Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
svc_rdma_transport.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses. You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  *
17  * Redistributions in binary form must reproduce the above
18  * copyright notice, this list of conditions and the following
19  * disclaimer in the documentation and/or other materials provided
20  * with the distribution.
21  *
22  * Neither the name of the Network Appliance, Inc. nor the names of
23  * its contributors may be used to endorse or promote products
24  * derived from this software without specific prior written
25  * permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  * Author: Tom Tucker <[email protected]>
40  */
41 
42 #include <linux/sunrpc/svc_xprt.h>
43 #include <linux/sunrpc/debug.h>
44 #include <linux/sunrpc/rpc_rdma.h>
45 #include <linux/interrupt.h>
46 #include <linux/sched.h>
47 #include <linux/slab.h>
48 #include <linux/spinlock.h>
49 #include <linux/workqueue.h>
50 #include <rdma/ib_verbs.h>
51 #include <rdma/rdma_cm.h>
52 #include <linux/sunrpc/svc_rdma.h>
53 #include <linux/export.h>
54 #include "xprt_rdma.h"
55 
56 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
57 
58 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
59  struct net *net,
60  struct sockaddr *sa, int salen,
61  int flags);
62 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
63 static void svc_rdma_release_rqst(struct svc_rqst *);
64 static void dto_tasklet_func(unsigned long data);
65 static void svc_rdma_detach(struct svc_xprt *xprt);
66 static void svc_rdma_free(struct svc_xprt *xprt);
67 static int svc_rdma_has_wspace(struct svc_xprt *xprt);
68 static void rq_cq_reap(struct svcxprt_rdma *xprt);
69 static void sq_cq_reap(struct svcxprt_rdma *xprt);
70 
71 static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL);
72 static DEFINE_SPINLOCK(dto_lock);
73 static LIST_HEAD(dto_xprt_q);
74 
75 static struct svc_xprt_ops svc_rdma_ops = {
76  .xpo_create = svc_rdma_create,
77  .xpo_recvfrom = svc_rdma_recvfrom,
78  .xpo_sendto = svc_rdma_sendto,
79  .xpo_release_rqst = svc_rdma_release_rqst,
80  .xpo_detach = svc_rdma_detach,
81  .xpo_free = svc_rdma_free,
82  .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
83  .xpo_has_wspace = svc_rdma_has_wspace,
84  .xpo_accept = svc_rdma_accept,
85 };
86 
88  .xcl_name = "rdma",
89  .xcl_owner = THIS_MODULE,
90  .xcl_ops = &svc_rdma_ops,
91  .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
92 };
93 
95 {
96  struct svc_rdma_op_ctxt *ctxt;
97 
98  while (1) {
100  if (ctxt)
101  break;
103  }
104  ctxt->xprt = xprt;
105  INIT_LIST_HEAD(&ctxt->dto_q);
106  ctxt->count = 0;
107  ctxt->frmr = NULL;
108  atomic_inc(&xprt->sc_ctxt_used);
109  return ctxt;
110 }
111 
113 {
114  struct svcxprt_rdma *xprt = ctxt->xprt;
115  int i;
116  for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) {
117  /*
118  * Unmap the DMA addr in the SGE if the lkey matches
119  * the sc_dma_lkey, otherwise, ignore it since it is
120  * an FRMR lkey and will be unmapped later when the
121  * last WR that uses it completes.
122  */
123  if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) {
124  atomic_dec(&xprt->sc_dma_used);
125  ib_dma_unmap_page(xprt->sc_cm_id->device,
126  ctxt->sge[i].addr,
127  ctxt->sge[i].length,
128  ctxt->direction);
129  }
130  }
131 }
132 
134 {
135  struct svcxprt_rdma *xprt;
136  int i;
137 
138  BUG_ON(!ctxt);
139  xprt = ctxt->xprt;
140  if (free_pages)
141  for (i = 0; i < ctxt->count; i++)
142  put_page(ctxt->pages[i]);
143 
145  atomic_dec(&xprt->sc_ctxt_used);
146 }
147 
148 /*
149  * Temporary NFS req mappings are shared across all transport
150  * instances. These are short lived and should be bounded by the number
151  * of concurrent server threads * depth of the SQ.
152  */
154 {
155  struct svc_rdma_req_map *map;
156  while (1) {
158  if (map)
159  break;
161  }
162  map->count = 0;
163  map->frmr = NULL;
164  return map;
165 }
166 
168 {
170 }
171 
172 /* ib_cq event handler */
173 static void cq_event_handler(struct ib_event *event, void *context)
174 {
175  struct svc_xprt *xprt = context;
176  dprintk("svcrdma: received CQ event id=%d, context=%p\n",
177  event->event, context);
178  set_bit(XPT_CLOSE, &xprt->xpt_flags);
179 }
180 
181 /* QP event handler */
182 static void qp_event_handler(struct ib_event *event, void *context)
183 {
184  struct svc_xprt *xprt = context;
185 
186  switch (event->event) {
187  /* These are considered benign events */
188  case IB_EVENT_PATH_MIG:
189  case IB_EVENT_COMM_EST:
190  case IB_EVENT_SQ_DRAINED:
192  dprintk("svcrdma: QP event %d received for QP=%p\n",
193  event->event, event->element.qp);
194  break;
195  /* These are considered fatal events */
197  case IB_EVENT_QP_FATAL:
198  case IB_EVENT_QP_REQ_ERR:
201  default:
202  dprintk("svcrdma: QP ERROR event %d received for QP=%p, "
203  "closing transport\n",
204  event->event, event->element.qp);
205  set_bit(XPT_CLOSE, &xprt->xpt_flags);
206  break;
207  }
208 }
209 
210 /*
211  * Data Transfer Operation Tasklet
212  *
213  * Walks a list of transports with I/O pending, removing entries as
214  * they are added to the server's I/O pending list. Two bits indicate
215  * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave
216  * spinlock that serializes access to the transport list with the RQ
217  * and SQ interrupt handlers.
