Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
flow.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2007-2011 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ipv6.h>
44 #include <net/ndisc.h>
45 
46 static struct kmem_cache *flow_cache;
47 
48 static int check_header(struct sk_buff *skb, int len)
49 {
50  if (unlikely(skb->len < len))
51  return -EINVAL;
52  if (unlikely(!pskb_may_pull(skb, len)))
53  return -ENOMEM;
54  return 0;
55 }
56 
57 static bool arphdr_ok(struct sk_buff *skb)
58 {
59  return pskb_may_pull(skb, skb_network_offset(skb) +
60  sizeof(struct arp_eth_header));
61 }
62 
63 static int check_iphdr(struct sk_buff *skb)
64 {
65  unsigned int nh_ofs = skb_network_offset(skb);
66  unsigned int ip_len;
67  int err;
68 
69  err = check_header(skb, nh_ofs + sizeof(struct iphdr));
70  if (unlikely(err))
71  return err;
72 
73  ip_len = ip_hdrlen(skb);
74  if (unlikely(ip_len < sizeof(struct iphdr) ||
75  skb->len < nh_ofs + ip_len))
76  return -EINVAL;
77 
78  skb_set_transport_header(skb, nh_ofs + ip_len);
79  return 0;
80 }
81 
82 static bool tcphdr_ok(struct sk_buff *skb)
83 {
84  int th_ofs = skb_transport_offset(skb);
85  int tcp_len;
86 
87  if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
88  return false;
89 
90  tcp_len = tcp_hdrlen(skb);
91  if (unlikely(tcp_len < sizeof(struct tcphdr) ||
92  skb->len < th_ofs + tcp_len))
93  return false;
94 
95  return true;
96 }
97 
98 static bool udphdr_ok(struct sk_buff *skb)
99 {
100  return pskb_may_pull(skb, skb_transport_offset(skb) +
101  sizeof(struct udphdr));
102 }
103 
104 static bool icmphdr_ok(struct sk_buff *skb)
105 {
106  return pskb_may_pull(skb, skb_transport_offset(skb) +
107  sizeof(struct icmphdr));
108 }
109 
110 u64 ovs_flow_used_time(unsigned long flow_jiffies)
111 {
112  struct timespec cur_ts;
113  u64 cur_ms, idle_ms;
114 
115  ktime_get_ts(&cur_ts);
116  idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
117  cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
118  cur_ts.tv_nsec / NSEC_PER_MSEC;
119 
120  return cur_ms - idle_ms;
121 }
122 
123 #define SW_FLOW_KEY_OFFSET(field) \
124  (offsetof(struct sw_flow_key, field) + \
125  FIELD_SIZEOF(struct sw_flow_key, field))
126 
127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
128  int *key_lenp)
129 {
130  unsigned int nh_ofs = skb_network_offset(skb);
131  unsigned int nh_len;
132  int payload_ofs;
133  struct ipv6hdr *nh;
135  __be16 frag_off;
136  int err;
137 
138  *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
139 
140  err = check_header(skb, nh_ofs + sizeof(*nh));
141  if (unlikely(err))
142  return err;
143 
144  nh = ipv6_hdr(skb);
145  nexthdr = nh->nexthdr;
146  payload_ofs = (u8 *)(nh + 1) - skb->data;
147 
148  key->ip.proto = NEXTHDR_NONE;
149  key->ip.tos = ipv6_get_dsfield(nh);
150  key->ip.ttl = nh->hop_limit;
151  key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
152  key->ipv6.addr.src = nh->saddr;
153  key->ipv6.addr.dst = nh->daddr;
154 
155  payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
156  if (unlikely(payload_ofs < 0))
157  return -EINVAL;
158 
159  if (frag_off) {
160  if (frag_off & htons(~0x7))
161  key->ip.frag = OVS_FRAG_TYPE_LATER;
162  else
163  key->ip.frag = OVS_FRAG_TYPE_FIRST;
164  }
165 
166  nh_len = payload_ofs - nh_ofs;
167  skb_set_transport_header(skb, nh_ofs + nh_len);
168  key->ip.proto = nexthdr;
169  return nh_len;
170 }
171 
172 static bool icmp6hdr_ok(struct sk_buff *skb)
173 {
174  return pskb_may_pull(skb, skb_transport_offset(skb) +
175  sizeof(struct icmp6hdr));
176 }
177 
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
180 
181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
182 {
183  u8 tcp_flags = 0;
184 
185  if ((flow->key.eth.type == htons(ETH_P_IP) ||
186  flow->key.eth.type == htons(ETH_P_IPV6)) &&
187  flow->key.ip.proto == IPPROTO_TCP &&
188  likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
