Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nandsim.c
Go to the documentation of this file.
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <[email protected]>, <[email protected]>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25 
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45 
46 /* Default simulator parameters values */
47 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
48  !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
49  !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
50  !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
51 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
52 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
53 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
54 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
55 #endif
56 
57 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
58 #define CONFIG_NANDSIM_ACCESS_DELAY 25
59 #endif
60 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
61 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62 #endif
63 #ifndef CONFIG_NANDSIM_ERASE_DELAY
64 #define CONFIG_NANDSIM_ERASE_DELAY 2
65 #endif
66 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
67 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68 #endif
69 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
70 #define CONFIG_NANDSIM_INPUT_CYCLE 50
71 #endif
72 #ifndef CONFIG_NANDSIM_BUS_WIDTH
73 #define CONFIG_NANDSIM_BUS_WIDTH 8
74 #endif
75 #ifndef CONFIG_NANDSIM_DO_DELAYS
76 #define CONFIG_NANDSIM_DO_DELAYS 0
77 #endif
78 #ifndef CONFIG_NANDSIM_LOG
79 #define CONFIG_NANDSIM_LOG 0
80 #endif
81 #ifndef CONFIG_NANDSIM_DBG
82 #define CONFIG_NANDSIM_DBG 0
83 #endif
84 #ifndef CONFIG_NANDSIM_MAX_PARTS
85 #define CONFIG_NANDSIM_MAX_PARTS 32
86 #endif
87 
88 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
89 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
90 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
91 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
92 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
93 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
94 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
95 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
96 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
98 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
99 static uint log = CONFIG_NANDSIM_LOG;
100 static uint dbg = CONFIG_NANDSIM_DBG;
101 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
102 static unsigned int parts_num;
103 static char *badblocks = NULL;
104 static char *weakblocks = NULL;
105 static char *weakpages = NULL;
106 static unsigned int bitflips = 0;
107 static char *gravepages = NULL;
108 static unsigned int rptwear = 0;
109 static unsigned int overridesize = 0;
110 static char *cache_file = NULL;
111 static unsigned int bbt;
112 static unsigned int bch;
113 
114 module_param(first_id_byte, uint, 0400);
115 module_param(second_id_byte, uint, 0400);
116 module_param(third_id_byte, uint, 0400);
117 module_param(fourth_id_byte, uint, 0400);
118 module_param(access_delay, uint, 0400);
119 module_param(programm_delay, uint, 0400);
120 module_param(erase_delay, uint, 0400);
121 module_param(output_cycle, uint, 0400);
122 module_param(input_cycle, uint, 0400);
123 module_param(bus_width, uint, 0400);
124 module_param(do_delays, uint, 0400);
125 module_param(log, uint, 0400);
126 module_param(dbg, uint, 0400);
127 module_param_array(parts, ulong, &parts_num, 0400);
128 module_param(badblocks, charp, 0400);
129 module_param(weakblocks, charp, 0400);
130 module_param(weakpages, charp, 0400);
131 module_param(bitflips, uint, 0400);
132 module_param(gravepages, charp, 0400);
133 module_param(rptwear, uint, 0400);
134 module_param(overridesize, uint, 0400);
135 module_param(cache_file, charp, 0400);
136 module_param(bbt, uint, 0400);
137 module_param(bch, uint, 0400);
138 
139 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
142 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
143 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
144 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
146 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
147 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
148 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
149 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
150 MODULE_PARM_DESC(log, "Perform logging if not zero");
151 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
152 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
153 /* Page and erase block positions for the following parameters are independent of any partitions */
154 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
155 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156  " separated by commas e.g. 113:2 means eb 113"
157  " can be erased only twice before failing");
158 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
159  " separated by commas e.g. 1401:2 means page 1401"
160  " can be written only twice before failing");
161 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
162 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
163  " separated by commas e.g. 1401:2 means page 1401"
164  " can be read only twice before failing");
165 MODULE_PARM_DESC(rptwear, "Number of erases between reporting wear, if not zero");
166 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
167  "The size is specified in erase blocks and as the exponent of a power of two"
168  " e.g. 5 means a size of 32 erase blocks");
169 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
170 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
171 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
172  "be correctable in 512-byte blocks");
173 
174 /* The largest possible page size */
175 #define NS_LARGEST_PAGE_SIZE 4096
176 
177 /* The prefix for simulator output */
178 #define NS_OUTPUT_PREFIX "[nandsim]"
179 
180 /* Simulator's output macros (logging, debugging, warning, error) */
181 #define NS_LOG(args...) \
182  do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
183 #define NS_DBG(args...) \
184  do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
185 #define NS_WARN(args...) \
186  do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
187 #define NS_ERR(args...) \
188  do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
189 #define NS_INFO(args...) \
190  do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
191 
192 /* Busy-wait delay macros (microseconds, milliseconds) */
193 #define NS_UDELAY(us) \
194  do { if (do_delays) udelay(us); } while(0)
195 #define NS_MDELAY(us) \
196  do { if (do_delays) mdelay(us); } while(0)
197 
198 /* Is the nandsim structure initialized ? */
199 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
200 
201 /* Good operation completion status */
202 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
203 
204 /* Operation failed completion status */
205 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
206 
207 /* Calculate the page offset in flash RAM image by (row, column) address */
208 #define NS_RAW_OFFSET(ns) \
209  (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
210 
211 /* Calculate the OOB offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
213 
214 /* After a command is input, the simulator goes to one of the following states */
215 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
216 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
217 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
218 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
219 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
220 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
221 #define STATE_CMD_STATUS 0x00000007 /* read status */
222 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
223 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
224 #define STATE_CMD_READID 0x0000000A /* read ID */
225 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
226 #define STATE_CMD_RESET 0x0000000C /* reset */
227 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
228 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
229 #define STATE_CMD_MASK 0x0000000F /* command states mask */
230 
231 /* After an address is input, the simulator goes to one of these states */
232 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
233 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
234 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
235 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
236 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
237 
238 /* During data input/output the simulator is in these states */
239 #define STATE_DATAIN 0x00000100 /* waiting for data input */
240 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
241 
242 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
243 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
244 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
245 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
246 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
247 
248 /* Previous operation is done, ready to accept new requests */
249 #define STATE_READY 0x00000000
250 
251 /* This state is used to mark that the next state isn't known yet */
252 #define STATE_UNKNOWN 0x10000000
253 
254 /* Simulator's actions bit masks */
255 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
256 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
257 #define ACTION_SECERASE 0x00300000 /* erase sector */
258 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
259 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
260 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
261 #define ACTION_MASK 0x00700000 /* action mask */
262 
263 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
264 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
265 
266 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
267 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
268 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
269 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
270 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
275 
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278 
279 /*
280  * Maximum previous states which need to be saved. Currently saving is
281  * only needed for page program operation with preceded read command
282  * (which is only valid for 512-byte pages).
283  */
284 #define NS_MAX_PREVSTATES 1
285 
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288 
289 /*
290  * A union to represent flash memory contents and flash buffer.
291  */
292 union ns_mem {
293  u_char *byte; /* for byte access */
294  uint16_t *word; /* for 16-bit word access */
295 };
296 
297 /*
298  * The structure which describes all the internal simulator data.
299  */
300 struct nandsim {
302  unsigned int nbparts;
303 
304  uint busw; /* flash chip bus width (8 or 16) */
305  u_char ids[4]; /* chip's ID bytes */
306  uint32_t options; /* chip's characteristic bits */
307  uint32_t state; /* current chip state */
308  uint32_t nxstate; /* next expected state */
309 
310  uint32_t *op; /* current operation, NULL operations isn't known yet */
311  uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
312  uint16_t npstates; /* number of previous states saved */
313  uint16_t stateidx; /* current state index */
314 
315  /* The simulated NAND flash pages array */
316  union ns_mem *pages;
317 
318  /* Slab allocator for nand pages */
320 
321  /* Internal buffer of page + OOB size bytes */
322  union ns_mem buf;
323 
324  /* NAND flash "geometry" */
325  struct {
326  uint64_t totsz; /* total flash size, bytes */
327  uint32_t secsz; /* flash sector (erase block) size, bytes */
328  uint pgsz; /* NAND flash page size, bytes */
329  uint oobsz; /* page OOB area size, bytes */
330  uint64_t totszoob; /* total flash size including OOB, bytes */
331  uint pgszoob; /* page size including OOB , bytes*/
332  uint secszoob; /* sector size including OOB, bytes */
333  uint pgnum; /* total number of pages */
334  uint pgsec; /* number of pages per sector */
335  uint secshift; /* bits number in sector size */
336  uint pgshift; /* bits number in page size */
337  uint oobshift; /* bits number in OOB size */
338  uint pgaddrbytes; /* bytes per page address */
339  uint secaddrbytes; /* bytes per sector address */
340  uint idbytes; /* the number ID bytes that this chip outputs */
341  } geom;
342 
343  /* NAND flash internal registers */
344  struct {
345  unsigned command; /* the command register */
346  u_char status; /* the status register */
347  uint row; /* the page number */
348  uint column; /* the offset within page */
349  uint count; /* internal counter */
350  uint num; /* number of bytes which must be processed */
351  uint off; /* fixed page offset */
352  } regs;
353 
354  /* NAND flash lines state */
355  struct {
356  int ce; /* chip Enable */
357  int cle; /* command Latch Enable */
358  int ale; /* address Latch Enable */
359  int wp; /* write Protect */
360  } lines;
361 
362  /* Fields needed when using a cache file */
363  struct file *cfile; /* Open file */
364  unsigned char *pages_written; /* Which pages have been written */
365  void *file_buf;
367  int held_cnt;
368 };
369 
370 /*
371  * Operations array. To perform any operation the simulator must pass
372  * through the correspondent states chain.
