Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
octeon-wdt-main.c
Go to the documentation of this file.
1 /*
2  * Octeon Watchdog driver
3  *
4  * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5  *
6  * Some parts derived from wdt.c
7  *
8  * (c) Copyright 1996-1997 Alan Cox <[email protected]>,
9  * All Rights Reserved.
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  *
16  * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17  * warranty for any of this software. This material is provided
18  * "AS-IS" and at no charge.
19  *
20  * (c) Copyright 1995 Alan Cox <[email protected]>
21  *
22  * This file is subject to the terms and conditions of the GNU General Public
23  * License. See the file "COPYING" in the main directory of this archive
24  * for more details.
25  *
26  *
27  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28  * For most systems this is less than 10 seconds, so to allow for
29  * software to request longer watchdog heartbeats, we maintain software
30  * counters to count multiples of the base rate. If the system locks
31  * up in such a manner that we can not run the software counters, the
32  * only result is a watchdog reset sooner than was requested. But
33  * that is OK, because in this case userspace would likely not be able
34  * to do anything anyhow.
35  *
36  * The hardware watchdog interval we call the period. The OCTEON
37  * watchdog goes through several stages, after the first period an
38  * irq is asserted, then if it is not reset, after the next period NMI
39  * is asserted, then after an additional period a chip wide soft reset.
40  * So for the software counters, we reset watchdog after each period
41  * and decrement the counter. But for the last two periods we need to
42  * let the watchdog progress to the NMI stage so we disable the irq
43  * and let it proceed. Once in the NMI, we print the register state
44  * to the serial port and then wait for the reset.
45  *
46  * A watchdog is maintained for each CPU in the system, that way if
47  * one CPU suffers a lockup, we also get a register dump and reset.
48  * The userspace ping resets the watchdog on all CPUs.
49  *
50  * Before userspace opens the watchdog device, we still run the
51  * watchdogs to catch any lockups that may be kernel related.
52  *
53  */
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/miscdevice.h>
58 #include <linux/interrupt.h>
59 #include <linux/watchdog.h>
60 #include <linux/cpumask.h>
61 #include <linux/bitops.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/delay.h>
66 #include <linux/cpu.h>
67 #include <linux/smp.h>
68 #include <linux/fs.h>
69 #include <linux/irq.h>
70 
71 #include <asm/mipsregs.h>
72 #include <asm/uasm.h>
73 
74 #include <asm/octeon/octeon.h>
75 
76 /* The count needed to achieve timeout_sec. */
77 static unsigned int timeout_cnt;
78 
79 /* The maximum period supported. */
80 static unsigned int max_timeout_sec;
81 
82 /* The current period. */
83 static unsigned int timeout_sec;
84 
85 /* Set to non-zero when userspace countdown mode active */
86 static int do_coundown;
87 static unsigned int countdown_reset;
88 static unsigned int per_cpu_countdown[NR_CPUS];
89 
90 static cpumask_t irq_enabled_cpus;
91 
92 #define WD_TIMO 60 /* Default heartbeat = 60 seconds */
93 
94 static int heartbeat = WD_TIMO;
97  "Watchdog heartbeat in seconds. (0 < heartbeat, default="
99 
100 static bool nowayout = WATCHDOG_NOWAYOUT;
101 module_param(nowayout, bool, S_IRUGO);
102 MODULE_PARM_DESC(nowayout,
103  "Watchdog cannot be stopped once started (default="
105 
106 static unsigned long octeon_wdt_is_open;
107 static char expect_close;
108 
109 static u32 __initdata nmi_stage1_insns[64];
110 /* We need one branch and therefore one relocation per target label. */
111 static struct uasm_label __initdata labels[5];
112 static struct uasm_reloc __initdata relocs[5];
113 
114 enum lable_id {
116 };
117 
118 /* Some CP0 registers */
119 #define K0 26
120 #define C0_CVMMEMCTL 11, 7
121 #define C0_STATUS 12, 0
122 #define C0_EBASE 15, 1
123 #define C0_DESAVE 31, 0
124 
125 void octeon_wdt_nmi_stage2(void);
126 
127 static void __init octeon_wdt_build_stage1(void)
128 {
129  int i;
130  int len;
131  u32 *p = nmi_stage1_insns;
132 #ifdef CONFIG_HOTPLUG_CPU
133  struct uasm_label *l = labels;
134  struct uasm_reloc *r = relocs;
135 #endif
136 
137  /*
138  * For the next few instructions running the debugger may
139  * cause corruption of k0 in the saved registers. Since we're
140  * about to crash, nobody probably cares.
