struct mon_reader_bin *rp = file->private_data;
777  struct mon_bus* mbus = rp->r.m_bus;
778 
779  mutex_lock(&mon_lock);
780 
781  if (mbus->nreaders <= 0) {
782  printk(KERN_ERR TAG ": consistency error on close\n");
783  mutex_unlock(&mon_lock);
784  return 0;
785  }
786  mon_reader_del(mbus, &rp->r);
787 
788  mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
789  kfree(rp->b_vec);
790  kfree(rp);
791 
792  mutex_unlock(&mon_lock);
793  return 0;
794 }
795 
796 static ssize_t mon_bin_read(struct file *file, char __user *buf,
797  size_t nbytes, loff_t *ppos)
798 {
799  struct mon_reader_bin *rp = file->private_data;
800  unsigned int hdrbytes = PKT_SZ_API0;
801  unsigned long flags;
802  struct mon_bin_hdr *ep;
803  unsigned int offset;
804  size_t step_len;
805  char *ptr;
806  ssize_t done = 0;
807  int rc;
808 
809  mutex_lock(&rp->fetch_lock);
810 
811  if ((rc = mon_bin_wait_event(file, rp)) < 0) {
812  mutex_unlock(&rp->fetch_lock);
813  return rc;
814  }
815 
816  ep = MON_OFF2HDR(rp, rp->b_out);
817 
818  if (rp->b_read < hdrbytes) {
819  step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
820  ptr = ((char *)ep) + rp->b_read;
821  if (step_len && copy_to_user(buf, ptr, step_len)) {
822  mutex_unlock(&rp->fetch_lock);
823  return -EFAULT;
824  }
825  nbytes -= step_len;
826  buf += step_len;
827  rp->b_read += step_len;
828  done += step_len;
829  }
830 
831  if (rp->b_read >= hdrbytes) {
832  step_len = ep->len_cap;
833  step_len -= rp->b_read - hdrbytes;
834  if (step_len > nbytes)
835  step_len = nbytes;
836  offset = rp->b_out + PKT_SIZE;
837  offset += rp->b_read - hdrbytes;
838  if (offset >= rp->b_size)
839  offset -= rp->b_size;
840  if (copy_from_buf(rp, offset, buf, step_len)) {
841  mutex_unlock(&rp->fetch_lock);
842  return -EFAULT;
843  }
844  nbytes -= step_len;
845  buf += step_len;
846  rp->b_read += step_len;
847  done += step_len;
848  }
849 
850  /*
851  * Check if whole packet was read, and if so, jump to the next one.
852  */
853  if (rp->b_read >= hdrbytes + ep->len_cap) {
854  spin_lock_irqsave(&rp->b_lock, flags);
855  mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
856  spin_unlock_irqrestore(&rp->b_lock, flags);
857  rp->b_read = 0;
858  }
859 
860  mutex_unlock(&rp->fetch_lock);
861  return done;
862 }
863 
864 /*
865  * Remove at most nevents from chunked buffer.
866  * Returns the number of removed events.
867  */
868 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
869 {
870  unsigned long flags;
871  struct mon_bin_hdr *ep;
872  int i;
873 
874  mutex_lock(&rp->fetch_lock);
875  spin_lock_irqsave(&rp->b_lock, flags);
876  for (i = 0; i < nevents; ++i) {
877  if (MON_RING_EMPTY(rp))
878  break;
879 
880  ep = MON_OFF2HDR(rp, rp->b_out);
881  mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
882  }
883  spin_unlock_irqrestore(&rp->b_lock, flags);
884  rp->b_read = 0;
885  mutex_unlock(&rp->fetch_lock);
886  return i;
887 }
888 
889 /*
890  * Fetch at most max event offsets into the buffer and put them into vec.
891  * The events are usually freed later with mon_bin_flush.
892  * Return the effective number of events fetched.
893  */
894 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
895  u32 __user *vec, unsigned int max)
896 {
897  unsigned int cur_out;
898  unsigned int bytes, avail;
899  unsigned int size;
900  unsigned int nevents;
901  struct mon_bin_hdr *ep;
902  unsigned long flags;
903  int rc;
904 
905  mutex_lock(&rp->fetch_lock);
906 
907  if ((rc = mon_bin_wait_event(file, rp)) < 0) {
908  mutex_unlock(&rp->fetch_lock);
909  return rc;
910  }
911 
912  spin_lock_irqsave(&rp->b_lock, flags);
913  avail = rp->b_cnt;
914  spin_unlock_irqrestore(&rp->b_lock, flags);
915 
916  cur_out = rp->b_out;
917  nevents = 0;
918  bytes = 0;
919  while (bytes < avail) {
920  if (nevents >= max)
921  break;
922 
923  ep = MON_OFF2HDR(rp, cur_out);
924  if (put_user(cur_out, &vec[nevents])) {
925  mutex_unlock(&rp->fetch_lock);
926  return -EFAULT;
927  }
928 
929  nevents++;
930  size = ep->len_cap + PKT_SIZE;
931  size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
932  if ((cur_out += size) >= rp->b_size)
933  cur_out -= rp->b_size;
934  bytes += size;
935  }
936 
937  mutex_unlock(&rp->fetch_lock);
938  return nevents;
939 }
940 
941 /*
942  * Count events. This is almost the same as the above mon_bin_fetch,
943  * only we do not store offsets into user vector, and we have no limit.