373  */
374 static struct nandsim_operations {
375  uint32_t reqopts; /* options which are required to perform the operation */
376  uint32_t states[NS_OPER_STATES]; /* operation's states */
377 } ops[NS_OPER_NUM] = {
378  /* Read page + OOB from the beginning */
381  /* Read page + OOB from the second half */
384  /* Read OOB */
387  /* Program page starting from the beginning */
390  /* Program page starting from the beginning */
393  /* Program page starting from the second half */
396  /* Program OOB */
399  /* Erase sector */
401  /* Read status */
403  /* Read multi-plane status */
405  /* Read ID */
407  /* Large page devices read page */
410  /* Large page devices random page read */
413 };
414 
415 struct weak_block {
416  struct list_head list;
417  unsigned int erase_block_no;
418  unsigned int max_erases;
419  unsigned int erases_done;
420 };
421 
422 static LIST_HEAD(weak_blocks);
423 
424 struct weak_page {
425  struct list_head list;
426  unsigned int page_no;
427  unsigned int max_writes;
428  unsigned int writes_done;
429 };
430 
431 static LIST_HEAD(weak_pages);
432 
433 struct grave_page {
434  struct list_head list;
435  unsigned int page_no;
436  unsigned int max_reads;
437  unsigned int reads_done;
438 };
439 
440 static LIST_HEAD(grave_pages);
441 
442 static unsigned long *erase_block_wear = NULL;
443 static unsigned int wear_eb_count = 0;
444 static unsigned long total_wear = 0;
445 static unsigned int rptwear_cnt = 0;
446 
447 /* MTD structure for NAND controller */
448 static struct mtd_info *nsmtd;
449 
450 /*
451  * Allocate array of page pointers, create slab allocation for an array
452  * and initialize the array by NULL pointers.
453  *
454  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
455  */
456 static int alloc_device(struct nandsim *ns)
457 {
458  struct file *cfile;
459  int i, err;
460 
461  if (cache_file) {
462  cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
463  if (IS_ERR(cfile))
464  return PTR_ERR(cfile);
465  if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
466  NS_ERR("alloc_device: cache file not readable\n");
467  err = -EINVAL;
468  goto err_close;
469  }
470  if (!cfile->f_op->write && !cfile->f_op->aio_write) {
471  NS_ERR("alloc_device: cache file not writeable\n");
472  err = -EINVAL;
473  goto err_close;
474  }
475  ns->pages_written = vzalloc(ns->geom.pgnum);
476  if (!ns->pages_written) {
477  NS_ERR("alloc_device: unable to allocate pages written array\n");
478  err = -ENOMEM;
479  goto err_close;
480  }
481  ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
482  if (!ns->file_buf) {
483  NS_ERR("alloc_device: unable to allocate file buf\n");
484  err = -ENOMEM;
485  goto err_free;
486  }
487  ns->cfile = cfile;
488  return 0;
489  }
490 
491  ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
492  if (!ns->pages) {
493  NS_ERR("alloc_device: unable to allocate page array\n");
494  return -ENOMEM;
495  }
496  for (i = 0; i < ns->geom.pgnum; i++) {
497  ns->pages[i].byte = NULL;
498  }
499  ns->nand_pages_slab = kmem_cache_create("nandsim",
500  ns->geom.pgszoob, 0, 0, NULL);
501  if (!ns->nand_pages_slab) {
502  NS_ERR("cache_create: unable to create kmem_cache\n");
503  return -ENOMEM;
504  }
505 
506  return 0;
507 
508 err_free:
509  vfree(ns->pages_written);
510 err_close:
511  filp_close(cfile, NULL);
512  return err;
513 }
514 
515 /*
516  * Free any allocated pages, and free the array of page pointers.
517  */
518 static void free_device(struct nandsim *ns)
519 {
520  int i;
521 
522  if (ns->cfile) {
523  kfree(ns->file_buf);
524  vfree(ns->pages_written);
525  filp_close(ns->cfile, NULL);
526  return;
527  }
528 
529  if (ns->pages) {
530  for (i = 0; i < ns->geom.pgnum; i++) {
531  if (ns->pages[i].byte)
533  ns->pages[i].byte);
534  }
536  vfree(ns->pages);
537  }
538 }
539 
540 static char *get_partition_name(int i)
541 {
542  char buf[64];
543  sprintf(buf, "NAND simulator partition %d", i);
544  return kstrdup(buf, GFP_KERNEL);
545 }
546 
547 /*
548  * Initialize the nandsim structure.
549  *
550  * RETURNS: 0 if success, -ERRNO if failure.
551  */
552 static int init_nandsim(struct mtd_info *mtd)
553 {
554  struct nand_chip *chip = mtd->priv;
555  struct nandsim *ns = chip->priv;
556  int i, ret = 0;
557  uint64_t remains;
558  uint64_t next_offset;
559 
560  if (NS_IS_INITIALIZED(ns)) {
561  NS_ERR("init_nandsim: nandsim is already initialized\n");
562  return -EIO;
563  }
564 
565  /* Force mtd to not do delays */
566  chip->chip_delay = 0;
567 
568  /* Initialize the NAND flash parameters */
569  ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
570  ns->geom.totsz = mtd->size;
571  ns->geom.pgsz = mtd->writesize;
572  ns->geom.oobsz = mtd->oobsize;
573  ns->geom.secsz = mtd->erasesize;
574  ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
575  ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
576  ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
577  ns->geom.secshift = ffs(ns->geom.secsz) - 1;
578  ns->geom.pgshift = chip->page_shift;
579  ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
580  ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
581  ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
582  ns->options = 0;
583 
584  if (ns->geom.pgsz == 256) {
585  ns->options |= OPT_PAGE256;
586  }
587  else if (ns->geom.pgsz == 512) {
588  ns->options |= OPT_PAGE512;
589  if (ns->busw == 8)
590  ns->options |= OPT_PAGE512_8BIT;
591  } else if (ns->geom.pgsz == 2048) {
592  ns->options |= OPT_PAGE2048;
593  } else if (ns->geom.pgsz == 4096) {
594  ns->options |= OPT_PAGE4096;
595  } else {
596  NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
597  return -EIO;
598  }
599 
600  if (ns->options & OPT_SMALLPAGE) {
601  if (ns->geom.totsz <= (32 << 20)) {
602  ns->geom.pgaddrbytes = 3;
603  ns->geom.secaddrbytes = 2;
604  } else {
605  ns->geom.pgaddrbytes = 4;
606  ns->geom.secaddrbytes = 3;
607  }
608  } else {
609  if (ns->geom.totsz <= (128 << 20)) {
610  ns->geom.pgaddrbytes = 4;
611  ns->geom.secaddrbytes = 2;
612  } else {
613  ns->geom.pgaddrbytes = 5;
614  ns->geom.secaddrbytes = 3;
615  }
616  }
617 
618  /* Fill the partition_info structure */
619  if (parts_num > ARRAY_SIZE(ns->partitions)) {
620  NS_ERR("too many partitions.\n");
621  ret = -EINVAL;
622  goto error;
623  }
624  remains = ns->geom.totsz;
625  next_offset = 0;
626  for (i = 0; i < parts_num; ++i) {
627  uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
628 
629  if (!part_sz || part_sz > remains) {
630  NS_ERR("bad partition size.\n");
631  ret = -EINVAL;
632  goto error;
633  }
634  ns->partitions[i].name = get_partition_name(i);
635  ns->partitions[i].offset = next_offset;
636  ns->partitions[i].size = part_sz;
637  next_offset += ns->partitions[i].size;
638  remains -= ns->partitions[i].size;
639  }
640  ns->nbparts = parts_num;
641  if (remains) {
642  if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
643  NS_ERR("too many partitions.\n");
644  ret = -EINVAL;
645  goto error;
646  }
647  ns->partitions[i].name = get_partition_name(i);
648  ns->partitions[i].offset = next_offset;
649  ns->partitions[i].size = remains;
650  ns->nbparts += 1;
651  }
652 
653  /* Detect how many ID bytes the NAND chip outputs */
654  for (i = 0; nand_flash_ids[i].name != NULL; i++) {
655  if (second_id_byte != nand_flash_ids[i].id)
656  continue;
657  }
658 
659  if (ns->busw == 16)
660  NS_WARN("16-bit flashes support wasn't tested\n");
661 
662  printk("flash size: %llu MiB\n",
663  (unsigned long long)ns->geom.totsz >> 20);
664  printk("page size: %u bytes\n", ns->geom.pgsz);
665  printk("OOB area size: %u bytes\n", ns->geom.oobsz);
666  printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
667  printk("pages number: %u\n", ns->geom.pgnum);
668  printk("pages per sector: %u\n", ns->geom.pgsec);
669  printk("bus width: %u\n", ns->busw);
670  printk("bits in sector size: %u\n", ns->geom.secshift);
671  printk("bits in page size: %u\n", ns->geom.pgshift);
672  printk("bits in OOB size: %u\n", ns->geom.oobshift);
673  printk("flash size with OOB: %llu KiB\n",
674  (unsigned long long)ns->geom.totszoob >> 10);
675  printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
676  printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
677  printk("options: %#x\n", ns->options);
678 
679  if ((ret = alloc_device(ns)) != 0)
680  goto error;
681 
682  /* Allocate / initialize the internal buffer */
683  ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
684  if (!ns->buf.byte) {
685  NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
686  ns->geom.pgszoob);
687  ret = -ENOMEM;
688  goto error;
689  }
690  memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
691 
692  return 0;
693 
694 error:
695  free_device(ns);
696 
697  return ret;
698 }
699 
700 /*
701  * Free the nandsim structure.
