Linux Kernel  3.7.1
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nvc0_pm.c
Go to the documentation of this file.
1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 
25 #include "nouveau_drm.h"
26 #include "nouveau_bios.h"
27 #include "nouveau_pm.h"
28 
29 #include <subdev/bios/pll.h>
30 #include <subdev/bios.h>
31 #include <subdev/clock.h>
32 #include <subdev/timer.h>
33 #include <subdev/fb.h>
34 
35 static u32 read_div(struct drm_device *, int, u32, u32);
36 static u32 read_pll(struct drm_device *, u32);
37 
38 static u32
39 read_vco(struct drm_device *dev, u32 dsrc)
40 {
41  struct nouveau_device *device = nouveau_dev(dev);
42  u32 ssrc = nv_rd32(device, dsrc);
43  if (!(ssrc & 0x00000100))
44  return read_pll(dev, 0x00e800);
45  return read_pll(dev, 0x00e820);
46 }
47 
48 static u32
49 read_pll(struct drm_device *dev, u32 pll)
50 {
51  struct nouveau_device *device = nouveau_dev(dev);
52  u32 ctrl = nv_rd32(device, pll + 0);
53  u32 coef = nv_rd32(device, pll + 4);
54  u32 P = (coef & 0x003f0000) >> 16;
55  u32 N = (coef & 0x0000ff00) >> 8;
56  u32 M = (coef & 0x000000ff) >> 0;
57  u32 sclk, doff;
58 
59  if (!(ctrl & 0x00000001))
60  return 0;
61 
62  switch (pll & 0xfff000) {
63  case 0x00e000:
64  sclk = 27000;
65  P = 1;
66  break;
67  case 0x137000:
68  doff = (pll - 0x137000) / 0x20;
69  sclk = read_div(dev, doff, 0x137120, 0x137140);
70  break;
71  case 0x132000:
72  switch (pll) {
73  case 0x132000:
74  sclk = read_pll(dev, 0x132020);
75  break;
76  case 0x132020:
77  sclk = read_div(dev, 0, 0x137320, 0x137330);
78  break;
79  default:
80  return 0;
81  }
82  break;
83  default:
84  return 0;
85  }
86 
87  return sclk * N / M / P;
88 }
89 
90 static u32
91 read_div(struct drm_device *dev, int doff, u32 dsrc, u32 dctl)
92 {
93  struct nouveau_device *device = nouveau_dev(dev);
94  u32 ssrc = nv_rd32(device, dsrc + (doff * 4));
95  u32 sctl = nv_rd32(device, dctl + (doff * 4));
96 
97  switch (ssrc & 0x00000003) {
98  case 0:
99  if ((ssrc & 0x00030000) != 0x00030000)
100  return 27000;
101  return 108000;
102  case 2:
103  return 100000;
104  case 3:
105  if (sctl & 0x80000000) {
106  u32 sclk = read_vco(dev, dsrc + (doff * 4));
107  u32 sdiv = (sctl & 0x0000003f) + 2;
108  return (sclk * 2) / sdiv;
109  }
110 
111  return read_vco(dev, dsrc + (doff * 4));
112  default:
113  return 0;
114  }
115 }
116 
117 static u32
118 read_mem(struct drm_device *dev)
119 {
120  struct nouveau_device *device = nouveau_dev(dev);
121  u32 ssel = nv_rd32(device, 0x1373f0);
122  if (ssel & 0x00000001)
123  return read_div(dev, 0, 0x137300, 0x137310);
124  return read_pll(dev, 0x132000);
125 }
126 
127 static u32
128 read_clk(struct drm_device *dev, int clk)
129 {
130  struct nouveau_device *device = nouveau_dev(dev);
131  u32 sctl = nv_rd32(device, 0x137250 + (clk * 4));
132  u32 ssel = nv_rd32(device, 0x137100);
133  u32 sclk, sdiv;
134 
135  if (ssel & (1 << clk)) {
136  if (clk < 7)
137  sclk = read_pll(dev, 0x137000 + (clk * 0x20));
138  else
139  sclk = read_pll(dev, 0x1370e0);
140  sdiv = ((sctl & 0x00003f00) >> 8) + 2;