189  u8 *tcp = (u8 *)tcp_hdr(skb);
190  tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
191  }
192 
193  spin_lock(&flow->lock);
194  flow->used = jiffies;
195  flow->packet_count++;
196  flow->byte_count += skb->len;
197  flow->tcp_flags |= tcp_flags;
198  spin_unlock(&flow->lock);
199 }
200 
202 {
203  int actions_len = nla_len(actions);
204  struct sw_flow_actions *sfa;
205 
206  if (actions_len > MAX_ACTIONS_BUFSIZE)
207  return ERR_PTR(-EINVAL);
208 
209  sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
210  if (!sfa)
211  return ERR_PTR(-ENOMEM);
212 
213  sfa->actions_len = actions_len;
214  memcpy(sfa->actions, nla_data(actions), actions_len);
215  return sfa;
216 }
217 
218 struct sw_flow *ovs_flow_alloc(void)
219 {
220  struct sw_flow *flow;
221 
222  flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
223  if (!flow)
224  return ERR_PTR(-ENOMEM);
225 
226  spin_lock_init(&flow->lock);
227  flow->sf_acts = NULL;
228 
229  return flow;
230 }
231 
232 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
233 {
234  hash = jhash_1word(hash, table->hash_seed);
235  return flex_array_get(table->buckets,
236  (hash & (table->n_buckets - 1)));
237 }
238 
239 static struct flex_array *alloc_buckets(unsigned int n_buckets)
240 {
241  struct flex_array *buckets;
242  int i, err;
243 
244  buckets = flex_array_alloc(sizeof(struct hlist_head *),
245  n_buckets, GFP_KERNEL);
246  if (!buckets)
247  return NULL;
248 
249  err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
250  if (err) {
251  flex_array_free(buckets);
252  return NULL;
253  }
254 
255  for (i = 0; i < n_buckets; i++)
256  INIT_HLIST_HEAD((struct hlist_head *)
257  flex_array_get(buckets, i));
258 
259  return buckets;
260 }
261 
262 static void free_buckets(struct flex_array *buckets)
263 {
264  flex_array_free(buckets);
265 }
266 
267 struct flow_table *ovs_flow_tbl_alloc(int new_size)
268 {
269  struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
270 
271  if (!table)
272  return NULL;
273 
274  table->buckets = alloc_buckets(new_size);
275 
276  if (!table->buckets) {
277  kfree(table);
278  return NULL;
279  }
280  table->n_buckets = new_size;
281  table->count = 0;
282  table->node_ver = 0;
283  table->keep_flows = false;
284  get_random_bytes(&table->hash_seed, sizeof(u32));
285 
286  return table;
287 }
288 
290 {
291  int i;
292 
293  if (!table)
294  return;
295 
296  if (table->keep_flows)
297  goto skip_flows;
298 
299  for (i = 0; i < table->n_buckets; i++) {
300  struct sw_flow *flow;
301  struct hlist_head *head = flex_array_get(table->buckets, i);
302  struct hlist_node *node, *n;
303  int ver = table->node_ver;
304 
305  hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
306  hlist_del_rcu(&flow->hash_node[ver]);
307  ovs_flow_free(flow);
308  }
309  }
310 
311 skip_flows:
312  free_buckets(table->buckets);
313  kfree(table);
314 }
315 
316 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
317 {
318  struct flow_table *table = container_of(rcu, struct flow_table, rcu);
319 
320  ovs_flow_tbl_destroy(table);
321 }
322 
324 {
325  if (!table)
326  return;
327 
328  call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
329 }
330 
331 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
332 {
333  struct sw_flow *flow;
334  struct hlist_head *head;
335  struct hlist_node *n;
336  int ver;
337  int i;
338 
339  ver = table->node_ver;
340  while (*bucket < table->n_buckets) {
341  i = 0;
342  head = flex_array_get(table->buckets, *bucket);
343  hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
344  if (i < *last) {
345  i++;
346  continue;
347  }
348  *last = i + 1;
349  return flow;
350  }
351  (*bucket)++;
352  *last = 0;
353  }
354 
355  return NULL;
356 }
357 
358 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
359 {
360  int old_ver;
361  int i;
362 
363  old_ver = old->node_ver;