702  */
703 static void free_nandsim(struct nandsim *ns)
704 {
705  kfree(ns->buf.byte);
706  free_device(ns);
707 
708  return;
709 }
710 
711 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
712 {
713  char *w;
714  int zero_ok;
715  unsigned int erase_block_no;
716  loff_t offset;
717 
718  if (!badblocks)
719  return 0;
720  w = badblocks;
721  do {
722  zero_ok = (*w == '0' ? 1 : 0);
723  erase_block_no = simple_strtoul(w, &w, 0);
724  if (!zero_ok && !erase_block_no) {
725  NS_ERR("invalid badblocks.\n");
726  return -EINVAL;
727  }
728  offset = erase_block_no * ns->geom.secsz;
729  if (mtd_block_markbad(mtd, offset)) {
730  NS_ERR("invalid badblocks.\n");
731  return -EINVAL;
732  }
733  if (*w == ',')
734  w += 1;
735  } while (*w);
736  return 0;
737 }
738 
739 static int parse_weakblocks(void)
740 {
741  char *w;
742  int zero_ok;
743  unsigned int erase_block_no;
744  unsigned int max_erases;
745  struct weak_block *wb;
746 
747  if (!weakblocks)
748  return 0;
749  w = weakblocks;
750  do {
751  zero_ok = (*w == '0' ? 1 : 0);
752  erase_block_no = simple_strtoul(w, &w, 0);
753  if (!zero_ok && !erase_block_no) {
754  NS_ERR("invalid weakblocks.\n");
755  return -EINVAL;
756  }
757  max_erases = 3;
758  if (*w == ':') {
759  w += 1;
760  max_erases = simple_strtoul(w, &w, 0);
761  }
762  if (*w == ',')
763  w += 1;
764  wb = kzalloc(sizeof(*wb), GFP_KERNEL);
765  if (!wb) {
766  NS_ERR("unable to allocate memory.\n");
767  return -ENOMEM;
768  }
770  wb->max_erases = max_erases;
771  list_add(&wb->list, &weak_blocks);
772  } while (*w);
773  return 0;
774 }
775 
776 static int erase_error(unsigned int erase_block_no)
777 {
778  struct weak_block *wb;
779 
780  list_for_each_entry(wb, &weak_blocks, list)
781  if (wb->erase_block_no == erase_block_no) {
782  if (wb->erases_done >= wb->max_erases)
783  return 1;
784  wb->erases_done += 1;
785  return 0;
786  }
787  return 0;
788 }
789 
790 static int parse_weakpages(void)
791 {
792  char *w;
793  int zero_ok;
794  unsigned int page_no;
795  unsigned int max_writes;
796  struct weak_page *wp;
797 
798  if (!weakpages)
799  return 0;
800  w = weakpages;
801  do {
802  zero_ok = (*w == '0' ? 1 : 0);
803  page_no = simple_strtoul(w, &w, 0);
804  if (!zero_ok && !page_no) {
805  NS_ERR("invalid weakpagess.\n");
806  return -EINVAL;
807  }
808  max_writes = 3;
809  if (*w == ':') {
810  w += 1;
811  max_writes = simple_strtoul(w, &w, 0);
812  }
813  if (*w == ',')
814  w += 1;
815  wp = kzalloc(sizeof(*wp), GFP_KERNEL);
816  if (!wp) {
817  NS_ERR("unable to allocate memory.\n");
818  return -ENOMEM;
819  }
820  wp->page_no = page_no;
821  wp->max_writes = max_writes;
822  list_add(&wp->list, &weak_pages);
823  } while (*w);
824  return 0;
825 }
826 
827 static int write_error(unsigned int page_no)
828 {
829  struct weak_page *wp;
830 
831  list_for_each_entry(wp, &weak_pages, list)
832  if (wp->page_no == page_no) {
833  if (wp->writes_done >= wp->max_writes)
834  return 1;
835  wp->writes_done += 1;
836  return 0;
837  }
838  return 0;
839 }
840 
841 static int parse_gravepages(void)
842 {
843  char *g;
844  int zero_ok;
845  unsigned int page_no;
846  unsigned int max_reads;
847  struct grave_page *gp;
848 
849  if (!gravepages)
850  return 0;
851  g = gravepages;
852  do {
853  zero_ok = (*g == '0' ? 1 : 0);
854  page_no = simple_strtoul(g, &g, 0);
855  if (!zero_ok && !page_no) {
856  NS_ERR("invalid gravepagess.\n");
857  return -EINVAL;
858  }
859  max_reads = 3;
860  if (*g == ':') {
861  g += 1;
862  max_reads = simple_strtoul(g, &g, 0);
863  }
864  if (*g == ',')
865  g += 1;
866  gp = kzalloc(sizeof(*gp), GFP_KERNEL);
867  if (!gp) {
868  NS_ERR("unable to allocate memory.\n");
869  return -ENOMEM;
870  }
871  gp->page_no = page_no;
872  gp->max_reads = max_reads;
873  list_add(&gp->list, &grave_pages);
874  } while (*g);
875  return 0;
876 }
877 
878 static int read_error(unsigned int page_no)
879 {
880  struct grave_page *gp;
881 
882  list_for_each_entry(gp, &grave_pages, list)
883  if (gp->page_no == page_no) {
884  if (gp->reads_done >= gp->max_reads)
885  return 1;
886  gp->reads_done += 1;
887  return 0;
888  }
889  return 0;
890 }
891 
892 static void free_lists(void)
893 {
894  struct list_head *pos, *n;
895  list_for_each_safe(pos, n, &weak_blocks) {
896  list_del(pos);
897  kfree(list_entry(pos, struct weak_block, list));
898  }
899  list_for_each_safe(pos, n, &weak_pages) {
900  list_del(pos);
901  kfree(list_entry(pos, struct weak_page, list));
902  }
903  list_for_each_safe(pos, n, &grave_pages) {
904  list_del(pos);
905  kfree(list_entry(pos, struct grave_page, list));
906  }
907  kfree(erase_block_wear);
908 }
909 
910 static int setup_wear_reporting(struct mtd_info *mtd)
911 {
912  size_t mem;
913 
914  if (!rptwear)
915  return 0;
916  wear_eb_count = div_u64(mtd->size, mtd->erasesize);
917  mem = wear_eb_count * sizeof(unsigned long);
918  if (mem / sizeof(unsigned long) != wear_eb_count) {
919  NS_ERR("Too many erase blocks for wear reporting\n");
920  return -ENOMEM;
921  }
922  erase_block_wear = kzalloc(mem, GFP_KERNEL);
923  if (!erase_block_wear) {
924  NS_ERR("Too many erase blocks for wear reporting\n");
925  return -ENOMEM;
926  }
927  return 0;
928 }
929 
930 static void update_wear(unsigned int erase_block_no)
931 {
932  unsigned long wmin = -1, wmax = 0, avg;
933  unsigned long deciles[10], decile_max[10], tot = 0;
934  unsigned int i;
935 
936  if (!erase_block_wear)
937  return;
938  total_wear += 1;
939  if (total_wear == 0)
940  NS_ERR("Erase counter total overflow\n");
941  erase_block_wear[erase_block_no] += 1;
942  if (erase_block_wear[erase_block_no] == 0)
943  NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
944  rptwear_cnt += 1;
945  if (rptwear_cnt < rptwear)
946  return;
947  rptwear_cnt = 0;
948  /* Calc wear stats */
949  for (i = 0; i < wear_eb_count; ++i) {
950  unsigned long wear = erase_block_wear[i];
951  if (wear < wmin)
952  wmin = wear;
953  if (wear > wmax)
954  wmax = wear;
955  tot += wear;
956  }
957  for (i = 0; i < 9; ++i) {
958  deciles[i] = 0;
959  decile_max[i] = (wmax * (i + 1) + 5) / 10;
960  }
961  deciles[9] = 0;
962  decile_max[9] = wmax;
963  for (i = 0; i < wear_eb_count; ++i) {
964  int d;
965  unsigned long wear = erase_block_wear[i];
966  for (d = 0; d < 10; ++d)
967  if (wear <= decile_max[d]) {
968  deciles[d] += 1;
969  break;
970  }
971  }
972  avg = tot / wear_eb_count;
973  /* Output wear report */
974  NS_INFO("*** Wear Report ***\n");
975  NS_INFO("Total numbers of erases: %lu\n", tot);
976  NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
977  NS_INFO("Average number of erases: %lu\n", avg);
978  NS_INFO("Maximum number of erases: %lu\n", wmax);
979  NS_INFO("Minimum number of erases: %lu\n", wmin);
980  for (i = 0; i < 10; ++i) {
981  unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
982  if (from > decile_max[i])
983  continue;
984  NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
985  from,
986  decile_max[i],
987  deciles[i]);
988  }
989  NS_INFO("*** End of Wear Report ***\n");
990 }
991 
992 /*
993  * Returns the string representation of 'state' state.