218  */
219 static void dto_tasklet_func(unsigned long data)
220 {
221  struct svcxprt_rdma *xprt;
222  unsigned long flags;
223 
224  spin_lock_irqsave(&dto_lock, flags);
225  while (!list_empty(&dto_xprt_q)) {
226  xprt = list_entry(dto_xprt_q.next,
227  struct svcxprt_rdma, sc_dto_q);
228  list_del_init(&xprt->sc_dto_q);
229  spin_unlock_irqrestore(&dto_lock, flags);
230 
231  rq_cq_reap(xprt);
232  sq_cq_reap(xprt);
233 
234  svc_xprt_put(&xprt->sc_xprt);
235  spin_lock_irqsave(&dto_lock, flags);
236  }
237  spin_unlock_irqrestore(&dto_lock, flags);
238 }
239 
240 /*
241  * Receive Queue Completion Handler
242  *
243  * Since an RQ completion handler is called on interrupt context, we
244  * need to defer the handling of the I/O to a tasklet
245  */
246 static void rq_comp_handler(struct ib_cq *cq, void *cq_context)
247 {
248  struct svcxprt_rdma *xprt = cq_context;
249  unsigned long flags;
250 
251  /* Guard against unconditional flush call for destroyed QP */
252  if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
253  return;
254 
255  /*
256  * Set the bit regardless of whether or not it's on the list
257  * because it may be on the list already due to an SQ
258  * completion.
259  */
261 
262  /*
263  * If this transport is not already on the DTO transport queue,
264  * add it
265  */
266  spin_lock_irqsave(&dto_lock, flags);
267  if (list_empty(&xprt->sc_dto_q)) {
268  svc_xprt_get(&xprt->sc_xprt);
269  list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
270  }
271  spin_unlock_irqrestore(&dto_lock, flags);
272 
273  /* Tasklet does all the work to avoid irqsave locks. */
274  tasklet_schedule(&dto_tasklet);
275 }
276 
277 /*
278  * rq_cq_reap - Process the RQ CQ.
279  *
280  * Take all completing WC off the CQE and enqueue the associated DTO
281  * context on the dto_q for the transport.
282  *
283  * Note that caller must hold a transport reference.
284  */
285 static void rq_cq_reap(struct svcxprt_rdma *xprt)
286 {
287  int ret;
288  struct ib_wc wc;
289  struct svc_rdma_op_ctxt *ctxt = NULL;
290 
292  return;
293 
294  ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP);
296 
297  while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) {
298  ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
299  ctxt->wc_status = wc.status;
300  ctxt->byte_len = wc.byte_len;
301  svc_rdma_unmap_dma(ctxt);
302  if (wc.status != IB_WC_SUCCESS) {
303  /* Close the transport */
304  dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt);
305  set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
306  svc_rdma_put_context(ctxt, 1);
307  svc_xprt_put(&xprt->sc_xprt);
308  continue;
309  }
310  spin_lock_bh(&xprt->sc_rq_dto_lock);
311  list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q);
312  spin_unlock_bh(&xprt->sc_rq_dto_lock);
313  svc_xprt_put(&xprt->sc_xprt);
314  }
315 
316  if (ctxt)
318 
319  set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
320  /*
321  * If data arrived before established event,
322  * don't enqueue. This defers RPC I/O until the
323  * RDMA connection is complete.
324  */
326  svc_xprt_enqueue(&xprt->sc_xprt);
327 }
328 
329 /*
330  * Process a completion context
331  */
332 static void process_context(struct svcxprt_rdma *xprt,
333  struct svc_rdma_op_ctxt *ctxt)
334 {
335  svc_rdma_unmap_dma(ctxt);
336 
337  switch (ctxt->wr_op) {
338  case IB_WR_SEND:
339  if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
340  svc_rdma_put_frmr(xprt, ctxt->frmr);
341  svc_rdma_put_context(ctxt, 1);
342  break;
343 
344  case IB_WR_RDMA_WRITE:
345  svc_rdma_put_context(ctxt, 0);
346  break;
347 
348  case IB_WR_RDMA_READ:
350  if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
351  struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr;
352  BUG_ON(!read_hdr);
353  if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
354  svc_rdma_put_frmr(xprt, ctxt->frmr);
355  spin_lock_bh(&xprt->sc_rq_dto_lock);
356  set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
357  list_add_tail(&read_hdr->dto_q,
358  &xprt->sc_read_complete_q);
359  spin_unlock_bh(&xprt->sc_rq_dto_lock);
360  svc_xprt_enqueue(&xprt->sc_xprt);
361  }
362  svc_rdma_put_context(ctxt, 0);
363  break;
364 
365  default:
366  printk(KERN_ERR "svcrdma: unexpected completion type, "
367  "opcode=%d\n",
368  ctxt->wr_op);
369  break;
370  }
371 }
372 
373 /*
374  * Send Queue Completion Handler - potentially called on interrupt context.