141  *
142  * Save K0 into the debug scratch register
143  */
144  uasm_i_dmtc0(&p, K0, C0_DESAVE);
145 
146  uasm_i_mfc0(&p, K0, C0_STATUS);
147 #ifdef CONFIG_HOTPLUG_CPU
149 #endif
150  /* Force 64-bit addressing enabled */
151  uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
152  uasm_i_mtc0(&p, K0, C0_STATUS);
153 
154 #ifdef CONFIG_HOTPLUG_CPU
155  uasm_i_mfc0(&p, K0, C0_EBASE);
156  /* Coreid number in K0 */
157  uasm_i_andi(&p, K0, K0, 0xf);
158  /* 8 * coreid in bits 16-31 */
159  uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
160  uasm_i_ori(&p, K0, K0, 0x8001);
161  uasm_i_dsll_safe(&p, K0, K0, 16);
162  uasm_i_ori(&p, K0, K0, 0x0700);
163  uasm_i_drotr_safe(&p, K0, K0, 32);
164  /*
165  * Should result in: 0x8001,0700,0000,8*coreid which is
166  * CVMX_CIU_WDOGX(coreid) - 0x0500
167  *
168  * Now ld K0, CVMX_CIU_WDOGX(coreid)
169  */
170  uasm_i_ld(&p, K0, 0x500, K0);
171  /*
172  * If bit one set handle the NMI as a watchdog event.
173  * otherwise transfer control to bootloader.
174  */
176  uasm_i_nop(&p);
177 #endif
178 
179  /* Clear Dcache so cvmseg works right. */
180  uasm_i_cache(&p, 1, 0, 0);
181 
182  /* Use K0 to do a read/modify/write of CVMMEMCTL */
183  uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
184  /* Clear out the size of CVMSEG */
185  uasm_i_dins(&p, K0, 0, 0, 6);
186  /* Set CVMSEG to its largest value */
187  uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
188  /* Store the CVMMEMCTL value */
189  uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
190 
191  /* Load the address of the second stage handler */
192  UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
193  uasm_i_jr(&p, K0);
194  uasm_i_dmfc0(&p, K0, C0_DESAVE);
195 
196 #ifdef CONFIG_HOTPLUG_CPU
198  /* Jump to the bootloader and restore K0 */
199  UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
200  uasm_i_jr(&p, K0);
201  uasm_i_dmfc0(&p, K0, C0_DESAVE);
202 #endif
203  uasm_resolve_relocs(relocs, labels);
204 
205  len = (int)(p - nmi_stage1_insns);
206  pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
207 
208  pr_debug("\t.set push\n");
209  pr_debug("\t.set noreorder\n");
210  for (i = 0; i < len; i++)
211  pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
212  pr_debug("\t.set pop\n");
213 
214  if (len > 32)
215  panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
216 }
217 
218 static int cpu2core(int cpu)
219 {
220 #ifdef CONFIG_SMP
221  return cpu_logical_map(cpu);
222 #else
223  return cvmx_get_core_num();
224 #endif
225 }
226 
227 static int core2cpu(int coreid)
228 {
229 #ifdef CONFIG_SMP
230  return cpu_number_map(coreid);
231 #else
232  return 0;
233 #endif
234 }
235 
244 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
245 {
246  unsigned int core = cvmx_get_core_num();
247  int cpu = core2cpu(core);
248 
249  if (do_coundown) {
250  if (per_cpu_countdown[cpu] > 0) {
251  /* We're alive, poke the watchdog */
252  cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
253  per_cpu_countdown[cpu]--;
254  } else {
255  /* Bad news, you are about to reboot. */
256  disable_irq_nosync(cpl);
257  cpumask_clear_cpu(cpu, &irq_enabled_cpus);
258  }
259  } else {
260  /* Not open, just ping away... */
261  cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
262  }
263  return IRQ_HANDLED;
264 }
265 
266 /* From setup.c */
267 extern int prom_putchar(char c);
268 
274 static void octeon_wdt_write_string(const char *str)
275 {
276  /* Just loop writing one byte at a time */
277  while (*str)
278  prom_putchar(*str++);