994  */
995 static char *get_state_name(uint32_t state)
996 {
997  switch (NS_STATE(state)) {
998  case STATE_CMD_READ0:
999  return "STATE_CMD_READ0";
1000  case STATE_CMD_READ1:
1001  return "STATE_CMD_READ1";
1002  case STATE_CMD_PAGEPROG:
1003  return "STATE_CMD_PAGEPROG";
1004  case STATE_CMD_READOOB:
1005  return "STATE_CMD_READOOB";
1006  case STATE_CMD_READSTART:
1007  return "STATE_CMD_READSTART";
1008  case STATE_CMD_ERASE1:
1009  return "STATE_CMD_ERASE1";
1010  case STATE_CMD_STATUS:
1011  return "STATE_CMD_STATUS";
1012  case STATE_CMD_STATUS_M:
1013  return "STATE_CMD_STATUS_M";
1014  case STATE_CMD_SEQIN:
1015  return "STATE_CMD_SEQIN";
1016  case STATE_CMD_READID:
1017  return "STATE_CMD_READID";
1018  case STATE_CMD_ERASE2:
1019  return "STATE_CMD_ERASE2";
1020  case STATE_CMD_RESET:
1021  return "STATE_CMD_RESET";
1022  case STATE_CMD_RNDOUT:
1023  return "STATE_CMD_RNDOUT";
1024  case STATE_CMD_RNDOUTSTART:
1025  return "STATE_CMD_RNDOUTSTART";
1026  case STATE_ADDR_PAGE:
1027  return "STATE_ADDR_PAGE";
1028  case STATE_ADDR_SEC:
1029  return "STATE_ADDR_SEC";
1030  case STATE_ADDR_ZERO:
1031  return "STATE_ADDR_ZERO";
1032  case STATE_ADDR_COLUMN:
1033  return "STATE_ADDR_COLUMN";
1034  case STATE_DATAIN:
1035  return "STATE_DATAIN";
1036  case STATE_DATAOUT:
1037  return "STATE_DATAOUT";
1038  case STATE_DATAOUT_ID:
1039  return "STATE_DATAOUT_ID";
1040  case STATE_DATAOUT_STATUS:
1041  return "STATE_DATAOUT_STATUS";
1043  return "STATE_DATAOUT_STATUS_M";
1044  case STATE_READY:
1045  return "STATE_READY";
1046  case STATE_UNKNOWN:
1047  return "STATE_UNKNOWN";
1048  }
1049 
1050  NS_ERR("get_state_name: unknown state, BUG\n");
1051  return NULL;
1052 }
1053 
1054 /*
1055  * Check if command is valid.
1056  *
1057  * RETURNS: 1 if wrong command, 0 if right.
1058  */
1059 static int check_command(int cmd)
1060 {
1061  switch (cmd) {
1062 
1063  case NAND_CMD_READ0:
1064  case NAND_CMD_READ1:
1065  case NAND_CMD_READSTART:
1066  case NAND_CMD_PAGEPROG:
1067  case NAND_CMD_READOOB:
1068  case NAND_CMD_ERASE1:
1069  case NAND_CMD_STATUS:
1070  case NAND_CMD_SEQIN:
1071  case NAND_CMD_READID:
1072  case NAND_CMD_ERASE2:
1073  case NAND_CMD_RESET:
1074  case NAND_CMD_RNDOUT:
1075  case NAND_CMD_RNDOUTSTART:
1076  return 0;
1077 
1078  case NAND_CMD_STATUS_MULTI:
1079  default:
1080  return 1;
1081  }
1082 }
1083 
1084 /*
1085  * Returns state after command is accepted by command number.
1086  */
1087 static uint32_t get_state_by_command(unsigned command)
1088 {
1089  switch (command) {
1090  case NAND_CMD_READ0:
1091  return STATE_CMD_READ0;
1092  case NAND_CMD_READ1:
1093  return STATE_CMD_READ1;
1094  case NAND_CMD_PAGEPROG:
1095  return STATE_CMD_PAGEPROG;
1096  case NAND_CMD_READSTART:
1097  return STATE_CMD_READSTART;
1098  case NAND_CMD_READOOB:
1099  return STATE_CMD_READOOB;
1100  case NAND_CMD_ERASE1:
1101  return STATE_CMD_ERASE1;
1102  case NAND_CMD_STATUS:
1103  return STATE_CMD_STATUS;
1104  case NAND_CMD_STATUS_MULTI:
1105  return STATE_CMD_STATUS_M;
1106  case NAND_CMD_SEQIN:
1107  return STATE_CMD_SEQIN;
1108  case NAND_CMD_READID:
1109  return STATE_CMD_READID;
1110  case NAND_CMD_ERASE2:
1111  return STATE_CMD_ERASE2;
1112  case NAND_CMD_RESET:
1113  return STATE_CMD_RESET;
1114  case NAND_CMD_RNDOUT:
1115  return STATE_CMD_RNDOUT;
1116  case NAND_CMD_RNDOUTSTART:
1117  return STATE_CMD_RNDOUTSTART;
1118  }
1119 
1120  NS_ERR("get_state_by_command: unknown command, BUG\n");
1121  return 0;
1122 }
1123 
1124 /*
1125  * Move an address byte to the correspondent internal register.
1126  */
1127 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1128 {
1129  uint byte = (uint)bt;
1130 
1131  if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1132  ns->regs.column |= (byte << 8 * ns->regs.count);
1133  else {
1134  ns->regs.row |= (byte << 8 * (ns->regs.count -
1135  ns->geom.pgaddrbytes +
1136  ns->geom.secaddrbytes));
1137  }
1138 
1139  return;
1140 }
1141 
1142 /*
1143  * Switch to STATE_READY state.
1144  */
1145 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1146 {
1147  NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1148 
1149  ns->state = STATE_READY;
1150  ns->nxstate = STATE_UNKNOWN;
1151  ns->op = NULL;
1152  ns->npstates = 0;
1153  ns->stateidx = 0;
1154  ns->regs.num = 0;
1155  ns->regs.count = 0;
1156  ns->regs.off = 0;
1157  ns->regs.row = 0;
1158  ns->regs.column = 0;
1159  ns->regs.status = status;
1160 }
1161 
1162 /*
1163  * If the operation isn't known yet, try to find it in the global array
1164  * of supported operations.
1165  *
1166  * Operation can be unknown because of the following.
1167  * 1. New command was accepted and this is the first call to find the
1168  * correspondent states chain. In this case ns->npstates = 0;
1169  * 2. There are several operations which begin with the same command(s)
1170  * (for example program from the second half and read from the
1171  * second half operations both begin with the READ1 command). In this
1172  * case the ns->pstates[] array contains previous states.