375  *
376  * Note that caller must hold a transport reference.
377  */
378 static void sq_cq_reap(struct svcxprt_rdma *xprt)
379 {
380  struct svc_rdma_op_ctxt *ctxt = NULL;
381  struct ib_wc wc;
382  struct ib_cq *cq = xprt->sc_sq_cq;
383  int ret;
384 
386  return;
387 
388  ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP);
390  while ((ret = ib_poll_cq(cq, 1, &wc)) > 0) {
391  if (wc.status != IB_WC_SUCCESS)
392  /* Close the transport */
393  set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
394 
395  /* Decrement used SQ WR count */
396  atomic_dec(&xprt->sc_sq_count);
397  wake_up(&xprt->sc_send_wait);
398 
399  ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
400  if (ctxt)
401  process_context(xprt, ctxt);
402 
403  svc_xprt_put(&xprt->sc_xprt);
404  }
405 
406  if (ctxt)
408 }
409 
410 static void sq_comp_handler(struct ib_cq *cq, void *cq_context)
411 {
412  struct svcxprt_rdma *xprt = cq_context;
413  unsigned long flags;
414 
415  /* Guard against unconditional flush call for destroyed QP */
416  if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
417  return;
418 
419  /*
420  * Set the bit regardless of whether or not it's on the list
421  * because it may be on the list already due to an RQ
422  * completion.
423  */
425 
426  /*
427  * If this transport is not already on the DTO transport queue,
428  * add it
429  */
430  spin_lock_irqsave(&dto_lock, flags);
431  if (list_empty(&xprt->sc_dto_q)) {
432  svc_xprt_get(&xprt->sc_xprt);
433  list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
434  }
435  spin_unlock_irqrestore(&dto_lock, flags);
436 
437  /* Tasklet does all the work to avoid irqsave locks. */
438  tasklet_schedule(&dto_tasklet);
439 }
440 
441 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
442  int listener)
443 {
444  struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
445 
446  if (!cma_xprt)
447  return NULL;
448  svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv);
449  INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
450  INIT_LIST_HEAD(&cma_xprt->sc_dto_q);
451  INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
452  INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
453  INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
454  init_waitqueue_head(&cma_xprt->sc_send_wait);
455 
456  spin_lock_init(&cma_xprt->sc_lock);
457  spin_lock_init(&cma_xprt->sc_rq_dto_lock);
458  spin_lock_init(&cma_xprt->sc_frmr_q_lock);
459 
460  cma_xprt->sc_ord = svcrdma_ord;
461 
465  atomic_set(&cma_xprt->sc_sq_count, 0);
466  atomic_set(&cma_xprt->sc_ctxt_used, 0);
467 
468  if (listener)
469  set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
470 
471  return cma_xprt;
472 }
473 
474 struct page *svc_rdma_get_page(void)
475 {
476  struct page *page;
477 
478  while ((page = alloc_page(GFP_KERNEL)) == NULL) {
479  /* If we can't get memory, wait a bit and try again */
480  printk(KERN_INFO "svcrdma: out of memory...retrying in 1000 "
481  "jiffies.\n");
483  }
484  return page;
485 }
486 
488 {
489  struct ib_recv_wr recv_wr, *bad_recv_wr;
490  struct svc_rdma_op_ctxt *ctxt;
491  struct page *page;
492  dma_addr_t pa;
493  int sge_no;
494  int buflen;
495  int ret;
496 
497  ctxt = svc_rdma_get_context(xprt);
498  buflen = 0;
499  ctxt->direction = DMA_FROM_DEVICE;
500  for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
501  BUG_ON(sge_no >= xprt->sc_max_sge);
502  page = svc_rdma_get_page();
503  ctxt->pages[sge_no] = page;
504  pa = ib_dma_map_page(xprt->sc_cm_id->device,
505  page, 0, PAGE_SIZE,
507  if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
508  goto err_put_ctxt;
509  atomic_inc(&xprt->sc_dma_used);
510  ctxt->sge[sge_no].addr = pa;
511  ctxt->sge[sge_no].length = PAGE_SIZE;
512  ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey;
513  ctxt->count = sge_no + 1;
514  buflen += PAGE_SIZE;
515  }
516  recv_wr.next = NULL;
517  recv_wr.sg_list = &ctxt->sge[0];
518  recv_wr.num_sge = ctxt->count;
519  recv_wr.wr_id = (u64)(unsigned long)ctxt;
520 
521  svc_xprt_get(&xprt->sc_xprt);
522  ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
523  if (ret) {
524  svc_rdma_unmap_dma(ctxt);
525  svc_rdma_put_context(ctxt, 1);
526  svc_xprt_put(&xprt->sc_xprt);
527  }
528  return ret;
529 
530  err_put_ctxt:
531  svc_rdma_unmap_dma(ctxt);
532  svc_rdma_put_context(ctxt, 1);
533  return -ENOMEM;
534 }
535 
536 /*
537  * This function handles the CONNECT_REQUEST event on a listening
538  * endpoint. It is passed the cma_id for the _new_ connection. The context in
539  * this cma_id is inherited from the listening cma_id and is the svc_xprt
540  * structure for the listening endpoint.
541  *
542  * This function creates a new xprt for the new connection and enqueues it on
543  * the accept queue for the listent xprt. When the listen thread is kicked, it
544  * will call the recvfrom method on the listen xprt which will accept the new
545  * connection.
