Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tcp_input.c
Go to the documentation of this file.
1 /*
2  * INET An implementation of the TCP/IP protocol suite for the LINUX
3  * operating system. INET is implemented using the BSD Socket
4  * interface as the means of communication with the user level.
5  *
6  * Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors: Ross Biro
9  * Fred N. van Kempen, <[email protected]>
10  * Mark Evans, <[email protected]>
11  * Corey Minyard <[email protected]>
12  * Florian La Roche, <[email protected]>
13  * Charles Hedrick, <[email protected]>
14  * Linus Torvalds, <[email protected]>
15  * Alan Cox, <[email protected]>
16  * Matthew Dillon, <[email protected]>
17  * Arnt Gulbrandsen, <[email protected]>
18  * Jorge Cwik, <[email protected]>
19  */
20 
21 /*
22  * Changes:
23  * Pedro Roque : Fast Retransmit/Recovery.
24  * Two receive queues.
25  * Retransmit queue handled by TCP.
26  * Better retransmit timer handling.
27  * New congestion avoidance.
28  * Header prediction.
29  * Variable renaming.
30  *
31  * Eric : Fast Retransmit.
32  * Randy Scott : MSS option defines.
33  * Eric Schenk : Fixes to slow start algorithm.
34  * Eric Schenk : Yet another double ACK bug.
35  * Eric Schenk : Delayed ACK bug fixes.
36  * Eric Schenk : Floyd style fast retrans war avoidance.
37  * David S. Miller : Don't allow zero congestion window.
38  * Eric Schenk : Fix retransmitter so that it sends
39  * next packet on ack of previous packet.
40  * Andi Kleen : Moved open_request checking here
41  * and process RSTs for open_requests.
42  * Andi Kleen : Better prune_queue, and other fixes.
43  * Andrey Savochkin: Fix RTT measurements in the presence of
44  * timestamps.
45  * Andrey Savochkin: Check sequence numbers correctly when
46  * removing SACKs due to in sequence incoming
47  * data segments.
48  * Andi Kleen: Make sure we never ack data there is not
49  * enough room for. Also make this condition
50  * a fatal error if it might still happen.
51  * Andi Kleen: Add tcp_measure_rcv_mss to make
52  * connections with MSS<min(MTU,ann. MSS)
53  * work without delayed acks.
54  * Andi Kleen: Process packets with PSH set in the
55  * fast path.
56  * J Hadi Salim: ECN support
57  * Andrei Gurtov,
58  * Pasi Sarolahti,
59  * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60  * engine. Lots of bugs are found.
61  * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 /* rfc5961 challenge ack rate limiting */
93 
99 
101 
105 
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119 
120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
125 
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128 
129 /* Adapt the MSS value used to make delayed ack decision to the
130  * real world.
131  */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134  struct inet_connection_sock *icsk = inet_csk(sk);
135  const unsigned int lss = icsk->icsk_ack.last_seg_size;
136  unsigned int len;
137 
138  icsk->icsk_ack.last_seg_size = 0;
139 
140  /* skb->len may jitter because of SACKs, even if peer
141  * sends good full-sized frames.
142  */
143  len = skb_shinfo(skb)->gso_size ? : skb->len;
144  if (len >= icsk->icsk_ack.rcv_mss) {
145  icsk->icsk_ack.rcv_mss = len;
146  } else {
147  /* Otherwise, we make more careful check taking into account,
148  * that SACKs block is variable.
149  *
150  * "len" is invariant segment length, including TCP header.
151  */
152  len += skb->data - skb_transport_header(skb);
153  if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154  /* If PSH is not set, packet should be
155  * full sized, provided peer TCP is not badly broken.
156  * This observation (if it is correct 8)) allows
157  * to handle super-low mtu links fairly.
158  */
159  (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160  !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161  /* Subtract also invariant (if peer is RFC compliant),
162  * tcp header plus fixed timestamp option length.
163  * Resulting "len" is MSS free of SACK jitter.
164  */
165  len -= tcp_sk(sk)->tcp_header_len;
166  icsk->icsk_ack.last_seg_size = len;
167  if (len == lss) {
168  icsk->icsk_ack.rcv_mss = len;
169  return;
170  }
171  }
172  if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173  icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174  icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175  }
176 }
177 
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180  struct inet_connection_sock *icsk = inet_csk(sk);
181  unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182 
183  if (quickacks == 0)
184  quickacks = 2;
185  if (quickacks > icsk->icsk_ack.quick)
186  icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188 
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191  struct inet_connection_sock *icsk = inet_csk(sk);
192  tcp_incr_quickack(sk);
193  icsk->icsk_ack.pingpong = 0;
194  icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196 
197 /* Send ACKs quickly, if "quick" count is not exhausted
198  * and the session is not interactive.