1173  *
1174  * Thus, the function tries to find operation containing the following
1175  * states (if the 'flag' parameter is 0):
1176  * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1177  *
1178  * If (one and only one) matching operation is found, it is accepted (
1179  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1180  * zeroed).
1181  *
1182  * If there are several matches, the current state is pushed to the
1183  * ns->pstates.
1184  *
1185  * The operation can be unknown only while commands are input to the chip.
1186  * As soon as address command is accepted, the operation must be known.
1187  * In such situation the function is called with 'flag' != 0, and the
1188  * operation is searched using the following pattern:
1189  * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1190  *
1191  * It is supposed that this pattern must either match one operation or
1192  * none. There can't be ambiguity in that case.
1193  *
1194  * If no matches found, the function does the following:
1195  * 1. if there are saved states present, try to ignore them and search
1196  * again only using the last command. If nothing was found, switch
1197  * to the STATE_READY state.
1198  * 2. if there are no saved states, switch to the STATE_READY state.
1199  *
1200  * RETURNS: -2 - no matched operations found.
1201  * -1 - several matches.
1202  * 0 - operation is found.
1203  */
1204 static int find_operation(struct nandsim *ns, uint32_t flag)
1205 {
1206  int opsfound = 0;
1207  int i, j, idx = 0;
1208 
1209  for (i = 0; i < NS_OPER_NUM; i++) {
1210 
1211  int found = 1;
1212 
1213  if (!(ns->options & ops[i].reqopts))
1214  /* Ignore operations we can't perform */
1215  continue;
1216 
1217  if (flag) {
1218  if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1219  continue;
1220  } else {
1221  if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1222  continue;
1223  }
1224 
1225  for (j = 0; j < ns->npstates; j++)
1226  if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1227  && (ns->options & ops[idx].reqopts)) {
1228  found = 0;
1229  break;
1230  }
1231 
1232  if (found) {
1233  idx = i;
1234  opsfound += 1;
1235  }
1236  }
1237 
1238  if (opsfound == 1) {
1239  /* Exact match */
1240  ns->op = &ops[idx].states[0];
1241  if (flag) {
1242  /*
1243  * In this case the find_operation function was
1244  * called when address has just began input. But it isn't
1245  * yet fully input and the current state must
1246  * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1247  * state must be the next state (ns->nxstate).
1248  */
1249  ns->stateidx = ns->npstates - 1;
1250  } else {
1251  ns->stateidx = ns->npstates;
1252  }
1253  ns->npstates = 0;
1254  ns->state = ns->op[ns->stateidx];
1255  ns->nxstate = ns->op[ns->stateidx + 1];
1256  NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1257  idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1258  return 0;
1259  }
1260 
1261  if (opsfound == 0) {
1262  /* Nothing was found. Try to ignore previous commands (if any) and search again */
1263  if (ns->npstates != 0) {
1264  NS_DBG("find_operation: no operation found, try again with state %s\n",
1265  get_state_name(ns->state));
1266  ns->npstates = 0;
1267  return find_operation(ns, 0);
1268 
1269  }
1270  NS_DBG("find_operation: no operations found\n");
1271  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1272  return -2;
1273  }
1274 
1275  if (flag) {
1276  /* This shouldn't happen */
1277  NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1278  return -2;
1279  }
1280 
1281  NS_DBG("find_operation: there is still ambiguity\n");
1282 
1283  ns->pstates[ns->npstates++] = ns->state;
1284 
1285  return -1;
1286 }
1287 
1288 static void put_pages(struct nandsim *ns)
1289 {
1290  int i;
1291 
1292  for (i = 0; i < ns->held_cnt; i++)
1294 }
1295 
1296 /* Get page cache pages in advance to provide NOFS memory allocation */
1297 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1298 {
1299  pgoff_t index, start_index, end_index;
1300  struct page *page;
1301  struct address_space *mapping = file->f_mapping;
1302 
1303  start_index = pos >> PAGE_CACHE_SHIFT;
1304  end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1305  if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1306  return -EINVAL;
1307  ns->held_cnt = 0;
1308  for (index = start_index; index <= end_index; index++) {
1309  page = find_get_page(mapping, index);
1310  if (page == NULL) {
1311  page = find_or_create_page(mapping, index, GFP_NOFS);
1312  if (page == NULL) {
1313  write_inode_now(mapping->host, 1);
1314  page = find_or_create_page(mapping, index, GFP_NOFS);
1315  }
1316  if (page == NULL) {
1317  put_pages(ns);
1318  return -ENOMEM;
1319  }
1320  unlock_page(page);
1321  }
1322  ns->held_pages[ns->held_cnt++] = page;
1323  }
1324  return 0;
1325 }
1326 
1327 static int set_memalloc(void)
1328 {
1329  if (current->flags & PF_MEMALLOC)
1330  return 0;
1331  current->flags |= PF_MEMALLOC;
1332  return 1;
1333 }
1334 
1335 static void clear_memalloc(int memalloc)
1336 {
1337  if (memalloc)
1338  current->flags &= ~PF_MEMALLOC;
1339 }
1340 
1341 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1342 {
1343  mm_segment_t old_fs;
1344  ssize_t tx;
1345  int err, memalloc;
1346 
1347  err = get_pages(ns, file, count, *pos);
1348  if (err)
1349  return err;
1350  old_fs = get_fs();
1351  set_fs(get_ds());
1352  memalloc = set_memalloc();
1353  tx = vfs_read(file, (char __user *)buf, count, pos);
1354  clear_memalloc(memalloc);
1355  set_fs(old_fs);
1356  put_pages(ns);
1357  return tx;
1358 }
1359 
1360 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1361 {
1362  mm_segment_t old_fs;
1363  ssize_t tx;
1364  int err, memalloc;
1365 
1366  err = get_pages(ns, file, count, *pos);
1367  if (err)
1368  return err;
1369  old_fs = get_fs();
1370  set_fs(get_ds());
1371  memalloc = set_memalloc();
1372  tx = vfs_write(file, (char __user *)buf, count, pos);
1373  clear_memalloc(memalloc);
1374  set_fs(old_fs);
1375  put_pages(ns);
1376  return tx;
1377 }
1378 
1379 /*
1380  * Returns a pointer to the current page.
1381  */
1382 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1383 {
1384  return &(ns->pages[ns->regs.row]);
1385 }
1386 
1387 /*
1388  * Retuns a pointer to the current byte, within the current page.
1389  */
1390 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1391 {
1392  return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1393 }
1394 
1395 int do_read_error(struct nandsim *ns, int num)
1396 {
1397  unsigned int page_no = ns->regs.row;
1398 
1399  if (read_error(page_no)) {
1400  int i;
1401  memset(ns->buf.byte, 0xFF, num);
1402  for (i = 0; i < num; ++i)
1403  ns->buf.byte[i] = random32();
1404  NS_WARN("simulating read error in page %u\n", page_no);
1405  return 1;
1406  }
1407  return 0;
1408 }
1409 
1410 void do_bit_flips(struct nandsim *ns, int num)
1411 {
1412  if (bitflips && random32() < (1 << 22)) {
1413  int flips = 1;
1414  if (bitflips > 1)
1415  flips = (random32() % (int) bitflips) + 1;
1416  while (flips--) {
1417  int pos = random32() % (num * 8);
1418  ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1419  NS_WARN("read_page: flipping bit %d in page %d "
1420  "reading from %d ecc: corrected=%u failed=%u\n",
1421  pos, ns->regs.row, ns->regs.column + ns->regs.off,
1422  nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1423  }
1424  }
1425 }
1426 
1427 /*
1428  * Fill the NAND buffer with data read from the specified page.
1429  */
1430 static void read_page(struct nandsim *ns, int num)
1431 {
1432  union ns_mem *mypage;
1433 
1434  if (ns->cfile) {
1435  if (!ns->pages_written[ns->regs.row]) {
1436  NS_DBG("read_page: page %d not written\n", ns->regs.row);
1437  memset(ns->buf.byte, 0xFF, num);
1438  } else {
1439  loff_t pos;
1440  ssize_t tx;
1441 
1442  NS_DBG("read_page: page %d written, reading from %d\n",
1443  ns->regs.row, ns->regs.column + ns->regs.off);
1444  if (do_read_error(ns, num))
1445  return;
1446  pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1447  tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1448  if (tx != num) {
1449  NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1450  return;
1451  }
1452  do_bit_flips(ns, num);
1453  }
1454  return;
1455  }
1456 
1457  mypage = NS_GET_PAGE(ns);
1458  if (mypage->byte == NULL) {
1459  NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1460  memset(ns->buf.byte, 0xFF, num);
1461  } else {
1462  NS_DBG("read_page: page %d allocated, reading from %d\n",
1463  ns->regs.row, ns->regs.column + ns->regs.off);
1464  if (do_read_error(ns, num))
1465  return;
1466  memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1467  do_bit_flips(ns, num);
1468  }
1469 }
1470 
1471 /*
1472  * Erase all pages in the specified sector.