141  } else {
142  sclk = read_div(dev, clk, 0x137160, 0x1371d0);
143  sdiv = ((sctl & 0x0000003f) >> 0) + 2;
144  }
145 
146  if (sctl & 0x80000000)
147  return (sclk * 2) / sdiv;
148  return sclk;
149 }
150 
151 int
152 nvc0_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
153 {
154  perflvl->shader = read_clk(dev, 0x00);
155  perflvl->core = perflvl->shader / 2;
156  perflvl->memory = read_mem(dev);
157  perflvl->rop = read_clk(dev, 0x01);
158  perflvl->hub07 = read_clk(dev, 0x02);
159  perflvl->hub06 = read_clk(dev, 0x07);
160  perflvl->hub01 = read_clk(dev, 0x08);
161  perflvl->copy = read_clk(dev, 0x09);
162  perflvl->daemon = read_clk(dev, 0x0c);
163  perflvl->vdec = read_clk(dev, 0x0e);
164  return 0;
165 }
166 
174 };
175 
178  struct nvc0_pm_clock eng[16];
180 };
181 
182 static u32
183 calc_div(struct drm_device *dev, int clk, u32 ref, u32 freq, u32 *ddiv)
184 {
185  u32 div = min((ref * 2) / freq, (u32)65);
186  if (div < 2)
187  div = 2;
188 
189  *ddiv = div - 2;
190  return (ref * 2) / div;
191 }
192 
193 static u32
194 calc_src(struct drm_device *dev, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
195 {
196  u32 sclk;
197 
198  /* use one of the fixed frequencies if possible */
199  *ddiv = 0x00000000;
200  switch (freq) {
201  case 27000:
202  case 108000:
203  *dsrc = 0x00000000;
204  if (freq == 108000)
205  *dsrc |= 0x00030000;
206  return freq;
207  case 100000:
208  *dsrc = 0x00000002;
209  return freq;
210  default:
211  *dsrc = 0x00000003;
212  break;
213  }
214 
215  /* otherwise, calculate the closest divider */
216  sclk = read_vco(dev, clk);
217  if (clk < 7)
218  sclk = calc_div(dev, clk, sclk, freq, ddiv);
219  return sclk;
220 }
221 
222 static u32
223 calc_pll(struct drm_device *dev, int clk, u32 freq, u32 *coef)
224 {
225  struct nouveau_device *device = nouveau_dev(dev);
226  struct nouveau_bios *bios = nouveau_bios(device);
227  struct nvbios_pll limits;
228  int N, M, P, ret;
229 
230  ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
231  if (ret)
232  return 0;
233 
234  limits.refclk = read_div(dev, clk, 0x137120, 0x137140);
235  if (!limits.refclk)
236  return 0;
237 
238  ret = nva3_calc_pll(dev, &limits, freq, &N, NULL, &M, &P);
239  if (ret <= 0)
240  return 0;
241 
242  *coef = (P << 16) | (N << 8) | M;
243  return ret;
244 }
245 
246 /* A (likely rather simplified and incomplete) view of the clock tree
247  *
248  * Key:
249  *
250  * S: source select
251  * D: divider
252  * P: pll
253  * F: switch
254  *
255  * Engine clocks:
256  *
257  * 137250(D) ---- 137100(F0) ---- 137160(S)/1371d0(D) ------------------- ref
258  * (F1) ---- 1370X0(P) ---- 137120(S)/137140(D) ---- ref
259  *
260  * Not all registers exist for all clocks. For example: clocks >= 8 don't
261  * have their own PLL (all tied to clock 7's PLL when in PLL mode), nor do
262  * they have the divider at 1371d0, though the source selection at 137160
263  * still exists. You must use the divider at 137250 for these instead.
264  *
265  * Memory clock:
266  *
267  * TBD, read_mem() above is likely very wrong...
