Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rcutree.c
Go to the documentation of this file.
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <[email protected]>
21  * Manfred Spraul <[email protected]>
22  * Paul E. McKenney <[email protected]> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <[email protected]>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  * Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59 
60 #include "rcu.h"
61 
62 /* Data structures. */
63 
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66 
67 #define RCU_STATE_INITIALIZER(sname, cr) { \
68  .level = { &sname##_state.node[0] }, \
69  .call = cr, \
70  .fqs_state = RCU_GP_IDLE, \
71  .gpnum = -300, \
72  .completed = -300, \
73  .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
74  .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75  .orphan_donetail = &sname##_state.orphan_donelist, \
76  .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77  .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78  .name = #sname, \
79 }
80 
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84 
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87 
88 static struct rcu_state *rcu_state;
89 LIST_HEAD(rcu_struct_flavors);
90 
91 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93 module_param(rcu_fanout_leaf, int, 0444);
95 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
101 };
102 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103 
104 /*
105  * The rcu_scheduler_active variable transitions from zero to one just
106  * before the first task is spawned. So when this variable is zero, RCU
107  * can assume that there is but one task, allowing RCU to (for example)
108  * optimized synchronize_sched() to a simple barrier(). When this variable
109  * is one, RCU must actually do all the hard work required to detect real
110  * grace periods. This variable is also used to suppress boot-time false
111  * positives from lockdep-RCU error checking.
112  */
113 int rcu_scheduler_active __read_mostly;
114 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115 
116 /*
117  * The rcu_scheduler_fully_active variable transitions from zero to one
118  * during the early_initcall() processing, which is after the scheduler
119  * is capable of creating new tasks. So RCU processing (for example,
120  * creating tasks for RCU priority boosting) must be delayed until after
121  * rcu_scheduler_fully_active transitions from zero to one. We also
122  * currently delay invocation of any RCU callbacks until after this point.
123  *
124  * It might later prove better for people registering RCU callbacks during
125  * early boot to take responsibility for these callbacks, but one step at
126  * a time.
127  */
128 static int rcu_scheduler_fully_active __read_mostly;
129 
130 #ifdef CONFIG_RCU_BOOST
131 
132 /*
133  * Control variables for per-CPU and per-rcu_node kthreads. These
134  * handle all flavors of RCU.
135  */
136 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139 DEFINE_PER_CPU(char, rcu_cpu_has_work);
140 
141 #endif /* #ifdef CONFIG_RCU_BOOST */
142 
143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 static void invoke_rcu_core(void);
145 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146 
147 /*
148  * Track the rcutorture test sequence number and the update version
149  * number within a given test. The rcutorture_testseq is incremented
150  * on every rcutorture module load and unload, so has an odd value
151  * when a test is running. The rcutorture_vernum is set to zero
152  * when rcutorture starts and is incremented on each rcutorture update.
153  * These variables enable correlating rcutorture output with the
154  * RCU tracing information.
155  */
156 unsigned long rcutorture_testseq;
157 unsigned long rcutorture_vernum;
158 
159 /*
160  * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161  * permit this function to be invoked without holding the root rcu_node
162  * structure's ->lock, but of course results can be subject to change.
163  */
164 static int rcu_gp_in_progress(struct rcu_state *rsp)
165 {
166  return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167 }
168 
169 /*
170  * Note a quiescent state. Because we do not need to know
171  * how many quiescent states passed, just if there was at least
172  * one since the start of the grace period, this just sets a flag.
173  * The caller must have disabled preemption.
174  */
175 void rcu_sched_qs(int cpu)
176 {
177  struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178 
179  if (rdp->passed_quiesce == 0)
180  trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181  rdp->passed_quiesce = 1;
182 }
183 
184 void rcu_bh_qs(int cpu)
185 {
186  struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187 
188  if (rdp->passed_quiesce == 0)
189  trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190  rdp->passed_quiesce = 1;
191 }
192 
193 /*
194  * Note a context switch. This is a quiescent state for RCU-sched,
195  * and requires special handling for preemptible RCU.
196  * The caller must have disabled preemption.
197  */
199 {
200  trace_rcu_utilization("Start context switch");
201  rcu_sched_qs(cpu);
203  trace_rcu_utilization("End context switch");
204 }
205 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206 
208  .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209  .dynticks = ATOMIC_INIT(1),
210 #if defined(CONFIG_RCU_USER_QS) && !defined(CONFIG_RCU_USER_QS_FORCE)
211  .ignore_user_qs = true,
212 #endif
213 };
214 
215 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
216 static long qhimark = 10000; /* If this many pending, ignore blimit. */
217 static long qlowmark = 100; /* Once only this many pending, use blimit. */
218 
219 module_param(blimit, long, 0444);
220 module_param(qhimark, long, 0444);
221 module_param(qlowmark, long, 0444);
222 
223 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225 
226 module_param(rcu_cpu_stall_suppress, int, 0644);
227 module_param(rcu_cpu_stall_timeout, int, 0644);
228 
229 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
230 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
231 
232 module_param(jiffies_till_first_fqs, ulong, 0644);
233 module_param(jiffies_till_next_fqs, ulong, 0644);
234 
235 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
236 static void force_quiescent_state(struct rcu_state *rsp);
237 static int rcu_pending(int cpu);
238 
239 /*
240  * Return the number of RCU-sched batches processed thus far for debug & stats.
241  */
243 {
244  return rcu_sched_state.completed;
245 }
247 
248 /*
249  * Return the number of RCU BH batches processed thus far for debug & stats.
250  */
252 {
253  return rcu_bh_state.completed;
254 }
255 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
256 
257 /*
258  * Force a quiescent state for RCU BH.
259  */
261 {
262  force_quiescent_state(&rcu_bh_state);
263 }
264 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
265 
266 /*
267  * Record the number of times rcutorture tests have been initiated and
268  * terminated. This information allows the debugfs tracing stats to be
269  * correlated to the rcutorture messages, even when the rcutorture module
270  * is being repeatedly loaded and unloaded. In other words, we cannot
271  * store this state in rcutorture itself.
272  */
274 {
276  rcutorture_vernum = 0;
277 }
279 
280 /*
281  * Record the number of writer passes through the current rcutorture test.
282  * This is also used to correlate debugfs tracing stats with the rcutorture
283  * messages.
284  */
285 void rcutorture_record_progress(unsigned long vernum)
286 {
288 }
290 
291 /*
292  * Force a quiescent state for RCU-sched.
293  */
295 {
296  force_quiescent_state(&rcu_sched_state);
297 }
298 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
299 
300 /*
301  * Does the CPU have callbacks ready to be invoked?
302  */
303 static int
304 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
305 {
306  return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
307 }
308 
309 /*
310  * Does the current CPU require a yet-as-unscheduled grace period?
311  */
312 static int
313 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
314 {
315  return *rdp->nxttail[RCU_DONE_TAIL +
316  ACCESS_ONCE(rsp->completed) != rdp->completed] &&
317  !rcu_gp_in_progress(rsp);
318 }
319 
320 /*
321  * Return the root node of the specified rcu_state structure.
322  */
323 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
324 {
325  return &rsp->node[0];
326 }
327 
328 /*
329  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
330  *
331  * If the new value of the ->dynticks_nesting counter now is zero,
332  * we really have entered idle, and must do the appropriate accounting.
333  * The caller must have disabled interrupts.
334  */
335 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
336  bool user)
337 {
338  trace_rcu_dyntick("Start", oldval, 0);
339  if (!user && !is_idle_task(current)) {
341 
342  trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
344  WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
345  current->pid, current->comm,
346  idle->pid, idle->comm); /* must be idle task! */
347  }
348  rcu_prepare_for_idle(smp_processor_id());
349  /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
350  smp_mb__before_atomic_inc(); /* See above. */
351  atomic_inc(&rdtp->dynticks);
352  smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
353  WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
354 
355  /*
356  * It is illegal to enter an extended quiescent state while
357  * in an RCU read-side critical section.
358  */
359  rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
360  "Illegal idle entry in RCU read-side critical section.");
361  rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
362  "Illegal idle entry in RCU-bh read-side critical section.");
363  rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
364  "Illegal idle entry in RCU-sched read-side critical section.");
365 }
366 
367 /*
368  * Enter an RCU extended quiescent state, which can be either the
369  * idle loop or adaptive-tickless usermode execution.
370  */
371 static void rcu_eqs_enter(bool user)
372 {
373  long long oldval;
374  struct rcu_dynticks *rdtp;
375 
376  rdtp = &__get_cpu_var(rcu_dynticks);
377  oldval = rdtp->dynticks_nesting;
378  WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
380  rdtp->dynticks_nesting = 0;
381  else
383  rcu_eqs_enter_common(rdtp, oldval, user);
384 }
385 
398 void rcu_idle_enter(void)
399 {
400  unsigned long flags;
401 
402  local_irq_save(flags);
403  rcu_eqs_enter(false);
404  local_irq_restore(flags);
405 }
407 
408 #ifdef CONFIG_RCU_USER_QS
409 
417 void rcu_user_enter(void)
418 {
419  unsigned long flags;
420  struct rcu_dynticks *rdtp;
421 
422  /*
423  * Some contexts may involve an exception occuring in an irq,
424  * leading to that nesting:
425  * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
426  * This would mess up the dyntick_nesting count though. And rcu_irq_*()
427  * helpers are enough to protect RCU uses inside the exception. So
428  * just return immediately if we detect we are in an IRQ.
429  */
430  if (in_interrupt())
431  return;
432 
433  WARN_ON_ONCE(!current->mm);
434 
435  local_irq_save(flags);
436  rdtp = &__get_cpu_var(rcu_dynticks);
437  if (!rdtp->ignore_user_qs && !rdtp->in_user) {
438  rdtp->in_user = true;
439  rcu_eqs_enter(true);
440  }
441  local_irq_restore(flags);
442 }
443 
452 void rcu_user_enter_after_irq(void)
453 {
454  unsigned long flags;
455  struct rcu_dynticks *rdtp;
456 
457  local_irq_save(flags);
458  rdtp = &__get_cpu_var(rcu_dynticks);
459  /* Ensure this irq is interrupting a non-idle RCU state. */
461  rdtp->dynticks_nesting = 1;
462  local_irq_restore(flags);
463 }
464 #endif /* CONFIG_RCU_USER_QS */
465 
482 void rcu_irq_exit(void)
483 {
484  unsigned long flags;
485  long long oldval;
486  struct rcu_dynticks *rdtp;
487 
488  local_irq_save(flags);
489  rdtp = &__get_cpu_var(rcu_dynticks);
490  oldval = rdtp->dynticks_nesting;
491  rdtp->dynticks_nesting--;
492  WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
493  if (rdtp->dynticks_nesting)
494  trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
495  else
496  rcu_eqs_enter_common(rdtp, oldval, true);
497  local_irq_restore(flags);
498 }
499 
500 /*
501  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
502  *
503  * If the new value of the ->dynticks_nesting counter was previously zero,
504  * we really have exited idle, and must do the appropriate accounting.