199  */
200 
201 static inline bool tcp_in_quickack_mode(const struct sock *sk)
202 {
203  const struct inet_connection_sock *icsk = inet_csk(sk);
204 
205  return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
206 }
207 
208 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
209 {
210  if (tp->ecn_flags & TCP_ECN_OK)
212 }
213 
214 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
215 {
216  if (tcp_hdr(skb)->cwr)
218 }
219 
220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
221 {
223 }
224 
225 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
226 {
227  if (!(tp->ecn_flags & TCP_ECN_OK))
228  return;
229 
230  switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
231  case INET_ECN_NOT_ECT:
232  /* Funny extension: if ECT is not set on a segment,
233  * and we already seen ECT on a previous segment,
234  * it is probably a retransmit.
235  */
236  if (tp->ecn_flags & TCP_ECN_SEEN)
237  tcp_enter_quickack_mode((struct sock *)tp);
238  break;
239  case INET_ECN_CE:
240  if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
241  /* Better not delay acks, sender can have a very low cwnd */
242  tcp_enter_quickack_mode((struct sock *)tp);
244  }
245  /* fallinto */
246  default:
247  tp->ecn_flags |= TCP_ECN_SEEN;
248  }
249 }
250 
251 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
252 {
253  if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
254  tp->ecn_flags &= ~TCP_ECN_OK;
255 }
256 
257 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
258 {
259  if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
260  tp->ecn_flags &= ~TCP_ECN_OK;
261 }
262 
263 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
264 {
265  if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
266  return true;
267  return false;
268 }
269 
270 /* Buffer size and advertised window tuning.
271  *
272  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
273  */
274 
275 static void tcp_fixup_sndbuf(struct sock *sk)
276 {
277  int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
278 
279  sndmem *= TCP_INIT_CWND;
280  if (sk->sk_sndbuf < sndmem)
281  sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
282 }
283 
284 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
285  *
286  * All tcp_full_space() is split to two parts: "network" buffer, allocated
287  * forward and advertised in receiver window (tp->rcv_wnd) and
288  * "application buffer", required to isolate scheduling/application
289  * latencies from network.
290  * window_clamp is maximal advertised window. It can be less than
291  * tcp_full_space(), in this case tcp_full_space() - window_clamp
292  * is reserved for "application" buffer. The less window_clamp is
293  * the smoother our behaviour from viewpoint of network, but the lower
294  * throughput and the higher sensitivity of the connection to losses. 8)
295  *
296  * rcv_ssthresh is more strict window_clamp used at "slow start"
297  * phase to predict further behaviour of this connection.
298  * It is used for two goals:
299  * - to enforce header prediction at sender, even when application
300  * requires some significant "application buffer". It is check #1.
301  * - to prevent pruning of receive queue because of misprediction
302  * of receiver window. Check #2.
303  *
304  * The scheme does not work when sender sends good segments opening
305  * window and then starts to feed us spaghetti. But it should work
306  * in common situations. Otherwise, we have to rely on queue collapsing.
307  */
308 
309 /* Slow part of check#2. */
310 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
311 {
312  struct tcp_sock *tp = tcp_sk(sk);
313  /* Optimize this! */
314  int truesize = tcp_win_from_space(skb->truesize) >> 1;
315  int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
316 
317  while (tp->rcv_ssthresh <= window) {
318  if (truesize <= skb->len)
319  return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
320 
321  truesize >>= 1;
322  window >>= 1;
323  }
324  return 0;
325 }
326 
327 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
328 {
329  struct tcp_sock *tp = tcp_sk(sk);
330 
331  /* Check #1 */
332  if (tp->rcv_ssthresh < tp->window_clamp &&
333  (int)tp->rcv_ssthresh < tcp_space(sk) &&
334  !sk_under_memory_pressure(sk)) {
335  int incr;
336 
337  /* Check #2. Increase window, if skb with such overhead
338  * will fit to rcvbuf in future.