364  new->node_ver = !old_ver;
365 
366  /* Insert in new table. */
367  for (i = 0; i < old->n_buckets; i++) {
368  struct sw_flow *flow;
369  struct hlist_head *head;
370  struct hlist_node *n;
371 
372  head = flex_array_get(old->buckets, i);
373 
374  hlist_for_each_entry(flow, n, head, hash_node[old_ver])
375  ovs_flow_tbl_insert(new, flow);
376  }
377  old->keep_flows = true;
378 }
379 
380 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
381 {
382  struct flow_table *new_table;
383 
384  new_table = ovs_flow_tbl_alloc(n_buckets);
385  if (!new_table)
386  return ERR_PTR(-ENOMEM);
387 
388  flow_table_copy_flows(table, new_table);
389 
390  return new_table;
391 }
392 
394 {
395  return __flow_tbl_rehash(table, table->n_buckets);
396 }
397 
399 {
400  return __flow_tbl_rehash(table, table->n_buckets * 2);
401 }
402 
403 void ovs_flow_free(struct sw_flow *flow)
404 {
405  if (unlikely(!flow))
406  return;
407 
408  kfree((struct sf_flow_acts __force *)flow->sf_acts);
409  kmem_cache_free(flow_cache, flow);
410 }
411 
412 /* RCU callback used by ovs_flow_deferred_free. */
413 static void rcu_free_flow_callback(struct rcu_head *rcu)
414 {
415  struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
416 
417  ovs_flow_free(flow);
418 }
419 
420 /* Schedules 'flow' to be freed after the next RCU grace period.
421  * The caller must hold rcu_read_lock for this to be sensible. */
422 void ovs_flow_deferred_free(struct sw_flow *flow)
423 {
424  call_rcu(&flow->rcu, rcu_free_flow_callback);
425 }
426 
427 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
428  * The caller must hold rcu_read_lock for this to be sensible. */
430 {
431  kfree_rcu(sf_acts, rcu);
432 }
433 
434 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
435 {
436  struct qtag_prefix {
437  __be16 eth_type; /* ETH_P_8021Q */
438  __be16 tci;
439  };
440  struct qtag_prefix *qp;
441 
442  if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
443  return 0;
444 
445  if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
446  sizeof(__be16))))
447  return -ENOMEM;
448 
449  qp = (struct qtag_prefix *) skb->data;
450  key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
451  __skb_pull(skb, sizeof(struct qtag_prefix));
452 
453  return 0;
454 }
455 
456 static __be16 parse_ethertype(struct sk_buff *skb)
457 {
458  struct llc_snap_hdr {
459  u8 dsap; /* Always 0xAA */
460  u8 ssap; /* Always 0xAA */
461  u8 ctrl;
462  u8 oui[3];
464  };
465  struct llc_snap_hdr *llc;
466  __be16 proto;
467 
468  proto = *(__be16 *) skb->data;
469  __skb_pull(skb, sizeof(__be16));
470 
471  if (ntohs(proto) >= 1536)
472  return proto;
473 
474  if (skb->len < sizeof(struct llc_snap_hdr))
475  return htons(ETH_P_802_2);
476 
477  if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
478  return htons(0);
479 
480  llc = (struct llc_snap_hdr *) skb->data;
481  if (llc->dsap != LLC_SAP_SNAP ||
482  llc->ssap != LLC_SAP_SNAP ||
483  (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
484  return htons(ETH_P_802_2);
485 
486  __skb_pull(skb, sizeof(struct llc_snap_hdr));
487  return llc->ethertype;
488 }
489 
490 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
491  int *key_lenp, int nh_len)
492 {
493  struct icmp6hdr *icmp = icmp6_hdr(skb);
494  int error = 0;
495  int key_len;
496 
497  /* The ICMPv6 type and code fields use the 16-bit transport port
498  * fields, so we need to store them in 16-bit network byte order.
499  */
500  key->ipv6.tp.src = htons(icmp->icmp6_type);
501  key->ipv6.tp.dst = htons(icmp->icmp6_code);
502  key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
503 
504  if (icmp->icmp6_code == 0 &&
507  int icmp_len = skb->len - skb_transport_offset(skb);
508  struct nd_msg *nd;
509  int offset;
510 
511  key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
512 
513  /* In order to process neighbor discovery options, we need the
514  * entire packet.
