Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
powertv_setup.c
Go to the documentation of this file.
1 /*
2  * Carsten Langgaard, [email protected]
3  * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
4  * Portions copyright (C) 2009 Cisco Systems, Inc.
5  *
6  * This program is free software; you can distribute it and/or modify it
7  * under the terms of the GNU General Public License (Version 2) as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
18  */
19 #include <linux/init.h>
20 #include <linux/sched.h>
21 #include <linux/ioport.h>
22 #include <linux/pci.h>
23 #include <linux/screen_info.h>
24 #include <linux/notifier.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/ctype.h>
28 #include <linux/cpu.h>
29 #include <linux/time.h>
30 
31 #include <asm/bootinfo.h>
32 #include <asm/irq.h>
34 #include <asm/mips-boards/prom.h>
35 #include <asm/dma.h>
36 #include <asm/asm.h>
37 #include <asm/traps.h>
38 #include <asm/asm-offsets.h>
39 #include "reset.h"
40 
41 #define VAL(n) STR(n)
42 
43 /*
44  * Macros for loading addresses and storing registers:
45  * LONG_L_ Stringified version of LONG_L for use in asm() statement
46  * LONG_S_ Stringified version of LONG_S for use in asm() statement
47  * PTR_LA_ Stringified version of PTR_LA for use in asm() statement
48  * REG_SIZE Number of 8-bit bytes in a full width register
49  */
50 #define LONG_L_ VAL(LONG_L) " "
51 #define LONG_S_ VAL(LONG_S) " "
52 #define PTR_LA_ VAL(PTR_LA) " "
53 
54 #ifdef CONFIG_64BIT
55 #warning TODO: 64-bit code needs to be verified
56 #define REG_SIZE "8" /* In bytes */
57 #endif
58 
59 #ifdef CONFIG_32BIT
60 #define REG_SIZE "4" /* In bytes */
61 #endif
62 
63 static void register_panic_notifier(void);
64 static int panic_handler(struct notifier_block *notifier_block,
65  unsigned long event, void *cause_string);
66 
67 const char *get_system_type(void)
68 {
69  return "PowerTV";
70 }
71 
73 {
74  panic_on_oops = 1;
75  register_panic_notifier();
76 
77 #if 0
79 #endif
81 }
82 
83 /*
84  * Install a panic notifier for platform-specific diagnostics
85  */
86 static void register_panic_notifier()
87 {
88  static struct notifier_block panic_notifier = {
89  .notifier_call = panic_handler,
90  .next = NULL,
91  .priority = INT_MAX
92  };
93  atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier);
94 }
95 
96 static int panic_handler(struct notifier_block *notifier_block,
97  unsigned long event, void *cause_string)
98 {
99  struct pt_regs my_regs;
100 
101  /* Save all of the registers */
102  {
103  unsigned long at, v0, v1; /* Must be on the stack */
104 
105  /* Start by saving $at and v0 on the stack. We use $at
106  * ourselves, but it looks like the compiler may use v0 or v1
107  * to load the address of the pt_regs structure. We'll come
108  * back later to store the registers in the pt_regs
109  * structure. */
110  __asm__ __volatile__ (
111  ".set noat\n"
112  LONG_S_ "$at, %[at]\n"
113  LONG_S_ "$2, %[v0]\n"
114  LONG_S_ "$3, %[v1]\n"
115  :
116  [at] "=m" (at),
117  [v0] "=m" (v0),
118  [v1] "=m" (v1)
119  :
120  : "at"
121  );
122 
123  __asm__ __volatile__ (
124  ".set noat\n"
125  "move $at, %[pt_regs]\n"
126 
127  /* Argument registers */
128  LONG_S_ "$4, " VAL(PT_R4) "($at)\n"
129  LONG_S_ "$5, " VAL(PT_R5) "($at)\n"
130  LONG_S_ "$6, " VAL(PT_R6) "($at)\n"