268  *
269  */
270 
271 static int
272 calc_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info, u32 freq)
273 {
274  u32 src0, div0, div1D, div1P = 0;
275  u32 clk0, clk1 = 0;
276 
277  /* invalid clock domain */
278  if (!freq)
279  return 0;
280 
281  /* first possible path, using only dividers */
282  clk0 = calc_src(dev, clk, freq, &src0, &div0);
283  clk0 = calc_div(dev, clk, clk0, freq, &div1D);
284 
285  /* see if we can get any closer using PLLs */
286  if (clk0 != freq && (0x00004387 & (1 << clk))) {
287  if (clk < 7)
288  clk1 = calc_pll(dev, clk, freq, &info->coef);
289  else
290  clk1 = read_pll(dev, 0x1370e0);
291  clk1 = calc_div(dev, clk, clk1, freq, &div1P);
292  }
293 
294  /* select the method which gets closest to target freq */
295  if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
296  info->dsrc = src0;
297  if (div0) {
298  info->ddiv |= 0x80000000;
299  info->ddiv |= div0 << 8;
300  info->ddiv |= div0;
301  }
302  if (div1D) {
303  info->mdiv |= 0x80000000;
304  info->mdiv |= div1D;
305  }
306  info->ssel = 0;
307  info->freq = clk0;
308  } else {
309  if (div1P) {
310  info->mdiv |= 0x80000000;
311  info->mdiv |= div1P << 8;
312  }
313  info->ssel = (1 << clk);
314  info->freq = clk1;
315  }
316 
317  return 0;
318 }
319 
320 static int
321 calc_mem(struct drm_device *dev, struct nvc0_pm_clock *info, u32 freq)
322 {
323  struct nouveau_device *device = nouveau_dev(dev);
324  struct nouveau_bios *bios = nouveau_bios(device);
325  struct nvbios_pll pll;
326  int N, M, P, ret;
327  u32 ctrl;
328 
329  /* mclk pll input freq comes from another pll, make sure it's on */
330  ctrl = nv_rd32(device, 0x132020);
331  if (!(ctrl & 0x00000001)) {
332  /* if not, program it to 567MHz. nfi where this value comes
333  * from - it looks like it's in the pll limits table for
334  * 132000 but the binary driver ignores all my attempts to
335  * change this value.
336  */
337  nv_wr32(device, 0x137320, 0x00000103);
338  nv_wr32(device, 0x137330, 0x81200606);
339  nv_wait(device, 0x132020, 0x00010000, 0x00010000);
340  nv_wr32(device, 0x132024, 0x0001150f);
341  nv_mask(device, 0x132020, 0x00000001, 0x00000001);
342  nv_wait(device, 0x137390, 0x00020000, 0x00020000);
343  nv_mask(device, 0x132020, 0x00000004, 0x00000004);
344  }
345 
346  /* for the moment, until the clock tree is better understood, use
347  * pll mode for all clock frequencies
348  */
349  ret = nvbios_pll_parse(bios, 0x132000, &pll);
350  if (ret == 0) {
351  pll.refclk = read_pll(dev, 0x132020);
352  if (pll.refclk) {
353  ret = nva3_calc_pll(dev, &pll, freq, &N, NULL, &M, &P);
354  if (ret > 0) {
355  info->coef = (P << 16) | (N << 8) | M;
356  return 0;
357  }
358  }
359  }
360 
361  return -EINVAL;
362 }
363 
364 void *
365 nvc0_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
366 {
367  struct nouveau_device *device = nouveau_dev(dev);
368  struct nvc0_pm_state *info;
369  int ret;
370 
371  info = kzalloc(sizeof(*info), GFP_KERNEL);
372  if (!info)
373  return ERR_PTR(-ENOMEM);
374 
375  /* NFI why this is still in the performance table, the ROPCs appear
376  * to get their clock from clock 2 ("hub07", actually hub05 on this
377  * chip, but, anyway...) as well. nvatiming confirms hub05 and ROP
378  * are always the same freq with the binary driver even when the
379  * performance table says they should differ.
