Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
reiserfs.h
Go to the documentation of this file.
1 /*
2  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3  */
4 
5 #include <linux/reiserfs_fs.h>
6 
7 #include <linux/slab.h>
8 #include <linux/interrupt.h>
9 #include <linux/sched.h>
10 #include <linux/bug.h>
11 #include <linux/workqueue.h>
12 #include <asm/unaligned.h>
13 #include <linux/bitops.h>
14 #include <linux/proc_fs.h>
15 #include <linux/buffer_head.h>
16 
17 /* the 32 bit compat definitions with int argument */
18 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
19 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
20 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
21 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
22 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
23 
25 
27 typedef enum {
38  i_nopack_mask = 0x0008,
44  i_has_xattr_dir = 0x0040,
45  i_data_log = 0x0080,
47 
49  __u32 i_key[4]; /* key is still 4 32 bit integers */
53 
54  __u32 i_first_direct_byte; // offset of first byte stored in direct item.
55 
56  /* copy of persistent inode flags read from sd_attrs. */
58 
59  int i_prealloc_block; /* first unused block of a sequence of unused blocks */
60  int i_prealloc_count; /* length of that sequence */
61  struct list_head i_prealloc_list; /* per-transaction list of inodes which
62  * have preallocated blocks */
63 
64  unsigned new_packing_locality:1; /* new_packig_locality is created; new blocks
65  * for the contents of this directory should be
66  * displaced */
67 
68  /* we use these for fsync or O_SYNC to decide which transaction
69  ** needs to be committed in order for this inode to be properly
70  ** flushed */
71  unsigned int i_trans_id;
74  struct mutex tailpack;
75 #ifdef CONFIG_REISERFS_FS_XATTR
76  struct rw_semaphore i_xattr_sem;
77 #endif
78  struct inode vfs_inode;
79 };
80 
81 typedef enum {
82  reiserfs_attrs_cleared = 0x00000001,
84 
85 /* struct reiserfs_super_block accessors/mutators
86  * since this is a disk structure, it will always be in
87  * little endian format. */
88 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count))
89 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
90 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks))
91 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
92 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block))
93 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
94 
95 #define sb_jp_journal_1st_block(sbp) \
96  (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
97 #define set_sb_jp_journal_1st_block(sbp,v) \
98  ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
99 #define sb_jp_journal_dev(sbp) \
100  (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
101 #define set_sb_jp_journal_dev(sbp,v) \
102  ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
103 #define sb_jp_journal_size(sbp) \
104  (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
105 #define set_sb_jp_journal_size(sbp,v) \
106  ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
107 #define sb_jp_journal_trans_max(sbp) \
108  (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
109 #define set_sb_jp_journal_trans_max(sbp,v) \
110  ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
111 #define sb_jp_journal_magic(sbp) \
112  (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
113 #define set_sb_jp_journal_magic(sbp,v) \
114  ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
115 #define sb_jp_journal_max_batch(sbp) \
116  (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
117 #define set_sb_jp_journal_max_batch(sbp,v) \
118  ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
119 #define sb_jp_jourmal_max_commit_age(sbp) \
120  (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
121 #define set_sb_jp_journal_max_commit_age(sbp,v) \
122  ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
123 
124 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize))
125 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
126 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
127 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
128 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
129 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
130 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state))
131 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
132 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state))
133 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
134 #define sb_hash_function_code(sbp) \
135  (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
136 #define set_sb_hash_function_code(sbp,v) \
137  ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
138 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height))
139 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
140 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
141 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
142 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version))
143 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v))
144 
145 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count))
146 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v))
147 
148 #define sb_reserved_for_journal(sbp) \
149  (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
150 #define set_sb_reserved_for_journal(sbp,v) \
151  ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
152 
153 /* LOGGING -- */
154 
155 /* These all interelate for performance.
156 **
157 ** If the journal block count is smaller than n transactions, you lose speed.
158 ** I don't know what n is yet, I'm guessing 8-16.
159 **
160 ** typical transaction size depends on the application, how often fsync is
161 ** called, and how many metadata blocks you dirty in a 30 second period.
162 ** The more small files (<16k) you use, the larger your transactions will
163 ** be.
164 **
165 ** If your journal fills faster than dirty buffers get flushed to disk, it must flush them before allowing the journal
166 ** to wrap, which slows things down. If you need high speed meta data updates, the journal should be big enough
167 ** to prevent wrapping before dirty meta blocks get to disk.
168 **
169 ** If the batch max is smaller than the transaction max, you'll waste space at the end of the journal
170 ** because journal_end sets the next transaction to start at 0 if the next transaction has any chance of wrapping.
171 **
172 ** The large the batch max age, the better the speed, and the more meta data changes you'll lose after a crash.
173 **
174 */
175 
176 /* don't mess with these for a while */
177  /* we have a node size define somewhere in reiserfs_fs.h. -Hans */
178 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */
179 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */
180 #define JOURNAL_HASH_SIZE 8192
181 #define JOURNAL_NUM_BITMAPS 5 /* number of copies of the bitmaps to have floating. Must be >= 2 */
182 
183 /* One of these for every block in every transaction
184 ** Each one is in two hash tables. First, a hash of the current transaction, and after journal_end, a
185 ** hash of all the in memory transactions.
186 ** next and prev are used by the current transaction (journal_hash).
187 ** hnext and hprev are used by journal_list_hash. If a block is in more than one transaction, the journal_list_hash
188 ** links it in multiple times. This allows flush_journal_list to remove just the cnode belonging
189 ** to a given transaction.
190 */
192  struct buffer_head *bh; /* real buffer head */
193  struct super_block *sb; /* dev of real buffer head */
194  __u32 blocknr; /* block number of real buffer head, == 0 when buffer on disk */
195  unsigned long state;
196  struct reiserfs_journal_list *jlist; /* journal list this cnode lives in */
197  struct reiserfs_journal_cnode *next; /* next in transaction list */
198  struct reiserfs_journal_cnode *prev; /* prev in transaction list */
199  struct reiserfs_journal_cnode *hprev; /* prev in hash list */
200  struct reiserfs_journal_cnode *hnext; /* next in hash list */
201 };
202 
204  int id;
205  char *data;
206  struct list_head list;
207 };
208 
212 };
213 
214 /*
215 ** one of these for each transaction. The most important part here is the j_realblock.
216 ** this list of cnodes is used to hash all the blocks in all the commits, to mark all the
217 ** real buffer heads dirty once all the commits hit the disk,
218 ** and to make sure every real block in a transaction is on disk before allowing the log area
219 ** to be overwritten */
221  unsigned long j_start;
222  unsigned long j_state;
223  unsigned long j_len;
226  atomic_t j_older_commits_done; /* all commits older than this on disk */
228  unsigned int j_trans_id;
231  struct buffer_head *j_commit_bh; /* commit buffer head */
233  struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */
234  /* time ordered list of all active transactions */
236 
237  /* time ordered list of all transactions we haven't tried to flush yet */
239 
240  /* list of tail conversion targets in need of flush before commit */
242  /* list of data=ordered buffers in need of flush before commit */
245 };
246 
248  struct buffer_head **j_ap_blocks; /* journal blocks on disk */
249  struct reiserfs_journal_cnode *j_last; /* newest journal block */
250  struct reiserfs_journal_cnode *j_first; /* oldest journal block. start here for traverse */
251 
254  int j_1st_reserved_block; /* first block on s_dev of reserved area journal */
255 
256  unsigned long j_state;
257  unsigned int j_trans_id;
258  unsigned long j_mount_id;
259  unsigned long j_start; /* start of current waiting commit (index into j_ap_blocks) */
260  unsigned long j_len; /* length of current waiting commit */
261  unsigned long j_len_alloc; /* number of buffers requested by journal_begin() */
262  atomic_t j_wcount; /* count of writers for current commit */
263  unsigned long j_bcount; /* batch count. allows turning X transactions into 1 */
264  unsigned long j_first_unflushed_offset; /* first unflushed transactions offset */
265  unsigned j_last_flush_trans_id; /* last fully flushed journal timestamp */
266  struct buffer_head *j_header_bh;
267 
268  time_t j_trans_start_time; /* time this transaction started */
269  struct mutex j_mutex;
271  wait_queue_head_t j_join_wait; /* wait for current transaction to finish before starting new one */
272  atomic_t j_jlock; /* lock for j_join_wait */
273  int j_list_bitmap_index; /* number of next list bitmap to use */
274  int j_must_wait; /* no more journal begins allowed. MUST sleep on j_join_wait */
275  int j_next_full_flush; /* next journal_end will flush all journal list */
276  int j_next_async_flush; /* next journal_end will flush all async commits */
277 
278  int j_cnode_used; /* number of cnodes on the used list */
279  int j_cnode_free; /* number of cnodes on the free list */
280 
281  unsigned int j_trans_max; /* max number of blocks in a transaction. */
282  unsigned int j_max_batch; /* max number of blocks to batch into a trans */
283  unsigned int j_max_commit_age; /* in seconds, how old can an async commit be */
284  unsigned int j_max_trans_age; /* in seconds, how old can a transaction be */
285  unsigned int j_default_max_commit_age; /* the default for the max commit age */
286 
288  struct reiserfs_journal_cnode *j_cnode_free_orig; /* orig pointer returned from vmalloc */
289 
293 
294  int j_num_lists; /* total number of active transactions */
295  int j_num_work_lists; /* number that need attention from kreiserfsd */
296 
297  /* debugging to make sure things are flushed in order */
298  unsigned int j_last_flush_id;
299 
300  /* debugging to make sure things are committed in order */
301  unsigned int j_last_commit_id;
302 
305  spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */
306 
307  /* list of all active transactions */
309  /* lists that haven't been touched by writeback attempts */
311 
312  struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; /* array of bitmaps to record the deleted blocks */
313  struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; /* hash table for real buffer heads in current trans */
314  struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; /* hash table for all the real buffer heads in all
315  the transactions */
316  struct list_head j_prealloc_list; /* list of inodes which have preallocated blocks */
318  unsigned long j_max_trans_size;
319  unsigned long j_max_batch_size;