131  LONG_S_ "$7, " VAL(PT_R7) "($at)\n"
132 
133  /* Temporary regs */
134  LONG_S_ "$8, " VAL(PT_R8) "($at)\n"
135  LONG_S_ "$9, " VAL(PT_R9) "($at)\n"
136  LONG_S_ "$10, " VAL(PT_R10) "($at)\n"
137  LONG_S_ "$11, " VAL(PT_R11) "($at)\n"
138  LONG_S_ "$12, " VAL(PT_R12) "($at)\n"
139  LONG_S_ "$13, " VAL(PT_R13) "($at)\n"
140  LONG_S_ "$14, " VAL(PT_R14) "($at)\n"
141  LONG_S_ "$15, " VAL(PT_R15) "($at)\n"
142 
143  /* "Saved" registers */
144  LONG_S_ "$16, " VAL(PT_R16) "($at)\n"
145  LONG_S_ "$17, " VAL(PT_R17) "($at)\n"
146  LONG_S_ "$18, " VAL(PT_R18) "($at)\n"
147  LONG_S_ "$19, " VAL(PT_R19) "($at)\n"
148  LONG_S_ "$20, " VAL(PT_R20) "($at)\n"
149  LONG_S_ "$21, " VAL(PT_R21) "($at)\n"
150  LONG_S_ "$22, " VAL(PT_R22) "($at)\n"
151  LONG_S_ "$23, " VAL(PT_R23) "($at)\n"
152 
153  /* Add'l temp regs */
154  LONG_S_ "$24, " VAL(PT_R24) "($at)\n"
155  LONG_S_ "$25, " VAL(PT_R25) "($at)\n"
156 
157  /* Kernel temp regs */
158  LONG_S_ "$26, " VAL(PT_R26) "($at)\n"
159  LONG_S_ "$27, " VAL(PT_R27) "($at)\n"
160 
161  /* Global pointer, stack pointer, frame pointer and
162  * return address */
163  LONG_S_ "$gp, " VAL(PT_R28) "($at)\n"
164  LONG_S_ "$sp, " VAL(PT_R29) "($at)\n"
165  LONG_S_ "$fp, " VAL(PT_R30) "($at)\n"
166  LONG_S_ "$ra, " VAL(PT_R31) "($at)\n"
167 
168  /* Now we can get the $at and v0 registers back and
169  * store them */
170  LONG_L_ "$8, %[at]\n"
171  LONG_S_ "$8, " VAL(PT_R1) "($at)\n"
172  LONG_L_ "$8, %[v0]\n"
173  LONG_S_ "$8, " VAL(PT_R2) "($at)\n"
174  LONG_L_ "$8, %[v1]\n"
175  LONG_S_ "$8, " VAL(PT_R3) "($at)\n"
176  :
177  :
178  [at] "m" (at),
179  [v0] "m" (v0),
180  [v1] "m" (v1),
181  [pt_regs] "r" (&my_regs)
182  : "at", "t0"
183  );
184 
185  /* Set the current EPC value to be the current location in this
186  * function */
187  __asm__ __volatile__ (
188  ".set noat\n"
189  "1:\n"
190  PTR_LA_ "$at, 1b\n"
191  LONG_S_ "$at, %[cp0_epc]\n"
192  :
193  [cp0_epc] "=m" (my_regs.cp0_epc)
194  :
195  : "at"
196  );
197 
198  my_regs.cp0_cause = read_c0_cause();
199  my_regs.cp0_status = read_c0_status();
200  }
201 
202  pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... "
203  "zzzz... \n");
204 
205  return NOTIFY_DONE;
206 }
207 
208 /* Information about the RF MAC address, if one was supplied on the
209  * command line. */
210 static bool have_rfmac;
211 static u8 rfmac[ETH_ALEN];
212 
213 static int rfmac_param(char *p)
214 {
215  u8 *q;
216  bool is_high_nibble;
217  int c;
218 
219  /* Skip a leading "0x", if present */
220  if (*p == '0' && *(p+1) == 'x')
221  p += 2;
222 
223  q = rfmac;
224  is_high_nibble = true;
225 
226  for (c = (unsigned char) *p++;
227  isxdigit(c) && q - rfmac < ETH_ALEN;
228  c = (unsigned char) *p++) {
229  int nibble;
230 
231  nibble = (isdigit(c) ? (c - '0') :
232  (isupper(c) ? c - 'A' + 10 : c - 'a' + 10));
233 
234  if (is_high_nibble)
235  *q = nibble << 4;
236  else
237  *q++ |= nibble;
238 
239  is_high_nibble = !is_high_nibble;
240  }
241 
242  /* If we parsed all the way to the end of the parameter value and
243  * parsed all ETH_ALEN bytes, we have a usable RF MAC address */
244  have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN);
245 
246  return 0;
247 }
248 
249 early_param("rfmac", rfmac_param);
250 
251 /*
252  * Generate an Ethernet MAC address that has a good chance of being unique.