380  */
381  if (device->chipset == 0xd9)
382  perflvl->rop = 0;
383 
384  if ((ret = calc_clk(dev, 0x00, &info->eng[0x00], perflvl->shader)) ||
385  (ret = calc_clk(dev, 0x01, &info->eng[0x01], perflvl->rop)) ||
386  (ret = calc_clk(dev, 0x02, &info->eng[0x02], perflvl->hub07)) ||
387  (ret = calc_clk(dev, 0x07, &info->eng[0x07], perflvl->hub06)) ||
388  (ret = calc_clk(dev, 0x08, &info->eng[0x08], perflvl->hub01)) ||
389  (ret = calc_clk(dev, 0x09, &info->eng[0x09], perflvl->copy)) ||
390  (ret = calc_clk(dev, 0x0c, &info->eng[0x0c], perflvl->daemon)) ||
391  (ret = calc_clk(dev, 0x0e, &info->eng[0x0e], perflvl->vdec))) {
392  kfree(info);
393  return ERR_PTR(ret);
394  }
395 
396  if (perflvl->memory) {
397  ret = calc_mem(dev, &info->mem, perflvl->memory);
398  if (ret) {
399  kfree(info);
400  return ERR_PTR(ret);
401  }
402  }
403 
404  info->perflvl = perflvl;
405  return info;
406 }
407 
408 static void
409 prog_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info)
410 {
411  struct nouveau_device *device = nouveau_dev(dev);
412 
413  /* program dividers at 137160/1371d0 first */
414  if (clk < 7 && !info->ssel) {
415  nv_mask(device, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
416  nv_wr32(device, 0x137160 + (clk * 0x04), info->dsrc);
417  }
418 
419  /* switch clock to non-pll mode */
420  nv_mask(device, 0x137100, (1 << clk), 0x00000000);
421  nv_wait(device, 0x137100, (1 << clk), 0x00000000);
422 
423  /* reprogram pll */
424  if (clk < 7) {
425  /* make sure it's disabled first... */
426  u32 base = 0x137000 + (clk * 0x20);
427  u32 ctrl = nv_rd32(device, base + 0x00);
428  if (ctrl & 0x00000001) {
429  nv_mask(device, base + 0x00, 0x00000004, 0x00000000);
430  nv_mask(device, base + 0x00, 0x00000001, 0x00000000);
431  }
432  /* program it to new values, if necessary */
433  if (info->ssel) {
434  nv_wr32(device, base + 0x04, info->coef);
435  nv_mask(device, base + 0x00, 0x00000001, 0x00000001);
436  nv_wait(device, base + 0x00, 0x00020000, 0x00020000);
437  nv_mask(device, base + 0x00, 0x00020004, 0x00000004);
438  }
439  }
440 
441  /* select pll/non-pll mode, and program final clock divider */
442  nv_mask(device, 0x137100, (1 << clk), info->ssel);
443  nv_wait(device, 0x137100, (1 << clk), info->ssel);
444  nv_mask(device, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
445 }
446 
447 static void
448 mclk_precharge(struct nouveau_mem_exec_func *exec)
449 {
450 }
451 
452 static void
453 mclk_refresh(struct nouveau_mem_exec_func *exec)
454 {
455 }
456 
457 static void
458 mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
459 {
460  struct nouveau_device *device = nouveau_dev(exec->dev);
461  nv_wr32(device, 0x10f210, enable ? 0x80000000 : 0x00000000);
462 }
463 
464 static void
465 mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
466 {
467 }
468 
469 static void
470 mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
471 {
472  udelay((nsec + 500) / 1000);
473 }
474 
475 static u32
476 mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
477 {
478  struct nouveau_device *device = nouveau_dev(exec->dev);
479  struct nouveau_fb *pfb = nouveau_fb(device);
480  if (pfb->ram.type != NV_MEM_TYPE_GDDR5) {
481  if (mr <= 1)
482  return nv_rd32(device, 0x10f300 + ((mr - 0) * 4));
483  return nv_rd32(device, 0x10f320 + ((mr - 2) * 4));
484  } else {