546  */
547 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird)
548 {
549  struct svcxprt_rdma *listen_xprt = new_cma_id->context;
550  struct svcxprt_rdma *newxprt;
551  struct sockaddr *sa;
552 
553  /* Create a new transport */
554  newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
555  if (!newxprt) {
556  dprintk("svcrdma: failed to create new transport\n");
557  return;
558  }
559  newxprt->sc_cm_id = new_cma_id;
560  new_cma_id->context = newxprt;
561  dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
562  newxprt, newxprt->sc_cm_id, listen_xprt);
563 
564  /* Save client advertised inbound read limit for use later in accept. */
565  newxprt->sc_ord = client_ird;
566 
567  /* Set the local and remote addresses in the transport */
568  sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
569  svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
570  sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
571  svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
572 
573  /*
574  * Enqueue the new transport on the accept queue of the listening
575  * transport
576  */
577  spin_lock_bh(&listen_xprt->sc_lock);
578  list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
579  spin_unlock_bh(&listen_xprt->sc_lock);
580 
581  set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
582  svc_xprt_enqueue(&listen_xprt->sc_xprt);
583 }
584 
585 /*
586  * Handles events generated on the listening endpoint. These events will be
587  * either be incoming connect requests or adapter removal events.
588  */
589 static int rdma_listen_handler(struct rdma_cm_id *cma_id,
590  struct rdma_cm_event *event)
591 {
592  struct svcxprt_rdma *xprt = cma_id->context;
593  int ret = 0;
594 
595  switch (event->event) {
597  dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
598  "event=%d\n", cma_id, cma_id->context, event->event);
599  handle_connect_req(cma_id,
600  event->param.conn.initiator_depth);
601  break;
602 
604  /* Accept complete */
605  dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
606  "cm_id=%p\n", xprt, cma_id);
607  break;
608 
610  dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
611  xprt, cma_id);
612  if (xprt)
613  set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
614  break;
615 
616  default:
617  dprintk("svcrdma: Unexpected event on listening endpoint %p, "
618  "event=%d\n", cma_id, event->event);
619  break;
620  }
621 
622  return ret;
623 }
624 
625 static int rdma_cma_handler(struct rdma_cm_id *cma_id,
626  struct rdma_cm_event *event)
627 {
628  struct svc_xprt *xprt = cma_id->context;
629  struct svcxprt_rdma *rdma =
630  container_of(xprt, struct svcxprt_rdma, sc_xprt);
631  switch (event->event) {
633  /* Accept complete */
634  svc_xprt_get(xprt);
635  dprintk("svcrdma: Connection completed on DTO xprt=%p, "
636  "cm_id=%p\n", xprt, cma_id);
638  svc_xprt_enqueue(xprt);
639  break;
641  dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
642  xprt, cma_id);
643  if (xprt) {
644  set_bit(XPT_CLOSE, &xprt->xpt_flags);
645  svc_xprt_enqueue(xprt);
646  svc_xprt_put(xprt);
647  }
648  break;
650  dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
651  "event=%d\n", cma_id, xprt, event->event);
652  if (xprt) {
653  set_bit(XPT_CLOSE, &xprt->xpt_flags);
654  svc_xprt_enqueue(xprt);
655  }
656  break;
657  default:
658  dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
659  "event=%d\n", cma_id, event->event);
660  break;
661  }
662  return 0;
663 }
664 
665 /*
666  * Create a listening RDMA service endpoint.
667  */
668 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
669  struct net *net,
670  struct sockaddr *sa, int salen,
671  int flags)
672 {
673  struct rdma_cm_id *listen_id;
674  struct svcxprt_rdma *cma_xprt;
675  struct svc_xprt *xprt;
676  int ret;
677 
678  dprintk("svcrdma: Creating RDMA socket\n");
679  if (sa->sa_family != AF_INET) {
680  dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family);
681  return ERR_PTR(-EAFNOSUPPORT);
682  }
683  cma_xprt = rdma_create_xprt(serv, 1);
684  if (!cma_xprt)
685  return ERR_PTR(-ENOMEM);
686  xprt = &cma_xprt->sc_xprt;
687 
688  listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP,
689  IB_QPT_RC);
690  if (IS_ERR(listen_id)) {
691  ret = PTR_ERR(listen_id);
692  dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
693  goto err0;
694  }
695 
696  ret = rdma_bind_addr(listen_id, sa);
697  if (ret) {
698  dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
699  goto err1;
700  }
701  cma_xprt->sc_cm_id = listen_id;
702 
703  ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
704  if (ret) {
705  dprintk("svcrdma: rdma_listen failed = %d\n", ret);
706  goto err1;
707  }
708 
709  /*
710  * We need to use the address from the cm_id in case the
711  * caller specified 0 for the port number.