279 }
280 
287 static void octeon_wdt_write_hex(u64 value, int digits)
288 {
289  int d;
290  int v;
291  for (d = 0; d < digits; d++) {
292  v = (value >> ((digits - d - 1) * 4)) & 0xf;
293  if (v >= 10)
294  prom_putchar('a' + v - 10);
295  else
296  prom_putchar('0' + v);
297  }
298 }
299 
300 const char *reg_name[] = {
301  "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
302  "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
303  "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
304  "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
305 };
306 
321 {
322  u64 i;
323 
324  unsigned int coreid = cvmx_get_core_num();
325  /*
326  * Save status and cause early to get them before any changes
327  * might happen.
328  */
331  u64 cp0_error_epc = read_c0_errorepc();
332  u64 cp0_epc = read_c0_epc();
333 
334  /* Delay so output from all cores output is not jumbled together. */
335  __delay(100000000ull * coreid);
336 
337  octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
338  octeon_wdt_write_hex(coreid, 1);
339  octeon_wdt_write_string(" ***\r\n");
340  for (i = 0; i < 32; i++) {
341  octeon_wdt_write_string("\t");
342  octeon_wdt_write_string(reg_name[i]);
343  octeon_wdt_write_string("\t0x");
344  octeon_wdt_write_hex(reg[i], 16);
345  if (i & 1)
346  octeon_wdt_write_string("\r\n");
347  }
348  octeon_wdt_write_string("\terr_epc\t0x");
349  octeon_wdt_write_hex(cp0_error_epc, 16);
350 
351  octeon_wdt_write_string("\tepc\t0x");
352  octeon_wdt_write_hex(cp0_epc, 16);
353  octeon_wdt_write_string("\r\n");
354 
355  octeon_wdt_write_string("\tstatus\t0x");
356  octeon_wdt_write_hex(cp0_status, 16);
357  octeon_wdt_write_string("\tcause\t0x");
358  octeon_wdt_write_hex(cp0_cause, 16);
359  octeon_wdt_write_string("\r\n");
360 
361  octeon_wdt_write_string("\tsum0\t0x");
362  octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
363  octeon_wdt_write_string("\ten0\t0x");
364  octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
365  octeon_wdt_write_string("\r\n");
366 
367  octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
368 }
369 
370 static void octeon_wdt_disable_interrupt(int cpu)
371 {
372  unsigned int core;
373  unsigned int irq;
374  union cvmx_ciu_wdogx ciu_wdog;
375 
376  core = cpu2core(cpu);
377 
378  irq = OCTEON_IRQ_WDOG0 + core;
379 
380  /* Poke the watchdog to clear out its state */
381  cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
382 
383  /* Disable the hardware. */
384  ciu_wdog.u64 = 0;
385  cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
386 
387  free_irq(irq, octeon_wdt_poke_irq);
388 }
389 
390 static void octeon_wdt_setup_interrupt(int cpu)
391 {
392  unsigned int core;
393  unsigned int irq;
394  union cvmx_ciu_wdogx ciu_wdog;
395 
396  core = cpu2core(cpu);
397 
398  /* Disable it before doing anything with the interrupts. */
399  ciu_wdog.u64 = 0;
400  cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
401 
402  per_cpu_countdown[cpu] = countdown_reset;
403 
404  irq = OCTEON_IRQ_WDOG0 + core;
405 
406  if (request_irq(irq, octeon_wdt_poke_irq,
407  IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
408  panic("octeon_wdt: Couldn't obtain irq %d", irq);
409 
410  cpumask_set_cpu(cpu, &irq_enabled_cpus);
411 
412  /* Poke the watchdog to clear out its state */
413  cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
414 
415  /* Finally enable the watchdog now that all handlers are installed */
416  ciu_wdog.u64 = 0;
417  ciu_wdog.s.len = timeout_cnt;
418  ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