1473  */
1474 static void erase_sector(struct nandsim *ns)
1475 {
1476  union ns_mem *mypage;
1477  int i;
1478 
1479  if (ns->cfile) {
1480  for (i = 0; i < ns->geom.pgsec; i++)
1481  if (ns->pages_written[ns->regs.row + i]) {
1482  NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1483  ns->pages_written[ns->regs.row + i] = 0;
1484  }
1485  return;
1486  }
1487 
1488  mypage = NS_GET_PAGE(ns);
1489  for (i = 0; i < ns->geom.pgsec; i++) {
1490  if (mypage->byte != NULL) {
1491  NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1492  kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1493  mypage->byte = NULL;
1494  }
1495  mypage++;
1496  }
1497 }
1498 
1499 /*
1500  * Program the specified page with the contents from the NAND buffer.
1501  */
1502 static int prog_page(struct nandsim *ns, int num)
1503 {
1504  int i;
1505  union ns_mem *mypage;
1506  u_char *pg_off;
1507 
1508  if (ns->cfile) {
1509  loff_t off, pos;
1510  ssize_t tx;
1511  int all;
1512 
1513  NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1514  pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1515  off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1516  if (!ns->pages_written[ns->regs.row]) {
1517  all = 1;
1518  memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1519  } else {
1520  all = 0;
1521  pos = off;
1522  tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1523  if (tx != num) {
1524  NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1525  return -1;
1526  }
1527  }
1528  for (i = 0; i < num; i++)
1529  pg_off[i] &= ns->buf.byte[i];
1530  if (all) {
1531  pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1532  tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1533  if (tx != ns->geom.pgszoob) {
1534  NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1535  return -1;
1536  }
1537  ns->pages_written[ns->regs.row] = 1;
1538  } else {
1539  pos = off;
1540  tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1541  if (tx != num) {
1542  NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1543  return -1;
1544  }
1545  }
1546  return 0;
1547  }
1548 
1549  mypage = NS_GET_PAGE(ns);
1550  if (mypage->byte == NULL) {
1551  NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1552  /*
1553  * We allocate memory with GFP_NOFS because a flash FS may
1554  * utilize this. If it is holding an FS lock, then gets here,
1555  * then kernel memory alloc runs writeback which goes to the FS
1556  * again and deadlocks. This was seen in practice.
1557  */
1559  if (mypage->byte == NULL) {
1560  NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1561  return -1;
1562  }
1563  memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1564  }
1565 
1566  pg_off = NS_PAGE_BYTE_OFF(ns);
1567  for (i = 0; i < num; i++)
1568  pg_off[i] &= ns->buf.byte[i];
1569 
1570  return 0;
1571 }
1572 
1573 /*
1574  * If state has any action bit, perform this action.
1575  *
1576  * RETURNS: 0 if success, -1 if error.
1577  */
1578 static int do_state_action(struct nandsim *ns, uint32_t action)
1579 {
1580  int num;
1581  int busdiv = ns->busw == 8 ? 1 : 2;
1582  unsigned int erase_block_no, page_no;
1583 
1584  action &= ACTION_MASK;
1585 
1586  /* Check that page address input is correct */
1587  if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1588  NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1589  return -1;
1590  }
1591 
1592  switch (action) {
1593 
1594  case ACTION_CPY:
1595  /*
1596  * Copy page data to the internal buffer.
1597  */
1598 
1599  /* Column shouldn't be very large */
1600  if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1601  NS_ERR("do_state_action: column number is too large\n");
1602  break;
1603  }
1604  num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1605  read_page(ns, num);
1606 
1607  NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1608  num, NS_RAW_OFFSET(ns) + ns->regs.off);
1609 
1610  if (ns->regs.off == 0)
1611  NS_LOG("read page %d\n", ns->regs.row);
1612  else if (ns->regs.off < ns->geom.pgsz)
1613  NS_LOG("read page %d (second half)\n", ns->regs.row);
1614  else
1615  NS_LOG("read OOB of page %d\n", ns->regs.row);
1616 
1617  NS_UDELAY(access_delay);
1618  NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1619 
1620  break;
1621 
1622  case ACTION_SECERASE:
1623  /*
1624  * Erase sector.
1625  */
1626 
1627  if (ns->lines.wp) {
1628  NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1629  return -1;
1630  }
1631 
1632  if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1633  || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1634  NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1635  return -1;
1636  }
1637 
1638  ns->regs.row = (ns->regs.row <<
1639  8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1640  ns->regs.column = 0;
1641 
1642  erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1643 
1644  NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1645  ns->regs.row, NS_RAW_OFFSET(ns));
1646  NS_LOG("erase sector %u\n", erase_block_no);
1647 
1648  erase_sector(ns);
1649 
1650  NS_MDELAY(erase_delay);
1651 
1652  if (erase_block_wear)
1653  update_wear(erase_block_no);
1654 
1655  if (erase_error(erase_block_no)) {
1656  NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1657  return -1;
1658  }
1659 
1660  break;
1661 
1662  case ACTION_PRGPAGE:
1663  /*
1664  * Program page - move internal buffer data to the page.
1665  */
1666 
1667  if (ns->lines.wp) {
1668  NS_WARN("do_state_action: device is write-protected, programm\n");
1669  return -1;
1670  }
1671 
1672  num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1673  if (num != ns->regs.count) {
1674  NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1675  ns->regs.count, num);
1676  return -1;
1677  }
1678 
1679  if (prog_page(ns, num) == -1)
1680  return -1;
1681 
1682  page_no = ns->regs.row;
1683 
1684  NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1685  num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1686  NS_LOG("programm page %d\n", ns->regs.row);
1687 
1688  NS_UDELAY(programm_delay);
1689  NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1690 
1691  if (write_error(page_no)) {
1692  NS_WARN("simulating write failure in page %u\n", page_no);
1693  return -1;
1694  }
1695 
1696  break;
1697 
1698  case ACTION_ZEROOFF:
1699  NS_DBG("do_state_action: set internal offset to 0\n");
1700  ns->regs.off = 0;
1701  break;
1702 
1703  case ACTION_HALFOFF:
1704  if (!(ns->options & OPT_PAGE512_8BIT)) {
1705  NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1706  "byte page size 8x chips\n");
1707  return -1;
1708  }
1709  NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1710  ns->regs.off = ns->geom.pgsz/2;
1711  break;
1712 
1713  case ACTION_OOBOFF:
1714  NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1715  ns->regs.off = ns->geom.pgsz;
1716  break;
1717 
1718  default:
1719  NS_DBG("do_state_action: BUG! unknown action\n");
1720  }
1721 
1722  return 0;
1723 }
1724 
1725 /*
1726  * Switch simulator's state.
1727  */
1728 static void switch_state(struct nandsim *ns)
1729 {
1730  if (ns->op) {
1731  /*
1732  * The current operation have already been identified.
1733  * Just follow the states chain.
1734  */
1735 
1736  ns->stateidx += 1;
1737  ns->state = ns->nxstate;
1738  ns->nxstate = ns->op[ns->stateidx + 1];
1739 
1740  NS_DBG("switch_state: operation is known, switch to the next state, "
1741  "state: %s, nxstate: %s\n",
1742  get_state_name(ns->state), get_state_name(ns->nxstate));
1743 
1744  /* See, whether we need to do some action */
1745  if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1746  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1747  return;
1748  }
1749 
1750  } else {
1751  /*
1752  * We don't yet know which operation we perform.
1753  * Try to identify it.
1754  */
1755 
1756  /*
1757  * The only event causing the switch_state function to
1758  * be called with yet unknown operation is new command.