712  */
713  sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
714  svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
715 
716  return &cma_xprt->sc_xprt;
717 
718  err1:
719  rdma_destroy_id(listen_id);
720  err0:
721  kfree(cma_xprt);
722  return ERR_PTR(ret);
723 }
724 
725 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
726 {
727  struct ib_mr *mr;
728  struct ib_fast_reg_page_list *pl;
729  struct svc_rdma_fastreg_mr *frmr;
730 
731  frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
732  if (!frmr)
733  goto err;
734 
736  if (IS_ERR(mr))
737  goto err_free_frmr;
738 
739  pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device,
741  if (IS_ERR(pl))
742  goto err_free_mr;
743 
744  frmr->mr = mr;
745  frmr->page_list = pl;
746  INIT_LIST_HEAD(&frmr->frmr_list);
747  return frmr;
748 
749  err_free_mr:
750  ib_dereg_mr(mr);
751  err_free_frmr:
752  kfree(frmr);
753  err:
754  return ERR_PTR(-ENOMEM);
755 }
756 
757 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
758 {
759  struct svc_rdma_fastreg_mr *frmr;
760 
761  while (!list_empty(&xprt->sc_frmr_q)) {
762  frmr = list_entry(xprt->sc_frmr_q.next,
764  list_del_init(&frmr->frmr_list);
765  ib_dereg_mr(frmr->mr);
767  kfree(frmr);
768  }
769 }
770 
772 {
773  struct svc_rdma_fastreg_mr *frmr = NULL;
774 
775  spin_lock_bh(&rdma->sc_frmr_q_lock);
776  if (!list_empty(&rdma->sc_frmr_q)) {
777  frmr = list_entry(rdma->sc_frmr_q.next,
779  list_del_init(&frmr->frmr_list);
780  frmr->map_len = 0;
781  frmr->page_list_len = 0;
782  }
783  spin_unlock_bh(&rdma->sc_frmr_q_lock);
784  if (frmr)
785  return frmr;
786 
787  return rdma_alloc_frmr(rdma);
788 }
789 
790 static void frmr_unmap_dma(struct svcxprt_rdma *xprt,
791  struct svc_rdma_fastreg_mr *frmr)
792 {
793  int page_no;
794  for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
795  dma_addr_t addr = frmr->page_list->page_list[page_no];
796  if (ib_dma_mapping_error(frmr->mr->device, addr))
797  continue;
798  atomic_dec(&xprt->sc_dma_used);
799  ib_dma_unmap_page(frmr->mr->device, addr, PAGE_SIZE,
800  frmr->direction);
801  }
802 }
803 
804 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
805  struct svc_rdma_fastreg_mr *frmr)
806 {
807  if (frmr) {
808  frmr_unmap_dma(rdma, frmr);
809  spin_lock_bh(&rdma->sc_frmr_q_lock);
810  BUG_ON(!list_empty(&frmr->frmr_list));
811  list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
812  spin_unlock_bh(&rdma->sc_frmr_q_lock);
813  }
814 }
815 
816 /*
817  * This is the xpo_recvfrom function for listening endpoints. Its
818  * purpose is to accept incoming connections. The CMA callback handler
819  * has already created a new transport and attached it to the new CMA
820  * ID.
821  *
822  * There is a queue of pending connections hung on the listening
823  * transport. This queue contains the new svc_xprt structure. This
824  * function takes svc_xprt structures off the accept_q and completes
825  * the connection.
826  */
827 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
828 {
829  struct svcxprt_rdma *listen_rdma;
830  struct svcxprt_rdma *newxprt = NULL;
831  struct rdma_conn_param conn_param;
832  struct ib_qp_init_attr qp_attr;
833  struct ib_device_attr devattr;
834  int uninitialized_var(dma_mr_acc);
835  int need_dma_mr;
836  int ret;
837  int i;
838 
839  listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
840  clear_bit(XPT_CONN, &xprt->xpt_flags);
841  /* Get the next entry off the accept list */
842  spin_lock_bh(&listen_rdma->sc_lock);
843  if (!list_empty(&listen_rdma->sc_accept_q)) {
844  newxprt = list_entry(listen_rdma->sc_accept_q.next,
845  struct svcxprt_rdma, sc_accept_q);
846  list_del_init(&newxprt->sc_accept_q);
847  }
848  if (!list_empty(&listen_rdma->sc_accept_q))
849  set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
850  spin_unlock_bh(&listen_rdma->sc_lock);
851  if (!newxprt)
852  return NULL;
853 
854  dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
855  newxprt, newxprt->sc_cm_id);
856 
857  ret = ib_query_device(newxprt->sc_cm_id->device, &devattr);
858  if (ret) {
859  dprintk("svcrdma: could not query device attributes on "
860  "device %p, rc=%d\n", newxprt->sc_cm_id->device, ret);
861  goto errout;
862  }
863 
864  /* Qualify the transport resource defaults with the
865  * capabilities of this particular device */
866  newxprt->sc_max_sge = min((size_t)devattr.max_sge,
867  (size_t)RPCSVC_MAXPAGES);
868  newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr,
869  (size_t)svcrdma_max_requests);
870  newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests;
871 
872  /*
873  * Limit ORD based on client limit, local device limit, and
874  * configured svcrdma limit.