505  * The caller must have disabled interrupts.
506  */
507 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
508  int user)
509 {
510  smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
511  atomic_inc(&rdtp->dynticks);
512  /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
513  smp_mb__after_atomic_inc(); /* See above. */
514  WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
515  rcu_cleanup_after_idle(smp_processor_id());
516  trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
517  if (!user && !is_idle_task(current)) {
518  struct task_struct *idle = idle_task(smp_processor_id());
519 
520  trace_rcu_dyntick("Error on exit: not idle task",
521  oldval, rdtp->dynticks_nesting);
523  WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
524  current->pid, current->comm,
525  idle->pid, idle->comm); /* must be idle task! */
526  }
527 }
528 
529 /*
530  * Exit an RCU extended quiescent state, which can be either the
531  * idle loop or adaptive-tickless usermode execution.
532  */
533 static void rcu_eqs_exit(bool user)
534 {
535  struct rcu_dynticks *rdtp;
536  long long oldval;
537 
538  rdtp = &__get_cpu_var(rcu_dynticks);
539  oldval = rdtp->dynticks_nesting;
540  WARN_ON_ONCE(oldval < 0);
541  if (oldval & DYNTICK_TASK_NEST_MASK)
543  else
545  rcu_eqs_exit_common(rdtp, oldval, user);
546 }
547 
559 void rcu_idle_exit(void)
560 {
561  unsigned long flags;
562 
563  local_irq_save(flags);
564  rcu_eqs_exit(false);
565  local_irq_restore(flags);
566 }
568 
569 #ifdef CONFIG_RCU_USER_QS
570 
576 void rcu_user_exit(void)
577 {
578  unsigned long flags;
579  struct rcu_dynticks *rdtp;
580 
581  /*
582  * Some contexts may involve an exception occuring in an irq,
583  * leading to that nesting:
584  * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
585  * This would mess up the dyntick_nesting count though. And rcu_irq_*()
586  * helpers are enough to protect RCU uses inside the exception. So
587  * just return immediately if we detect we are in an IRQ.
588  */
589  if (in_interrupt())
590  return;
591 
592  local_irq_save(flags);
593  rdtp = &__get_cpu_var(rcu_dynticks);
594  if (rdtp->in_user) {
595  rdtp->in_user = false;
596  rcu_eqs_exit(true);
597  }
598  local_irq_restore(flags);
599 }
600 
610 void rcu_user_exit_after_irq(void)
611 {
612  unsigned long flags;
613  struct rcu_dynticks *rdtp;
614 
615  local_irq_save(flags);
616  rdtp = &__get_cpu_var(rcu_dynticks);
617  /* Ensure we are interrupting an RCU idle mode. */
620  local_irq_restore(flags);
621 }
622 #endif /* CONFIG_RCU_USER_QS */
623 
643 void rcu_irq_enter(void)
644 {
645  unsigned long flags;
646  struct rcu_dynticks *rdtp;
647  long long oldval;
648 
649  local_irq_save(flags);
650  rdtp = &__get_cpu_var(rcu_dynticks);
651  oldval = rdtp->dynticks_nesting;
652  rdtp->dynticks_nesting++;
653  WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
654  if (oldval)
655  trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
656  else
657  rcu_eqs_exit_common(rdtp, oldval, true);
658  local_irq_restore(flags);
659 }
660 
668 void rcu_nmi_enter(void)
669 {
670  struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
671 
672  if (rdtp->dynticks_nmi_nesting == 0 &&
673  (atomic_read(&rdtp->dynticks) & 0x1))
674  return;
675  rdtp->dynticks_nmi_nesting++;
676  smp_mb__before_atomic_inc(); /* Force delay from prior write. */
677  atomic_inc(&rdtp->dynticks);
678  /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
679  smp_mb__after_atomic_inc(); /* See above. */
680  WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
681 }
682 
690 void rcu_nmi_exit(void)
691 {
692  struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
693 
694  if (rdtp->dynticks_nmi_nesting == 0 ||
695  --rdtp->dynticks_nmi_nesting != 0)
696  return;
697  /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
698  smp_mb__before_atomic_inc(); /* See above. */
699  atomic_inc(&rdtp->dynticks);
700  smp_mb__after_atomic_inc(); /* Force delay to next write. */
701  WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
702 }
703 
711 {
712  int ret;
713 
714  preempt_disable();
715  ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
716  preempt_enable();
717  return ret;
718 }
720 
721 #ifdef CONFIG_RCU_USER_QS
722 void rcu_user_hooks_switch(struct task_struct *prev,
723  struct task_struct *next)
724 {
725  struct rcu_dynticks *rdtp;
726 
727  /* Interrupts are disabled in context switch */
728  rdtp = &__get_cpu_var(rcu_dynticks);
729  if (!rdtp->ignore_user_qs) {
730  clear_tsk_thread_flag(prev, TIF_NOHZ);
731  set_tsk_thread_flag(next, TIF_NOHZ);
732  }
733 }
734 #endif /* #ifdef CONFIG_RCU_USER_QS */
735 
736 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
737 
738 /*
739  * Is the current CPU online? Disable preemption to avoid false positives
740  * that could otherwise happen due to the current CPU number being sampled,
741  * this task being preempted, its old CPU being taken offline, resuming
742  * on some other CPU, then determining that its old CPU is now offline.
743  * It is OK to use RCU on an offline processor during initial boot, hence
744  * the check for rcu_scheduler_fully_active. Note also that it is OK
745  * for a CPU coming online to use RCU for one jiffy prior to marking itself
746  * online in the cpu_online_mask. Similarly, it is OK for a CPU going
747  * offline to continue to use RCU for one jiffy after marking itself
748  * offline in the cpu_online_mask. This leniency is necessary given the
749  * non-atomic nature of the online and offline processing, for example,
750  * the fact that a CPU enters the scheduler after completing the CPU_DYING
751  * notifiers.
752  *
753  * This is also why RCU internally marks CPUs online during the
754  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
755  *
756  * Disable checking if in an NMI handler because we cannot safely report
757  * errors from NMI handlers anyway.
758  */
759 bool rcu_lockdep_current_cpu_online(void)
760 {
761  struct rcu_data *rdp;
762  struct rcu_node *rnp;
763  bool ret;
764 
765  if (in_nmi())
766  return 1;
767  preempt_disable();
768  rdp = &__get_cpu_var(rcu_sched_data);
769  rnp = rdp->mynode;
770  ret = (rdp->grpmask & rnp->qsmaskinit) ||
771  !rcu_scheduler_fully_active;
772  preempt_enable();
773  return ret;
774 }
775 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
776 
777 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
778 
787 {
788  return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
789 }
790 
791 /*
792  * Snapshot the specified CPU's dynticks counter so that we can later
793  * credit them with an implicit quiescent state. Return 1 if this CPU
794  * is in dynticks idle mode, which is an extended quiescent state.
795  */
796 static int dyntick_save_progress_counter(struct rcu_data *rdp)
797 {
798  rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
799  return (rdp->dynticks_snap & 0x1) == 0;
800 }
801 
802 /*
803  * Return true if the specified CPU has passed through a quiescent
804  * state by virtue of being in or having passed through an dynticks
805  * idle state since the last call to dyntick_save_progress_counter()
806  * for this same CPU, or by virtue of having been offline.
807  */
808 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
809 {
810  unsigned int curr;
811  unsigned int snap;
812 
813  curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
814  snap = (unsigned int)rdp->dynticks_snap;
815 
816  /*
817  * If the CPU passed through or entered a dynticks idle phase with
818  * no active irq/NMI handlers, then we can safely pretend that the CPU
819  * already acknowledged the request to pass through a quiescent
820  * state. Either way, that CPU cannot possibly be in an RCU
821  * read-side critical section that started before the beginning
822  * of the current RCU grace period.
823  */
824  if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
825  trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
826  rdp->dynticks_fqs++;
827  return 1;
828  }
829 
830  /*
831  * Check for the CPU being offline, but only if the grace period
832  * is old enough. We don't need to worry about the CPU changing
833  * state: If we see it offline even once, it has been through a
834  * quiescent state.
835  *
836  * The reason for insisting that the grace period be at least
837  * one jiffy old is that CPUs that are not quite online and that
838  * have just gone offline can still execute RCU read-side critical
839  * sections.
840  */
841  if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
842  return 0; /* Grace period is not old enough. */
843  barrier();
844  if (cpu_is_offline(rdp->cpu)) {
845  trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
846  rdp->offline_fqs++;
847  return 1;
848  }
849  return 0;
850 }
851 
852 static int jiffies_till_stall_check(void)
853 {
854  int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
855 
856  /*
857  * Limit check must be consistent with the Kconfig limits
858  * for CONFIG_RCU_CPU_STALL_TIMEOUT.
859  */
860  if (till_stall_check < 3) {
861  ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
862  till_stall_check = 3;
863  } else if (till_stall_check > 300) {
864  ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
865  till_stall_check = 300;
866  }
867  return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
868 }
869 
870 static void record_gp_stall_check_time(struct rcu_state *rsp)
871 {
872  rsp->gp_start = jiffies;
873  rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
874 }
875 
876 static void print_other_cpu_stall(struct rcu_state *rsp)
877 {
878  int cpu;
879  long delta;
880  unsigned long flags;
881  int ndetected = 0;
882  struct rcu_node *rnp = rcu_get_root(rsp);
883 
884  /* Only let one CPU complain about others per time interval. */
885 
886  raw_spin_lock_irqsave(&rnp->lock, flags);
887  delta = jiffies - rsp->jiffies_stall;
888  if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
889  raw_spin_unlock_irqrestore(&rnp->lock, flags);
890  return;
891  }
892  rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
893  raw_spin_unlock_irqrestore(&rnp->lock, flags);
894 
895  /*
896  * OK, time to rat on our buddy...
897  * See Documentation/RCU/stallwarn.txt for info on how to debug
898  * RCU CPU stall warnings.
899  */
900  printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
901  rsp->name);
902  print_cpu_stall_info_begin();
903  rcu_for_each_leaf_node(rsp, rnp) {
904  raw_spin_lock_irqsave(&rnp->lock, flags);
905  ndetected += rcu_print_task_stall(rnp);
906  if (rnp->qsmask != 0) {
907  for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
908  if (rnp->qsmask & (1UL << cpu)) {
909  print_cpu_stall_info(rsp,
910  rnp->grplo + cpu);
911  ndetected++;
912  }
913  }
914  raw_spin_unlock_irqrestore(&rnp->lock, flags);
915  }
916 
917  /*
918  * Now rat on any tasks that got kicked up to the root rcu_node
919  * due to CPU offlining.