320 
321  int j_errno;
322 
323  /* when flushing ordered buffers, throttle new ordered writers */
327 };
328 
330  J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */
331  J_WRITERS_QUEUED, /* set when log is full due to too many writers */
332  J_ABORTED, /* set when log is aborted */
333 };
334 
335 #define JOURNAL_DESC_MAGIC "ReIsErLB" /* ick. magic string to find desc blocks in the journal */
336 
337 typedef __u32(*hashf_t) (const signed char *, int);
338 
341 };
342 
343 struct proc_dir_entry;
344 
345 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
346 typedef unsigned long int stat_cnt_t;
347 typedef struct reiserfs_proc_info_data {
349  int exiting;
350  int max_hash_collisions;
351 
352  stat_cnt_t breads;
353  stat_cnt_t bread_miss;
354  stat_cnt_t search_by_key;
355  stat_cnt_t search_by_key_fs_changed;
356  stat_cnt_t search_by_key_restarted;
357 
358  stat_cnt_t insert_item_restarted;
359  stat_cnt_t paste_into_item_restarted;
360  stat_cnt_t cut_from_item_restarted;
361  stat_cnt_t delete_solid_item_restarted;
362  stat_cnt_t delete_item_restarted;
363 
364  stat_cnt_t leaked_oid;
365  stat_cnt_t leaves_removable;
366 
367  /* balances per level. Use explicit 5 as MAX_HEIGHT is not visible yet. */
368  stat_cnt_t balance_at[5]; /* XXX */
369  /* sbk == search_by_key */
370  stat_cnt_t sbk_read_at[5]; /* XXX */
371  stat_cnt_t sbk_fs_changed[5];
372  stat_cnt_t sbk_restarted[5];
373  stat_cnt_t items_at[5]; /* XXX */
374  stat_cnt_t free_at[5]; /* XXX */
375  stat_cnt_t can_node_be_removed[5]; /* XXX */
376  long int lnum[5]; /* XXX */
377  long int rnum[5]; /* XXX */
378  long int lbytes[5]; /* XXX */
379  long int rbytes[5]; /* XXX */
380  stat_cnt_t get_neighbors[5];
381  stat_cnt_t get_neighbors_restart[5];
382  stat_cnt_t need_l_neighbor[5];
383  stat_cnt_t need_r_neighbor[5];
384 
385  stat_cnt_t free_block;
386  struct __scan_bitmap_stats {
387  stat_cnt_t call;
388  stat_cnt_t wait;
389  stat_cnt_t bmap;
390  stat_cnt_t retry;
391  stat_cnt_t in_journal_hint;
392  stat_cnt_t in_journal_nohint;
393  stat_cnt_t stolen;
394  } scan_bitmap;
395  struct __journal_stats {
396  stat_cnt_t in_journal;
397  stat_cnt_t in_journal_bitmap;
398  stat_cnt_t in_journal_reusable;
399  stat_cnt_t lock_journal;
400  stat_cnt_t lock_journal_wait;
401  stat_cnt_t journal_being;
402  stat_cnt_t journal_relock_writers;
403  stat_cnt_t journal_relock_wcount;
404  stat_cnt_t mark_dirty;
405  stat_cnt_t mark_dirty_already;
406  stat_cnt_t mark_dirty_notjournal;
407  stat_cnt_t restore_prepared;
408  stat_cnt_t prepare;
409  stat_cnt_t prepare_retry;
410  } journal;
412 #else
413 typedef struct reiserfs_proc_info_data {
415 #endif
416 
417 /* reiserfs union of in-core super block data */
419  struct buffer_head *s_sbh; /* Buffer containing the super block */
420  /* both the comment and the choice of
421  name are unclear for s_rs -Hans */
422  struct reiserfs_super_block *s_rs; /* Pointer to the super block in the buffer */
424  struct reiserfs_journal *s_journal; /* pointer to journal information */
425  unsigned short s_mount_state; /* reiserfs state (valid, invalid) */
426 
427  /* Serialize writers access, replace the old bkl */
428  struct mutex lock;
429  /* Owner of the lock (can be recursive) */
431  /* Depth of the lock, start from -1 like the bkl */
433 
434  /* Comment? -Hans */
435  void (*end_io_handler) (struct buffer_head *, int);
436  hashf_t s_hash_function; /* pointer to function which is used
437  to sort names in directory. Set on
438  mount */
439  unsigned long s_mount_opt; /* reiserfs's mount options are set
440  here (currently - NOTAIL, NOLOG,
441  REPLAYONLY) */
442 
443  struct { /* This is a structure that describes block allocator options */
444  unsigned long bits; /* Bitfield for enable/disable kind of options */
445  unsigned long large_file_size; /* size started from which we consider file to be a large one(in blocks) */
446  int border; /* percentage of disk, border takes */
447  int preallocmin; /* Minimal file size (in blocks) starting from which we do preallocations */
448  int preallocsize; /* Number of blocks we try to prealloc when file
449  reaches preallocmin size (in blocks) or
450  prealloc_list is empty. */
451  } s_alloc_options;
452 
453  /* Comment? -Hans */
455  /* To be obsoleted soon by per buffer seals.. -Hans */
456  atomic_t s_generation_counter; // increased by one every time the
457  // tree gets re-balanced
458  unsigned long s_properties; /* File system properties. Currently holds
459  on-disk FS format */
460 
461  /* session statistics */
468  int s_bmaps;
472  /* set up when it's ok for reiserfs_read_inode2() to read from
473  disk inode with nlink==0. Currently this is only used during
474  finish_unfinished() processing at mount time */
478  int reserved_blocks; /* amount of blocks reserved for further allocations */
479  spinlock_t bitmap_lock; /* this lock on now only used to protect reserved_blocks variable */
480  struct dentry *priv_root; /* root of /.reiserfs_priv */
481  struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */
482  int j_errno;
483 
484  int work_queued; /* non-zero delayed work is queued */
485  struct delayed_work old_work; /* old transactions flush delayed work */
486  spinlock_t old_work_lock; /* protects old_work and work_queued */
487 
488 #ifdef CONFIG_QUOTA
489  char *s_qf_names[MAXQUOTAS];
490  int s_jquota_fmt;
491 #endif
492  char *s_jdev; /* Stored jdev for mount option showing */
493 #ifdef CONFIG_REISERFS_CHECK
494 
495  struct tree_balance *cur_tb; /*
496  * Detects whether more than one
497  * copy of tb exists per superblock
498  * as a means of checking whether
499  * do_balance is executing concurrently
500  * against another tree reader/writer
501  * on a same mount point.
502  */
503 #endif
504 };
505 
506 /* Definitions of reiserfs on-disk properties: */
507 #define REISERFS_3_5 0
508 #define REISERFS_3_6 1
509 #define REISERFS_OLD_FORMAT 2
510 
512 /* Mount options */
513  REISERFS_LARGETAIL, /* large tails will be created in a session */
514  REISERFS_SMALLTAIL, /* small (for files less than block size) tails will be created in a session */
515  REPLAYONLY, /* replay journal and return 0. Use by fsck */
516  REISERFS_CONVERT, /* -o conv: causes conversion of old
517  format super block to the new
518  format. If not specified - old
519  partition will be dealt with in a
520  manner of 3.5.x */
521 
522 /* -o hash={tea, rupasov, r5, detect} is meant for properly mounting
523 ** reiserfs disks from 3.5.19 or earlier. 99% of the time, this option
524 ** is not required. If the normal autodection code can't determine which
525 ** hash to use (because both hashes had the same value for a file)
526 ** use this option to force a specific hash. It won't allow you to override
527 ** the existing hash on the FS, so if you have a tea hash disk, and mount
528 ** with -o hash=rupasov, the mount will fail.
529 */
530  FORCE_TEA_HASH, /* try to force tea hash on mount */
531  FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */
532  FORCE_R5_HASH, /* try to force rupasov hash on mount */
533  FORCE_HASH_DETECT, /* try to detect hash function on mount */
534 
538 
539 /* used for testing experimental features, makes benchmarking new
540  features with and without more convenient, should never be used by
541  users in any code shipped to users (ideally) */
542 
552 
553  /* Actions on error */
557 
558  REISERFS_USRQUOTA, /* User quota option specified */
559  REISERFS_GRPQUOTA, /* Group quota option specified */
560 
566 };
567 
568 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
569 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
570 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
571 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
572 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
573 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
574 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
575 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
576 
577 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
578 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
579 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
580 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
581 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
582 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
583 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
584 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
585 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
586 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
587 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
588 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
589 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
590 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
591 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
592 
593 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
594 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
595 
596 void reiserfs_file_buffer(struct buffer_head *bh, int list);
597 extern struct file_system_type reiserfs_fs_type;
598 int reiserfs_resize(struct super_block *, unsigned long);
599 
600 #define CARRY_ON 0
601 #define SCHEDULE_OCCURRED 1
602 
603 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
604 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
605 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
606 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
607 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
608 
609 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
610 
611 /* A safe version of the "bdevname", which returns the "s_id" field of
612  * a superblock or else "Null superblock" if the super block is NULL.
613  */
614 static inline char *reiserfs_bdevname(struct super_block *s)
615 {
616  return (s == NULL) ? "Null superblock" : s->s_id;
617 }
618 
619 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
620 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
621  *journal)
622 {
623  return test_bit(J_ABORTED, &journal->j_state);
624 }
625 
626 /*
627  * Locking primitives. The write lock is a per superblock
628  * special mutex that has properties close to the Big Kernel Lock
629  * which was used in the previous locking scheme.
630  */
631 void reiserfs_write_lock(struct super_block *s);
632 void reiserfs_write_unlock(struct super_block *s);
634 void reiserfs_write_unlock_once(struct super_block *s, int lock_depth);
635 
636 #ifdef CONFIG_REISERFS_CHECK
637 void reiserfs_lock_check_recursive(struct super_block *s);
638 #else
639 static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
640 #endif
641 
642 /*
643  * Several mutexes depend on the write lock.
644  * However sometimes we want to relax the write lock while we hold
645  * these mutexes, according to the release/reacquire on schedule()
646  * properties of the Bkl that were used.
647  * Reiserfs performances and locking were based on this scheme.
648  * Now that the write lock is a mutex and not the bkl anymore, doing so
649  * may result in a deadlock:
650  *
651  * A acquire write_lock
652  * A acquire j_commit_mutex
653  * A release write_lock and wait for something
654  * B acquire write_lock
655  * B can't acquire j_commit_mutex and sleep
656  * A can't acquire write lock anymore
657  * deadlock
658  *
659  * What we do here is avoiding such deadlock by playing the same game
660  * than the Bkl: if we can't acquire a mutex that depends on the write lock,
661  * we release the write lock, wait a bit and then retry.
662  *
663  * The mutexes concerned by this hack are:
664  * - The commit mutex of a journal list
665  * - The flush mutex
666  * - The journal lock
667  * - The inode mutex
668  */
669 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
670  struct super_block *s)
671 {
672  reiserfs_lock_check_recursive(s);
674  mutex_lock(m);
676 }
677 
678 static inline void
679 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
680  struct super_block *s)
681 {
682  reiserfs_lock_check_recursive(s);
684  mutex_lock_nested(m, subclass);
686 }
687 
688 static inline void
689 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
690 {
691  reiserfs_lock_check_recursive(s);
693  down_read(sem);
695 }
696 
697 /*
698  * When we schedule, we usually want to also release the write lock,
699  * according to the previous bkl based locking scheme of reiserfs.