253  * @addr: Pointer to six-byte array containing the Ethernet address
254  * Generates an Ethernet MAC address that is highly likely to be unique for
255  * this particular system on a network with other systems of the same type.
256  *
257  * The problem we are solving is that, when eth_random_addr() is used to
258  * generate MAC addresses at startup, there isn't much entropy for the random
259  * number generator to use and the addresses it produces are fairly likely to
260  * be the same as those of other identical systems on the same local network.
261  * This is true even for relatively small numbers of systems (for the reason
262  * why, see the Wikipedia entry for "Birthday problem" at:
263  * http://en.wikipedia.org/wiki/Birthday_problem
264  *
265  * The good news is that we already have a MAC address known to be unique, the
266  * RF MAC address. The bad news is that this address is already in use on the
267  * RF interface. Worse, the obvious trick, taking the RF MAC address and
268  * turning on the locally managed bit, has already been used for other devices.
269  * Still, this does give us something to work with.
270  *
271  * The approach we take is:
272  * 1. If we can't get the RF MAC Address, just call eth_random_addr.
273  * 2. Use the 24-bit NIC-specific bits of the RF MAC address as the last 24
274  * bits of the new address. This is very likely to be unique, except for
275  * the current box.
276  * 3. To avoid using addresses already on the current box, we set the top
277  * six bits of the address with a value different from any currently
278  * registered Scientific Atlanta organizationally unique identifyer
279  * (OUI). This avoids duplication with any addresses on the system that
280  * were generated from valid Scientific Atlanta-registered address by
281  * simply flipping the locally managed bit.
282  * 4. We aren't generating a multicast address, so we leave the multicast
283  * bit off. Since we aren't using a registered address, we have to set
284  * the locally managed bit.
285  * 5. We then randomly generate the remaining 16-bits. This does two
286  * things:
287  * a. It allows us to call this function for more than one device
288  * in this system
289  * b. It ensures that things will probably still work even if
290  * some device on the device network has a locally managed
291  * address that matches the top six bits from step 2.
292  */
294 {
295  const int num_random_bytes = 2;
296  const unsigned char non_sciatl_oui_bits = 0xc0u;
297  const unsigned char mac_addr_locally_managed = (1 << 1);
298 
299  if (!have_rfmac) {
300  pr_warning("rfmac not available on command line; "
301  "generating random MAC address\n");
302  eth_random_addr(addr);
303  }
304 
305  else {
306  int i;
307 
308  /* Set the first byte to something that won't match a Scientific
309  * Atlanta OUI, is locally managed, and isn't a multicast
310  * address */
311  addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed;
312 
313  /* Get some bytes of random address information */
314  get_random_bytes(&addr[1], num_random_bytes);
315 
316  /* Copy over the NIC-specific bits of the RF MAC address */
317  for (i = 1 + num_random_bytes; i < ETH_ALEN; i++)
318  addr[i] = rfmac[i];
319  }
320 }