920  */
921  rnp = rcu_get_root(rsp);
922  raw_spin_lock_irqsave(&rnp->lock, flags);
923  ndetected += rcu_print_task_stall(rnp);
924  raw_spin_unlock_irqrestore(&rnp->lock, flags);
925 
926  print_cpu_stall_info_end();
927  printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
928  smp_processor_id(), (long)(jiffies - rsp->gp_start));
929  if (ndetected == 0)
930  printk(KERN_ERR "INFO: Stall ended before state dump start\n");
931  else if (!trigger_all_cpu_backtrace())
932  dump_stack();
933 
934  /* Complain about tasks blocking the grace period. */
935 
936  rcu_print_detail_task_stall(rsp);
937 
938  force_quiescent_state(rsp); /* Kick them all. */
939 }
940 
941 static void print_cpu_stall(struct rcu_state *rsp)
942 {
943  unsigned long flags;
944  struct rcu_node *rnp = rcu_get_root(rsp);
945 
946  /*
947  * OK, time to rat on ourselves...
948  * See Documentation/RCU/stallwarn.txt for info on how to debug
949  * RCU CPU stall warnings.
950  */
951  printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
952  print_cpu_stall_info_begin();
953  print_cpu_stall_info(rsp, smp_processor_id());
954  print_cpu_stall_info_end();
955  printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
956  if (!trigger_all_cpu_backtrace())
957  dump_stack();
958 
959  raw_spin_lock_irqsave(&rnp->lock, flags);
960  if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
961  rsp->jiffies_stall = jiffies +
962  3 * jiffies_till_stall_check() + 3;
963  raw_spin_unlock_irqrestore(&rnp->lock, flags);
964 
965  set_need_resched(); /* kick ourselves to get things going. */
966 }
967 
968 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
969 {
970  unsigned long j;
971  unsigned long js;
972  struct rcu_node *rnp;
973 
974  if (rcu_cpu_stall_suppress)
975  return;
976  j = ACCESS_ONCE(jiffies);
977  js = ACCESS_ONCE(rsp->jiffies_stall);
978  rnp = rdp->mynode;
979  if (rcu_gp_in_progress(rsp) &&
980  (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
981 
982  /* We haven't checked in, so go dump stack. */
983  print_cpu_stall(rsp);
984 
985  } else if (rcu_gp_in_progress(rsp) &&
987 
988  /* They had a few time units to dump stack, so complain. */
989  print_other_cpu_stall(rsp);
990  }
991 }
992 
993 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
994 {
995  rcu_cpu_stall_suppress = 1;
996  return NOTIFY_DONE;
997 }
998 
1009 {
1010  struct rcu_state *rsp;
1011 
1012  for_each_rcu_flavor(rsp)
1013  rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1014 }
1015 
1016 static struct notifier_block rcu_panic_block = {
1017  .notifier_call = rcu_panic,
1018 };
1019 
1020 static void __init check_cpu_stall_init(void)
1021 {
1022  atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
1023 }
1024 
1025 /*
1026  * Update CPU-local rcu_data state to record the newly noticed grace period.
1027  * This is used both when we started the grace period and when we notice
1028  * that someone else started the grace period. The caller must hold the
1029  * ->lock of the leaf rcu_node structure corresponding to the current CPU,
1030  * and must have irqs disabled.
1031  */
1032 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1033 {
1034  if (rdp->gpnum != rnp->gpnum) {
1035  /*
1036  * If the current grace period is waiting for this CPU,
1037  * set up to detect a quiescent state, otherwise don't
1038  * go looking for one.
1039  */
1040  rdp->gpnum = rnp->gpnum;
1041  trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1042  rdp->passed_quiesce = 0;
1043  rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1044  zero_cpu_stall_ticks(rdp);
1045  }
1046 }
1047 
1048 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1049 {
1050  unsigned long flags;
1051  struct rcu_node *rnp;
1052 
1053  local_irq_save(flags);
1054  rnp = rdp->mynode;
1055  if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1056  !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1057  local_irq_restore(flags);
1058  return;
1059  }
1060  __note_new_gpnum(rsp, rnp, rdp);
1061  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1062 }
1063 
1064 /*
1065  * Did someone else start a new RCU grace period start since we last
1066  * checked? Update local state appropriately if so. Must be called
1067  * on the CPU corresponding to rdp.
1068  */
1069 static int
1070 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1071 {
1072  unsigned long flags;
1073  int ret = 0;
1074 
1075  local_irq_save(flags);
1076  if (rdp->gpnum != rsp->gpnum) {
1077  note_new_gpnum(rsp, rdp);
1078  ret = 1;
1079  }
1080  local_irq_restore(flags);
1081  return ret;
1082 }
1083 
1084 /*
1085  * Initialize the specified rcu_data structure's callback list to empty.
1086  */
1087 static void init_callback_list(struct rcu_data *rdp)
1088 {
1089  int i;
1090 
1091  rdp->nxtlist = NULL;
1092  for (i = 0; i < RCU_NEXT_SIZE; i++)
1093  rdp->nxttail[i] = &rdp->nxtlist;
1094 }
1095 
1096 /*
1097  * Advance this CPU's callbacks, but only if the current grace period
1098  * has ended. This may be called only from the CPU to whom the rdp
1099  * belongs. In addition, the corresponding leaf rcu_node structure's
1100  * ->lock must be held by the caller, with irqs disabled.
1101  */
1102 static void
1103 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1104 {
1105  /* Did another grace period end? */
1106  if (rdp->completed != rnp->completed) {
1107 
1108  /* Advance callbacks. No harm if list empty. */
1112 
1113  /* Remember that we saw this grace-period completion. */
1114  rdp->completed = rnp->completed;
1115  trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1116 
1117  /*
1118  * If we were in an extended quiescent state, we may have
1119  * missed some grace periods that others CPUs handled on
1120  * our behalf. Catch up with this state to avoid noting
1121  * spurious new grace periods. If another grace period
1122  * has started, then rnp->gpnum will have advanced, so
1123  * we will detect this later on. Of course, any quiescent
1124  * states we found for the old GP are now invalid.
1125  */
1126  if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1127  rdp->gpnum = rdp->completed;
1128  rdp->passed_quiesce = 0;
1129  }
1130 
1131  /*
1132  * If RCU does not need a quiescent state from this CPU,
1133  * then make sure that this CPU doesn't go looking for one.
1134  */
1135  if ((rnp->qsmask & rdp->grpmask) == 0)
1136  rdp->qs_pending = 0;
1137  }
1138 }
1139 
1140 /*
1141  * Advance this CPU's callbacks, but only if the current grace period
1142  * has ended. This may be called only from the CPU to whom the rdp
1143  * belongs.
1144  */
1145 static void
1146 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1147 {
1148  unsigned long flags;
1149  struct rcu_node *rnp;
1150 
1151  local_irq_save(flags);
1152  rnp = rdp->mynode;
1153  if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1154  !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1155  local_irq_restore(flags);
1156  return;
1157  }
1158  __rcu_process_gp_end(rsp, rnp, rdp);
1159  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1160 }
1161 
1162 /*
1163  * Do per-CPU grace-period initialization for running CPU. The caller
1164  * must hold the lock of the leaf rcu_node structure corresponding to
1165  * this CPU.
1166  */
1167 static void
1168 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1169 {
1170  /* Prior grace period ended, so advance callbacks for current CPU. */
1171  __rcu_process_gp_end(rsp, rnp, rdp);
1172 
1173  /* Set state so that this CPU will detect the next quiescent state. */
1174  __note_new_gpnum(rsp, rnp, rdp);
1175 }
1176 
1177 /*
1178  * Initialize a new grace period.
1179  */
1180 static int rcu_gp_init(struct rcu_state *rsp)
1181 {
1182  struct rcu_data *rdp;
1183  struct rcu_node *rnp = rcu_get_root(rsp);
1184 
1185  raw_spin_lock_irq(&rnp->lock);
1186  rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1187 
1188  if (rcu_gp_in_progress(rsp)) {
1189  /* Grace period already in progress, don't start another. */
1190  raw_spin_unlock_irq(&rnp->lock);
1191  return 0;
1192  }
1193 
1194  /* Advance to a new grace period and initialize state. */
1195  rsp->gpnum++;
1196  trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1197  record_gp_stall_check_time(rsp);
1198  raw_spin_unlock_irq(&rnp->lock);
1199 
1200  /* Exclude any concurrent CPU-hotplug operations. */
1201  mutex_lock(&rsp->onoff_mutex);
1202 
1203  /*
1204  * Set the quiescent-state-needed bits in all the rcu_node
1205  * structures for all currently online CPUs in breadth-first order,
1206  * starting from the root rcu_node structure, relying on the layout
1207  * of the tree within the rsp->node[] array. Note that other CPUs
1208  * will access only the leaves of the hierarchy, thus seeing that no
1209  * grace period is in progress, at least until the corresponding
1210  * leaf node has been initialized. In addition, we have excluded
1211  * CPU-hotplug operations.
1212  *
1213  * The grace period cannot complete until the initialization
1214  * process finishes, because this kthread handles both.
1215  */
1217  raw_spin_lock_irq(&rnp->lock);
1218  rdp = this_cpu_ptr(rsp->rda);
1219  rcu_preempt_check_blocked_tasks(rnp);
1220  rnp->qsmask = rnp->qsmaskinit;
1221  rnp->gpnum = rsp->gpnum;
1222  WARN_ON_ONCE(rnp->completed != rsp->completed);
1223  rnp->completed = rsp->completed;
1224  if (rnp == rdp->mynode)
1225  rcu_start_gp_per_cpu(rsp, rnp, rdp);
1226  rcu_preempt_boost_start_gp(rnp);
1228  rnp->level, rnp->grplo,
1229  rnp->grphi, rnp->qsmask);
1230  raw_spin_unlock_irq(&rnp->lock);
1231 #ifdef CONFIG_PROVE_RCU_DELAY
1232  if ((random32() % (rcu_num_nodes * 8)) == 0)
1234 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1235  cond_resched();
1236  }
1237 
1238  mutex_unlock(&rsp->onoff_mutex);
1239  return 1;
1240 }
1241 
1242 /*
1243  * Do one round of quiescent-state forcing.
1244  */
1245 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1246 {
1247  int fqs_state = fqs_state_in;
1248  struct rcu_node *rnp = rcu_get_root(rsp);
1249 
1250  rsp->n_force_qs++;
1251  if (fqs_state == RCU_SAVE_DYNTICK) {
1252  /* Collect dyntick-idle snapshots. */
1253  force_qs_rnp(rsp, dyntick_save_progress_counter);
1254  fqs_state = RCU_FORCE_QS;
1255  } else {
1256  /* Handle dyntick-idle and offline CPUs. */
1257  force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1258  }
1259  /* Clear flag to prevent immediate re-entry. */
1260  if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1261  raw_spin_lock_irq(&rnp->lock);
1262  rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1263  raw_spin_unlock_irq(&rnp->lock);
1264  }
1265  return fqs_state;
1266 }
1267 
1268 /*
1269  * Clean up after the old grace period.