700  */
701 static inline void reiserfs_cond_resched(struct super_block *s)
702 {
703  if (need_resched()) {
705  schedule();
707  }
708 }
709 
710 struct fid;
711 
712 /* in reading the #defines, it may help to understand that they employ
713  the following abbreviations:
714 
715  B = Buffer
716  I = Item header
717  H = Height within the tree (should be changed to LEV)
718  N = Number of the item in the node
719  STAT = stat data
720  DEH = Directory Entry Header
721  EC = Entry Count
722  E = Entry number
723  UL = Unsigned Long
724  BLKH = BLocK Header
725  UNFM = UNForMatted node
726  DC = Disk Child
727  P = Path
728 
729  These #defines are named by concatenating these abbreviations,
730  where first comes the arguments, and last comes the return value,
731  of the macro.
732 
733 */
734 
735 #define USE_INODE_GENERATION_COUNTER
736 
737 #define REISERFS_PREALLOCATE
738 #define DISPLACE_NEW_PACKING_LOCALITIES
739 #define PREALLOCATION_SIZE 9
740 
741 /* n must be power of 2 */
742 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
743 
744 // to be ok for alpha and others we have to align structures to 8 byte
745 // boundary.
746 // FIXME: do not change 4 by anything else: there is code which relies on that
747 #define ROUND_UP(x) _ROUND_UP(x,8LL)
748 
749 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
750 ** messages.
751 */
752 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
753 
754 void __reiserfs_warning(struct super_block *s, const char *id,
755  const char *func, const char *fmt, ...);
756 #define reiserfs_warning(s, id, fmt, args...) \
757  __reiserfs_warning(s, id, __func__, fmt, ##args)
758 /* assertions handling */
759 
761 #define __RASSERT(cond, scond, format, args...) \
762 do { \
763  if (!(cond)) \
764  reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
765  __FILE__ ":%i:%s: " format "\n", \
766  in_interrupt() ? -1 : task_pid_nr(current), \
767  __LINE__, __func__ , ##args); \
768 } while (0)
769 
770 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
771 
772 #if defined( CONFIG_REISERFS_CHECK )
773 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
774 #else
775 #define RFALSE( cond, format, args... ) do {;} while( 0 )
776 #endif
777 
778 #define CONSTF __attribute_const__
779 /*
780  * Disk Data Structures
781  */
782 
783 /***************************************************************************/
784 /* SUPER BLOCK */
785 /***************************************************************************/
786 
787 /*
788  * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
789  * the version in RAM is part of a larger structure containing fields never written to disk.
790  */
791 #define UNSET_HASH 0 // read_super will guess about, what hash names
792  // in directories were sorted with
793 #define TEA_HASH 1
794 #define YURA_HASH 2
795 #define R5_HASH 3
796 #define DEFAULT_HASH R5_HASH
797 
799  __le32 jp_journal_1st_block; /* where does journal start from on its
800  * device */
801  __le32 jp_journal_dev; /* journal device st_rdev */
802  __le32 jp_journal_size; /* size of the journal */
803  __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
804  __le32 jp_journal_magic; /* random value made on fs creation (this
805  * was sb_journal_block_count) */
806  __le32 jp_journal_max_batch; /* max number of blocks to batch into a
807  * trans */
808  __le32 jp_journal_max_commit_age; /* in seconds, how old can an async
809  * commit be */
810  __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
811  * be */
812 };
813 
814 /* this is the super from 3.5.X, where X >= 10 */
816  __le32 s_block_count; /* blocks count */
817  __le32 s_free_blocks; /* free blocks count */
818  __le32 s_root_block; /* root block number */
820  __le16 s_blocksize; /* block size */
821  __le16 s_oid_maxsize; /* max size of object id array, see
822  * get_objectid() commentary */
823  __le16 s_oid_cursize; /* current size of object id array */
824  __le16 s_umount_state; /* this is set to 1 when filesystem was
825  * umounted, to 2 - when not */
826  char s_magic[10]; /* reiserfs magic string indicates that
827  * file system is reiserfs:
828  * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
829  __le16 s_fs_state; /* it is set to used by fsck to mark which
830  * phase of rebuilding is done */
831  __le32 s_hash_function_code; /* indicate, what hash function is being use
832  * to sort names in a directory*/
833  __le16 s_tree_height; /* height of disk tree */
834  __le16 s_bmap_nr; /* amount of bitmap blocks needed to address
835  * each block of file system */
836  __le16 s_version; /* this field is only reliable on filesystem
837  * with non-standard journal */
838  __le16 s_reserved_for_journal; /* size in blocks of journal area on main
839  * device, we need to keep after
840  * making fs with non-standard journal */
841 } __attribute__ ((__packed__));
843 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
845 /* this is the on disk super block */
849  __le32 s_flags; /* Right now used only by inode-attributes, if enabled */
850  unsigned char s_uuid[16]; /* filesystem unique identifier */
851  unsigned char s_label[16]; /* filesystem volume label */
852  __le16 s_mnt_count; /* Count of mounts since last fsck */
853  __le16 s_max_mnt_count; /* Maximum mounts before check */
854  __le32 s_lastcheck; /* Timestamp of last fsck */
855  __le32 s_check_interval; /* Interval between checks */
856  char s_unused[76]; /* zero filled by mkreiserfs and
857  * reiserfs_convert_objectid_map_v1()
858  * so any additions must be updated
859  * there as well. */
860 } __attribute__ ((__packed__));
862 #define SB_SIZE (sizeof(struct reiserfs_super_block))
864 #define REISERFS_VERSION_1 0
865 #define REISERFS_VERSION_2 2
867 // on-disk super block fields converted to cpu form
868 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
869 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
870 #define SB_BLOCKSIZE(s) \
871  le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
872 #define SB_BLOCK_COUNT(s) \
873  le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
874 #define SB_FREE_BLOCKS(s) \
875  le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
876 #define SB_REISERFS_MAGIC(s) \
877  (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
878 #define SB_ROOT_BLOCK(s) \
879  le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
880 #define SB_TREE_HEIGHT(s) \
881  le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
882 #define SB_REISERFS_STATE(s) \
883  le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
884 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
885 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
886 
887 #define PUT_SB_BLOCK_COUNT(s, val) \
888  do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
889 #define PUT_SB_FREE_BLOCKS(s, val) \
890  do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
891 #define PUT_SB_ROOT_BLOCK(s, val) \
892  do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
893 #define PUT_SB_TREE_HEIGHT(s, val) \
894  do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
895 #define PUT_SB_REISERFS_STATE(s, val) \
896  do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
897 #define PUT_SB_VERSION(s, val) \
898  do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
899 #define PUT_SB_BMAP_NR(s, val) \
900  do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
901 
902 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
903 #define SB_ONDISK_JOURNAL_SIZE(s) \
904  le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
905 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
906  le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
907 #define SB_ONDISK_JOURNAL_DEVICE(s) \
908  le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
909 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
910  le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
911 
912 #define is_block_in_log_or_reserved_area(s, block) \
913  block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
914  && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
915  ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
916  SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
917 
918 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
919 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
920 int is_reiserfs_jr(struct reiserfs_super_block *rs);
921 
922 /* ReiserFS leaves the first 64k unused, so that partition labels have
923  enough space. If someone wants to write a fancy bootloader that
924  needs more than 64k, let us know, and this will be increased in size.
925  This number must be larger than than the largest block size on any
926  platform, or code will break. -Hans */
927 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
928 #define REISERFS_FIRST_BLOCK unused_define
929 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
930 
931 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
932 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
933 
934 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
935 #define CARRY_ON 0
936 #define REPEAT_SEARCH -1
937 #define IO_ERROR -2
938 #define NO_DISK_SPACE -3
939 #define NO_BALANCING_NEEDED (-4)
940 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
941 #define QUOTA_EXCEEDED -6
942 
944 typedef __le32 unp_t;
945 
948  unsigned short unfm_freespace;
949 };
950 
951 /* there are two formats of keys: 3.5 and 3.6
952  */
953 #define KEY_FORMAT_3_5 0
954 #define KEY_FORMAT_3_6 1
955 
956 /* there are two stat datas */
957 #define STAT_DATA_V1 0
958 #define STAT_DATA_V2 1
959 
960 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
961 {
962  return container_of(inode, struct reiserfs_inode_info, vfs_inode);
963 }
964 
965 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
966 {
967  return sb->s_fs_info;
968 }
969 
970 /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
971  * which overflows on large file systems. */
972 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
973 {
974  return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
975 }
976 
977 static inline int bmap_would_wrap(unsigned bmap_nr)
978 {
979  return bmap_nr > ((1LL << 16) - 1);
980 }
981 
984 #define get_inode_item_key_version( inode ) \
985  ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
986 
987 #define set_inode_item_key_version( inode, version ) \
988  ({ if((version)==KEY_FORMAT_3_6) \
989  REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
990  else \
991  REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
992 
993 #define get_inode_sd_version(inode) \
994  ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
995 
996 #define set_inode_sd_version(inode, version) \
997  ({ if((version)==STAT_DATA_V2) \
998  REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
999  else \
1000  REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1001 
1002 /* This is an aggressive tail suppression policy, I am hoping it
1003  improves our benchmarks. The principle behind it is that percentage
1004  space saving is what matters, not absolute space saving. This is
1005  non-intuitive, but it helps to understand it if you consider that the
1006  cost to access 4 blocks is not much more than the cost to access 1
1007  block, if you have to do a seek and rotate. A tail risks a
1008  non-linear disk access that is significant as a percentage of total
1009  time cost for a 4 block file and saves an amount of space that is
1010  less significant as a percentage of space, or so goes the hypothesis.
1011  -Hans */
1012 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1013 (\
1014  (!(n_tail_size)) || \
1015  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1016  ( (n_file_size) >= (n_block_size) * 4 ) || \
1017  ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1018  ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1019  ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1020  ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1021  ( ( (n_file_size) >= (n_block_size) ) && \
1022  ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1023 )
1024 
1025 /* Another strategy for tails, this one means only create a tail if all the
1026  file would fit into one DIRECT item.
1027  Primary intention for this one is to increase performance by decreasing
1028  seeking.