515  */
516  if (unlikely(icmp_len < sizeof(*nd)))
517  goto out;
518  if (unlikely(skb_linearize(skb))) {
519  error = -ENOMEM;
520  goto out;
521  }
522 
523  nd = (struct nd_msg *)skb_transport_header(skb);
524  key->ipv6.nd.target = nd->target;
525  key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
526 
527  icmp_len -= sizeof(*nd);
528  offset = 0;
529  while (icmp_len >= 8) {
530  struct nd_opt_hdr *nd_opt =
531  (struct nd_opt_hdr *)(nd->opt + offset);
532  int opt_len = nd_opt->nd_opt_len * 8;
533 
534  if (unlikely(!opt_len || opt_len > icmp_len))
535  goto invalid;
536 
537  /* Store the link layer address if the appropriate
538  * option is provided. It is considered an error if
539  * the same link layer option is specified twice.
540  */
541  if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
542  && opt_len == 8) {
543  if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
544  goto invalid;
545  memcpy(key->ipv6.nd.sll,
546  &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
547  } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
548  && opt_len == 8) {
549  if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
550  goto invalid;
551  memcpy(key->ipv6.nd.tll,
552  &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
553  }
554 
555  icmp_len -= opt_len;
556  offset += opt_len;
557  }
558  }
559 
560  goto out;
561 
562 invalid:
563  memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
564  memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
565  memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
566 
567 out:
568  *key_lenp = key_len;
569  return error;
570 }
571 
596 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
597  int *key_lenp)
598 {
599  int error = 0;
600  int key_len = SW_FLOW_KEY_OFFSET(eth);
601  struct ethhdr *eth;
602 
603  memset(key, 0, sizeof(*key));
604 
605  key->phy.priority = skb->priority;
606  key->phy.in_port = in_port;
607 
608  skb_reset_mac_header(skb);
609 
610  /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
611  * header in the linear data area.
612  */
613  eth = eth_hdr(skb);
614  memcpy(key->eth.src, eth->h_source, ETH_ALEN);
615  memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
616 
617  __skb_pull(skb, 2 * ETH_ALEN);
618 
619  if (vlan_tx_tag_present(skb))
620  key->eth.tci = htons(skb->vlan_tci);
621  else if (eth->h_proto == htons(ETH_P_8021Q))
622  if (unlikely(parse_vlan(skb, key)))
623  return -ENOMEM;
624 
625  key->eth.type = parse_ethertype(skb);
626  if (unlikely(key->eth.type == htons(0)))
627  return -ENOMEM;
628 
629  skb_reset_network_header(skb);
630  __skb_push(skb, skb->data - skb_mac_header(skb));
631 
632  /* Network layer. */
633  if (key->eth.type == htons(ETH_P_IP)) {
634  struct iphdr *nh;
635  __be16 offset;
636 
637  key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
638 
639  error = check_iphdr(skb);
640  if (unlikely(error)) {
641  if (error == -EINVAL) {
642  skb->transport_header = skb->network_header;
643  error = 0;
644  }
645  goto out;
646  }
647 
648  nh = ip_hdr(skb);
649  key->ipv4.addr.src = nh->saddr;
650  key->ipv4.addr.dst = nh->daddr;
651 
652  key->ip.proto = nh->protocol;
653  key->ip.tos = nh->tos;
654  key->ip.ttl = nh->ttl;
655 
656  offset = nh->frag_off & htons(IP_OFFSET);
657  if (offset) {
658  key->ip.frag = OVS_FRAG_TYPE_LATER;
659  goto out;
660  }
661  if (nh->frag_off & htons(IP_MF) ||
662  skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
663  key->ip.frag = OVS_FRAG_TYPE_FIRST;
664 
665  /* Transport layer. */
666  if (key->ip.proto == IPPROTO_TCP) {
667  key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
668  if (tcphdr_ok(skb)) {
669  struct tcphdr *tcp = tcp_hdr(skb);
670  key->ipv4.tp.src = tcp->source;
671  key->ipv4.tp.dst = tcp->dest;
672  }
673  } else if (key->ip.proto == IPPROTO_UDP) {
674  key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
675  if (udphdr_ok(skb)) {
676  struct udphdr *udp = udp_hdr(skb);
677  key->ipv4.tp.src = udp->source;
678  key->ipv4.tp.dst = udp->dest;
679  }
680  } else if (key->ip.proto == IPPROTO_ICMP) {
681  key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
682  if (icmphdr_ok(skb)) {
683  struct icmphdr *icmp = icmp_hdr(skb);
684  /* The ICMP type and code fields use the 16-bit
685  * transport port fields, so we need to store
686  * them in 16-bit network byte order. */
687  key->ipv4.tp.src = htons(icmp->type);
688  key->ipv4.tp.dst = htons(icmp->code);
689  }
690  }
691 
692  } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
693  struct arp_eth_header *arp;
694 
695  arp = (struct arp_eth_header *)skb_network_header(skb);
696 
697  if (arp->ar_hrd == htons(ARPHRD_ETHER)
698  && arp->ar_pro == htons(ETH_P_IP)
699  && arp->ar_hln == ETH_ALEN
700  && arp->ar_pln == 4) {
701 
702  /* We only match on the lower 8 bits of the opcode. */
703  if (ntohs(arp->ar_op) <= 0xff)
704  key->ip.proto = ntohs(arp->ar_op);
705  memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
706  memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