485  if (mr == 0)
486  return nv_rd32(device, 0x10f300 + (mr * 4));
487  else
488  if (mr <= 7)
489  return nv_rd32(device, 0x10f32c + (mr * 4));
490  return nv_rd32(device, 0x10f34c);
491  }
492 }
493 
494 static void
495 mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
496 {
497  struct nouveau_device *device = nouveau_dev(exec->dev);
498  struct nouveau_fb *pfb = nouveau_fb(device);
499  if (pfb->ram.type != NV_MEM_TYPE_GDDR5) {
500  if (mr <= 1) {
501  nv_wr32(device, 0x10f300 + ((mr - 0) * 4), data);
502  if (pfb->ram.ranks > 1)
503  nv_wr32(device, 0x10f308 + ((mr - 0) * 4), data);
504  } else
505  if (mr <= 3) {
506  nv_wr32(device, 0x10f320 + ((mr - 2) * 4), data);
507  if (pfb->ram.ranks > 1)
508  nv_wr32(device, 0x10f328 + ((mr - 2) * 4), data);
509  }
510  } else {
511  if (mr == 0) nv_wr32(device, 0x10f300 + (mr * 4), data);
512  else if (mr <= 7) nv_wr32(device, 0x10f32c + (mr * 4), data);
513  else if (mr == 15) nv_wr32(device, 0x10f34c, data);
514  }
515 }
516 
517 static void
518 mclk_clock_set(struct nouveau_mem_exec_func *exec)
519 {
520  struct nouveau_device *device = nouveau_dev(exec->dev);
521  struct nvc0_pm_state *info = exec->priv;
522  u32 ctrl = nv_rd32(device, 0x132000);
523 
524  nv_wr32(device, 0x137360, 0x00000001);
525  nv_wr32(device, 0x137370, 0x00000000);
526  nv_wr32(device, 0x137380, 0x00000000);
527  if (ctrl & 0x00000001)
528  nv_wr32(device, 0x132000, (ctrl &= ~0x00000001));
529 
530  nv_wr32(device, 0x132004, info->mem.coef);
531  nv_wr32(device, 0x132000, (ctrl |= 0x00000001));
532  nv_wait(device, 0x137390, 0x00000002, 0x00000002);
533  nv_wr32(device, 0x132018, 0x00005000);
534 
535  nv_wr32(device, 0x137370, 0x00000001);
536  nv_wr32(device, 0x137380, 0x00000001);
537  nv_wr32(device, 0x137360, 0x00000000);
538 }
539 
540 static void
541 mclk_timing_set(struct nouveau_mem_exec_func *exec)
542 {
543  struct nouveau_device *device = nouveau_dev(exec->dev);
544  struct nvc0_pm_state *info = exec->priv;
545  struct nouveau_pm_level *perflvl = info->perflvl;
546  int i;
547 
548  for (i = 0; i < 5; i++)
549  nv_wr32(device, 0x10f290 + (i * 4), perflvl->timing.reg[i]);
550 }
551 
552 static void
553 prog_mem(struct drm_device *dev, struct nvc0_pm_state *info)
554 {
555  struct nouveau_device *device = nouveau_dev(dev);
556  struct nouveau_mem_exec_func exec = {
557  .dev = dev,
558  .precharge = mclk_precharge,
559  .refresh = mclk_refresh,
560  .refresh_auto = mclk_refresh_auto,
561  .refresh_self = mclk_refresh_self,
562  .wait = mclk_wait,
563  .mrg = mclk_mrg,
564  .mrs = mclk_mrs,
565  .clock_set = mclk_clock_set,
566  .timing_set = mclk_timing_set,
567  .priv = info
568  };
569 
570  if (device->chipset < 0xd0)
571  nv_wr32(device, 0x611200, 0x00003300);
572  else
573  nv_wr32(device, 0x62c000, 0x03030000);
574 
575  nouveau_mem_exec(&exec, info->perflvl);
576 
577  if (device->chipset < 0xd0)
578  nv_wr32(device, 0x611200, 0x00003330);
579  else
580  nv_wr32(device, 0x62c000, 0x03030300);
581 }
582 int
583 nvc0_pm_clocks_set(struct drm_device *dev, void *data)
584 {
585  struct nvc0_pm_state *info = data;
586  int i;
587 
588  if (info->mem.coef)
589  prog_mem(dev, info);
590 
591  for (i = 0; i < 16; i++) {
592  if (!info->eng[i].freq)
593  continue;
594  prog_clk(dev, i, &info->eng[i]);
595  }
596 
597  kfree(info);
598  return 0;
599 }