1029 */
1030 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1031 (\
1032  (!(n_tail_size)) || \
1033  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1034 )
1035 
1036 /*
1037  * values for s_umount_state field
1038  */
1039 #define REISERFS_VALID_FS 1
1040 #define REISERFS_ERROR_FS 2
1041 
1042 //
1043 // there are 5 item types currently
1044 //
1045 #define TYPE_STAT_DATA 0
1046 #define TYPE_INDIRECT 1
1047 #define TYPE_DIRECT 2
1048 #define TYPE_DIRENTRY 3
1049 #define TYPE_MAXTYPE 3
1050 #define TYPE_ANY 15 // FIXME: comment is required
1051 
1052 /***************************************************************************/
1053 /* KEY & ITEM HEAD */
1054 /***************************************************************************/
1055 
1056 //
1057 // directories use this key as well as old files
1058 //
1059 struct offset_v1 {
1062 } __attribute__ ((__packed__));
1064 struct offset_v2 {
1066 } __attribute__ ((__packed__));
1068 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1069 {
1070  __u8 type = le64_to_cpu(v2->v) >> 60;
1071  return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1072 }
1073 
1074 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1075 {
1076  v2->v =
1077  (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1078 }
1079 
1080 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1081 {
1082  return le64_to_cpu(v2->v) & (~0ULL >> 4);
1083 }
1084 
1085 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1086 {
1087  offset &= (~0ULL >> 4);
1088  v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1089 }
1090 
1091 /* Key of an item determines its location in the S+tree, and
1092  is composed of 4 components */
1094  __le32 k_dir_id; /* packing locality: by default parent
1095  directory object id */
1096  __le32 k_objectid; /* object identifier */
1097  union {
1100  } __attribute__ ((__packed__)) u;
1101 } __attribute__ ((__packed__));
1104  __u32 k_dir_id; /* packing locality: by default parent
1105  directory object id */
1106  __u32 k_objectid; /* object identifier */
1109 };
1110 
1111 struct cpu_key {
1112  struct in_core_key on_disk_key;
1113  int version;
1114  int key_length; /* 3 in all cases but direct2indirect and
1115  indirect2direct conversion */
1116 };
1117 
1118 /* Our function for comparing keys can compare keys of different
1119  lengths. It takes as a parameter the length of the keys it is to
1120  compare. These defines are used in determining what is to be passed
1121  to it as that parameter. */
1122 #define REISERFS_FULL_KEY_LEN 4
1123 #define REISERFS_SHORT_KEY_LEN 2
1124 
1125 /* The result of the key compare */
1126 #define FIRST_GREATER 1
1127 #define SECOND_GREATER -1
1128 #define KEYS_IDENTICAL 0
1129 #define KEY_FOUND 1
1130 #define KEY_NOT_FOUND 0
1131 
1132 #define KEY_SIZE (sizeof(struct reiserfs_key))
1133 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
1134 
1135 /* return values for search_by_key and clones */
1136 #define ITEM_FOUND 1
1137 #define ITEM_NOT_FOUND 0
1138 #define ENTRY_FOUND 1
1139 #define ENTRY_NOT_FOUND 0
1140 #define DIRECTORY_NOT_FOUND -1
1141 #define REGULAR_FILE_FOUND -2
1142 #define DIRECTORY_FOUND -3
1143 #define BYTE_FOUND 1
1144 #define BYTE_NOT_FOUND 0
1145 #define FILE_NOT_FOUND -1
1146 
1147 #define POSITION_FOUND 1
1148 #define POSITION_NOT_FOUND 0
1149 
1150 // return values for reiserfs_find_entry and search_by_entry_key
1151 #define NAME_FOUND 1
1152 #define NAME_NOT_FOUND 0
1153 #define GOTO_PREVIOUS_ITEM 2
1154 #define NAME_FOUND_INVISIBLE 3
1155 
1156 /* Everything in the filesystem is stored as a set of items. The
1157  item head contains the key of the item, its free space (for
1158  indirect items) and specifies the location of the item itself
1159  within the block. */
1160 
1161 struct item_head {
1162  /* Everything in the tree is found by searching for it based on
1163  * its key.*/
1165  union {
1166  /* The free space in the last unformatted node of an
1167  indirect item if this is an indirect item. This
1168  equals 0xFFFF iff this is a direct item or stat data
1169  item. Note that the key, not this field, is used to
1170  determine the item type, and thus which field this
1171  union contains. */
1173  /* Iff this is a directory item, this field equals the
1174  number of directory entries in the directory item. */
1176  } __attribute__ ((__packed__)) u;
1177  __le16 ih_item_len; /* total size of the item body */
1178  __le16 ih_item_location; /* an offset to the item body
1179  * within the block */
1180  __le16 ih_version; /* 0 for all old items, 2 for new
1181  ones. Highest bit is set by fsck
1182  temporary, cleaned after all
1183  done */
1184 } __attribute__ ((__packed__));
1185 /* size of item header */
1186 #define IH_SIZE (sizeof(struct item_head))
1188 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
1189 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
1190 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
1191 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
1192 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
1193 
1194 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1195 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1196 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1197 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1198 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1199 
1200 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1202 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1203 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1204 
1205 /* these operate on indirect items, where you've got an array of ints
1206 ** at a possibly unaligned location. These are a noop on ia32
1207 **
1208 ** p is the array of __u32, i is the index into the array, v is the value
1209 ** to store there.
1210 */
1211 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
1212 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1213 
1214 //
1215 // in old version uniqueness field shows key type
1216 //
1217 #define V1_SD_UNIQUENESS 0
1218 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
1219 #define V1_DIRECT_UNIQUENESS 0xffffffff
1220 #define V1_DIRENTRY_UNIQUENESS 500
1221 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
1222 
1223 //
1224 // here are conversion routines
1225 //
1226 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1227 static inline int uniqueness2type(__u32 uniqueness)
1228 {
1229  switch ((int)uniqueness) {
1230  case V1_SD_UNIQUENESS:
1231  return TYPE_STAT_DATA;
1233  return TYPE_INDIRECT;
1234  case V1_DIRECT_UNIQUENESS:
1235  return TYPE_DIRECT;
1237  return TYPE_DIRENTRY;
1238  case V1_ANY_UNIQUENESS:
1239  default:
1240  return TYPE_ANY;
1241  }
1242 }
1243 
1244 static inline __u32 type2uniqueness(int type) CONSTF;
1245 static inline __u32 type2uniqueness(int type)
1246 {
1247  switch (type) {
1248  case TYPE_STAT_DATA:
1249  return V1_SD_UNIQUENESS;
1250  case TYPE_INDIRECT:
1251  return V1_INDIRECT_UNIQUENESS;
1252  case TYPE_DIRECT:
1253  return V1_DIRECT_UNIQUENESS;
1254  case TYPE_DIRENTRY:
1255  return V1_DIRENTRY_UNIQUENESS;
1256  case TYPE_ANY:
1257  default:
1258  return V1_ANY_UNIQUENESS;
1259  }
1260 }
1261 
1262 //
1263 // key is pointer to on disk key which is stored in le, result is cpu,
1264 // there is no way to get version of object from key, so, provide
1265 // version to these defines
1266 //
1267 static inline loff_t le_key_k_offset(int version,
1268  const struct reiserfs_key *key)
1269 {
1270  return (version == KEY_FORMAT_3_5) ?
1271  le32_to_cpu(key->u.k_offset_v1.k_offset) :
1272  offset_v2_k_offset(&(key->u.k_offset_v2));
1273 }
1274 
1275 static inline loff_t le_ih_k_offset(const struct item_head *ih)
1276 {
1277  return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1278 }
1279 
1280 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1281 {
1282  return (version == KEY_FORMAT_3_5) ?
1283  uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
1284  offset_v2_k_type(&(key->u.k_offset_v2));
1285 }
1286 
1287 static inline loff_t le_ih_k_type(const struct item_head *ih)
1288 {
1289  return le_key_k_type(ih_version(ih), &(ih->ih_key));
1290 }
1291 
1292 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1293  loff_t offset)
1294 {
1295  (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */
1296  (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
1297 }
1298 
1299 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1300 {
1301  set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1302 }
1303 
1304 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1305  int type)
1306 {
1307  (version == KEY_FORMAT_3_5) ?
1308  (void)(key->u.k_offset_v1.k_uniqueness =
1309  cpu_to_le32(type2uniqueness(type)))
1310  : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
1311 }
1312 
1313 static inline void set_le_ih_k_type(struct item_head *ih, int type)
1314 {
1315  set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1316 }
1317 
1318 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1319 {
1320  return le_key_k_type(version, key) == TYPE_DIRENTRY;
1321 }
1322 
1323 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1324 {
1325  return le_key_k_type(version, key) == TYPE_DIRECT;
1326 }
1327 
1328 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1329 {
1330  return le_key_k_type(version, key) == TYPE_INDIRECT;
1331 }
1332 
1333 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1334 {
1335  return le_key_k_type(version, key) == TYPE_STAT_DATA;
1336 }
1337 
1338 //
1339 // item header has version.