944  */
945 static int mon_bin_queued(struct mon_reader_bin *rp)
946 {
947  unsigned int cur_out;
948  unsigned int bytes, avail;
949  unsigned int size;
950  unsigned int nevents;
951  struct mon_bin_hdr *ep;
952  unsigned long flags;
953 
954  mutex_lock(&rp->fetch_lock);
955 
956  spin_lock_irqsave(&rp->b_lock, flags);
957  avail = rp->b_cnt;
958  spin_unlock_irqrestore(&rp->b_lock, flags);
959 
960  cur_out = rp->b_out;
961  nevents = 0;
962  bytes = 0;
963  while (bytes < avail) {
964  ep = MON_OFF2HDR(rp, cur_out);
965 
966  nevents++;
967  size = ep->len_cap + PKT_SIZE;
968  size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
969  if ((cur_out += size) >= rp->b_size)
970  cur_out -= rp->b_size;
971  bytes += size;
972  }
973 
974  mutex_unlock(&rp->fetch_lock);
975  return nevents;
976 }
977 
978 /*
979  */
980 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
981 {
982  struct mon_reader_bin *rp = file->private_data;
983  // struct mon_bus* mbus = rp->r.m_bus;
984  int ret = 0;
985  struct mon_bin_hdr *ep;
986  unsigned long flags;
987 
988  switch (cmd) {
989 
990  case MON_IOCQ_URB_LEN:
991  /*
992  * N.B. This only returns the size of data, without the header.
993  */
994  spin_lock_irqsave(&rp->b_lock, flags);
995  if (!MON_RING_EMPTY(rp)) {
996  ep = MON_OFF2HDR(rp, rp->b_out);
997  ret = ep->len_cap;
998  }
999  spin_unlock_irqrestore(&rp->b_lock, flags);
1000  break;
1001 
1002  case MON_IOCQ_RING_SIZE:
1003  ret = rp->b_size;
1004  break;
1005 
1006  case MON_IOCT_RING_SIZE:
1007  /*
1008  * Changing the buffer size will flush it's contents; the new
1009  * buffer is allocated before releasing the old one to be sure
1010  * the device will stay functional also in case of memory
1011  * pressure.
1012  */
1013  {
1014  int size;
1015  struct mon_pgmap *vec;
1016 
1017  if (arg < BUFF_MIN || arg > BUFF_MAX)
1018  return -EINVAL;
1019 
1020  size = CHUNK_ALIGN(arg);
1021  if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
1022  GFP_KERNEL)) == NULL) {
1023  ret = -ENOMEM;
1024  break;
1025  }
1026 
1027  ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1028  if (ret < 0) {
1029  kfree(vec);
1030  break;
1031  }
1032 
1033  mutex_lock(&rp->fetch_lock);
1034  spin_lock_irqsave(&rp->b_lock, flags);
1035  mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1036  kfree(rp->b_vec);
1037  rp->b_vec = vec;
1038  rp->b_size = size;
1039  rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1040  rp->cnt_lost = 0;
1041  spin_unlock_irqrestore(&rp->b_lock, flags);
1042  mutex_unlock(&rp->fetch_lock);
1043  }
1044  break;
1045 
1046  case MON_IOCH_MFLUSH:
1047  ret = mon_bin_flush(rp, arg);
1048  break;
1049 
1050  case MON_IOCX_GET:
1051  case MON_IOCX_GETX:
1052  {
1053  struct mon_bin_get getb;
1054 
1055  if (copy_from_user(&getb, (void __user *)arg,
1056  sizeof(struct mon_bin_get)))
1057  return -EFAULT;
1058 
1059  if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1060  return -EINVAL;
1061  ret = mon_bin_get_event(file, rp, getb.hdr,
1063  getb.data, (unsigned int)getb.alloc);
1064  }
1065  break;
1066 
1067  case MON_IOCX_MFETCH:
1068  {
1069  struct mon_bin_mfetch mfetch;
1070  struct mon_bin_mfetch __user *uptr;
1071 
1072  uptr = (struct mon_bin_mfetch __user *)arg;
1073 
1074  if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1075  return -EFAULT;
1076 
1077  if (mfetch.nflush) {
1078  ret = mon_bin_flush(rp, mfetch.nflush);
1079  if (ret < 0)
1080  return ret;
1081  if (put_user(ret, &uptr->nflush))
1082  return -EFAULT;
1083  }