707  memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
708  memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
709  key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
710  }
711  } else if (key->eth.type == htons(ETH_P_IPV6)) {
712  int nh_len; /* IPv6 Header + Extensions */
713 
714  nh_len = parse_ipv6hdr(skb, key, &key_len);
715  if (unlikely(nh_len < 0)) {
716  if (nh_len == -EINVAL)
717  skb->transport_header = skb->network_header;
718  else
719  error = nh_len;
720  goto out;
721  }
722 
723  if (key->ip.frag == OVS_FRAG_TYPE_LATER)
724  goto out;
725  if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
726  key->ip.frag = OVS_FRAG_TYPE_FIRST;
727 
728  /* Transport layer. */
729  if (key->ip.proto == NEXTHDR_TCP) {
730  key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
731  if (tcphdr_ok(skb)) {
732  struct tcphdr *tcp = tcp_hdr(skb);
733  key->ipv6.tp.src = tcp->source;
734  key->ipv6.tp.dst = tcp->dest;
735  }
736  } else if (key->ip.proto == NEXTHDR_UDP) {
737  key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
738  if (udphdr_ok(skb)) {
739  struct udphdr *udp = udp_hdr(skb);
740  key->ipv6.tp.src = udp->source;
741  key->ipv6.tp.dst = udp->dest;
742  }
743  } else if (key->ip.proto == NEXTHDR_ICMP) {
744  key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
745  if (icmp6hdr_ok(skb)) {
746  error = parse_icmpv6(skb, key, &key_len, nh_len);
747  if (error < 0)
748  goto out;
749  }
750  }
751  }
752 
753 out:
754  *key_lenp = key_len;
755  return error;
756 }
757 
758 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
759 {
760  return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
761 }
762 
763 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
764  struct sw_flow_key *key, int key_len)
765 {
766  struct sw_flow *flow;
767  struct hlist_node *n;
768  struct hlist_head *head;
769  u32 hash;
770 
771  hash = ovs_flow_hash(key, key_len);
772 
773  head = find_bucket(table, hash);
774  hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
775 
776  if (flow->hash == hash &&
777  !memcmp(&flow->key, key, key_len)) {
778  return flow;
779  }
780  }
781  return NULL;
782 }
783 
784 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
785 {
786  struct hlist_head *head;
787 
788  head = find_bucket(table, flow->hash);
789  hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
790  table->count++;
791 }
792 
793 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
794 {
795  hlist_del_rcu(&flow->hash_node[table->node_ver]);
796  table->count--;
797  BUG_ON(table->count < 0);
798 }
799 
800 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
801 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
802  [OVS_KEY_ATTR_ENCAP] = -1,
803  [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
804  [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
805  [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
806  [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
807  [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
808  [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
809  [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
810  [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
811  [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
812  [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
813  [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
814  [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
815  [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
816 };
817 
818 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
819  const struct nlattr *a[], u32 *attrs)
820 {
821  const struct ovs_key_icmp *icmp_key;
822  const struct ovs_key_tcp *tcp_key;
823  const struct ovs_key_udp *udp_key;
824 
825  switch (swkey->ip.proto) {
826  case IPPROTO_TCP:
827  if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
828  return -EINVAL;
829  *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
830 
831  *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
832  tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
833  swkey->ipv4.tp.src = tcp_key->tcp_src;
834  swkey->ipv4.tp.dst = tcp_key->tcp_dst;
835  break;
836 
837  case IPPROTO_UDP:
838  if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
839  return -EINVAL;
840  *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
841 
842  *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
843  udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
844  swkey->ipv4.tp.src = udp_key->udp_src;
845  swkey->ipv4.tp.dst = udp_key->udp_dst;
846  break;
847 
848  case IPPROTO_ICMP:
849  if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
850  return -EINVAL;
851  *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
852 
853  *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
854  icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
855  swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
856  swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
857  break;
858  }