1340 //
1341 static inline int is_direntry_le_ih(struct item_head *ih)
1342 {
1343  return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1344 }
1345 
1346 static inline int is_direct_le_ih(struct item_head *ih)
1347 {
1348  return is_direct_le_key(ih_version(ih), &ih->ih_key);
1349 }
1350 
1351 static inline int is_indirect_le_ih(struct item_head *ih)
1352 {
1353  return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1354 }
1355 
1356 static inline int is_statdata_le_ih(struct item_head *ih)
1357 {
1358  return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1359 }
1360 
1361 //
1362 // key is pointer to cpu key, result is cpu
1363 //
1364 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1365 {
1366  return key->on_disk_key.k_offset;
1367 }
1368 
1369 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1370 {
1371  return key->on_disk_key.k_type;
1372 }
1373 
1374 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1375 {
1376  key->on_disk_key.k_offset = offset;
1377 }
1378 
1379 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1380 {
1381  key->on_disk_key.k_type = type;
1382 }
1383 
1384 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1385 {
1386  key->on_disk_key.k_offset--;
1387 }
1388 
1389 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1390 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1391 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1392 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1393 
1394 /* are these used ? */
1395 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1396 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1397 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1398 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1399 
1400 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1401  (!COMP_SHORT_KEYS(ih, key) && \
1402  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1403 
1404 /* maximal length of item */
1405 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1406 #define MIN_ITEM_LEN 1
1407 
1408 /* object identifier for root dir */
1409 #define REISERFS_ROOT_OBJECTID 2
1410 #define REISERFS_ROOT_PARENT_OBJECTID 1
1411 
1412 extern struct reiserfs_key root_key;
1413 
1414 /*
1415  * Picture represents a leaf of the S+tree
1416  * ______________________________________________________
1417  * | | Array of | | |
1418  * |Block | Object-Item | F r e e | Objects- |
1419  * | head | Headers | S p a c e | Items |
1420  * |______|_______________|___________________|___________|
1421  */
1422 
1423 /* Header of a disk block. More precisely, header of a formatted leaf
1424  or internal node, and not the header of an unformatted node. */
1425 struct block_head {
1426  __le16 blk_level; /* Level of a block in the tree. */
1427  __le16 blk_nr_item; /* Number of keys/items in a block. */
1428  __le16 blk_free_space; /* Block free space in bytes. */
1430  /* dump this in v4/planA */
1431  struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
1432 };
1433 
1434 #define BLKH_SIZE (sizeof(struct block_head))
1435 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
1436 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
1437 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
1438 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
1439 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
1440 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1441 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1442 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1443 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
1444 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
1445 
1446 /*
1447  * values for blk_level field of the struct block_head
1448  */
1449 
1450 #define FREE_LEVEL 0 /* when node gets removed from the tree its
1451  blk_level is set to FREE_LEVEL. It is then
1452  used to see whether the node is still in the
1453  tree */
1454 
1455 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
1456 
1457 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
1458 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
1459 /* Number of items that are in buffer. */
1460 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
1461 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
1462 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
1464 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1465 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1466 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1467 
1468 /* Get right delimiting key. -- little endian */
1469 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1470 
1471 /* Does the buffer contain a disk leaf. */
1472 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1473 
1474 /* Does the buffer contain a disk internal node */
1475 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1476  && B_LEVEL(bh) <= MAX_HEIGHT)
1477 
1478 /***************************************************************************/
1479 /* STAT DATA */
1480 /***************************************************************************/
1481 
1482 //
1483 // old stat data is 32 bytes long. We are going to distinguish new one by
1484 // different size
1485 //
1487  __le16 sd_mode; /* file type, permissions */
1488  __le16 sd_nlink; /* number of hard links */
1489  __le16 sd_uid; /* owner */
1490  __le16 sd_gid; /* group */
1491  __le32 sd_size; /* file size */
1492  __le32 sd_atime; /* time of last access */
1493  __le32 sd_mtime; /* time file was last modified */
1494  __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1495  union {
1497  __le32 sd_blocks; /* number of blocks file uses */
1498  } __attribute__ ((__packed__)) u;
1499  __le32 sd_first_direct_byte; /* first byte of file which is stored
1500  in a direct item: except that if it
1501  equals 1 it is a symlink and if it
1502  equals ~(__u32)0 there is no
1503  direct item. The existence of this
1504  field really grates on me. Let's
1505  replace it with a macro based on
1506  sd_size and our tail suppression
1507  policy. Someday. -Hans */
1508 } __attribute__ ((__packed__));
1510 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
1511 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
1512 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1513 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1514 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
1515 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
1516 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
1517 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
1518 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
1519 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
1520 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
1521 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
1522 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1523 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1524 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1525 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1526 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1527 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1528 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1529 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1530 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
1531 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1532 #define sd_v1_first_direct_byte(sdp) \
1533  (le32_to_cpu((sdp)->sd_first_direct_byte))
1534 #define set_sd_v1_first_direct_byte(sdp,v) \
1535  ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1536 
1537 /* inode flags stored in sd_attrs (nee sd_reserved) */
1539 /* we want common flags to have the same values as in ext2,
1540  so chattr(1) will work without problems */
1541 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1542 #define REISERFS_APPEND_FL FS_APPEND_FL
1543 #define REISERFS_SYNC_FL FS_SYNC_FL
1544 #define REISERFS_NOATIME_FL FS_NOATIME_FL
1545 #define REISERFS_NODUMP_FL FS_NODUMP_FL
1546 #define REISERFS_SECRM_FL FS_SECRM_FL
1547 #define REISERFS_UNRM_FL FS_UNRM_FL
1548 #define REISERFS_COMPR_FL FS_COMPR_FL
1549 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL
1550 
1551 /* persistent flags that file inherits from the parent directory */
1552 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
1553  REISERFS_SYNC_FL | \
1554  REISERFS_NOATIME_FL | \
1555  REISERFS_NODUMP_FL | \
1556  REISERFS_SECRM_FL | \
1557  REISERFS_COMPR_FL | \
1558  REISERFS_NOTAIL_FL )
1560 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
1561  address blocks) */
1562 struct stat_data {
1563  __le16 sd_mode; /* file type, permissions */
1564  __le16 sd_attrs; /* persistent inode flags */
1565  __le32 sd_nlink; /* number of hard links */
1566  __le64 sd_size; /* file size */
1567  __le32 sd_uid; /* owner */
1568  __le32 sd_gid; /* group */
1569  __le32 sd_atime; /* time of last access */
1570  __le32 sd_mtime; /* time file was last modified */
1571  __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1573  union {
1574  __le32 sd_rdev;
1576  //__le32 sd_first_direct_byte;
1577  /* first byte of file which is stored in a
1578  direct item: except that if it equals 1
1579  it is a symlink and if it equals
1580  ~(__u32)0 there is no direct item. The
1581  existence of this field really grates
1582  on me. Let's replace it with a macro
1583  based on sd_size and our tail
1584  suppression policy? */
1585  } __attribute__ ((__packed__)) u;
1586 } __attribute__ ((__packed__));
1587 //
1588 // this is 44 bytes long
1589 //
1590 #define SD_SIZE (sizeof(struct stat_data))
1591 #define SD_V2_SIZE SD_SIZE
1592 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
1593 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1594 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1595 /* sd_reserved */
1596 /* set_sd_reserved */
1597 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
1598 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
1599 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
1600 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
1601 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
1602 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
1603 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
1604 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
1605 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1606 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1607 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1608 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1609 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1610 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1611 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
1612 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1613 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1614 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1615 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
1616 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1617 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
1618 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
1619 
1620 /***************************************************************************/
1621 /* DIRECTORY STRUCTURE */
1622 /***************************************************************************/
1623 /*
1624  Picture represents the structure of directory items
1625  ________________________________________________
1626  | Array of | | | | | |
1627  | directory |N-1| N-2 | .... | 1st |0th|
1628  | entry headers | | | | | |
1629  |_______________|___|_____|________|_______|___|
1630  <---- directory entries ------>
1631 
1632  First directory item has k_offset component 1. We store "." and ".."
1633  in one item, always, we never split "." and ".." into differing
1634  items. This makes, among other things, the code for removing
1635  directories simpler. */
1636 #define SD_OFFSET 0
1637 #define SD_UNIQUENESS 0
1638 #define DOT_OFFSET 1
1639 #define DOT_DOT_OFFSET 2
1640 #define DIRENTRY_UNIQUENESS 500
1641 
1642 /* */
1643 #define FIRST_ITEM_OFFSET 1
1644 
1645 /*
1646  Q: How to get key of object pointed to by entry from entry?
1647 
1648  A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1649  of object, entry points to */
1650 
1651 /* NOT IMPLEMENTED:
1652  Directory will someday contain stat data of object */
1654 struct reiserfs_de_head {
1655  __le32 deh_offset; /* third component of the directory entry key */
1656  __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
1657  by directory entry */
1658  __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1659  __le16 deh_location; /* offset of name in the whole item */
1660  __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1661  entry is hidden (unlinked) */
1662 } __attribute__ ((__packed__));
1663 #define DEH_SIZE sizeof(struct reiserfs_de_head)
1664 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1665 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1666 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1667 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1668 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1670 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1671 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1672 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1673 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1674 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1675 
1676 /* empty directory contains two entries "." and ".." and their headers */
1677 #define EMPTY_DIR_SIZE \
1678 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1679 
1680 /* old format directories have this size when empty */
1681 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1682 
1683 #define DEH_Statdata 0 /* not used now */
1684 #define DEH_Visible 2
1685 
1686 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1687 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1688 # define ADDR_UNALIGNED_BITS (3)
1689 #endif
1690 
1691 /* These are only used to manipulate deh_state.
1692  * Because of this, we'll use the ext2_ bit routines,
1693  * since they are little endian */
1694 #ifdef ADDR_UNALIGNED_BITS
1695 
1696 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1697 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1698 
1699 # define set_bit_unaligned(nr, addr) \
1700  __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1701 # define clear_bit_unaligned(nr, addr) \
1702  __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1703 # define test_bit_unaligned(nr, addr) \
1704  test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1706 #else
1708 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr)
1709 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr)
1710 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr)
1712 #endif
1714 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1715 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1716 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1717 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1719 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1720 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1721 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1722 
1723 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1724  __le32 par_dirid, __le32 par_objid);
1725 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1726  __le32 par_dirid, __le32 par_objid);
1728 /* array of the entry headers */
1729  /* get item body */
1730 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1731 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1732 
1733 /* length of the directory entry in directory item. This define
1734  calculates length of i-th directory entry using directory entry
1735  locations from dir entry head. When it calculates length of 0-th
1736  directory entry, it uses length of whole item in place of entry
1737  location of the non-existent following entry in the calculation.
1738  See picture above.*/
1739 /*
1740 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1741 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1742 */
1743 static inline int entry_length(const struct buffer_head *bh,
1744  const struct item_head *ih, int pos_in_item)
1745 {
1746  struct reiserfs_de_head *deh;
1747 
1748  deh = B_I_DEH(bh, ih) + pos_in_item;
1749  if (pos_in_item)
1750  return deh_location(deh - 1) - deh_location(deh);
1751 
1752  return ih_item_len(ih) - deh_location(deh);
1754 
1755 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1756 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1757 
1758 /* name by bh, ih and entry_num */
1759 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1760 
1761 // two entries per block (at least)
1762 #define REISERFS_MAX_NAME(block_size) 255
1763 
1764 /* this structure is used for operations on directory entries. It is
1765  not a disk structure. */
1766 /* When reiserfs_find_entry or search_by_entry_key find directory
1767  entry, they return filled reiserfs_dir_entry structure */
1769  struct buffer_head *de_bh;
1770  int de_item_num;
1771  struct item_head *de_ih;
1772  int de_entry_num;
1773  struct reiserfs_de_head *de_deh;
1774  int de_entrylen;
1775  int de_namelen;
1776  char *de_name;
1777  unsigned long *de_gen_number_bit_string;
1778 
1779  __u32 de_dir_id;
1780  __u32 de_objectid;
1781 
1782  struct cpu_key de_entry_key;
1783 };
1784 
1785 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1786 
1787 /* pointer to file name, stored in entry */
1788 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1789 
1790 /* length of name */
1791 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1792 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1793 
1794 /* hash value occupies bits from 7 up to 30 */
1795 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1796 /* generation number occupies 7 bits starting from 0 up to 6 */
1797 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1798 #define MAX_GENERATION_NUMBER 127
1799 
1800 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1801 
1802 /*
1803  * Picture represents an internal node of the reiserfs tree
1804  * ______________________________________________________
1805  * | | Array of | Array of | Free |
1806  * |block | keys | pointers | space |
1807  * | head | N | N+1 | |
1808  * |______|_______________|___________________|___________|
1809  */
1810 
1811 /***************************************************************************/
1812 /* DISK CHILD */
1813 /***************************************************************************/
1814 /* Disk child pointer: The pointer from an internal node of the tree
1815  to a node that is on disk. */
1816 struct disk_child {
1817  __le32 dc_block_number; /* Disk child's block number. */
1818  __le16 dc_size; /* Disk child's used space. */
1819  __le16 dc_reserved;
1820 };
1822 #define DC_SIZE (sizeof(struct disk_child))
1823 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1824 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1825 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1826 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1827 
1828 /* Get disk child by buffer header and position in the tree node. */
1829 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
1830 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1832 /* Get disk child number by buffer header and position in the tree node. */
1833 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1834 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1835  (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1837  /* maximal value of field child_size in structure disk_child */
1838  /* child size is the combined size of all items and their headers */
1839 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1840 
1841 /* amount of used space in buffer (not including block head) */
1842 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1844 /* max and min number of keys in internal node */
1845 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1846 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1847 
1848 /***************************************************************************/
1849 /* PATH STRUCTURES AND DEFINES */
1850 /***************************************************************************/
1851 
1852 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1853  key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1854  does not find them in the cache it reads them from disk. For each node search_by_key finds using
1855  reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1856  position of the block_number of the next node if it is looking through an internal node. If it
1857  is looking through a leaf node bin_search will find the position of the item which has key either
1858  equal to given key, or which is the maximal key less than the given key. */
1860 struct path_element {
1861  struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
1862  int pe_position; /* Position in the tree node which is placed in the */
1863  /* buffer above. */
1864 };
1866 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1867 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1868 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1869 
1870 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1871 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1872 
1873 /* We need to keep track of who the ancestors of nodes are. When we
1874  perform a search we record which nodes were visited while
1875  descending the tree looking for the node we searched for. This list
1876  of nodes is called the path. This information is used while
1877  performing balancing. Note that this path information may become
1878  invalid, and this means we must check it when using it to see if it
1879  is still valid. You'll need to read search_by_key and the comments
1880  in it, especially about decrement_counters_in_path(), to understand
1881  this structure.