1084  ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1085  if (ret < 0)
1086  return ret;
1087  if (put_user(ret, &uptr->nfetch))
1088  return -EFAULT;
1089  ret = 0;
1090  }
1091  break;
1092 
1093  case MON_IOCG_STATS: {
1094  struct mon_bin_stats __user *sp;
1095  unsigned int nevents;
1096  unsigned int ndropped;
1097 
1098  spin_lock_irqsave(&rp->b_lock, flags);
1099  ndropped = rp->cnt_lost;
1100  rp->cnt_lost = 0;
1101  spin_unlock_irqrestore(&rp->b_lock, flags);
1102  nevents = mon_bin_queued(rp);
1103 
1104  sp = (struct mon_bin_stats __user *)arg;
1105  if (put_user(ndropped, &sp->dropped))
1106  return -EFAULT;
1107  if (put_user(nevents, &sp->queued))
1108  return -EFAULT;
1109 
1110  }
1111  break;
1112 
1113  default:
1114  return -ENOTTY;
1115  }
1116 
1117  return ret;
1118 }
1119 
1120 #ifdef CONFIG_COMPAT
1121 static long mon_bin_compat_ioctl(struct file *file,
1122  unsigned int cmd, unsigned long arg)
1123 {
1124  struct mon_reader_bin *rp = file->private_data;
1125  int ret;
1126 
1127  switch (cmd) {
1128 
1129  case MON_IOCX_GET32:
1130  case MON_IOCX_GETX32:
1131  {
1132  struct mon_bin_get32 getb;
1133 
1134  if (copy_from_user(&getb, (void __user *)arg,
1135  sizeof(struct mon_bin_get32)))
1136  return -EFAULT;
1137 
1138  ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1139  (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1140  compat_ptr(getb.data32), getb.alloc32);
1141  if (ret < 0)
1142  return ret;
1143  }
1144  return 0;
1145 
1146  case MON_IOCX_MFETCH32:
1147  {
1148  struct mon_bin_mfetch32 mfetch;
1149  struct mon_bin_mfetch32 __user *uptr;
1150 
1151  uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1152 
1153  if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1154  return -EFAULT;
1155 
1156  if (mfetch.nflush32) {
1157  ret = mon_bin_flush(rp, mfetch.nflush32);
1158  if (ret < 0)
1159  return ret;
1160  if (put_user(ret, &uptr->nflush32))
1161  return -EFAULT;
1162  }
1163  ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1164  mfetch.nfetch32);
1165  if (ret < 0)
1166  return ret;
1167  if (put_user(ret, &uptr->nfetch32))
1168  return -EFAULT;
1169  }
1170  return 0;
1171 
1172  case MON_IOCG_STATS:
1173  return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1174 
1175  case MON_IOCQ_URB_LEN:
1176  case MON_IOCQ_RING_SIZE:
1177  case MON_IOCT_RING_SIZE:
1178  case MON_IOCH_MFLUSH:
1179  return mon_bin_ioctl(file, cmd, arg);
1180 
1181  default:
1182  ;
1183  }
1184  return -ENOTTY;
1185 }
1186 #endif /* CONFIG_COMPAT */
1187 
1188 static unsigned int
1189 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1190 {
1191  struct mon_reader_bin *rp = file->private_data;
1192  unsigned int mask = 0;
1193  unsigned long flags;
1194 
1195  if (file->f_mode & FMODE_READ)
1196  poll_wait(file, &rp->b_wait, wait);
1197 
1198  spin_lock_irqsave(&rp->b_lock, flags);
1199  if (!MON_RING_EMPTY(rp))
1200  mask |= POLLIN | POLLRDNORM; /* readable */
1201  spin_unlock_irqrestore(&rp->b_lock, flags);
1202  return mask;
1203 }
1204 
1205 /*
1206  * open and close: just keep track of how many times the device is
1207  * mapped, to use the proper memory allocation function.
1208  */
1209 static void mon_bin_vma_open(struct vm_area_struct *vma)
1210 {
1211  struct mon_reader_bin *rp = vma->vm_private_data;
1212  rp->mmap_active++;
1213 }
1214 
1215 static void mon_bin_vma_close(struct vm_area_struct *vma)
1216 {
1217  struct mon_reader_bin *rp = vma->vm_private_data;
1218  rp->mmap_active--;
1219 }
1220 
1221 /*
1222  * Map ring pages to user space.