859 
860  return 0;
861 }
862 
863 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
864  const struct nlattr *a[], u32 *attrs)
865 {
866  const struct ovs_key_icmpv6 *icmpv6_key;
867  const struct ovs_key_tcp *tcp_key;
868  const struct ovs_key_udp *udp_key;
869 
870  switch (swkey->ip.proto) {
871  case IPPROTO_TCP:
872  if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
873  return -EINVAL;
874  *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
875 
876  *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
877  tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
878  swkey->ipv6.tp.src = tcp_key->tcp_src;
879  swkey->ipv6.tp.dst = tcp_key->tcp_dst;
880  break;
881 
882  case IPPROTO_UDP:
883  if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
884  return -EINVAL;
885  *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
886 
887  *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
888  udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
889  swkey->ipv6.tp.src = udp_key->udp_src;
890  swkey->ipv6.tp.dst = udp_key->udp_dst;
891  break;
892 
893  case IPPROTO_ICMPV6:
894  if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
895  return -EINVAL;
896  *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
897 
898  *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
899  icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
900  swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
901  swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
902 
903  if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
904  swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
905  const struct ovs_key_nd *nd_key;
906 
907  if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
908  return -EINVAL;
909  *attrs &= ~(1 << OVS_KEY_ATTR_ND);
910 
911  *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
912  nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
913  memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
914  sizeof(swkey->ipv6.nd.target));
915  memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
916  memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
917  }
918  break;
919  }
920 
921  return 0;
922 }
923 
924 static int parse_flow_nlattrs(const struct nlattr *attr,
925  const struct nlattr *a[], u32 *attrsp)
926 {
927  const struct nlattr *nla;
928  u32 attrs;
929  int rem;
930 
931  attrs = 0;
932  nla_for_each_nested(nla, attr, rem) {
933  u16 type = nla_type(nla);
934  int expected_len;
935 
936  if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
937  return -EINVAL;
938 
939  expected_len = ovs_key_lens[type];
940  if (nla_len(nla) != expected_len && expected_len != -1)
941  return -EINVAL;
942 
943  attrs |= 1 << type;
944  a[type] = nla;
945  }
946  if (rem)
947  return -EINVAL;
948 
949  *attrsp = attrs;
950  return 0;
951 }
952 
960 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
961  const struct nlattr *attr)
962 {
963  const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
964  const struct ovs_key_ethernet *eth_key;
965  int key_len;
966  u32 attrs;
967  int err;
968 
969  memset(swkey, 0, sizeof(struct sw_flow_key));
970  key_len = SW_FLOW_KEY_OFFSET(eth);
971 
972  err = parse_flow_nlattrs(attr, a, &attrs);
973  if (err)
974  return err;
975 
976  /* Metadata attributes. */
977  if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
978  swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
979  attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
980  }
981  if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
982  u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
983  if (in_port >= DP_MAX_PORTS)
984  return -EINVAL;
985  swkey->phy.in_port = in_port;
986  attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
987  } else {
988  swkey->phy.in_port = DP_MAX_PORTS;
989  }
990 
991  /* Data attributes. */
992  if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
993  return -EINVAL;
994  attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
995 
996  eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
997  memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
998  memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
999 
1000  if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1001  nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1002  const struct nlattr *encap;
1003  __be16 tci;
1004 
1005  if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1006  (1 << OVS_KEY_ATTR_ETHERTYPE) |
1007  (1 << OVS_KEY_ATTR_ENCAP)))
1008  return -EINVAL;
1009 
1010  encap = a[OVS_KEY_ATTR_ENCAP];
1011  tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1012  if (tci & htons(VLAN_TAG_PRESENT)) {
1013  swkey->eth.tci = tci;
1014 
1015  err = parse_flow_nlattrs(encap, a, &attrs);
1016  if (err)
1017  return err;
1018  } else if (!tci) {
1019  /* Corner case for truncated 802.1Q header. */
1020  if (nla_len(encap))
1021  return -EINVAL;
1022 
1023  swkey->eth.type = htons(ETH_P_8021Q);
1024  *key_lenp = key_len;
1025  return 0;
1026  } else {