875  */
876  newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord);
877  newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord);
878 
879  newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device);
880  if (IS_ERR(newxprt->sc_pd)) {
881  dprintk("svcrdma: error creating PD for connect request\n");
882  goto errout;
883  }
884  newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device,
885  sq_comp_handler,
886  cq_event_handler,
887  newxprt,
888  newxprt->sc_sq_depth,
889  0);
890  if (IS_ERR(newxprt->sc_sq_cq)) {
891  dprintk("svcrdma: error creating SQ CQ for connect request\n");
892  goto errout;
893  }
894  newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device,
895  rq_comp_handler,
896  cq_event_handler,
897  newxprt,
898  newxprt->sc_max_requests,
899  0);
900  if (IS_ERR(newxprt->sc_rq_cq)) {
901  dprintk("svcrdma: error creating RQ CQ for connect request\n");
902  goto errout;
903  }
904 
905  memset(&qp_attr, 0, sizeof qp_attr);
906  qp_attr.event_handler = qp_event_handler;
907  qp_attr.qp_context = &newxprt->sc_xprt;
908  qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
909  qp_attr.cap.max_recv_wr = newxprt->sc_max_requests;
910  qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
911  qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
912  qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
913  qp_attr.qp_type = IB_QPT_RC;
914  qp_attr.send_cq = newxprt->sc_sq_cq;
915  qp_attr.recv_cq = newxprt->sc_rq_cq;
916  dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n"
917  " cm_id->device=%p, sc_pd->device=%p\n"
918  " cap.max_send_wr = %d\n"
919  " cap.max_recv_wr = %d\n"
920  " cap.max_send_sge = %d\n"
921  " cap.max_recv_sge = %d\n",
922  newxprt->sc_cm_id, newxprt->sc_pd,
923  newxprt->sc_cm_id->device, newxprt->sc_pd->device,
924  qp_attr.cap.max_send_wr,
925  qp_attr.cap.max_recv_wr,
926  qp_attr.cap.max_send_sge,
927  qp_attr.cap.max_recv_sge);
928 
929  ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
930  if (ret) {
931  /*
932  * XXX: This is a hack. We need a xx_request_qp interface
933  * that will adjust the qp_attr's with a best-effort
934  * number
935  */
936  qp_attr.cap.max_send_sge -= 2;
937  qp_attr.cap.max_recv_sge -= 2;
938  ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd,
939  &qp_attr);
940  if (ret) {
941  dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
942  goto errout;
943  }
944  newxprt->sc_max_sge = qp_attr.cap.max_send_sge;
945  newxprt->sc_max_sge = qp_attr.cap.max_recv_sge;
946  newxprt->sc_sq_depth = qp_attr.cap.max_send_wr;
947  newxprt->sc_max_requests = qp_attr.cap.max_recv_wr;
948  }
949  newxprt->sc_qp = newxprt->sc_cm_id->qp;
950 
951  /*
952  * Use the most secure set of MR resources based on the
953  * transport type and available memory management features in
954  * the device. Here's the table implemented below:
955  *
956  * Fast Global DMA Remote WR
957  * Reg LKEY MR Access
958  * Sup'd Sup'd Needed Needed
959  *
960  * IWARP N N Y Y
961  * N Y Y Y
962  * Y N Y N
963  * Y Y N -
964  *
965  * IB N N Y N
966  * N Y N -
967  * Y N Y N
968  * Y Y N -
969  *
970  * NB: iWARP requires remote write access for the data sink
971  * of an RDMA_READ. IB does not.
972  */
973  if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
974  newxprt->sc_frmr_pg_list_len =
975  devattr.max_fast_reg_page_list_len;
977  }
978 
979  /*
980  * Determine if a DMA MR is required and if so, what privs are required
981  */
982  switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) {
985  if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) {
986  need_dma_mr = 1;
987  dma_mr_acc =
990  } else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
991  need_dma_mr = 1;
992  dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
993  } else
994  need_dma_mr = 0;
995  break;
996  case RDMA_TRANSPORT_IB:
997  if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
998  need_dma_mr = 1;
999  dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
1000  } else
1001  need_dma_mr = 0;
1002  break;
1003  default:
1004  goto errout;
1005  }
1006 
1007  /* Create the DMA MR if needed, otherwise, use the DMA LKEY */
1008  if (need_dma_mr) {
1009  /* Register all of physical memory */
1010  newxprt->sc_phys_mr =
1011  ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc);
1012  if (IS_ERR(newxprt->sc_phys_mr)) {
1013  dprintk("svcrdma: Failed to create DMA MR ret=%d\n",
1014  ret);
1015  goto errout;
1016  }
1017  newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey;
1018  } else
1019  newxprt->sc_dma_lkey =
1020  newxprt->sc_cm_id->device->local_dma_lkey;
1021 
1022  /* Post receive buffers */
1023  for (i = 0; i < newxprt->sc_max_requests; i++) {
1024  ret = svc_rdma_post_recv(newxprt);
1025  if (ret) {
1026  dprintk("svcrdma: failure posting receive buffers\n");
1027  goto errout;
1028  }
1029  }
1030 
1031  /* Swap out the handler */
1032  newxprt->sc_cm_id->event_handler = rdma_cma_handler;
1033 
1034  /*
1035  * Arm the CQs for the SQ and RQ before accepting so we can't
1036  * miss the first message
1037  */
1038  ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP);
1039  ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP);
1040 
1041  /* Accept Connection */
1043  memset(&conn_param, 0, sizeof conn_param);
1044  conn_param.responder_resources = 0;
1045  conn_param.initiator_depth = newxprt->sc_ord;
1046  ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
1047  if (ret) {
1048  dprintk("svcrdma: failed to accept new connection, ret=%d\n",
1049  ret);
1050  goto errout;
1051  }
1052 
1053  dprintk("svcrdma: new connection %p accepted with the following "
1054  "attributes:\n"
1055  " local_ip : %pI4\n"
1056  " local_port : %d\n"
1057  " remote_ip : %pI4\n"
1058  " remote_port : %d\n"
1059  " max_sge : %d\n"
1060  " sq_depth : %d\n"
1061  " max_requests : %d\n"
1062  " ord : %d\n",
1063  newxprt,
1064  &((struct sockaddr_in *)&newxprt->sc_cm_id->
1065  route.addr.src_addr)->sin_addr.s_addr,
1066  ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1067  route.addr.src_addr)->sin_port),
1068  &((struct sockaddr_in *)&newxprt->sc_cm_id->
1069  route.addr.dst_addr)->sin_addr.s_addr,
1070  ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1071  route.addr.dst_addr)->sin_port),
1072  newxprt->sc_max_sge,
1073  newxprt->sc_sq_depth,
1074  newxprt->sc_max_requests,
1075  newxprt->sc_ord);
1076 
1077  return &newxprt->sc_xprt;
1078 
1079  errout:
1080  dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
1081  /* Take a reference in case the DTO handler runs */
1082  svc_xprt_get(&newxprt->sc_xprt);
1083  if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
1084  ib_destroy_qp(newxprt->sc_qp);
1085  rdma_destroy_id(newxprt->sc_cm_id);
1086  /* This call to put will destroy the transport */
1087  svc_xprt_put(&newxprt->sc_xprt);
1088  return NULL;
1089 }
1090 
1091 static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
1092 {
1093 }
1094 
1095 /*
1096  * When connected, an svc_xprt has at least two references:
1097  *
1098  * - A reference held by the cm_id between the ESTABLISHED and
1099  * DISCONNECTED events. If the remote peer disconnected first, this
1100  * reference could be gone.