419  cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
420 }
421 
422 static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
423  unsigned long action, void *hcpu)
424 {
425  unsigned int cpu = (unsigned long)hcpu;
426 
427  switch (action) {
428  case CPU_DOWN_PREPARE:
429  octeon_wdt_disable_interrupt(cpu);
430  break;
431  case CPU_ONLINE:
432  case CPU_DOWN_FAILED:
433  octeon_wdt_setup_interrupt(cpu);
434  break;
435  default:
436  break;
437  }
438  return NOTIFY_OK;
439 }
440 
441 static void octeon_wdt_ping(void)
442 {
443  int cpu;
444  int coreid;
445 
446  for_each_online_cpu(cpu) {
447  coreid = cpu2core(cpu);
448  cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
449  per_cpu_countdown[cpu] = countdown_reset;
450  if ((countdown_reset || !do_coundown) &&
451  !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
452  /* We have to enable the irq */
453  int irq = OCTEON_IRQ_WDOG0 + coreid;
454  enable_irq(irq);
455  cpumask_set_cpu(cpu, &irq_enabled_cpus);
456  }
457  }
458 }
459 
460 static void octeon_wdt_calc_parameters(int t)
461 {
462  unsigned int periods;
463 
464  timeout_sec = max_timeout_sec;
465 
466 
467  /*
468  * Find the largest interrupt period, that can evenly divide
469  * the requested heartbeat time.
470  */
471  while ((t % timeout_sec) != 0)
472  timeout_sec--;
473 
474  periods = t / timeout_sec;
475 
476  /*
477  * The last two periods are after the irq is disabled, and
478  * then to the nmi, so we subtract them off.
479  */
480 
481  countdown_reset = periods > 2 ? periods - 2 : 0;
482  heartbeat = t;
483  timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
484 }
485 
486 static int octeon_wdt_set_heartbeat(int t)
487 {
488  int cpu;
489  int coreid;
490  union cvmx_ciu_wdogx ciu_wdog;
491 
492  if (t <= 0)
493  return -1;
494 
495  octeon_wdt_calc_parameters(t);
496 
497  for_each_online_cpu(cpu) {
498  coreid = cpu2core(cpu);
499  cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
500  ciu_wdog.u64 = 0;
501  ciu_wdog.s.len = timeout_cnt;
502  ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
503  cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
504  cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
505  }
506  octeon_wdt_ping(); /* Get the irqs back on. */
507  return 0;
508 }
509 
521 static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
522  size_t count, loff_t *ppos)
523 {
524  if (count) {
525  if (!nowayout) {
526  size_t i;
527 
528  /* In case it was set long ago */
529  expect_close = 0;
530 
531  for (i = 0; i != count; i++) {
532  char c;
533  if (get_user(c, buf + i))
534  return -EFAULT;
535  if (c == 'V')
536  expect_close = 1;
537  }
538  }
539  octeon_wdt_ping();
540  }
541  return count;
542 }
543 
556 static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
557  unsigned long arg)
558 {
559  void __user *argp = (void __user *)arg;
560  int __user *p = argp;
561  int new_heartbeat;
562 
563  static struct watchdog_info ident = {
564  .options = WDIOF_SETTIMEOUT|
567  .firmware_version = 1,
568  .identity = "OCTEON",
569  };
570 
571  switch (cmd) {
572  case WDIOC_GETSUPPORT:
573  return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
574  case WDIOC_GETSTATUS:
575  case WDIOC_GETBOOTSTATUS:
576  return put_user(0, p);
577  case WDIOC_KEEPALIVE:
578  octeon_wdt_ping();
579  return 0;
580  case WDIOC_SETTIMEOUT:
581  if (get_user(new_heartbeat, p))
582  return -EFAULT;
583  if (octeon_wdt_set_heartbeat(new_heartbeat))
584  return -EINVAL;
585  /* Fall through. */