1759  */
1760  ns->state = get_state_by_command(ns->regs.command);
1761 
1762  NS_DBG("switch_state: operation is unknown, try to find it\n");
1763 
1764  if (find_operation(ns, 0) != 0)
1765  return;
1766 
1767  if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1768  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1769  return;
1770  }
1771  }
1772 
1773  /* For 16x devices column means the page offset in words */
1774  if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1775  NS_DBG("switch_state: double the column number for 16x device\n");
1776  ns->regs.column <<= 1;
1777  }
1778 
1779  if (NS_STATE(ns->nxstate) == STATE_READY) {
1780  /*
1781  * The current state is the last. Return to STATE_READY
1782  */
1783 
1784  u_char status = NS_STATUS_OK(ns);
1785 
1786  /* In case of data states, see if all bytes were input/output */
1788  && ns->regs.count != ns->regs.num) {
1789  NS_WARN("switch_state: not all bytes were processed, %d left\n",
1790  ns->regs.num - ns->regs.count);
1791  status = NS_STATUS_FAILED(ns);
1792  }
1793 
1794  NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1795 
1796  switch_to_ready_state(ns, status);
1797 
1798  return;
1799  } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1800  /*
1801  * If the next state is data input/output, switch to it now
1802  */
1803 
1804  ns->state = ns->nxstate;
1805  ns->nxstate = ns->op[++ns->stateidx + 1];
1806  ns->regs.num = ns->regs.count = 0;
1807 
1808  NS_DBG("switch_state: the next state is data I/O, switch, "
1809  "state: %s, nxstate: %s\n",
1810  get_state_name(ns->state), get_state_name(ns->nxstate));
1811 
1812  /*
1813  * Set the internal register to the count of bytes which
1814  * are expected to be input or output
1815  */
1816  switch (NS_STATE(ns->state)) {
1817  case STATE_DATAIN:
1818  case STATE_DATAOUT:
1819  ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1820  break;
1821 
1822  case STATE_DATAOUT_ID:
1823  ns->regs.num = ns->geom.idbytes;
1824  break;
1825 
1826  case STATE_DATAOUT_STATUS:
1828  ns->regs.count = ns->regs.num = 0;
1829  break;
1830 
1831  default:
1832  NS_ERR("switch_state: BUG! unknown data state\n");
1833  }
1834 
1835  } else if (ns->nxstate & STATE_ADDR_MASK) {
1836  /*
1837  * If the next state is address input, set the internal
1838  * register to the number of expected address bytes
1839  */
1840 
1841  ns->regs.count = 0;
1842 
1843  switch (NS_STATE(ns->nxstate)) {
1844  case STATE_ADDR_PAGE:
1845  ns->regs.num = ns->geom.pgaddrbytes;
1846 
1847  break;
1848  case STATE_ADDR_SEC:
1849  ns->regs.num = ns->geom.secaddrbytes;
1850  break;
1851 
1852  case STATE_ADDR_ZERO:
1853  ns->regs.num = 1;
1854  break;
1855 
1856  case STATE_ADDR_COLUMN:
1857  /* Column address is always 2 bytes */
1858  ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1859  break;
1860 
1861  default:
1862  NS_ERR("switch_state: BUG! unknown address state\n");
1863  }
1864  } else {
1865  /*
1866  * Just reset internal counters.
1867  */
1868 
1869  ns->regs.num = 0;
1870  ns->regs.count = 0;
1871  }
1872 }
1873 
1874 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1875 {
1876  struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1877  u_char outb = 0x00;
1878 
1879  /* Sanity and correctness checks */
1880  if (!ns->lines.ce) {
1881  NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1882  return outb;
1883  }
1884  if (ns->lines.ale || ns->lines.cle) {
1885  NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1886  return outb;
1887  }
1888  if (!(ns->state & STATE_DATAOUT_MASK)) {
1889  NS_WARN("read_byte: unexpected data output cycle, state is %s "
1890  "return %#x\n", get_state_name(ns->state), (uint)outb);
1891  return outb;
1892  }
1893 
1894  /* Status register may be read as many times as it is wanted */
1895  if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1896  NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1897  return ns->regs.status;
1898  }
1899 
1900  /* Check if there is any data in the internal buffer which may be read */
1901  if (ns->regs.count == ns->regs.num) {
1902  NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1903  return outb;
1904  }
1905 
1906  switch (NS_STATE(ns->state)) {
1907  case STATE_DATAOUT:
1908  if (ns->busw == 8) {
1909  outb = ns->buf.byte[ns->regs.count];
1910  ns->regs.count += 1;
1911  } else {
1912  outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1913  ns->regs.count += 2;
1914  }
1915  break;
1916  case STATE_DATAOUT_ID:
1917  NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1918  outb = ns->ids[ns->regs.count];
1919  ns->regs.count += 1;
1920  break;
1921  default:
1922  BUG();
1923  }
1924 
1925  if (ns->regs.count == ns->regs.num) {
1926  NS_DBG("read_byte: all bytes were read\n");
1927 
1928  if (NS_STATE(ns->nxstate) == STATE_READY)
1929  switch_state(ns);
1930  }
1931 
1932  return outb;
1933 }
1934 
1935 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1936 {
1937  struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1938 
1939  /* Sanity and correctness checks */
1940  if (!ns->lines.ce) {
1941  NS_ERR("write_byte: chip is disabled, ignore write\n");
1942  return;
1943  }
1944  if (ns->lines.ale && ns->lines.cle) {
1945  NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1946  return;
1947  }
1948 
1949  if (ns->lines.cle == 1) {
1950  /*
1951  * The byte written is a command.
1952  */
1953 
1954  if (byte == NAND_CMD_RESET) {
1955  NS_LOG("reset chip\n");
1956  switch_to_ready_state(ns, NS_STATUS_OK(ns));
1957  return;
1958  }
1959 
1960  /* Check that the command byte is correct */
1961  if (check_command(byte)) {
1962  NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1963  return;
1964  }
1965 
1966  if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1968  || NS_STATE(ns->state) == STATE_DATAOUT) {
1969  int row = ns->regs.row;
1970 
1971  switch_state(ns);
1972  if (byte == NAND_CMD_RNDOUT)
1973  ns->regs.row = row;
1974  }
1975 
1976  /* Check if chip is expecting command */
1977  if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1978  /* Do not warn if only 2 id bytes are read */
1979  if (!(ns->regs.command == NAND_CMD_READID &&
1980  NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1981  /*
1982  * We are in situation when something else (not command)
1983  * was expected but command was input. In this case ignore
1984  * previous command(s)/state(s) and accept the last one.
1985  */
1986  NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1987  "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1988  }
1989  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1990  }
1991 
1992  NS_DBG("command byte corresponding to %s state accepted\n",
1993  get_state_name(get_state_by_command(byte)));
1994  ns->regs.command = byte;
1995  switch_state(ns);
1996 
1997  } else if (ns->lines.ale == 1) {
1998  /*
1999  * The byte written is an address.
2000  */
2001 
2002  if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2003 
2004  NS_DBG("write_byte: operation isn't known yet, identify it\n");
2005 
2006  if (find_operation(ns, 1) < 0)
2007  return;
2008 
2009  if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2010  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2011  return;
2012  }
2013 
2014  ns->regs.count = 0;
2015  switch (NS_STATE(ns->nxstate)) {
2016  case STATE_ADDR_PAGE:
2017  ns->regs.num = ns->geom.pgaddrbytes;
2018  break;
2019  case STATE_ADDR_SEC:
2020  ns->regs.num = ns->geom.secaddrbytes;
2021  break;
2022  case STATE_ADDR_ZERO:
2023  ns->regs.num = 1;
2024  break;
2025  default:
2026  BUG();
2027  }
2028  }
2029 
2030  /* Check that chip is expecting address */
2031  if (!(ns->nxstate & STATE_ADDR_MASK)) {
2032  NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2033  "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2034  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2035  return;
2036  }
2037 
2038  /* Check if this is expected byte */
2039  if (ns->regs.count == ns->regs.num) {
2040  NS_ERR("write_byte: no more address bytes expected\n");
2041  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2042  return;
2043  }
2044 
2045  accept_addr_byte(ns, byte);
2046 
2047  ns->regs.count += 1;
2048 
2049  NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2050  (uint)byte, ns->regs.count, ns->regs.num);
2051 
2052  if (ns->regs.count == ns->regs.num) {
2053  NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2054  switch_state(ns);
2055  }
2056 
2057  } else {
2058  /*
2059  * The byte written is an input data.