1270  */
1271 static void rcu_gp_cleanup(struct rcu_state *rsp)
1272 {
1273  unsigned long gp_duration;
1274  struct rcu_data *rdp;
1275  struct rcu_node *rnp = rcu_get_root(rsp);
1276 
1277  raw_spin_lock_irq(&rnp->lock);
1278  gp_duration = jiffies - rsp->gp_start;
1279  if (gp_duration > rsp->gp_max)
1280  rsp->gp_max = gp_duration;
1281 
1282  /*
1283  * We know the grace period is complete, but to everyone else
1284  * it appears to still be ongoing. But it is also the case
1285  * that to everyone else it looks like there is nothing that
1286  * they can do to advance the grace period. It is therefore
1287  * safe for us to drop the lock in order to mark the grace
1288  * period as completed in all of the rcu_node structures.
1289  */
1290  raw_spin_unlock_irq(&rnp->lock);
1291 
1292  /*
1293  * Propagate new ->completed value to rcu_node structures so
1294  * that other CPUs don't have to wait until the start of the next
1295  * grace period to process their callbacks. This also avoids
1296  * some nasty RCU grace-period initialization races by forcing
1297  * the end of the current grace period to be completely recorded in
1298  * all of the rcu_node structures before the beginning of the next
1299  * grace period is recorded in any of the rcu_node structures.
1300  */
1302  raw_spin_lock_irq(&rnp->lock);
1303  rnp->completed = rsp->gpnum;
1304  raw_spin_unlock_irq(&rnp->lock);
1305  cond_resched();
1306  }
1307  rnp = rcu_get_root(rsp);
1308  raw_spin_lock_irq(&rnp->lock);
1309 
1310  rsp->completed = rsp->gpnum; /* Declare grace period done. */
1311  trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1312  rsp->fqs_state = RCU_GP_IDLE;
1313  rdp = this_cpu_ptr(rsp->rda);
1314  if (cpu_needs_another_gp(rsp, rdp))
1315  rsp->gp_flags = 1;
1316  raw_spin_unlock_irq(&rnp->lock);
1317 }
1318 
1319 /*
1320  * Body of kthread that handles grace periods.
1321  */
1322 static int __noreturn rcu_gp_kthread(void *arg)
1323 {
1324  int fqs_state;
1325  unsigned long j;
1326  int ret;
1327  struct rcu_state *rsp = arg;
1328  struct rcu_node *rnp = rcu_get_root(rsp);
1329 
1330  for (;;) {
1331 
1332  /* Handle grace-period start. */
1333  for (;;) {
1335  rsp->gp_flags &
1337  if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1338  rcu_gp_init(rsp))
1339  break;
1340  cond_resched();
1342  }
1343 
1344  /* Handle quiescent-state forcing. */
1345  fqs_state = RCU_SAVE_DYNTICK;
1346  j = jiffies_till_first_fqs;
1347  if (j > HZ) {
1348  j = HZ;
1349  jiffies_till_first_fqs = HZ;
1350  }
1351  for (;;) {
1352  rsp->jiffies_force_qs = jiffies + j;
1354  (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1355  (!ACCESS_ONCE(rnp->qsmask) &&
1356  !rcu_preempt_blocked_readers_cgp(rnp)),
1357  j);
1358  /* If grace period done, leave loop. */
1359  if (!ACCESS_ONCE(rnp->qsmask) &&
1360  !rcu_preempt_blocked_readers_cgp(rnp))
1361  break;
1362  /* If time for quiescent-state forcing, do it. */
1363  if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1364  fqs_state = rcu_gp_fqs(rsp, fqs_state);
1365  cond_resched();
1366  } else {
1367  /* Deal with stray signal. */
1368  cond_resched();
1370  }
1371  j = jiffies_till_next_fqs;
1372  if (j > HZ) {
1373  j = HZ;
1374  jiffies_till_next_fqs = HZ;
1375  } else if (j < 1) {
1376  j = 1;
1377  jiffies_till_next_fqs = 1;
1378  }
1379  }
1380 
1381  /* Handle grace-period end. */
1382  rcu_gp_cleanup(rsp);
1383  }
1384 }
1385 
1386 /*
1387  * Start a new RCU grace period if warranted, re-initializing the hierarchy
1388  * in preparation for detecting the next grace period. The caller must hold
1389  * the root node's ->lock, which is released before return. Hard irqs must
1390  * be disabled.
1391  *
1392  * Note that it is legal for a dying CPU (which is marked as offline) to
1393  * invoke this function. This can happen when the dying CPU reports its
1394  * quiescent state.
1395  */
1396 static void
1397 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1398  __releases(rcu_get_root(rsp)->lock)
1399 {
1400  struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1401  struct rcu_node *rnp = rcu_get_root(rsp);
1402 
1403  if (!rsp->gp_kthread ||
1404  !cpu_needs_another_gp(rsp, rdp)) {
1405  /*
1406  * Either we have not yet spawned the grace-period
1407  * task or this CPU does not need another grace period.
1408  * Either way, don't start a new grace period.
1409  */
1410  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1411  return;
1412  }
1413 
1414  rsp->gp_flags = RCU_GP_FLAG_INIT;
1415  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1416  wake_up(&rsp->gp_wq);
1417 }
1418 
1419 /*
1420  * Report a full set of quiescent states to the specified rcu_state
1421  * data structure. This involves cleaning up after the prior grace
1422  * period and letting rcu_start_gp() start up the next grace period
1423  * if one is needed. Note that the caller must hold rnp->lock, as
1424  * required by rcu_start_gp(), which will release it.
1425  */
1426 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1427  __releases(rcu_get_root(rsp)->lock)
1428 {
1429  WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1430  raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1431  wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1432 }
1433 
1434 /*
1435  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1436  * Allows quiescent states for a group of CPUs to be reported at one go
1437  * to the specified rcu_node structure, though all the CPUs in the group
1438  * must be represented by the same rcu_node structure (which need not be
1439  * a leaf rcu_node structure, though it often will be). That structure's
1440  * lock must be held upon entry, and it is released before return.
1441  */
1442 static void
1443 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1444  struct rcu_node *rnp, unsigned long flags)
1445  __releases(rnp->lock)
1446 {
1447  struct rcu_node *rnp_c;
1448 
1449  /* Walk up the rcu_node hierarchy. */
1450  for (;;) {
1451  if (!(rnp->qsmask & mask)) {
1452 
1453  /* Our bit has already been cleared, so done. */
1454  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1455  return;
1456  }
1457  rnp->qsmask &= ~mask;
1459  mask, rnp->qsmask, rnp->level,
1460  rnp->grplo, rnp->grphi,
1461  !!rnp->gp_tasks);
1462  if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1463 
1464  /* Other bits still set at this level, so done. */
1465  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1466  return;
1467  }
1468  mask = rnp->grpmask;
1469  if (rnp->parent == NULL) {
1470 
1471  /* No more levels. Exit loop holding root lock. */
1472 
1473  break;
1474  }
1475  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1476  rnp_c = rnp;
1477  rnp = rnp->parent;
1478  raw_spin_lock_irqsave(&rnp->lock, flags);
1479  WARN_ON_ONCE(rnp_c->qsmask);
1480  }
1481 
1482  /*
1483  * Get here if we are the last CPU to pass through a quiescent
1484  * state for this grace period. Invoke rcu_report_qs_rsp()
1485  * to clean up and start the next grace period if one is needed.
1486  */
1487  rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1488 }
1489 
1490 /*
1491  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1492  * structure. This must be either called from the specified CPU, or
1493  * called when the specified CPU is known to be offline (and when it is
1494  * also known that no other CPU is concurrently trying to help the offline
1495  * CPU). The lastcomp argument is used to make sure we are still in the
1496  * grace period of interest. We don't want to end the current grace period
1497  * based on quiescent states detected in an earlier grace period!
1498  */
1499 static void
1500 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1501 {
1502  unsigned long flags;
1503  unsigned long mask;
1504  struct rcu_node *rnp;
1505 
1506  rnp = rdp->mynode;
1507  raw_spin_lock_irqsave(&rnp->lock, flags);
1508  if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1509  rnp->completed == rnp->gpnum) {
1510 
1511  /*
1512  * The grace period in which this quiescent state was
1513  * recorded has ended, so don't report it upwards.
1514  * We will instead need a new quiescent state that lies
1515  * within the current grace period.
1516  */
1517  rdp->passed_quiesce = 0; /* need qs for new gp. */
1518  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1519  return;
1520  }
1521  mask = rdp->grpmask;
1522  if ((rnp->qsmask & mask) == 0) {
1523  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1524  } else {
1525  rdp->qs_pending = 0;
1526 
1527  /*
1528  * This GP can't end until cpu checks in, so all of our
1529  * callbacks can be processed during the next GP.
1530  */
1532 
1533  rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1534  }
1535 }
1536 
1537 /*
1538  * Check to see if there is a new grace period of which this CPU
1539  * is not yet aware, and if so, set up local rcu_data state for it.
1540  * Otherwise, see if this CPU has just passed through its first
1541  * quiescent state for this grace period, and record that fact if so.
1542  */
1543 static void
1544 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1545 {
1546  /* If there is now a new grace period, record and return. */
1547  if (check_for_new_grace_period(rsp, rdp))
1548  return;
1549 
1550  /*
1551  * Does this CPU still need to do its part for current grace period?
1552  * If no, return and let the other CPUs do their part as well.
1553  */
1554  if (!rdp->qs_pending)
1555  return;
1556 
1557  /*
1558  * Was there a quiescent state since the beginning of the grace
1559  * period? If no, then exit and wait for the next call.
1560  */
1561  if (!rdp->passed_quiesce)
1562  return;
1563 
1564  /*
1565  * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1566  * judge of that).
1567  */
1568  rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1569 }
1570 
1571 #ifdef CONFIG_HOTPLUG_CPU
1572 
1573 /*
1574  * Send the specified CPU's RCU callbacks to the orphanage. The
1575  * specified CPU must be offline, and the caller must hold the
1576  * ->onofflock.
1577  */
1578 static void
1579 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1580  struct rcu_node *rnp, struct rcu_data *rdp)
1581 {
1582  /*
1583  * Orphan the callbacks. First adjust the counts. This is safe
1584  * because ->onofflock excludes _rcu_barrier()'s adoption of
1585  * the callbacks, thus no memory barrier is required.