1882 
1883 Paths make the code so much harder to work with and debug.... An
1884 enormous number of bugs are due to them, and trying to write or modify
1885 code that uses them just makes my head hurt. They are based on an
1886 excessive effort to avoid disturbing the precious VFS code.:-( The
1887 gods only know how we are going to SMP the code that uses them.
1888 znodes are the way! */
1889 
1890 #define PATH_READA 0x1 /* do read ahead */
1891 #define PATH_READA_BACK 0x2 /* read backwards */
1893 struct treepath {
1894  int path_length; /* Length of the array above. */
1895  int reada;
1896  struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1898 };
1900 #define pos_in_item(path) ((path)->pos_in_item)
1901 
1902 #define INITIALIZE_PATH(var) \
1903 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1904 
1905 /* Get path element by path and path position. */
1906 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
1907 
1908 /* Get buffer header at the path by path and path position. */
1909 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1910 
1911 /* Get position in the element at the path by path and path position. */
1912 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1913 
1914 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1915  /* you know, to the person who didn't
1916  write this the macro name does not
1917  at first suggest what it does.
1918  Maybe POSITION_FROM_PATH_END? Or
1919  maybe we should just focus on
1920  dumping paths... -Hans */
1921 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1922 
1923 #define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1925 /* in do_balance leaf has h == 0 in contrast with path structure,
1926  where root has level == 0. That is why we need these defines */
1927 #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */
1928 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1929 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1930 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1932 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1934 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1935 #define get_ih(path) PATH_PITEM_HEAD(path)
1936 #define get_item_pos(path) PATH_LAST_POSITION(path)
1937 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1938 #define item_moved(ih,path) comp_items(ih, path)
1939 #define path_changed(ih,path) comp_items (ih, path)
1940 
1941 /***************************************************************************/
1942 /* MISC */
1943 /***************************************************************************/
1945 /* Size of pointer to the unformatted node. */
1946 #define UNFM_P_SIZE (sizeof(unp_t))
1947 #define UNFM_P_SHIFT 2
1948 
1949 // in in-core inode key is stored on le form
1950 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1952 #define MAX_UL_INT 0xffffffff
1953 #define MAX_INT 0x7ffffff
1954 #define MAX_US_INT 0xffff
1955 
1956 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1957 #define U32_MAX (~(__u32)0)
1958 
1959 static inline loff_t max_reiserfs_offset(struct inode *inode)
1960 {
1962  return (loff_t) U32_MAX;
1963 
1964  return (loff_t) ((~(__u64) 0) >> 4);
1966 
1967 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1968 #define MAX_KEY_OBJECTID MAX_UL_INT
1969 
1970 #define MAX_B_NUM MAX_UL_INT
1971 #define MAX_FC_NUM MAX_US_INT
1972 
1973 /* the purpose is to detect overflow of an unsigned short */
1974 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1976 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1977 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1978 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1980 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1981 #define get_generation(s) atomic_read (&fs_generation(s))
1982 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1983 #define __fs_changed(gen,s) (gen != get_generation (s))
1984 #define fs_changed(gen,s) \
1985 ({ \
1986  reiserfs_cond_resched(s); \
1987  __fs_changed(gen, s); \
1988 })
1989 
1990 /***************************************************************************/
1991 /* FIXATE NODES */
1992 /***************************************************************************/
1993 
1994 #define VI_TYPE_LEFT_MERGEABLE 1
1995 #define VI_TYPE_RIGHT_MERGEABLE 2
1996 
1997 /* To make any changes in the tree we always first find node, that
1998  contains item to be changed/deleted or place to insert a new
1999  item. We call this node S. To do balancing we need to decide what
2000  we will shift to left/right neighbor, or to a new node, where new
2001  item will be etc. To make this analysis simpler we build virtual
2002  node. Virtual node is an array of items, that will replace items of
2003  node S. (For instance if we are going to delete an item, virtual
2004  node does not contain it). Virtual node keeps information about
2005  item sizes and types, mergeability of first and last items, sizes
2006  of all entries in directory item. We use this array of items when
2007  calculating what we can shift to neighbors and how many nodes we
2008  have to have if we do not any shiftings, if we shift to left/right
2009  neighbor or to both. */
2011  int vi_index; // index in the array of item operations
2012  unsigned short vi_type; // left/right mergeability
2013  unsigned short vi_item_len; /* length of item that it will have after balancing */
2014  struct item_head *vi_ih;
2015  const char *vi_item; // body of item (old or new)
2016  const void *vi_new_data; // 0 always but paste mode
2017  void *vi_uarea; // item specific area
2018 };
2021  char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
2022  unsigned short vn_nr_item; /* number of items in virtual node */
2023  short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
2024  short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
2025  short vn_affected_item_num;
2026  short vn_pos_in_item;
2027  struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
2028  const void *vn_data;
2029  struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
2030 };
2032 /* used by directory items when creating virtual nodes */
2034  int flags;
2037 } __attribute__ ((__packed__));
2038 
2039 /***************************************************************************/
2040 /* TREE BALANCE */
2041 /***************************************************************************/
2042 
2043 /* This temporary structure is used in tree balance algorithms, and
2044  constructed as we go to the extent that its various parts are
2045  needed. It contains arrays of nodes that can potentially be
2046  involved in the balancing of node S, and parameters that define how
2047  each of the nodes must be balanced. Note that in these algorithms
2048  for balancing the worst case is to need to balance the current node
2049  S and the left and right neighbors and all of their parents plus
2050  create a new node. We implement S1 balancing for the leaf nodes
2051  and S0 balancing for the internal nodes (S1 and S0 are defined in
2052  our papers.)*/
2053 
2054 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
2055 
2056 /* maximum number of FEB blocknrs on a single level */
2057 #define MAX_AMOUNT_NEEDED 2
2059 /* someday somebody will prefix every field in this struct with tb_ */
2061  int tb_mode;
2062  int need_balance_dirty;
2063  struct super_block *tb_sb;
2064  struct reiserfs_transaction_handle *transaction_handle;
2065  struct treepath *tb_path;
2066  struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
2067  struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
2068  struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
2069  struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
2070  struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
2071  struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
2073  struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
2074  cur_blknum. */
2075  struct buffer_head *used[MAX_FEB_SIZE];
2076  struct buffer_head *thrown[MAX_FEB_SIZE];
2077  int lnum[MAX_HEIGHT]; /* array of number of items which must be
2078  shifted to the left in order to balance the
2079  current node; for leaves includes item that
2080  will be partially shifted; for internal
2081  nodes, it is the number of child pointers
2082  rather than items. It includes the new item
2083  being created. The code sometimes subtracts
2084  one to get the number of wholly shifted
2085  items for other purposes. */
2086  int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
2087  int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
2088  S[h] to its item number within the node CFL[h] */
2089  int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
2090  int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
2091  S[h]. A negative value means removing. */
2092  int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
2093  balancing on the level h of the tree. If 0 then S is
2094  being deleted, if 1 then S is remaining and no new nodes
2095  are being created, if 2 or 3 then 1 or 2 new nodes is
2096  being created */
2098  /* fields that are used only for balancing leaves of the tree */
2099  int cur_blknum; /* number of empty blocks having been already allocated */
2100  int s0num; /* number of items that fall into left most node when S[0] splits */
2101  int s1num; /* number of items that fall into first new node when S[0] splits */
2102  int s2num; /* number of items that fall into second new node when S[0] splits */
2103  int lbytes; /* number of bytes which can flow to the left neighbor from the left */
2104  /* most liquid item that cannot be shifted from S[0] entirely */
2105  /* if -1 then nothing will be partially shifted */
2106  int rbytes; /* number of bytes which will flow to the right neighbor from the right */
2107  /* most liquid item that cannot be shifted from S[0] entirely */
2108  /* if -1 then nothing will be partially shifted */
2109  int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
2110  /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
2111  int s2bytes;
2112  struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
2113  char *vn_buf; /* kmalloced memory. Used to create
2114  virtual node and keep map of
2115  dirtied bitmap blocks */
2116  int vn_buf_size; /* size of the vn_buf */
2117  struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
2118 
2119  int fs_gen; /* saved value of `reiserfs_generation' counter
2120  see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
2121 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2122  struct in_core_key key; /* key pointer, to pass to block allocator or
2123  another low-level subsystem */
2124 #endif
2125 };
2126 
2127 /* These are modes of balancing */
2128 
2129 /* When inserting an item. */
2130 #define M_INSERT 'i'
2131 /* When inserting into (directories only) or appending onto an already
2132  existent item. */
2133 #define M_PASTE 'p'
2134 /* When deleting an item. */
2135 #define M_DELETE 'd'
2136 /* When truncating an item or removing an entry from a (directory) item. */
2137 #define M_CUT 'c'
2138 
2139 /* used when balancing on leaf level skipped (in reiserfsck) */
2140 #define M_INTERNAL 'n'
2142 /* When further balancing is not needed, then do_balance does not need
2143  to be called. */
2144 #define M_SKIP_BALANCING 's'
2145 #define M_CONVERT 'v'
2147 /* modes of leaf_move_items */
2148 #define LEAF_FROM_S_TO_L 0
2149 #define LEAF_FROM_S_TO_R 1
2150 #define LEAF_FROM_R_TO_L 2
2151 #define LEAF_FROM_L_TO_R 3
2152 #define LEAF_FROM_S_TO_SNEW 4
2153 
2154 #define FIRST_TO_LAST 0
2155 #define LAST_TO_FIRST 1
2157 /* used in do_balance for passing parent of node information that has
2158  been gotten from tb struct */
2159 struct buffer_info {
2160  struct tree_balance *tb;
2161  struct buffer_head *bi_bh;
2162  struct buffer_head *bi_parent;
2163  int bi_position;
2164 };
2165 
2166 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2167 {
2168  return tb ? tb->tb_sb : NULL;
2169 }
2170 
2171 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2172 {
2173  return bi ? sb_from_tb(bi->tb) : NULL;
2174 }
2175 
2176 /* there are 4 types of items: stat data, directory item, indirect, direct.