2060  */
2061 
2062  /* Check that chip is expecting data input */
2063  if (!(ns->state & STATE_DATAIN_MASK)) {
2064  NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2065  "switch to %s\n", (uint)byte,
2066  get_state_name(ns->state), get_state_name(STATE_READY));
2067  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2068  return;
2069  }
2070 
2071  /* Check if this is expected byte */
2072  if (ns->regs.count == ns->regs.num) {
2073  NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2074  ns->regs.num);
2075  return;
2076  }
2077 
2078  if (ns->busw == 8) {
2079  ns->buf.byte[ns->regs.count] = byte;
2080  ns->regs.count += 1;
2081  } else {
2082  ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2083  ns->regs.count += 2;
2084  }
2085  }
2086 
2087  return;
2088 }
2089 
2090 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2091 {
2092  struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2093 
2094  ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2095  ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2096  ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2097 
2098  if (cmd != NAND_CMD_NONE)
2099  ns_nand_write_byte(mtd, cmd);
2100 }
2101 
2102 static int ns_device_ready(struct mtd_info *mtd)
2103 {
2104  NS_DBG("device_ready\n");
2105  return 1;
2106 }
2107 
2108 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2109 {
2110  struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2111 
2112  NS_DBG("read_word\n");
2113 
2114  return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2115 }
2116 
2117 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2118 {
2119  struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2120 
2121  /* Check that chip is expecting data input */
2122  if (!(ns->state & STATE_DATAIN_MASK)) {
2123  NS_ERR("write_buf: data input isn't expected, state is %s, "
2124  "switch to STATE_READY\n", get_state_name(ns->state));
2125  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2126  return;
2127  }
2128 
2129  /* Check if these are expected bytes */
2130  if (ns->regs.count + len > ns->regs.num) {
2131  NS_ERR("write_buf: too many input bytes\n");
2132  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2133  return;
2134  }
2135 
2136  memcpy(ns->buf.byte + ns->regs.count, buf, len);
2137  ns->regs.count += len;
2138 
2139  if (ns->regs.count == ns->regs.num) {
2140  NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2141  }
2142 }
2143 
2144 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2145 {
2146  struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2147 
2148  /* Sanity and correctness checks */
2149  if (!ns->lines.ce) {
2150  NS_ERR("read_buf: chip is disabled\n");
2151  return;
2152  }
2153  if (ns->lines.ale || ns->lines.cle) {
2154  NS_ERR("read_buf: ALE or CLE pin is high\n");
2155  return;
2156  }
2157  if (!(ns->state & STATE_DATAOUT_MASK)) {
2158  NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2159  get_state_name(ns->state));
2160  return;
2161  }
2162 
2163  if (NS_STATE(ns->state) != STATE_DATAOUT) {
2164  int i;
2165 
2166  for (i = 0; i < len; i++)
2167  buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2168 
2169  return;
2170  }
2171 
2172  /* Check if these are expected bytes */
2173  if (ns->regs.count + len > ns->regs.num) {
2174  NS_ERR("read_buf: too many bytes to read\n");
2175  switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2176  return;
2177  }
2178 
2179  memcpy(buf, ns->buf.byte + ns->regs.count, len);
2180  ns->regs.count += len;
2181 
2182  if (ns->regs.count == ns->regs.num) {
2183  if (NS_STATE(ns->nxstate) == STATE_READY)
2184  switch_state(ns);
2185  }
2186 
2187  return;
2188 }
2189 
2190 /*
2191  * Module initialization function
2192  */
2193 static int __init ns_init_module(void)
2194 {
2195  struct nand_chip *chip;
2196  struct nandsim *nand;
2197  int retval = -ENOMEM, i;
2198 
2199  if (bus_width != 8 && bus_width != 16) {
2200  NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2201  return -EINVAL;
2202  }
2203 
2204  /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2205  nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2206  + sizeof(struct nandsim), GFP_KERNEL);
2207  if (!nsmtd) {
2208  NS_ERR("unable to allocate core structures.\n");
2209  return -ENOMEM;
2210  }
2211  chip = (struct nand_chip *)(nsmtd + 1);
2212  nsmtd->priv = (void *)chip;
2213  nand = (struct nandsim *)(chip + 1);
2214  chip->priv = (void *)nand;
2215 
2216  /*
2217  * Register simulator's callbacks.
2218  */
2219  chip->cmd_ctrl = ns_hwcontrol;
2220  chip->read_byte = ns_nand_read_byte;
2221  chip->dev_ready = ns_device_ready;
2222  chip->write_buf = ns_nand_write_buf;
2223  chip->read_buf = ns_nand_read_buf;
2224  chip->read_word = ns_nand_read_word;
2225  chip->ecc.mode = NAND_ECC_SOFT;
2226  /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2227  /* and 'badblocks' parameters to work */
2228  chip->options |= NAND_SKIP_BBTSCAN;
2229 
2230  switch (bbt) {
2231  case 2:
2232  chip->bbt_options |= NAND_BBT_NO_OOB;
2233  case 1:
2235  case 0:
2236  break;
2237  default:
2238  NS_ERR("bbt has to be 0..2\n");
2239  retval = -EINVAL;
2240  goto error;
2241  }
2242  /*
2243  * Perform minimum nandsim structure initialization to handle
2244  * the initial ID read command correctly
2245  */
2246  if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2247  nand->geom.idbytes = 4;
2248  else
2249  nand->geom.idbytes = 2;
2250  nand->regs.status = NS_STATUS_OK(nand);
2251  nand->nxstate = STATE_UNKNOWN;
2252  nand->options |= OPT_PAGE256; /* temporary value */
2253  nand->ids[0] = first_id_byte;
2254  nand->ids[1] = second_id_byte;
2255  nand->ids[2] = third_id_byte;
2256  nand->ids[3] = fourth_id_byte;
2257  if (bus_width == 16) {
2258  nand->busw = 16;
2259  chip->options |= NAND_BUSWIDTH_16;
2260  }
2261 
2262  nsmtd->owner = THIS_MODULE;
2263 
2264  if ((retval = parse_weakblocks()) != 0)
2265  goto error;
2266 
2267  if ((retval = parse_weakpages()) != 0)
2268  goto error;
2269 
2270  if ((retval = parse_gravepages()) != 0)
2271  goto error;
2272 
2273  retval = nand_scan_ident(nsmtd, 1, NULL);
2274  if (retval) {
2275  NS_ERR("cannot scan NAND Simulator device\n");
2276  if (retval > 0)
2277  retval = -ENXIO;
2278  goto error;
2279  }
2280 
2281  if (bch) {
2282  unsigned int eccsteps, eccbytes;
2283  if (!mtd_nand_has_bch()) {
2284  NS_ERR("BCH ECC support is disabled\n");
2285  retval = -EINVAL;
2286  goto error;
2287  }
2288  /* use 512-byte ecc blocks */
2289  eccsteps = nsmtd->writesize/512;
2290  eccbytes = (bch*13+7)/8;
2291  /* do not bother supporting small page devices */
2292  if ((nsmtd->oobsize < 64) || !eccsteps) {
2293  NS_ERR("bch not available on small page devices\n");
2294  retval = -EINVAL;
2295  goto error;
2296  }
2297  if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2298  NS_ERR("invalid bch value %u\n", bch);
2299  retval = -EINVAL;
2300  goto error;
2301  }
2302  chip->ecc.mode = NAND_ECC_SOFT_BCH;
2303  chip->ecc.size = 512;
2304  chip->ecc.bytes = eccbytes;
2305  NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2306  }
2307 
2308  retval = nand_scan_tail(nsmtd);
2309  if (retval) {
2310  NS_ERR("can't register NAND Simulator\n");
2311  if (retval > 0)
2312  retval = -ENXIO;
2313  goto error;
2314  }
2315 
2316  if (overridesize) {
2317  uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2318  if (new_size >> overridesize != nsmtd->erasesize) {
2319  NS_ERR("overridesize is too big\n");
2320  retval = -EINVAL;
2321  goto err_exit;
2322  }
2323  /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2324  nsmtd->size = new_size;
2325  chip->chipsize = new_size;
2326  chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2327  chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2328  }
2329 
2330  if ((retval = setup_wear_reporting(nsmtd)) != 0)
2331  goto err_exit;
2332 
2333  if ((retval = init_nandsim(nsmtd)) != 0)
2334  goto err_exit;
2335 
2336  if ((retval = nand_default_bbt(nsmtd)) != 0)
2337  goto err_exit;
2338 
2339  if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2340  goto err_exit;
2341 
2342  /* Register NAND partitions */
2343  retval = mtd_device_register(nsmtd, &nand->partitions[0],
2344  nand->nbparts);
2345  if (retval != 0)
2346  goto err_exit;
2347 
2348  return 0;
2349 
2350 err_exit:
2351  free_nandsim(nand);
2352  nand_release(nsmtd);
2353  for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2354  kfree(nand->partitions[i].name);
2355 error:
2356  kfree(nsmtd);
2357  free_lists();
2358 
2359  return retval;
2360 }
2361 
2362 module_init(ns_init_module);
2363 
2364 /*
2365  * Module clean-up function
2366  */
2367 static void __exit ns_cleanup_module(void)
2368 {
2369  struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2370  int i;
2371 
2372  free_nandsim(ns); /* Free nandsim private resources */
2373  nand_release(nsmtd); /* Unregister driver */
2374  for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2375  kfree(ns->partitions[i].name);
2376  kfree(nsmtd); /* Free other structures */
2377  free_lists();
2378 }
2379 
2380 module_exit(ns_cleanup_module);
2381 
2382 MODULE_LICENSE ("GPL");
2383 MODULE_AUTHOR ("Artem B. Bityuckiy");
2384 MODULE_DESCRIPTION ("The NAND flash simulator");