1101  *
1102  * - A reference held by the svc_recv code that called this function
1103  * as part of close processing.
1104  *
1105  * At a minimum one references should still be held.
1106  */
1107 static void svc_rdma_detach(struct svc_xprt *xprt)
1108 {
1109  struct svcxprt_rdma *rdma =
1110  container_of(xprt, struct svcxprt_rdma, sc_xprt);
1111  dprintk("svc: svc_rdma_detach(%p)\n", xprt);
1112 
1113  /* Disconnect and flush posted WQE */
1114  rdma_disconnect(rdma->sc_cm_id);
1115 }
1116 
1117 static void __svc_rdma_free(struct work_struct *work)
1118 {
1119  struct svcxprt_rdma *rdma =
1120  container_of(work, struct svcxprt_rdma, sc_work);
1121  dprintk("svcrdma: svc_rdma_free(%p)\n", rdma);
1122 
1123  /* We should only be called from kref_put */
1124  BUG_ON(atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0);
1125 
1126  /*
1127  * Destroy queued, but not processed read completions. Note
1128  * that this cleanup has to be done before destroying the
1129  * cm_id because the device ptr is needed to unmap the dma in
1130  * svc_rdma_put_context.
1131  */
1132  while (!list_empty(&rdma->sc_read_complete_q)) {
1133  struct svc_rdma_op_ctxt *ctxt;
1134  ctxt = list_entry(rdma->sc_read_complete_q.next,
1135  struct svc_rdma_op_ctxt,
1136  dto_q);
1137  list_del_init(&ctxt->dto_q);
1138  svc_rdma_put_context(ctxt, 1);
1139  }
1140 
1141  /* Destroy queued, but not processed recv completions */
1142  while (!list_empty(&rdma->sc_rq_dto_q)) {
1143  struct svc_rdma_op_ctxt *ctxt;
1144  ctxt = list_entry(rdma->sc_rq_dto_q.next,
1145  struct svc_rdma_op_ctxt,
1146  dto_q);
1147  list_del_init(&ctxt->dto_q);
1148  svc_rdma_put_context(ctxt, 1);
1149  }
1150 
1151  /* Warn if we leaked a resource or under-referenced */
1152  WARN_ON(atomic_read(&rdma->sc_ctxt_used) != 0);
1153  WARN_ON(atomic_read(&rdma->sc_dma_used) != 0);
1154 
1155  /* De-allocate fastreg mr */
1156  rdma_dealloc_frmr_q(rdma);
1157 
1158  /* Destroy the QP if present (not a listener) */
1159  if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1160  ib_destroy_qp(rdma->sc_qp);
1161 
1162  if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
1163  ib_destroy_cq(rdma->sc_sq_cq);
1164 
1165  if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
1166  ib_destroy_cq(rdma->sc_rq_cq);
1167 
1168  if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr))
1169  ib_dereg_mr(rdma->sc_phys_mr);
1170 
1171  if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
1172  ib_dealloc_pd(rdma->sc_pd);
1173 
1174  /* Destroy the CM ID */
1175  rdma_destroy_id(rdma->sc_cm_id);
1176 
1177  kfree(rdma);
1178 }
1179 
1180 static void svc_rdma_free(struct svc_xprt *xprt)
1181 {
1182  struct svcxprt_rdma *rdma =
1183  container_of(xprt, struct svcxprt_rdma, sc_xprt);
1184  INIT_WORK(&rdma->sc_work, __svc_rdma_free);
1185  queue_work(svc_rdma_wq, &rdma->sc_work);
1186 }
1187 
1188 static int svc_rdma_has_wspace(struct svc_xprt *xprt)
1189 {
1190  struct svcxprt_rdma *rdma =
1191  container_of(xprt, struct svcxprt_rdma, sc_xprt);
1192 
1193  /*
1194  * If there are fewer SQ WR available than required to send a
1195  * simple response, return false.
1196  */
1197  if ((rdma->sc_sq_depth - atomic_read(&rdma->sc_sq_count) < 3))
1198  return 0;
1199 
1200  /*
1201  * ...or there are already waiters on the SQ,
1202  * return false.