1223  */
1224 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1225 {
1226  struct mon_reader_bin *rp = vma->vm_private_data;
1227  unsigned long offset, chunk_idx;
1228  struct page *pageptr;
1229 
1230  offset = vmf->pgoff << PAGE_SHIFT;
1231  if (offset >= rp->b_size)
1232  return VM_FAULT_SIGBUS;
1233  chunk_idx = offset / CHUNK_SIZE;
1234  pageptr = rp->b_vec[chunk_idx].pg;
1235  get_page(pageptr);
1236  vmf->page = pageptr;
1237  return 0;
1238 }
1239 
1240 static const struct vm_operations_struct mon_bin_vm_ops = {
1241  .open = mon_bin_vma_open,
1242  .close = mon_bin_vma_close,
1243  .fault = mon_bin_vma_fault,
1244 };
1245 
1246 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1247 {
1248  /* don't do anything here: "fault" will set up page table entries */
1249  vma->vm_ops = &mon_bin_vm_ops;
1250  vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1251  vma->vm_private_data = filp->private_data;
1252  mon_bin_vma_open(vma);
1253  return 0;
1254 }
1255 
1256 static const struct file_operations mon_fops_binary = {
1257  .owner = THIS_MODULE,
1258  .open = mon_bin_open,
1259  .llseek = no_llseek,
1260  .read = mon_bin_read,
1261  /* .write = mon_text_write, */
1262  .poll = mon_bin_poll,
1263  .unlocked_ioctl = mon_bin_ioctl,
1264 #ifdef CONFIG_COMPAT
1265  .compat_ioctl = mon_bin_compat_ioctl,
1266 #endif
1267  .release = mon_bin_release,
1268  .mmap = mon_bin_mmap,
1269 };
1270 
1271 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1272 {
1273  DECLARE_WAITQUEUE(waita, current);
1274  unsigned long flags;
1275 
1276  add_wait_queue(&rp->b_wait, &waita);
1278 
1279  spin_lock_irqsave(&rp->b_lock, flags);
1280  while (MON_RING_EMPTY(rp)) {
1281  spin_unlock_irqrestore(&rp->b_lock, flags);
1282 
1283  if (file->f_flags & O_NONBLOCK) {
1285  remove_wait_queue(&rp->b_wait, &waita);
1286  return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1287  }
1288  schedule();
1289  if (signal_pending(current)) {
1290  remove_wait_queue(&rp->b_wait, &waita);
1291  return -EINTR;
1292  }
1294 
1295  spin_lock_irqsave(&rp->b_lock, flags);
1296  }
1297  spin_unlock_irqrestore(&rp->b_lock, flags);
1298 
1300  remove_wait_queue(&rp->b_wait, &waita);
1301  return 0;
1302 }
1303 
1304 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1305 {
1306  int n;
1307  unsigned long vaddr;
1308 
1309  for (n = 0; n < npages; n++) {
1310  vaddr = get_zeroed_page(GFP_KERNEL);
1311  if (vaddr == 0) {
1312  while (n-- != 0)
1313  free_page((unsigned long) map[n].ptr);
1314  return -ENOMEM;
1315  }
1316  map[n].ptr = (unsigned char *) vaddr;
1317  map[n].pg = virt_to_page((void *) vaddr);
1318  }
1319  return 0;
1320 }
1321 
1322 static void mon_free_buff(struct mon_pgmap *map, int npages)
1323 {
1324  int n;
1325 
1326  for (n = 0; n < npages; n++)
1327  free_page((unsigned long) map[n].ptr);
1328 }
1329 
1330 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1331 {
1332  struct device *dev;
1333  unsigned minor = ubus? ubus->busnum: 0;
1334 
1335  if (minor >= MON_BIN_MAX_MINOR)
1336  return 0;
1337 
1338  dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1339  MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1340  "usbmon%d", minor);
1341  if (IS_ERR(dev))
1342  return 0;
1343 
1344  mbus->classdev = dev;
1345  return 1;
1346 }
1347 
1348 void mon_bin_del(struct mon_bus *mbus)
1349 {
1350  device_destroy(mon_bin_class, mbus->classdev->devt);
1351 }
1352 
1354 {
1355  int rc;
1356 
1357  mon_bin_class = class_create(THIS_MODULE, "usbmon");
1358  if (IS_ERR(mon_bin_class)) {
1359  rc = PTR_ERR(mon_bin_class);
1360  goto err_class;
1361  }
1362 
1363  rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1364  if (rc < 0)
1365  goto err_dev;
1366 
1367  cdev_init(&mon_bin_cdev, &mon_fops_binary);
1368  mon_bin_cdev.owner = THIS_MODULE;
1369 
1370  rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1371  if (rc < 0)
1372  goto err_add;
1373 
1374  return 0;
1375 
1376 err_add:
1378 err_dev:
1379  class_destroy(mon_bin_class);
1380 err_class:
1381  return rc;
1382 }
1383 
1384 void mon_bin_exit(void)
1385 {
1386  cdev_del(&mon_bin_cdev);
1388  class_destroy(mon_bin_class);
1389 }