586  case WDIOC_GETTIMEOUT:
587  return put_user(heartbeat, p);
588  default:
589  return -ENOTTY;
590  }
591 }
592 
602 static int octeon_wdt_open(struct inode *inode, struct file *file)
603 {
604  if (test_and_set_bit(0, &octeon_wdt_is_open))
605  return -EBUSY;
606  /*
607  * Activate
608  */
609  octeon_wdt_ping();
610  do_coundown = 1;
611  return nonseekable_open(inode, file);
612 }
613 
626 static int octeon_wdt_release(struct inode *inode, struct file *file)
627 {
628  if (expect_close) {
629  do_coundown = 0;
630  octeon_wdt_ping();
631  } else {
632  pr_crit("WDT device closed unexpectedly. WDT will not stop!\n");
633  }
634  clear_bit(0, &octeon_wdt_is_open);
635  expect_close = 0;
636  return 0;
637 }
638 
639 static const struct file_operations octeon_wdt_fops = {
640  .owner = THIS_MODULE,
641  .llseek = no_llseek,
642  .write = octeon_wdt_write,
643  .unlocked_ioctl = octeon_wdt_ioctl,
644  .open = octeon_wdt_open,
645  .release = octeon_wdt_release,
646 };
647 
648 static struct miscdevice octeon_wdt_miscdev = {
649  .minor = WATCHDOG_MINOR,
650  .name = "watchdog",
651  .fops = &octeon_wdt_fops,
652 };
653 
654 static struct notifier_block octeon_wdt_cpu_notifier = {
655  .notifier_call = octeon_wdt_cpu_callback,
656 };
657 
658 
664 static int __init octeon_wdt_init(void)
665 {
666  int i;
667  int ret;
668  int cpu;
669  u64 *ptr;
670 
671  /*
672  * Watchdog time expiration length = The 16 bits of LEN
673  * represent the most significant bits of a 24 bit decrementer
674  * that decrements every 256 cycles.
675  *
676  * Try for a timeout of 5 sec, if that fails a smaller number
677  * of even seconds,
678  */
679  max_timeout_sec = 6;
680  do {
681  max_timeout_sec--;
682  timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
683  } while (timeout_cnt > 65535);
684 
685  BUG_ON(timeout_cnt == 0);
686 
687  octeon_wdt_calc_parameters(heartbeat);
688 
689  pr_info("Initial granularity %d Sec\n", timeout_sec);
690 
691  ret = misc_register(&octeon_wdt_miscdev);
692  if (ret) {
693  pr_err("cannot register miscdev on minor=%d (err=%d)\n",
694  WATCHDOG_MINOR, ret);
695  goto out;
696  }
697 
698  /* Build the NMI handler ... */
699  octeon_wdt_build_stage1();
700 
701  /* ... and install it. */
702  ptr = (u64 *) nmi_stage1_insns;
703  for (i = 0; i < 16; i++) {
704  cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
705  cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
706  }
707  cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
708 
709  cpumask_clear(&irq_enabled_cpus);
710 
712  octeon_wdt_setup_interrupt(cpu);
713 
714  register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
715 out:
716  return ret;
717 }
718 
722 static void __exit octeon_wdt_cleanup(void)
723 {
724  int cpu;
725 
726  misc_deregister(&octeon_wdt_miscdev);
727 
728  unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
729 
730  for_each_online_cpu(cpu) {
731  int core = cpu2core(cpu);
732  /* Disable the watchdog */
733  cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
734  /* Free the interrupt handler */
735  free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
736  }
737  /*
738  * Disable the boot-bus memory, the code it points to is soon
739  * to go missing.
740  */
741  cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
742 }
743 
744 MODULE_LICENSE("GPL");
745 MODULE_AUTHOR("Cavium Networks <[email protected]>");
746 MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
747 module_init(octeon_wdt_init);
748 module_exit(octeon_wdt_cleanup);