1203  */
1204  if (waitqueue_active(&rdma->sc_send_wait))
1205  return 0;
1206 
1207  /* Otherwise return true. */
1208  return 1;
1209 }
1210 
1211 /*
1212  * Attempt to register the kvec representing the RPC memory with the
1213  * device.
1214  *
1215  * Returns:
1216  * NULL : The device does not support fastreg or there were no more
1217  * fastreg mr.
1218  * frmr : The kvec register request was successfully posted.
1219  * <0 : An error was encountered attempting to register the kvec.
1220  */
1222  struct svc_rdma_fastreg_mr *frmr)
1223 {
1224  struct ib_send_wr fastreg_wr;
1225  u8 key;
1226 
1227  /* Bump the key */
1228  key = (u8)(frmr->mr->lkey & 0x000000FF);
1229  ib_update_fast_reg_key(frmr->mr, ++key);
1230 
1231  /* Prepare FASTREG WR */
1232  memset(&fastreg_wr, 0, sizeof fastreg_wr);
1233  fastreg_wr.opcode = IB_WR_FAST_REG_MR;
1234  fastreg_wr.send_flags = IB_SEND_SIGNALED;
1235  fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva;
1236  fastreg_wr.wr.fast_reg.page_list = frmr->page_list;
1237  fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len;
1238  fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
1239  fastreg_wr.wr.fast_reg.length = frmr->map_len;
1240  fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags;
1241  fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey;
1242  return svc_rdma_send(xprt, &fastreg_wr);
1243 }
1244 
1245 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
1246 {
1247  struct ib_send_wr *bad_wr, *n_wr;
1248  int wr_count;
1249  int i;
1250  int ret;
1251 
1252  if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1253  return -ENOTCONN;
1254 
1256  wr_count = 1;
1257  for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
1258  wr_count++;
1259 
1260  /* If the SQ is full, wait until an SQ entry is available */
1261  while (1) {
1262  spin_lock_bh(&xprt->sc_lock);
1263  if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) {
1264  spin_unlock_bh(&xprt->sc_lock);
1266 
1267  /* See if we can opportunistically reap SQ WR to make room */
1268  sq_cq_reap(xprt);
1269 
1270  /* Wait until SQ WR available if SQ still full */
1271  wait_event(xprt->sc_send_wait,
1272  atomic_read(&xprt->sc_sq_count) <
1273  xprt->sc_sq_depth);
1274  if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1275  return -ENOTCONN;
1276  continue;
1277  }
1278  /* Take a transport ref for each WR posted */
1279  for (i = 0; i < wr_count; i++)
1280  svc_xprt_get(&xprt->sc_xprt);
1281 
1282  /* Bump used SQ WR count and post */
1283  atomic_add(wr_count, &xprt->sc_sq_count);
1284  ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
1285  if (ret) {
1286  set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
1287  atomic_sub(wr_count, &xprt->sc_sq_count);
1288  for (i = 0; i < wr_count; i ++)
1289  svc_xprt_put(&xprt->sc_xprt);
1290  dprintk("svcrdma: failed to post SQ WR rc=%d, "
1291  "sc_sq_count=%d, sc_sq_depth=%d\n",
1292  ret, atomic_read(&xprt->sc_sq_count),
1293  xprt->sc_sq_depth);
1294  }
1295  spin_unlock_bh(&xprt->sc_lock);
1296  if (ret)
1297  wake_up(&xprt->sc_send_wait);
1298  break;
1299  }
1300  return ret;
1301 }
1302 
1303 void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp,
1304  enum rpcrdma_errcode err)
1305 {
1306  struct ib_send_wr err_wr;
1307  struct page *p;
1308  struct svc_rdma_op_ctxt *ctxt;
1309  u32 *va;
1310  int length;
1311  int ret;
1312 
1313  p = svc_rdma_get_page();
1314  va = page_address(p);
1315 
1316  /* XDR encode error */
1317  length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va);
1318 
1319  ctxt = svc_rdma_get_context(xprt);
1320  ctxt->direction = DMA_FROM_DEVICE;
1321  ctxt->count = 1;
1322  ctxt->pages[0] = p;
1323 
1324  /* Prepare SGE for local address */
1325  ctxt->sge[0].addr = ib_dma_map_page(xprt->sc_cm_id->device,
1326  p, 0, length, DMA_FROM_DEVICE);
1327  if (ib_dma_mapping_error(xprt->sc_cm_id->device, ctxt->sge[0].addr)) {
1328  put_page(p);
1329  svc_rdma_put_context(ctxt, 1);
1330  return;
1331  }
1332  atomic_inc(&xprt->sc_dma_used);
1333  ctxt->sge[0].lkey = xprt->sc_dma_lkey;
1334  ctxt->sge[0].length = length;
1335 
1336  /* Prepare SEND WR */
1337  memset(&err_wr, 0, sizeof err_wr);
1338  ctxt->wr_op = IB_WR_SEND;
1339  err_wr.wr_id = (unsigned long)ctxt;
1340  err_wr.sg_list = ctxt->sge;
1341  err_wr.num_sge = 1;
1342  err_wr.opcode = IB_WR_SEND;
1343  err_wr.send_flags = IB_SEND_SIGNALED;
1344 
1345  /* Post It */
1346  ret = svc_rdma_send(xprt, &err_wr);
1347  if (ret) {
1348  dprintk("svcrdma: Error %d posting send for protocol error\n",
1349  ret);
1350  svc_rdma_unmap_dma(ctxt);
1351  svc_rdma_put_context(ctxt, 1);
1352  }
1353 }