1586  */
1587  if (rdp->nxtlist != NULL) {
1588  rsp->qlen_lazy += rdp->qlen_lazy;
1589  rsp->qlen += rdp->qlen;
1590  rdp->n_cbs_orphaned += rdp->qlen;
1591  rdp->qlen_lazy = 0;
1592  ACCESS_ONCE(rdp->qlen) = 0;
1593  }
1594 
1595  /*
1596  * Next, move those callbacks still needing a grace period to
1597  * the orphanage, where some other CPU will pick them up.
1598  * Some of the callbacks might have gone partway through a grace
1599  * period, but that is too bad. They get to start over because we
1600  * cannot assume that grace periods are synchronized across CPUs.
1601  * We don't bother updating the ->nxttail[] array yet, instead
1602  * we just reset the whole thing later on.
1603  */
1604  if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1605  *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1606  rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1607  *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1608  }
1609 
1610  /*
1611  * Then move the ready-to-invoke callbacks to the orphanage,
1612  * where some other CPU will pick them up. These will not be
1613  * required to pass though another grace period: They are done.
1614  */
1615  if (rdp->nxtlist != NULL) {
1616  *rsp->orphan_donetail = rdp->nxtlist;
1617  rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1618  }
1619 
1620  /* Finally, initialize the rcu_data structure's list to empty. */
1621  init_callback_list(rdp);
1622 }
1623 
1624 /*
1625  * Adopt the RCU callbacks from the specified rcu_state structure's
1626  * orphanage. The caller must hold the ->onofflock.
1627  */
1628 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1629 {
1630  int i;
1631  struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1632 
1633  /* Do the accounting first. */
1634  rdp->qlen_lazy += rsp->qlen_lazy;
1635  rdp->qlen += rsp->qlen;
1636  rdp->n_cbs_adopted += rsp->qlen;
1637  if (rsp->qlen_lazy != rsp->qlen)
1638  rcu_idle_count_callbacks_posted();
1639  rsp->qlen_lazy = 0;
1640  rsp->qlen = 0;
1641 
1642  /*
1643  * We do not need a memory barrier here because the only way we
1644  * can get here if there is an rcu_barrier() in flight is if
1645  * we are the task doing the rcu_barrier().
1646  */
1647 
1648  /* First adopt the ready-to-invoke callbacks. */
1649  if (rsp->orphan_donelist != NULL) {
1650  *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1651  *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1652  for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1653  if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1654  rdp->nxttail[i] = rsp->orphan_donetail;
1655  rsp->orphan_donelist = NULL;
1656  rsp->orphan_donetail = &rsp->orphan_donelist;
1657  }
1658 
1659  /* And then adopt the callbacks that still need a grace period. */
1660  if (rsp->orphan_nxtlist != NULL) {
1661  *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1662  rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1663  rsp->orphan_nxtlist = NULL;
1664  rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1665  }
1666 }
1667 
1668 /*
1669  * Trace the fact that this CPU is going offline.
1670  */
1671 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1672 {
1673  RCU_TRACE(unsigned long mask);
1674  RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1675  RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1676 
1677  RCU_TRACE(mask = rdp->grpmask);
1679  rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1680  "cpuofl");
1681 }
1682 
1683 /*
1684  * The CPU has been completely removed, and some other CPU is reporting
1685  * this fact from process context. Do the remainder of the cleanup,
1686  * including orphaning the outgoing CPU's RCU callbacks, and also
1687  * adopting them. There can only be one CPU hotplug operation at a time,
1688  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1689  */
1690 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1691 {
1692  unsigned long flags;
1693  unsigned long mask;
1694  int need_report = 0;
1695  struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1696  struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1697 
1698  /* Adjust any no-longer-needed kthreads. */
1699  rcu_boost_kthread_setaffinity(rnp, -1);
1700 
1701  /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1702 
1703  /* Exclude any attempts to start a new grace period. */
1704  mutex_lock(&rsp->onoff_mutex);
1705  raw_spin_lock_irqsave(&rsp->onofflock, flags);
1706 
1707  /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1708  rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1709  rcu_adopt_orphan_cbs(rsp);
1710 
1711  /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1712  mask = rdp->grpmask; /* rnp->grplo is constant. */
1713  do {
1714  raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1715  rnp->qsmaskinit &= ~mask;
1716  if (rnp->qsmaskinit != 0) {
1717  if (rnp != rdp->mynode)
1718  raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1719  break;
1720  }
1721  if (rnp == rdp->mynode)
1722  need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1723  else
1724  raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1725  mask = rnp->grpmask;
1726  rnp = rnp->parent;
1727  } while (rnp != NULL);
1728 
1729  /*
1730  * We still hold the leaf rcu_node structure lock here, and
1731  * irqs are still disabled. The reason for this subterfuge is
1732  * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1733  * held leads to deadlock.
1734  */
1735  raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1736  rnp = rdp->mynode;
1737  if (need_report & RCU_OFL_TASKS_NORM_GP)
1738  rcu_report_unblock_qs_rnp(rnp, flags);
1739  else
1740  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1741  if (need_report & RCU_OFL_TASKS_EXP_GP)
1742  rcu_report_exp_rnp(rsp, rnp, true);
1743  WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1744  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1745  cpu, rdp->qlen, rdp->nxtlist);
1746  init_callback_list(rdp);
1747  /* Disallow further callbacks on this CPU. */
1748  rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1749  mutex_unlock(&rsp->onoff_mutex);
1750 }
1751 
1752 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1753 
1754 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1755 {
1756 }
1757 
1758 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1759 {
1760 }
1761 
1762 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1763 
1764 /*
1765  * Invoke any RCU callbacks that have made it to the end of their grace
1766  * period. Thottle as specified by rdp->blimit.
1767  */
1768 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1769 {
1770  unsigned long flags;
1771  struct rcu_head *next, *list, **tail;
1772  long bl, count, count_lazy;
1773  int i;
1774 
1775  /* If no callbacks are ready, just return.*/
1776  if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1777  trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1778  trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1779  need_resched(), is_idle_task(current),
1780  rcu_is_callbacks_kthread());
1781  return;
1782  }
1783 
1784  /*
1785  * Extract the list of ready callbacks, disabling to prevent
1786  * races with call_rcu() from interrupt handlers.
1787  */
1788  local_irq_save(flags);
1790  bl = rdp->blimit;
1791  trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1792  list = rdp->nxtlist;
1793  rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1794  *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1795  tail = rdp->nxttail[RCU_DONE_TAIL];
1796  for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1797  if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1798  rdp->nxttail[i] = &rdp->nxtlist;
1799  local_irq_restore(flags);
1800 
1801  /* Invoke callbacks. */
1802  count = count_lazy = 0;
1803  while (list) {
1804  next = list->next;
1805  prefetch(next);
1806  debug_rcu_head_unqueue(list);
1807  if (__rcu_reclaim(rsp->name, list))
1808  count_lazy++;
1809  list = next;
1810  /* Stop only if limit reached and CPU has something to do. */
1811  if (++count >= bl &&
1812  (need_resched() ||
1813  (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1814  break;
1815  }
1816 
1817  local_irq_save(flags);
1818  trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1819  is_idle_task(current),
1820  rcu_is_callbacks_kthread());
1821 
1822  /* Update count, and requeue any remaining callbacks. */
1823  if (list != NULL) {
1824  *tail = rdp->nxtlist;
1825  rdp->nxtlist = list;
1826  for (i = 0; i < RCU_NEXT_SIZE; i++)
1827  if (&rdp->nxtlist == rdp->nxttail[i])
1828  rdp->nxttail[i] = tail;
1829  else
1830  break;
1831  }
1832  smp_mb(); /* List handling before counting for rcu_barrier(). */
1833  rdp->qlen_lazy -= count_lazy;
1834  ACCESS_ONCE(rdp->qlen) -= count;
1835  rdp->n_cbs_invoked += count;
1836 
1837  /* Reinstate batch limit if we have worked down the excess. */
1838  if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1839  rdp->blimit = blimit;
1840 
1841  /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1842  if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1843  rdp->qlen_last_fqs_check = 0;
1844  rdp->n_force_qs_snap = rsp->n_force_qs;
1845  } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1846  rdp->qlen_last_fqs_check = rdp->qlen;
1847  WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1848 
1849  local_irq_restore(flags);
1850 
1851  /* Re-invoke RCU core processing if there are callbacks remaining. */
1852  if (cpu_has_callbacks_ready_to_invoke(rdp))
1853  invoke_rcu_core();
1854 }
1855 
1856 /*
1857  * Check to see if this CPU is in a non-context-switch quiescent state
1858  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1859  * Also schedule RCU core processing.
1860  *
1861  * This function must be called from hardirq context. It is normally
1862  * invoked from the scheduling-clock interrupt. If rcu_pending returns
1863  * false, there is no point in invoking rcu_check_callbacks().
1864  */
1865 void rcu_check_callbacks(int cpu, int user)
1866 {
1867  trace_rcu_utilization("Start scheduler-tick");
1868  increment_cpu_stall_ticks();
1869  if (user || rcu_is_cpu_rrupt_from_idle()) {
1870 
1871  /*
1872  * Get here if this CPU took its interrupt from user
1873  * mode or from the idle loop, and if this is not a
1874  * nested interrupt. In this case, the CPU is in
1875  * a quiescent state, so note it.
1876  *
1877  * No memory barrier is required here because both
1878  * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1879  * variables that other CPUs neither access nor modify,
1880  * at least not while the corresponding CPU is online.
1881  */
1882 
1883  rcu_sched_qs(cpu);
1884  rcu_bh_qs(cpu);
1885 
1886  } else if (!in_softirq()) {
1887 
1888  /*
1889  * Get here if this CPU did not take its interrupt from
1890  * softirq, in other words, if it is not interrupting
1891  * a rcu_bh read-side critical section. This is an _bh
1892  * critical section, so note it.
1893  */
1894 
1895  rcu_bh_qs(cpu);
1896  }
1897  rcu_preempt_check_callbacks(cpu);
1898  if (rcu_pending(cpu))
1899  invoke_rcu_core();
1900  trace_rcu_utilization("End scheduler-tick");
1901 }
1902 
1903 /*
1904  * Scan the leaf rcu_node structures, processing dyntick state for any that
1905  * have not yet encountered a quiescent state, using the function specified.
1906  * Also initiate boosting for any threads blocked on the root rcu_node.
1907  *
1908  * The caller must have suppressed start of new grace periods.