2177 +-------------------+------------+--------------+------------+
2178 | | k_offset | k_uniqueness | mergeable? |
2179 +-------------------+------------+--------------+------------+
2180 | stat data | 0 | 0 | no |
2181 +-------------------+------------+--------------+------------+
2182 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
2183 | non 1st directory | hash value | | yes |
2184 | item | | | |
2185 +-------------------+------------+--------------+------------+
2186 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
2187 +-------------------+------------+--------------+------------+
2188 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
2189 +-------------------+------------+--------------+------------+
2190 */
2193  int (*bytes_number) (struct item_head * ih, int block_size);
2194  void (*decrement_key) (struct cpu_key *);
2195  int (*is_left_mergeable) (struct reiserfs_key * ih,
2196  unsigned long bsize);
2197  void (*print_item) (struct item_head *, char *item);
2198  void (*check_item) (struct item_head *, char *item);
2200  int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2201  int is_affected, int insert_size);
2202  int (*check_left) (struct virtual_item * vi, int free,
2203  int start_skip, int end_skip);
2204  int (*check_right) (struct virtual_item * vi, int free);
2205  int (*part_size) (struct virtual_item * vi, int from, int to);
2206  int (*unit_num) (struct virtual_item * vi);
2207  void (*print_vi) (struct virtual_item * vi);
2208 };
2210 extern struct item_operations *item_ops[TYPE_ANY + 1];
2212 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2213 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2214 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2215 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2216 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2217 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2218 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
2219 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
2220 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
2221 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
2222 
2223 #define COMP_SHORT_KEYS comp_short_keys
2224 
2225 /* number of blocks pointed to by the indirect item */
2226 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
2227 
2228 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
2229 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2230 
2231 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
2232 
2233 /* get the item header */
2234 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
2235 
2236 /* get key */
2237 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
2238 
2239 /* get the key */
2240 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
2241 
2242 /* get item body */
2243 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
2244 
2245 /* get the stat data by the buffer header and the item order */
2246 #define B_N_STAT_DATA(bh,nr) \
2247 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
2248 
2249  /* following defines use reiserfs buffer header and item header */
2250 
2251 /* get stat-data */
2252 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2253 
2254 // this is 3976 for size==4096
2255 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2256 
2257 /* indirect items consist of entries which contain blocknrs, pos
2258  indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2259  blocknr contained by the entry pos points to */
2260 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
2261 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
2263 struct reiserfs_iget_args {
2264  __u32 objectid;
2265  __u32 dirid;
2266 };
2267 
2268 /***************************************************************************/
2269 /* FUNCTION DECLARATIONS */
2270 /***************************************************************************/
2272 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2273 
2274 #define journal_trans_half(blocksize) \
2275  ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
2276 
2277 /* journal.c see journal.c for all the comments here */
2279 /* first block written in a commit. */
2281  __le32 j_trans_id; /* id of commit */
2282  __le32 j_len; /* length of commit. len +1 is the commit block */
2283  __le32 j_mount_id; /* mount id of this trans */
2284  __le32 j_realblock[1]; /* real locations for each block */
2285 };
2287 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
2288 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
2289 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
2291 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2292 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
2293 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2295 /* last block written in a commit */
2297  __le32 j_trans_id; /* must match j_trans_id from the desc block */
2298  __le32 j_len; /* ditto */
2299  __le32 j_realblock[1]; /* real locations for each block */
2300 };
2302 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2303 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
2304 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2305 
2306 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2307 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
2308 
2309 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
2310 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
2311 ** and this transaction does not need to be replayed.
2312 */
2314  __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
2315  __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
2316  __le32 j_mount_id;
2317  /* 12 */ struct journal_params jh_journal;
2318 };
2320 /* biggest tunable defines are right here */
2321 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
2322 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
2323 #define JOURNAL_TRANS_MIN_DEFAULT 256
2324 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
2325 #define JOURNAL_MIN_RATIO 2
2326 #define JOURNAL_MAX_COMMIT_AGE 30
2327 #define JOURNAL_MAX_TRANS_AGE 30
2328 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2329 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
2330  2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2331  REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2332 
2333 #ifdef CONFIG_QUOTA
2334 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2335 /* We need to update data and inode (atime) */
2336 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2337 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2338 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2339 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2340 /* same as with INIT */
2341 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2342 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2343 #else
2344 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2345 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2346 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2347 #endif
2348 
2349 /* both of these can be as low as 1, or as high as you want. The min is the
2350 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2351 ** as needed, and released when transactions are committed. On release, if
2352 ** the current number of nodes is > max, the node is freed, otherwise,
2353 ** it is put on a free list for faster use later.
2354 */
2355 #define REISERFS_MIN_BITMAP_NODES 10
2356 #define REISERFS_MAX_BITMAP_NODES 100
2357 
2358 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
2359 #define JBH_HASH_MASK 8191
2360 
2361 #define _jhashfn(sb,block) \
2362  (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2363  (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2364 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2366 // We need these to make journal.c code more readable
2367 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2368 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2369 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2372  BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
2374  BH_JNew, /* disk block was taken off free list before
2375  * being in a finished transaction, or
2376  * written to disk. Can be reused immed. */
2377  BH_JPrepared,
2379  BH_JTest, // debugging only will go away
2380 };
2381 
2382 BUFFER_FNS(JDirty, journaled);
2383 TAS_BUFFER_FNS(JDirty, journaled);
2384 BUFFER_FNS(JDirty_wait, journal_dirty);
2385 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2386 BUFFER_FNS(JNew, journal_new);
2387 TAS_BUFFER_FNS(JNew, journal_new);
2388 BUFFER_FNS(JPrepared, journal_prepared);
2389 TAS_BUFFER_FNS(JPrepared, journal_prepared);
2390 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2391 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2392 BUFFER_FNS(JTest, journal_test);
2393 TAS_BUFFER_FNS(JTest, journal_test);
2394 
2395 /*
2396 ** transaction handle which is passed around for all journal calls
2397 */
2399  struct super_block *t_super; /* super for this FS when journal_begin was
2400  called. saves calls to reiserfs_get_super
2401  also used by nested transactions to make
2402  sure they are nesting on the right FS
2403  _must_ be first in the handle
2404  */
2405  int t_refcount;
2406  int t_blocks_logged; /* number of blocks this writer has logged */
2407  int t_blocks_allocated; /* number of blocks this writer allocated */
2408  unsigned int t_trans_id; /* sanity check, equals the current trans id */
2409  void *t_handle_save; /* save existing current->journal_info */
2410  unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
2411  should be displaced from others */
2412  struct list_head t_list;
2413 };
2414 
2415 /* used to keep track of ordered and tail writes, attached to the buffer
2416  * head through b_journal_head.
2417  */
2418 struct reiserfs_jh {
2419  struct reiserfs_journal_list *jl;
2420  struct buffer_head *bh;
2421  struct list_head list;
2422 };
2423 
2424 void reiserfs_free_jh(struct buffer_head *bh);
2425 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2426 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2428  struct super_block *, struct buffer_head *bh);
2429 
2430 static inline int reiserfs_file_data_log(struct inode *inode)
2431 {
2432  if (reiserfs_data_log(inode->i_sb) ||
2433  (REISERFS_I(inode)->i_flags & i_data_log))
2434  return 1;
2435  return 0;
2436 }
2437 
2438 static inline int reiserfs_transaction_running(struct super_block *s)
2439 {
2440  struct reiserfs_transaction_handle *th = current->journal_info;
2441  if (th && th->t_super == s)
2442  return 1;
2443  if (th && th->t_super == NULL)
2444  BUG();
2445  return 0;
2446 }
2447 
2448 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2449 {
2450  return th->t_blocks_allocated - th->t_blocks_logged;
2451 }
2452 
2454  super_block
2455  *,
2456  int count);
2458 int reiserfs_commit_page(struct inode *inode, struct page *page,
2459  unsigned from, unsigned to);
2461 int reiserfs_commit_for_inode(struct inode *);
2462 int reiserfs_inode_needs_commit(struct inode *);
2463 void reiserfs_update_inode_transaction(struct inode *);
2466 void reiserfs_allow_writes(struct super_block *s);
2467 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2468 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2469  int wait);
2471  struct buffer_head *bh);
2472 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2473  unsigned int);
2476  struct super_block *);
2477 int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
2478  unsigned long);
2480  unsigned long);
2482  struct super_block *, b_blocknr_t blocknr);
2484 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2485  int bit_nr, int searchall, b_blocknr_t *next);
2487  struct super_block *sb, unsigned long);
2489  struct super_block *sb, unsigned long);
2490 void reiserfs_abort_journal(struct super_block *sb, int errno);
2491 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2493  struct reiserfs_list_bitmap *, unsigned int);
2494 
2497  struct inode *inode, int truncate);
2498 int remove_save_link(struct inode *inode, int truncate);
2499 
2500 /* objectid.c */
2503  __u32 objectid_to_release);
2505 
2506 /* stree.c */
2507 int B_IS_IN_TREE(const struct buffer_head *);
2508 extern void copy_item_head(struct item_head *to,
2509  const struct item_head *from);
2510 
2511 // first key is in cpu form, second - le
2512 extern int comp_short_keys(const struct reiserfs_key *le_key,
2513  const struct cpu_key *cpu_key);
2514 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2515 
2516 // both are in le form
2517 extern int comp_le_keys(const struct reiserfs_key *,
2518  const struct reiserfs_key *);
2519 extern int comp_short_le_keys(const struct reiserfs_key *,
2520  const struct reiserfs_key *);
2521 
2522 //
2523 // get key version from on disk key - kludge
2524 //
2525 static inline int le_key_version(const struct reiserfs_key *key)
2526 {
2527  int type;
2528 
2529  type = offset_v2_k_type(&(key->u.k_offset_v2));
2530  if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2531  && type != TYPE_DIRENTRY)
2532  return KEY_FORMAT_3_5;
2533 
2534  return KEY_FORMAT_3_6;
2535 
2536 }
2537 
2538 static inline void copy_key(struct reiserfs_key *to,
2539  const struct reiserfs_key *from)
2540 {
2541  memcpy(to, from, KEY_SIZE);
2542 }
2543 
2544 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
2545 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
2546  const struct super_block *sb);
2547 int search_by_key(struct super_block *, const struct cpu_key *,
2548  struct treepath *, int);
2549 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