1027  return -EINVAL;
1028  }
1029  }
1030 
1031  if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1032  swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1033  if (ntohs(swkey->eth.type) < 1536)
1034  return -EINVAL;
1035  attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1036  } else {
1037  swkey->eth.type = htons(ETH_P_802_2);
1038  }
1039 
1040  if (swkey->eth.type == htons(ETH_P_IP)) {
1041  const struct ovs_key_ipv4 *ipv4_key;
1042 
1043  if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1044  return -EINVAL;
1045  attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1046 
1047  key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1048  ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1049  if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1050  return -EINVAL;
1051  swkey->ip.proto = ipv4_key->ipv4_proto;
1052  swkey->ip.tos = ipv4_key->ipv4_tos;
1053  swkey->ip.ttl = ipv4_key->ipv4_ttl;
1054  swkey->ip.frag = ipv4_key->ipv4_frag;
1055  swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1056  swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1057 
1058  if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1059  err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1060  if (err)
1061  return err;
1062  }
1063  } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1064  const struct ovs_key_ipv6 *ipv6_key;
1065 
1066  if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1067  return -EINVAL;
1068  attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1069 
1070  key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1071  ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1072  if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1073  return -EINVAL;
1074  swkey->ipv6.label = ipv6_key->ipv6_label;
1075  swkey->ip.proto = ipv6_key->ipv6_proto;
1076  swkey->ip.tos = ipv6_key->ipv6_tclass;
1077  swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1078  swkey->ip.frag = ipv6_key->ipv6_frag;
1079  memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1080  sizeof(swkey->ipv6.addr.src));
1081  memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1082  sizeof(swkey->ipv6.addr.dst));
1083 
1084  if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1085  err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1086  if (err)
1087  return err;
1088  }
1089  } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1090  const struct ovs_key_arp *arp_key;
1091 
1092  if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1093  return -EINVAL;
1094  attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1095 
1096  key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1097  arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1098  swkey->ipv4.addr.src = arp_key->arp_sip;
1099  swkey->ipv4.addr.dst = arp_key->arp_tip;
1100  if (arp_key->arp_op & htons(0xff00))
1101  return -EINVAL;
1102  swkey->ip.proto = ntohs(arp_key->arp_op);
1103  memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1104  memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1105  }
1106 
1107  if (attrs)
1108  return -EINVAL;
1109  *key_lenp = key_len;
1110 
1111  return 0;
1112 }
1113 
1126  const struct nlattr *attr)
1127 {
1128  const struct nlattr *nla;
1129  int rem;
1130 
1131  *in_port = DP_MAX_PORTS;
1132  *priority = 0;
1133 
1134  nla_for_each_nested(nla, attr, rem) {
1135  int type = nla_type(nla);
1136 
1137  if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1138  if (nla_len(nla) != ovs_key_lens[type])
1139  return -EINVAL;
1140 
1141  switch (type) {
1142  case OVS_KEY_ATTR_PRIORITY:
1143  *priority = nla_get_u32(nla);
1144  break;
1145 
1146  case OVS_KEY_ATTR_IN_PORT:
1147  if (nla_get_u32(nla) >= DP_MAX_PORTS)
1148  return -EINVAL;
1149  *in_port = nla_get_u32(nla);
1150  break;
1151  }
1152  }
1153  }
1154  if (rem)
1155  return -EINVAL;
1156  return 0;
1157 }
1158 
1159 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1160 {
1161  struct ovs_key_ethernet *eth_key;
1162  struct nlattr *nla, *encap;
1163 
1164  if (swkey->phy.priority &&
1165  nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
1166  goto nla_put_failure;
1167 
1168  if (swkey->phy.in_port != DP_MAX_PORTS &&
1169  nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
1170  goto nla_put_failure;
1171 
1172  nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1173  if (!nla)
1174  goto nla_put_failure;
1175  eth_key = nla_data(nla);
1176  memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1177  memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1178 
1179  if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1180  if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
1181  nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
1182  goto nla_put_failure;
1183  encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1184  if (!swkey->eth.tci)
1185  goto unencap;
1186  } else {
1187  encap = NULL;
1188  }
1189 
1190  if (swkey->eth.type == htons(ETH_P_802_2))
1191  goto unencap;
1192 