1909  */
1910 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1911 {
1912  unsigned long bit;
1913  int cpu;
1914  unsigned long flags;
1915  unsigned long mask;
1916  struct rcu_node *rnp;
1917 
1918  rcu_for_each_leaf_node(rsp, rnp) {
1919  cond_resched();
1920  mask = 0;
1921  raw_spin_lock_irqsave(&rnp->lock, flags);
1922  if (!rcu_gp_in_progress(rsp)) {
1923  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1924  return;
1925  }
1926  if (rnp->qsmask == 0) {
1927  rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1928  continue;
1929  }
1930  cpu = rnp->grplo;
1931  bit = 1;
1932  for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1933  if ((rnp->qsmask & bit) != 0 &&
1934  f(per_cpu_ptr(rsp->rda, cpu)))
1935  mask |= bit;
1936  }
1937  if (mask != 0) {
1938 
1939  /* rcu_report_qs_rnp() releases rnp->lock. */
1940  rcu_report_qs_rnp(mask, rsp, rnp, flags);
1941  continue;
1942  }
1943  raw_spin_unlock_irqrestore(&rnp->lock, flags);
1944  }
1945  rnp = rcu_get_root(rsp);
1946  if (rnp->qsmask == 0) {
1947  raw_spin_lock_irqsave(&rnp->lock, flags);
1948  rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1949  }
1950 }
1951 
1952 /*
1953  * Force quiescent states on reluctant CPUs, and also detect which
1954  * CPUs are in dyntick-idle mode.
1955  */
1956 static void force_quiescent_state(struct rcu_state *rsp)
1957 {
1958  unsigned long flags;
1959  bool ret;
1960  struct rcu_node *rnp;
1961  struct rcu_node *rnp_old = NULL;
1962 
1963  /* Funnel through hierarchy to reduce memory contention. */
1964  rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1965  for (; rnp != NULL; rnp = rnp->parent) {
1966  ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1967  !raw_spin_trylock(&rnp->fqslock);
1968  if (rnp_old != NULL)
1969  raw_spin_unlock(&rnp_old->fqslock);
1970  if (ret) {
1971  rsp->n_force_qs_lh++;
1972  return;
1973  }
1974  rnp_old = rnp;
1975  }
1976  /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1977 
1978  /* Reached the root of the rcu_node tree, acquire lock. */
1979  raw_spin_lock_irqsave(&rnp_old->lock, flags);
1980  raw_spin_unlock(&rnp_old->fqslock);
1981  if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1982  rsp->n_force_qs_lh++;
1983  raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1984  return; /* Someone beat us to it. */
1985  }
1986  rsp->gp_flags |= RCU_GP_FLAG_FQS;
1987  raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1988  wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1989 }
1990 
1991 /*
1992  * This does the RCU core processing work for the specified rcu_state
1993  * and rcu_data structures. This may be called only from the CPU to
1994  * whom the rdp belongs.
1995  */
1996 static void
1997 __rcu_process_callbacks(struct rcu_state *rsp)
1998 {
1999  unsigned long flags;
2000  struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2001 
2002  WARN_ON_ONCE(rdp->beenonline == 0);
2003 
2004  /*
2005  * Advance callbacks in response to end of earlier grace
2006  * period that some other CPU ended.
2007  */
2008  rcu_process_gp_end(rsp, rdp);
2009 
2010  /* Update RCU state based on any recent quiescent states. */
2011  rcu_check_quiescent_state(rsp, rdp);
2012 
2013  /* Does this CPU require a not-yet-started grace period? */
2014  if (cpu_needs_another_gp(rsp, rdp)) {
2015  raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
2016  rcu_start_gp(rsp, flags); /* releases above lock */
2017  }
2018 
2019  /* If there are callbacks ready, invoke them. */
2020  if (cpu_has_callbacks_ready_to_invoke(rdp))
2021  invoke_rcu_callbacks(rsp, rdp);
2022 }
2023 
2024 /*
2025  * Do RCU core processing for the current CPU.
2026  */
2027 static void rcu_process_callbacks(struct softirq_action *unused)
2028 {
2029  struct rcu_state *rsp;
2030 
2032  return;
2033  trace_rcu_utilization("Start RCU core");
2034  for_each_rcu_flavor(rsp)
2035  __rcu_process_callbacks(rsp);
2036  trace_rcu_utilization("End RCU core");
2037 }
2038 
2039 /*
2040  * Schedule RCU callback invocation. If the specified type of RCU
2041  * does not support RCU priority boosting, just do a direct call,
2042  * otherwise wake up the per-CPU kernel kthread. Note that because we
2043  * are running on the current CPU with interrupts disabled, the
2044  * rcu_cpu_kthread_task cannot disappear out from under us.
2045  */
2046 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2047 {
2048  if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2049  return;
2050  if (likely(!rsp->boost)) {
2051  rcu_do_batch(rsp, rdp);
2052  return;
2053  }
2054  invoke_rcu_callbacks_kthread();
2055 }
2056 
2057 static void invoke_rcu_core(void)
2058 {
2060 }
2061 
2062 /*
2063  * Handle any core-RCU processing required by a call_rcu() invocation.
2064  */
2065 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2066  struct rcu_head *head, unsigned long flags)
2067 {
2068  /*
2069  * If called from an extended quiescent state, invoke the RCU
2070  * core in order to force a re-evaluation of RCU's idleness.
2071  */
2073  invoke_rcu_core();
2074 
2075  /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2077  return;
2078 
2079  /*
2080  * Force the grace period if too many callbacks or too long waiting.
2081  * Enforce hysteresis, and don't invoke force_quiescent_state()
2082  * if some other CPU has recently done so. Also, don't bother
2083  * invoking force_quiescent_state() if the newly enqueued callback
2084  * is the only one waiting for a grace period to complete.
2085  */
2086  if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2087 
2088  /* Are we ignoring a completed grace period? */
2089  rcu_process_gp_end(rsp, rdp);
2090  check_for_new_grace_period(rsp, rdp);
2091 
2092  /* Start a new grace period if one not already started. */
2093  if (!rcu_gp_in_progress(rsp)) {
2094  unsigned long nestflag;
2095  struct rcu_node *rnp_root = rcu_get_root(rsp);
2096 
2097  raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2098  rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2099  } else {
2100  /* Give the grace period a kick. */
2101  rdp->blimit = LONG_MAX;
2102  if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2103  *rdp->nxttail[RCU_DONE_TAIL] != head)
2104  force_quiescent_state(rsp);
2105  rdp->n_force_qs_snap = rsp->n_force_qs;
2106  rdp->qlen_last_fqs_check = rdp->qlen;
2107  }
2108  }
2109 }
2110 
2111 static void
2112 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2113  struct rcu_state *rsp, bool lazy)
2114 {
2115  unsigned long flags;
2116  struct rcu_data *rdp;
2117 
2118  WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2119  debug_rcu_head_queue(head);
2120  head->func = func;
2121  head->next = NULL;
2122 
2123  /*
2124  * Opportunistically note grace-period endings and beginnings.
2125  * Note that we might see a beginning right after we see an
2126  * end, but never vice versa, since this CPU has to pass through
2127  * a quiescent state betweentimes.
2128  */
2129  local_irq_save(flags);
2130  rdp = this_cpu_ptr(rsp->rda);
2131 
2132  /* Add the callback to our list. */
2133  if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL)) {
2134  /* _call_rcu() is illegal on offline CPU; leak the callback. */
2135  WARN_ON_ONCE(1);
2136  local_irq_restore(flags);
2137  return;
2138  }
2139  ACCESS_ONCE(rdp->qlen)++;
2140  if (lazy)
2141  rdp->qlen_lazy++;
2142  else
2143  rcu_idle_count_callbacks_posted();
2144  smp_mb(); /* Count before adding callback for rcu_barrier(). */
2145  *rdp->nxttail[RCU_NEXT_TAIL] = head;
2146  rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2147 
2148  if (__is_kfree_rcu_offset((unsigned long)func))
2149  trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2150  rdp->qlen_lazy, rdp->qlen);
2151  else
2152  trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2153 
2154  /* Go handle any RCU core processing required. */
2155  __call_rcu_core(rsp, rdp, head, flags);
2156  local_irq_restore(flags);
2157 }
2158 
2159 /*
2160  * Queue an RCU-sched callback for invocation after a grace period.
2161  */
2162 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2163 {
2164  __call_rcu(head, func, &rcu_sched_state, 0);
2165 }
2167 
2168 /*
2169  * Queue an RCU callback for invocation after a quicker grace period.
2170  */
2171 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2172 {
2173  __call_rcu(head, func, &rcu_bh_state, 0);
2174 }
2176 
2177 /*
2178  * Because a context switch is a grace period for RCU-sched and RCU-bh,
2179  * any blocking grace-period wait automatically implies a grace period
2180  * if there is only one CPU online at any point time during execution
2181  * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2182  * occasionally incorrectly indicate that there are multiple CPUs online
2183  * when there was in fact only one the whole time, as this just adds
2184  * some overhead: RCU still operates correctly.
2185  */
2186 static inline int rcu_blocking_is_gp(void)
2187 {
2188  int ret;
2189 
2190  might_sleep(); /* Check for RCU read-side critical section. */
2191  preempt_disable();
2192  ret = num_online_cpus() <= 1;
2193  preempt_enable();
2194  return ret;
2195 }
2196 
2221 {
2222  rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2223  !lock_is_held(&rcu_lock_map) &&
2224  !lock_is_held(&rcu_sched_lock_map),
2225  "Illegal synchronize_sched() in RCU-sched read-side critical section");
2226  if (rcu_blocking_is_gp())
2227  return;
2229 }
2231 
2242 {
2243  rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2244  !lock_is_held(&rcu_lock_map) &&
2245  !lock_is_held(&rcu_sched_lock_map),
2246  "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2247  if (rcu_blocking_is_gp())
2248  return;
2250 }
2251 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2252 
2253 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2254 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2255 
2256 static int synchronize_sched_expedited_cpu_stop(void *data)
2257 {
2258  /*
2259  * There must be a full memory barrier on each affected CPU
2260  * between the time that try_stop_cpus() is called and the
2261  * time that it returns.
2262  *
2263  * In the current initial implementation of cpu_stop, the
2264  * above condition is already met when the control reaches
2265  * this point and the following smp_mb() is not strictly
2266  * necessary. Do smp_mb() anyway for documentation and
2267  * robustness against future implementation changes.
2268  */
2269  smp_mb(); /* See above comment block. */
2270  return 0;
2271 }
2272 
2311 {
2312  int firstsnap, s, snap, trycount = 0;
2313 
2314  /* Note that atomic_inc_return() implies full memory barrier. */
2315  firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2316  get_online_cpus();
2318 
2319  /*
2320  * Each pass through the following loop attempts to force a
2321  * context switch on each CPU.