2551  const struct cpu_key *cpu_key,
2552  struct treepath *search_path);
2553 extern void decrement_bcount(struct buffer_head *bh);
2555 void pathrelse(struct treepath *search_path);
2556 int reiserfs_check_path(struct treepath *p);
2557 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
2558 
2560  struct treepath *path,
2561  const struct cpu_key *key,
2562  struct item_head *ih,
2563  struct inode *inode, const char *body);
2564 
2566  struct treepath *path,
2567  const struct cpu_key *key,
2568  struct inode *inode,
2569  const char *body, int paste_size);
2570 
2572  struct treepath *path,
2573  struct cpu_key *key,
2574  struct inode *inode,
2575  struct page *page, loff_t new_file_size);
2576 
2578  struct treepath *path,
2579  const struct cpu_key *key,
2580  struct inode *inode, struct buffer_head *un_bh);
2581 
2583  struct inode *inode, struct reiserfs_key *key);
2585  struct inode *inode);
2587  struct inode *inode, struct page *,
2588  int update_timestamps);
2590 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
2591 #define file_size(inode) ((inode)->i_size)
2592 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
2593 
2594 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
2595 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
2596 
2597 void padd_item(char *item, int total_length, int length);
2599 /* inode.c */
2600 /* args for the create parameter of reiserfs_get_block */
2601 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
2602 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
2603 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
2604 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
2605 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
2606 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
2607 
2608 void reiserfs_read_locked_inode(struct inode *inode,
2609  struct reiserfs_iget_args *args);
2610 int reiserfs_find_actor(struct inode *inode, void *p);
2611 int reiserfs_init_locked_inode(struct inode *inode, void *p);
2612 void reiserfs_evict_inode(struct inode *inode);
2613 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2614 int reiserfs_get_block(struct inode *inode, sector_t block,
2615  struct buffer_head *bh_result, int create);
2616 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2617  int fh_len, int fh_type);
2618 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
2619  int fh_len, int fh_type);
2620 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
2621  struct inode *parent);
2622 
2623 int reiserfs_truncate_file(struct inode *, int update_timestamps);
2624 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
2625  int type, int key_length);
2626 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
2627  int version,
2628  loff_t offset, int type, int length, int entry_count);
2629 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
2630 
2633  struct inode *dir, umode_t mode,
2634  const char *symname, loff_t i_size,
2635  struct dentry *dentry, struct inode *inode,
2637 
2639  struct inode *inode, loff_t size);
2640 
2641 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
2642  struct inode *inode)
2643 {
2644  reiserfs_update_sd_size(th, inode, inode->i_size);
2645 }
2646 
2647 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
2648 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
2649 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
2650 
2651 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
2652 
2653 /* namei.c */
2655 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
2656  struct treepath *path, struct reiserfs_dir_entry *de);
2657 struct dentry *reiserfs_get_parent(struct dentry *);
2658 
2659 #ifdef CONFIG_REISERFS_PROC_INFO
2660 int reiserfs_proc_info_init(struct super_block *sb);
2661 int reiserfs_proc_info_done(struct super_block *sb);
2664 
2665 #define PROC_EXP( e ) e
2666 
2667 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2668 #define PROC_INFO_MAX( sb, field, value ) \
2669  __PINFO( sb ).field = \
2670  max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2671 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2672 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2673 #define PROC_INFO_BH_STAT( sb, bh, level ) \
2674  PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2675  PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2676  PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2677 #else
2678 static inline int reiserfs_proc_info_init(struct super_block *sb)
2679 {
2680  return 0;
2681 }
2682 
2683 static inline int reiserfs_proc_info_done(struct super_block *sb)
2684 {
2685  return 0;
2686 }
2687 
2688 static inline int reiserfs_proc_info_global_init(void)
2689 {
2690  return 0;
2691 }
2692 
2693 static inline int reiserfs_proc_info_global_done(void)
2694 {
2695  return 0;
2698 #define PROC_EXP( e )
2699 #define VOID_V ( ( void ) 0 )
2700 #define PROC_INFO_MAX( sb, field, value ) VOID_V
2701 #define PROC_INFO_INC( sb, field ) VOID_V
2702 #define PROC_INFO_ADD( sb, field, val ) VOID_V
2703 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
2704 #endif
2705 
2706 /* dir.c */
2710 extern const struct file_operations reiserfs_dir_operations;
2711 int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *);
2712 
2713 /* tail_conversion.c */
2714 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
2715  struct treepath *, struct buffer_head *, loff_t);
2716 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
2717  struct page *, struct treepath *, const struct cpu_key *,
2718  loff_t, char *);
2719 void reiserfs_unmap_buffer(struct buffer_head *);
2720 
2721 /* file.c */
2723 extern const struct file_operations reiserfs_file_operations;
2725 
2726 /* fix_nodes.c */
2727 
2728 int fix_nodes(int n_op_mode, struct tree_balance *tb,
2729  struct item_head *ins_ih, const void *);
2730 void unfix_nodes(struct tree_balance *);
2731 
2732 /* prints.c */
2733 void __reiserfs_panic(struct super_block *s, const char *id,
2734  const char *function, const char *fmt, ...)
2735  __attribute__ ((noreturn));
2736 #define reiserfs_panic(s, id, fmt, args...) \
2737  __reiserfs_panic(s, id, __func__, fmt, ##args)
2738 void __reiserfs_error(struct super_block *s, const char *id,
2739  const char *function, const char *fmt, ...);
2740 #define reiserfs_error(s, id, fmt, args...) \
2741  __reiserfs_error(s, id, __func__, fmt, ##args)
2742 void reiserfs_info(struct super_block *s, const char *fmt, ...);
2743 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2744 void print_indirect_item(struct buffer_head *bh, int item_num);
2745 void store_print_tb(struct tree_balance *tb);
2746 void print_cur_tb(char *mes);
2747 void print_de(struct reiserfs_dir_entry *de);
2748 void print_bi(struct buffer_info *bi, char *mes);
2749 #define PRINT_LEAF_ITEMS 1 /* print all items */
2750 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2751 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2752 void print_block(struct buffer_head *bh, ...);
2753 void print_bmap(struct super_block *s, int silent);
2754 void print_bmap_block(int i, char *data, int size, int silent);
2755 /*void print_super_block (struct super_block * s, char * mes);*/
2756 void print_objectid_map(struct super_block *s);
2757 void print_block_head(struct buffer_head *bh, char *mes);
2758 void check_leaf(struct buffer_head *bh);
2759 void check_internal(struct buffer_head *bh);
2760 void print_statistics(struct super_block *s);
2761 char *reiserfs_hashname(int code);
2762 
2763 /* lbalance.c */
2764 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2765  int mov_bytes, struct buffer_head *Snew);
2766 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2767 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2768 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2769  int del_num, int del_bytes);
2770 void leaf_insert_into_buf(struct buffer_info *bi, int before,
2771  struct item_head *inserted_item_ih,
2772  const char *inserted_item_body, int zeros_number);
2773 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2774  int pos_in_item, int paste_size, const char *body,
2775  int zeros_number);
2776 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2777  int pos_in_item, int cut_size);
2778 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
2779  int new_entry_count, struct reiserfs_de_head *new_dehs,
2780  const char *records, int paste_size);
2781 /* ibalance.c */
2782 int balance_internal(struct tree_balance *, int, int, struct item_head *,
2783  struct buffer_head **);
2784 
2785 /* do_balance.c */
2787  struct buffer_head *bh, int flag);
2788 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2789 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2790 
2791 void do_balance(struct tree_balance *tb, struct item_head *ih,
2792  const char *body, int flag);
2794  struct buffer_head *bh);
2795 
2796 int get_left_neighbor_position(struct tree_balance *tb, int h);
2797 int get_right_neighbor_position(struct tree_balance *tb, int h);
2798 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2799  struct buffer_head *, int);
2800 void make_empty_node(struct buffer_info *);
2801 struct buffer_head *get_FEB(struct tree_balance *);
2802 
2803 /* bitmap.c */
2805 /* structure contains hints for block allocator, and it is a container for
2806  * arguments, such as node, search path, transaction_handle, etc. */
2808  struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
2809  sector_t block; /* file offset, in blocks */
2810  struct in_core_key key;
2811  struct treepath *path; /* search path, used by allocator to deternine search_start by
2812  * various ways */
2813  struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2814  * bitmap blocks changes */
2815  b_blocknr_t beg, end;
2816  b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2817  * between different block allocator procedures
2818  * (determine_search_start() and others) */
2819  int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2820  * function that do actual allocation */
2822  unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2823  * formatted/unformatted blocks with/without preallocation */
2824  unsigned preallocate:1;
2825 };
2826 
2828 
2829 int reiserfs_parse_alloc_options(struct super_block *, char *);
2831 
2832 /*
2833  * given a directory, this will tell you what packing locality
2834  * to use for a new object underneat it. The locality is returned
2835  * in disk byte order (le).
2836  */
2837 __le32 reiserfs_choose_packing(struct inode *dir);
2838 
2839 int reiserfs_init_bitmap_cache(struct super_block *sb);
2840 void reiserfs_free_bitmap_cache(struct super_block *sb);
2841 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2842 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2843 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2844 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2845  b_blocknr_t, int for_unformatted);
2846 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2847  int);
2848 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2849  b_blocknr_t * new_blocknrs,
2850  int amount_needed)
2851 {
2852  reiserfs_blocknr_hint_t hint = {
2853  .th = tb->transaction_handle,
2854  .path = tb->tb_path,
2855  .inode = NULL,
2856  .key = tb->key,
2857  .block = 0,
2858  .formatted_node = 1
2859  };
2860  return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2861  0);
2862 }
2863 
2864 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2865  *th, struct inode *inode,
2866  b_blocknr_t * new_blocknrs,
2867  struct treepath *path,
2868  sector_t block)
2869 {
2870  reiserfs_blocknr_hint_t hint = {
2871  .th = th,
2872  .path = path,
2873  .inode = inode,
2874  .block = block,
2875  .formatted_node = 0,
2876  .preallocate = 0
2877  };
2878  return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2879 }
2880 
2881 #ifdef REISERFS_PREALLOCATE
2882 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2883  *th, struct inode *inode,
2884  b_blocknr_t * new_blocknrs,
2885  struct treepath *path,
2886  sector_t block)
2887 {
2888  reiserfs_blocknr_hint_t hint = {
2889  .th = th,
2890  .path = path,
2891  .inode = inode,
2892  .block = block,
2893  .formatted_node = 0,
2894  .preallocate = 1
2895  };
2896  return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2897 }
2898 
2900  struct inode *inode);
2902 #endif
2903 
2904 /* hashes.c */
2905 __u32 keyed_hash(const signed char *msg, int len);
2906 __u32 yura_hash(const signed char *msg, int len);
2907 __u32 r5_hash(const signed char *msg, int len);
2909 #define reiserfs_set_le_bit __set_bit_le
2910 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le
2911 #define reiserfs_clear_le_bit __clear_bit_le
2912 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le
2913 #define reiserfs_test_le_bit test_bit_le
2914 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le
2915 
2916 /* sometimes reiserfs_truncate may require to allocate few new blocks
2917  to perform indirect2direct conversion. People probably used to
2918  think, that truncate should work without problems on a filesystem
2919  without free disk space. They may complain that they can not
2920  truncate due to lack of free disk space. This spare space allows us
2921  to not worry about it. 500 is probably too much, but it should be
2922  absolutely safe */
2923 #define SPARE_SPACE 500
2924 
2925 /* prototypes from ioctl.c */
2926 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2927 long reiserfs_compat_ioctl(struct file *filp,
2928  unsigned int cmd, unsigned long arg);
2929 int reiserfs_unpack(struct inode *inode, struct file *filp);