1193  if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
1194  goto nla_put_failure;
1195 
1196  if (swkey->eth.type == htons(ETH_P_IP)) {
1197  struct ovs_key_ipv4 *ipv4_key;
1198 
1199  nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1200  if (!nla)
1201  goto nla_put_failure;
1202  ipv4_key = nla_data(nla);
1203  ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1204  ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1205  ipv4_key->ipv4_proto = swkey->ip.proto;
1206  ipv4_key->ipv4_tos = swkey->ip.tos;
1207  ipv4_key->ipv4_ttl = swkey->ip.ttl;
1208  ipv4_key->ipv4_frag = swkey->ip.frag;
1209  } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1210  struct ovs_key_ipv6 *ipv6_key;
1211 
1212  nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1213  if (!nla)
1214  goto nla_put_failure;
1215  ipv6_key = nla_data(nla);
1216  memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1217  sizeof(ipv6_key->ipv6_src));
1218  memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1219  sizeof(ipv6_key->ipv6_dst));
1220  ipv6_key->ipv6_label = swkey->ipv6.label;
1221  ipv6_key->ipv6_proto = swkey->ip.proto;
1222  ipv6_key->ipv6_tclass = swkey->ip.tos;
1223  ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1224  ipv6_key->ipv6_frag = swkey->ip.frag;
1225  } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1226  struct ovs_key_arp *arp_key;
1227 
1228  nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1229  if (!nla)
1230  goto nla_put_failure;
1231  arp_key = nla_data(nla);
1232  memset(arp_key, 0, sizeof(struct ovs_key_arp));
1233  arp_key->arp_sip = swkey->ipv4.addr.src;
1234  arp_key->arp_tip = swkey->ipv4.addr.dst;
1235  arp_key->arp_op = htons(swkey->ip.proto);
1236  memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1237  memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1238  }
1239 
1240  if ((swkey->eth.type == htons(ETH_P_IP) ||
1241  swkey->eth.type == htons(ETH_P_IPV6)) &&
1242  swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1243 
1244  if (swkey->ip.proto == IPPROTO_TCP) {
1245  struct ovs_key_tcp *tcp_key;
1246 
1247  nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1248  if (!nla)
1249  goto nla_put_failure;
1250  tcp_key = nla_data(nla);
1251  if (swkey->eth.type == htons(ETH_P_IP)) {
1252  tcp_key->tcp_src = swkey->ipv4.tp.src;
1253  tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1254  } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1255  tcp_key->tcp_src = swkey->ipv6.tp.src;
1256  tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1257  }
1258  } else if (swkey->ip.proto == IPPROTO_UDP) {
1259  struct ovs_key_udp *udp_key;
1260 
1261  nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1262  if (!nla)
1263  goto nla_put_failure;
1264  udp_key = nla_data(nla);
1265  if (swkey->eth.type == htons(ETH_P_IP)) {
1266  udp_key->udp_src = swkey->ipv4.tp.src;
1267  udp_key->udp_dst = swkey->ipv4.tp.dst;
1268  } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1269  udp_key->udp_src = swkey->ipv6.tp.src;
1270  udp_key->udp_dst = swkey->ipv6.tp.dst;
1271  }
1272  } else if (swkey->eth.type == htons(ETH_P_IP) &&
1273  swkey->ip.proto == IPPROTO_ICMP) {
1274  struct ovs_key_icmp *icmp_key;
1275 
1276  nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1277  if (!nla)
1278  goto nla_put_failure;
1279  icmp_key = nla_data(nla);
1280  icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1281  icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1282  } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1283  swkey->ip.proto == IPPROTO_ICMPV6) {
1284  struct ovs_key_icmpv6 *icmpv6_key;
1285 
1286  nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1287  sizeof(*icmpv6_key));
1288  if (!nla)
1289  goto nla_put_failure;
1290  icmpv6_key = nla_data(nla);
1291  icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1292  icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1293 
1294  if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1295  icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1296  struct ovs_key_nd *nd_key;
1297 
1298  nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1299  if (!nla)
1300  goto nla_put_failure;
1301  nd_key = nla_data(nla);
1302  memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1303  sizeof(nd_key->nd_target));
1304  memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1305  memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1306  }
1307  }
1308  }
1309 
1310 unencap:
1311  if (encap)
1312  nla_nest_end(skb, encap);
1313 
1314  return 0;
1315 
1316 nla_put_failure:
1317  return -EMSGSIZE;
1318 }
1319 
1320 /* Initializes the flow module.
1321  * Returns zero if successful or a negative error code. */
1322 int ovs_flow_init(void)
1323 {
1324  flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1325  0, NULL);
1326  if (flow_cache == NULL)
1327  return -ENOMEM;
1328 
1329  return 0;
1330 }
1331 
1332 /* Uninitializes the flow module. */
1333 void ovs_flow_exit(void)
1334 {
1335  kmem_cache_destroy(flow_cache);
1336 }