2322  */
2324  synchronize_sched_expedited_cpu_stop,
2325  NULL) == -EAGAIN) {
2326  put_online_cpus();
2327 
2328  /* No joy, try again later. Or just synchronize_sched(). */
2329  if (trycount++ < 10) {
2330  udelay(trycount * num_online_cpus());
2331  } else {
2333  return;
2334  }
2335 
2336  /* Check to see if someone else did our work for us. */
2337  s = atomic_read(&sync_sched_expedited_done);
2338  if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2339  smp_mb(); /* ensure test happens before caller kfree */
2340  return;
2341  }
2342 
2343  /*
2344  * Refetching sync_sched_expedited_started allows later
2345  * callers to piggyback on our grace period. We subtract
2346  * 1 to get the same token that the last incrementer got.
2347  * We retry after they started, so our grace period works
2348  * for them, and they started after our first try, so their
2349  * grace period works for us.
2350  */
2351  get_online_cpus();
2352  snap = atomic_read(&sync_sched_expedited_started);
2353  smp_mb(); /* ensure read is before try_stop_cpus(). */
2354  }
2355 
2356  /*
2357  * Everyone up to our most recent fetch is covered by our grace
2358  * period. Update the counter, but only if our work is still
2359  * relevant -- which it won't be if someone who started later
2360  * than we did beat us to the punch.
2361  */
2362  do {
2363  s = atomic_read(&sync_sched_expedited_done);
2364  if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2365  smp_mb(); /* ensure test happens before caller kfree */
2366  break;
2367  }
2368  } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2369 
2370  put_online_cpus();
2371 }
2372 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2373 
2374 /*
2375  * Check to see if there is any immediate RCU-related work to be done
2376  * by the current CPU, for the specified type of RCU, returning 1 if so.
2377  * The checks are in order of increasing expense: checks that can be
2378  * carried out against CPU-local state are performed first. However,
2379  * we must check for CPU stalls first, else we might not get a chance.
2380  */
2381 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2382 {
2383  struct rcu_node *rnp = rdp->mynode;
2384 
2385  rdp->n_rcu_pending++;
2386 
2387  /* Check for CPU stalls, if enabled. */
2388  check_cpu_stall(rsp, rdp);
2389 
2390  /* Is the RCU core waiting for a quiescent state from this CPU? */
2391  if (rcu_scheduler_fully_active &&
2392  rdp->qs_pending && !rdp->passed_quiesce) {
2393  rdp->n_rp_qs_pending++;
2394  } else if (rdp->qs_pending && rdp->passed_quiesce) {
2395  rdp->n_rp_report_qs++;
2396  return 1;
2397  }
2398 
2399  /* Does this CPU have callbacks ready to invoke? */
2400  if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2401  rdp->n_rp_cb_ready++;
2402  return 1;
2403  }
2404 
2405  /* Has RCU gone idle with this CPU needing another grace period? */
2406  if (cpu_needs_another_gp(rsp, rdp)) {
2407  rdp->n_rp_cpu_needs_gp++;
2408  return 1;
2409  }
2410 
2411  /* Has another RCU grace period completed? */
2412  if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2413  rdp->n_rp_gp_completed++;
2414  return 1;
2415  }
2416 
2417  /* Has a new RCU grace period started? */
2418  if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2419  rdp->n_rp_gp_started++;
2420  return 1;
2421  }
2422 
2423  /* nothing to do */
2424  rdp->n_rp_need_nothing++;
2425  return 0;
2426 }
2427 
2428 /*
2429  * Check to see if there is any immediate RCU-related work to be done
2430  * by the current CPU, returning 1 if so. This function is part of the
2431  * RCU implementation; it is -not- an exported member of the RCU API.
2432  */
2433 static int rcu_pending(int cpu)
2434 {
2435  struct rcu_state *rsp;
2436 
2437  for_each_rcu_flavor(rsp)
2438  if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2439  return 1;
2440  return 0;
2441 }
2442 
2443 /*
2444  * Check to see if any future RCU-related work will need to be done
2445  * by the current CPU, even if none need be done immediately, returning
2446  * 1 if so.
2447  */
2448 static int rcu_cpu_has_callbacks(int cpu)
2449 {
2450  struct rcu_state *rsp;
2451 
2452  /* RCU callbacks either ready or pending? */
2453  for_each_rcu_flavor(rsp)
2454  if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2455  return 1;
2456  return 0;
2457 }
2458 
2459 /*
2460  * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2461  * the compiler is expected to optimize this away.
2462  */
2463 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2464  int cpu, unsigned long done)
2465 {
2466  trace_rcu_barrier(rsp->name, s, cpu,
2467  atomic_read(&rsp->barrier_cpu_count), done);
2468 }
2469 
2470 /*
2471  * RCU callback function for _rcu_barrier(). If we are last, wake
2472  * up the task executing _rcu_barrier().
2473  */
2474 static void rcu_barrier_callback(struct rcu_head *rhp)
2475 {
2476  struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2477  struct rcu_state *rsp = rdp->rsp;
2478 
2480  _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2482  } else {
2483  _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2484  }
2485 }
2486 
2487 /*
2488  * Called with preemption disabled, and from cross-cpu IRQ context.
2489  */
2490 static void rcu_barrier_func(void *type)
2491 {
2492  struct rcu_state *rsp = type;
2493  struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2494 
2495  _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2497  rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2498 }
2499 
2500 /*
2501  * Orchestrate the specified type of RCU barrier, waiting for all
2502  * RCU callbacks of the specified type to complete.
2503  */
2504 static void _rcu_barrier(struct rcu_state *rsp)
2505 {
2506  int cpu;
2507  struct rcu_data *rdp;
2508  unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2509  unsigned long snap_done;
2510 
2511  _rcu_barrier_trace(rsp, "Begin", -1, snap);
2512 
2513  /* Take mutex to serialize concurrent rcu_barrier() requests. */
2514  mutex_lock(&rsp->barrier_mutex);
2515 
2516  /*
2517  * Ensure that all prior references, including to ->n_barrier_done,
2518  * are ordered before the _rcu_barrier() machinery.
2519  */
2520  smp_mb(); /* See above block comment. */
2521 
2522  /*
2523  * Recheck ->n_barrier_done to see if others did our work for us.
2524  * This means checking ->n_barrier_done for an even-to-odd-to-even
2525  * transition. The "if" expression below therefore rounds the old
2526  * value up to the next even number and adds two before comparing.
2527  */
2528  snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2529  _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2530  if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2531  _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2532  smp_mb(); /* caller's subsequent code after above check. */
2533  mutex_unlock(&rsp->barrier_mutex);
2534  return;
2535  }
2536 
2537  /*
2538  * Increment ->n_barrier_done to avoid duplicate work. Use
2539  * ACCESS_ONCE() to prevent the compiler from speculating
2540  * the increment to precede the early-exit check.
2541  */
2542  ACCESS_ONCE(rsp->n_barrier_done)++;
2543  WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2544  _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2545  smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2546 
2547  /*
2548  * Initialize the count to one rather than to zero in order to
2549  * avoid a too-soon return to zero in case of a short grace period
2550  * (or preemption of this task). Exclude CPU-hotplug operations
2551  * to ensure that no offline CPU has callbacks queued.
2552  */
2553  init_completion(&rsp->barrier_completion);
2554  atomic_set(&rsp->barrier_cpu_count, 1);
2555  get_online_cpus();
2556 
2557  /*
2558  * Force each CPU with callbacks to register a new callback.
2559  * When that callback is invoked, we will know that all of the
2560  * corresponding CPU's preceding callbacks have been invoked.
2561  */
2562  for_each_online_cpu(cpu) {
2563  rdp = per_cpu_ptr(rsp->rda, cpu);
2564  if (ACCESS_ONCE(rdp->qlen)) {
2565  _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2566  rsp->n_barrier_done);
2567  smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2568  } else {
2569  _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2570  rsp->n_barrier_done);
2571  }
2572  }
2573  put_online_cpus();
2574 
2575  /*
2576  * Now that we have an rcu_barrier_callback() callback on each
2577  * CPU, and thus each counted, remove the initial count.
2578  */
2581 
2582  /* Increment ->n_barrier_done to prevent duplicate work. */
2583  smp_mb(); /* Keep increment after above mechanism. */
2584  ACCESS_ONCE(rsp->n_barrier_done)++;
2585  WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2586  _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2587  smp_mb(); /* Keep increment before caller's subsequent code. */
2588 
2589  /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2591 
2592  /* Other rcu_barrier() invocations can now safely proceed. */
2593  mutex_unlock(&rsp->barrier_mutex);
2594 }
2595 
2599 void rcu_barrier_bh(void)
2600 {
2601  _rcu_barrier(&rcu_bh_state);
2602 }
2603 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2604 
2609 {
2610  _rcu_barrier(&rcu_sched_state);
2611 }
2612 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2613 
2614 /*
2615  * Do boot-time initialization of a CPU's per-CPU RCU data.
2616  */
2617 static void __init
2618 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2619 {
2620  unsigned long flags;
2621  struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2622  struct rcu_node *rnp = rcu_get_root(rsp);
2623 
2624  /* Set up local state, ensuring consistent view of global state. */
2625  raw_spin_lock_irqsave(&rnp->lock, flags);
2626  rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2627  init_callback_list(rdp);
2628  rdp->qlen_lazy = 0;
2629  ACCESS_ONCE(rdp->qlen) = 0;
2630  rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2631  WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2632  WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2633 #ifdef CONFIG_RCU_USER_QS
2634  WARN_ON_ONCE(rdp->dynticks->in_user);
2635 #endif
2636  rdp->cpu = cpu;
2637  rdp->rsp = rsp;
2638  raw_spin_unlock_irqrestore(&rnp->lock, flags);
2639 }
2640 
2641 /*
2642  * Initialize a CPU's per-CPU RCU data. Note that only one online or
2643  * offline event can be happening at a given time. Note also that we
2644  * can accept some slop in the rsp->completed access due to the fact
2645  * that this CPU cannot possibly have any RCU callbacks in flight yet.
2646  */
2647 static void __cpuinit
2648 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2649 {
2650  unsigned long flags;
2651  unsigned long mask;
2652  struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2653  struct rcu_node *rnp = rcu_get_root(rsp);
2654 
2655  /* Exclude new grace periods. */
2656  mutex_lock(&rsp->onoff_mutex);
2657 
2658  /* Set up local state, ensuring consistent view of global state. */
2659  raw_spin_lock_irqsave(&rnp->lock, flags);
2660  rdp->beenonline = 1; /* We have now been online. */
2661  rdp->preemptible = preemptible;
2662  rdp->qlen_last_fqs_check = 0;
2663  rdp->n_force_qs_snap = rsp->n_force_qs;
2664  rdp->blimit = blimit;
2665  init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2666  rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2667  atomic_set(&rdp->dynticks->dynticks,
2668  (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2669  rcu_prepare_for_idle_init(cpu);
2670  raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2671 
2672  /* Add CPU to rcu_node bitmasks. */
2673  rnp = rdp->mynode;
2674  mask = rdp->grpmask;
2675  do {
2676  /* Exclude any attempts to start a new GP on small systems. */
2677  raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2678  rnp->qsmaskinit |= mask;
2679  mask = rnp->grpmask;
2680  if (rnp == rdp->mynode) {
2681  /*
2682  * If there is a grace period in progress, we will
2683  * set up to wait for it next time we run the
2684  * RCU core code.
2685  */
2686  rdp->gpnum = rnp->completed;
2687  rdp->completed = rnp->completed;
2688  rdp->passed_quiesce = 0;
2689  rdp->qs_pending = 0;
2690  trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2691  }
2692  raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2693  rnp = rnp->parent;
2694  } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2695  local_irq_restore(flags);
2696 
2697  mutex_unlock(&rsp->onoff_mutex);
2698 }
2699 
2700 static void __cpuinit rcu_prepare_cpu(int cpu)
2701 {
2702  struct rcu_state *rsp;
2703 
2704  for_each_rcu_flavor(rsp)
2705  rcu_init_percpu_data(cpu, rsp,
2706  strcmp(rsp->name, "rcu_preempt") == 0);
2707 }
2708 
2709 /*
2710  * Handle CPU online/offline notification events.
2711  */
2712 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2713  unsigned long action, void *hcpu)
2714 {
2715  long cpu = (long)hcpu;
2716  struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2717  struct rcu_node *rnp = rdp->mynode;
2718  struct rcu_state *rsp;
2719 
2720  trace_rcu_utilization("Start CPU hotplug");
2721  switch (action) {
2722  case CPU_UP_PREPARE:
2723  case CPU_UP_PREPARE_FROZEN:
2724  rcu_prepare_cpu(cpu);
2725  rcu_prepare_kthreads(cpu);
2726  break;
2727  case CPU_ONLINE:
2728  case CPU_DOWN_FAILED:
2729  rcu_boost_kthread_setaffinity(rnp, -1);
2730  break;
2731  case CPU_DOWN_PREPARE:
2732  rcu_boost_kthread_setaffinity(rnp, cpu);
2733  break;
2734  case CPU_DYING:
2735  case CPU_DYING_FROZEN:
2736  /*
2737  * The whole machine is "stopped" except this CPU, so we can
2738  * touch any data without introducing corruption. We send the
2739  * dying CPU's callbacks to an arbitrarily chosen online CPU.
2740  */
2741  for_each_rcu_flavor(rsp)
2742  rcu_cleanup_dying_cpu(rsp);
2743  rcu_cleanup_after_idle(cpu);
2744  break;
2745  case CPU_DEAD:
2746  case CPU_DEAD_FROZEN:
2747  case CPU_UP_CANCELED:
2749  for_each_rcu_flavor(rsp)
2750  rcu_cleanup_dead_cpu(cpu, rsp);
2751  break;
2752  default:
2753  break;
2754  }
2755  trace_rcu_utilization("End CPU hotplug");
2756  return NOTIFY_OK;
2757 }
2758 
2759 /*
2760  * Spawn the kthread that handles this RCU flavor's grace periods.
2761  */
2762 static int __init rcu_spawn_gp_kthread(void)
2763 {
2764  unsigned long flags;
2765  struct rcu_node *rnp;
2766  struct rcu_state *rsp;
2767  struct task_struct *t;
2768 
2769  for_each_rcu_flavor(rsp) {
2770  t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2771  BUG_ON(IS_ERR(t));
2772  rnp = rcu_get_root(rsp);
2773  raw_spin_lock_irqsave(&rnp->lock, flags);
2774  rsp->gp_kthread = t;
2775  raw_spin_unlock_irqrestore(&rnp->lock, flags);
2776  }
2777  return 0;
2778 }
2779 early_initcall(rcu_spawn_gp_kthread);
2780 
2781 /*
2782  * This function is invoked towards the end of the scheduler's initialization
2783  * process. Before this is called, the idle task might contain
2784  * RCU read-side critical sections (during which time, this idle
2785  * task is booting the system). After this function is called, the
2786  * idle tasks are prohibited from containing RCU read-side critical
2787  * sections. This function also enables RCU lockdep checking.
2788  */
2790 {
2791  WARN_ON(num_online_cpus() != 1);
2793  rcu_scheduler_active = 1;
2794 }
2795 
2796 /*
2797  * Compute the per-level fanout, either using the exact fanout specified
2798  * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2799  */
2800 #ifdef CONFIG_RCU_FANOUT_EXACT
2801 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2802 {
2803  int i;
2804 
2805  for (i = rcu_num_lvls - 1; i > 0; i--)
2806  rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2807  rsp->levelspread[0] = rcu_fanout_leaf;
2808 }
2809 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2810 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2811 {
2812  int ccur;
2813  int cprv;
2814  int i;
2815 
2816  cprv = nr_cpu_ids;
2817  for (i = rcu_num_lvls - 1; i >= 0; i--) {
2818  ccur = rsp->levelcnt[i];
2819  rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2820  cprv = ccur;
2821  }
2822 }
2823 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2824 
2825 /*
2826  * Helper function for rcu_init() that initializes one rcu_state structure.
2827  */
2828 static void __init rcu_init_one(struct rcu_state *rsp,
2829  struct rcu_data __percpu *rda)
2830 {
2831  static char *buf[] = { "rcu_node_0",
2832  "rcu_node_1",
2833  "rcu_node_2",
2834  "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2835  static char *fqs[] = { "rcu_node_fqs_0",
2836  "rcu_node_fqs_1",
2837  "rcu_node_fqs_2",
2838  "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
2839  int cpustride = 1;
2840  int i;
2841  int j;
2842  struct rcu_node *rnp;
2843 
2844  BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2845 
2846  /* Initialize the level-tracking arrays. */
2847 
2848  for (i = 0; i < rcu_num_lvls; i++)
2849  rsp->levelcnt[i] = num_rcu_lvl[i];
2850  for (i = 1; i < rcu_num_lvls; i++)
2851  rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2852  rcu_init_levelspread(rsp);
2853 
2854  /* Initialize the elements themselves, starting from the leaves. */
2855 
2856  for (i = rcu_num_lvls - 1; i >= 0; i--) {
2857  cpustride *= rsp->levelspread[i];
2858  rnp = rsp->level[i];
2859  for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2860  raw_spin_lock_init(&rnp->lock);
2862  &rcu_node_class[i], buf[i]);
2863  raw_spin_lock_init(&rnp->fqslock);
2864  lockdep_set_class_and_name(&rnp->fqslock,
2865  &rcu_fqs_class[i], fqs[i]);
2866  rnp->gpnum = rsp->gpnum;
2867  rnp->completed = rsp->completed;
2868  rnp->qsmask = 0;
2869  rnp->qsmaskinit = 0;
2870  rnp->grplo = j * cpustride;
2871  rnp->grphi = (j + 1) * cpustride - 1;
2872  if (rnp->grphi >= NR_CPUS)
2873  rnp->grphi = NR_CPUS - 1;
2874  if (i == 0) {
2875  rnp->grpnum = 0;
2876  rnp->grpmask = 0;
2877  rnp->parent = NULL;
2878  } else {
2879  rnp->grpnum = j % rsp->levelspread[i - 1];
2880  rnp->grpmask = 1UL << rnp->grpnum;
2881  rnp->parent = rsp->level[i - 1] +
2882  j / rsp->levelspread[i - 1];
2883  }
2884  rnp->level = i;
2885  INIT_LIST_HEAD(&rnp->blkd_tasks);
2886  }
2887  }
2888 
2889  rsp->rda = rda;
2890  init_waitqueue_head(&rsp->gp_wq);
2891  rnp = rsp->level[rcu_num_lvls - 1];
2893  while (i > rnp->grphi)
2894  rnp++;
2895  per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2896  rcu_boot_init_percpu_data(i, rsp);
2897  }
2898  list_add(&rsp->flavors, &rcu_struct_flavors);
2899 }
2900 
2901 /*
2902  * Compute the rcu_node tree geometry from kernel parameters. This cannot
2903  * replace the definitions in rcutree.h because those are needed to size
2904  * the ->node array in the rcu_state structure.
2905  */
2906 static void __init rcu_init_geometry(void)
2907 {
2908  int i;
2909  int j;
2910  int n = nr_cpu_ids;
2911  int rcu_capacity[MAX_RCU_LVLS + 1];
2912 
2913  /* If the compile-time values are accurate, just leave. */
2914  if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
2915  nr_cpu_ids == NR_CPUS)
2916  return;
2917 
2918  /*
2919  * Compute number of nodes that can be handled an rcu_node tree
2920  * with the given number of levels. Setting rcu_capacity[0] makes
2921  * some of the arithmetic easier.
2922  */
2923  rcu_capacity[0] = 1;
2924  rcu_capacity[1] = rcu_fanout_leaf;
2925  for (i = 2; i <= MAX_RCU_LVLS; i++)
2926  rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2927 
2928  /*
2929  * The boot-time rcu_fanout_leaf parameter is only permitted
2930  * to increase the leaf-level fanout, not decrease it. Of course,
2931  * the leaf-level fanout cannot exceed the number of bits in
2932  * the rcu_node masks. Finally, the tree must be able to accommodate
2933  * the configured number of CPUs. Complain and fall back to the
2934  * compile-time values if these limits are exceeded.
2935  */
2936  if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2937  rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2938  n > rcu_capacity[MAX_RCU_LVLS]) {
2939  WARN_ON(1);
2940  return;
2941  }
2942 
2943  /* Calculate the number of rcu_nodes at each level of the tree. */
2944  for (i = 1; i <= MAX_RCU_LVLS; i++)
2945  if (n <= rcu_capacity[i]) {
2946  for (j = 0; j <= i; j++)
2947  num_rcu_lvl[j] =
2948  DIV_ROUND_UP(n, rcu_capacity[i - j]);
2949  rcu_num_lvls = i;
2950  for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2951  num_rcu_lvl[j] = 0;
2952  break;
2953  }
2954 
2955  /* Calculate the total number of rcu_node structures. */
2956  rcu_num_nodes = 0;
2957  for (i = 0; i <= MAX_RCU_LVLS; i++)
2958  rcu_num_nodes += num_rcu_lvl[i];
2959  rcu_num_nodes -= n;
2960 }
2961 
2962 void __init rcu_init(void)
2963 {
2964  int cpu;
2965 
2966  rcu_bootup_announce();
2967  rcu_init_geometry();
2968  rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2969  rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2970  __rcu_init_preempt();
2971  open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2972 
2973  /*
2974  * We don't need protection against CPU-hotplug here because
2975  * this is called early in boot, before either interrupts
2976  * or the scheduler are operational.
2977  */
2978  cpu_notifier(rcu_cpu_notify, 0);
2979  for_each_online_cpu(cpu)
2980  rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2981  check_cpu_stall_init();
2982 }
2983 
2984 #include "rcutree_plugin.h"