339  */
340  if (tcp_win_from_space(skb->truesize) <= skb->len)
341  incr = 2 * tp->advmss;
342  else
343  incr = __tcp_grow_window(sk, skb);
344 
345  if (incr) {
346  incr = max_t(int, incr, 2 * skb->len);
347  tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
348  tp->window_clamp);
349  inet_csk(sk)->icsk_ack.quick |= 1;
350  }
351  }
352 }
353 
354 /* 3. Tuning rcvbuf, when connection enters established state. */
355 
356 static void tcp_fixup_rcvbuf(struct sock *sk)
357 {
358  u32 mss = tcp_sk(sk)->advmss;
360  int rcvmem;
361 
362  /* Limit to 10 segments if mss <= 1460,
363  * or 14600/mss segments, with a minimum of two segments.
364  */
365  if (mss > 1460)
366  icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
367 
368  rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
369  while (tcp_win_from_space(rcvmem) < mss)
370  rcvmem += 128;
371 
372  rcvmem *= icwnd;
373 
374  if (sk->sk_rcvbuf < rcvmem)
375  sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
376 }
377 
378 /* 4. Try to fixup all. It is made immediately after connection enters
379  * established state.
380  */
381 void tcp_init_buffer_space(struct sock *sk)
382 {
383  struct tcp_sock *tp = tcp_sk(sk);
384  int maxwin;
385 
386  if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
387  tcp_fixup_rcvbuf(sk);
388  if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
389  tcp_fixup_sndbuf(sk);
390 
391  tp->rcvq_space.space = tp->rcv_wnd;
392 
393  maxwin = tcp_full_space(sk);
394 
395  if (tp->window_clamp >= maxwin) {
396  tp->window_clamp = maxwin;
397 
398  if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
399  tp->window_clamp = max(maxwin -
400  (maxwin >> sysctl_tcp_app_win),
401  4 * tp->advmss);
402  }
403 
404  /* Force reservation of one segment. */
405  if (sysctl_tcp_app_win &&
406  tp->window_clamp > 2 * tp->advmss &&
407  tp->window_clamp + tp->advmss > maxwin)
408  tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
409 
410  tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
412 }
413 
414 /* 5. Recalculate window clamp after socket hit its memory bounds. */
415 static void tcp_clamp_window(struct sock *sk)
416 {
417  struct tcp_sock *tp = tcp_sk(sk);
418  struct inet_connection_sock *icsk = inet_csk(sk);
419 
420  icsk->icsk_ack.quick = 0;
421 
422  if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
423  !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
424  !sk_under_memory_pressure(sk) &&
425  sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
426  sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
427  sysctl_tcp_rmem[2]);
428  }
429  if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
430  tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
431 }
432 
433 /* Initialize RCV_MSS value.
434  * RCV_MSS is an our guess about MSS used by the peer.
435  * We haven't any direct information about the MSS.
436  * It's better to underestimate the RCV_MSS rather than overestimate.
437  * Overestimations make us ACKing less frequently than needed.
438  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
439  */
440 void tcp_initialize_rcv_mss(struct sock *sk)
441 {
442  const struct tcp_sock *tp = tcp_sk(sk);
443  unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
444 
445  hint = min(hint, tp->rcv_wnd / 2);
446  hint = min(hint, TCP_MSS_DEFAULT);
447  hint = max(hint, TCP_MIN_MSS);
448 
449  inet_csk(sk)->icsk_ack.rcv_mss = hint;
450 }
452 
453 /* Receiver "autotuning" code.
454  *
455  * The algorithm for RTT estimation w/o timestamps is based on
456  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
457  * <http://public.lanl.gov/radiant/pubs.html#DRS>
458  *
459  * More detail on this code can be found at
460  * <http://staff.psc.edu/jheffner/>,
461  * though this reference is out of date. A new paper
462  * is pending.
463  */
464 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
465 {
466  u32 new_sample = tp->rcv_rtt_est.rtt;
467  long m = sample;
468 
469  if (m == 0)
470  m = 1;
471 
472  if (new_sample != 0) {
473  /* If we sample in larger samples in the non-timestamp
474  * case, we could grossly overestimate the RTT especially
475  * with chatty applications or bulk transfer apps which
476  * are stalled on filesystem I/O.
477  *
478  * Also, since we are only going for a minimum in the
479  * non-timestamp case, we do not smooth things out
480  * else with timestamps disabled convergence takes too
481  * long.
482  */
483  if (!win_dep) {
484  m -= (new_sample >> 3);
485  new_sample += m;
486  } else {
487  m <<= 3;
488  if (m < new_sample)
489  new_sample = m;
490  }
491  } else {
492  /* No previous measure. */
493  new_sample = m << 3;
494  }
495 
496  if (tp->rcv_rtt_est.rtt != new_sample)
497  tp->rcv_rtt_est.rtt = new_sample;
498 }
499 
500 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
501 {
502  if (tp->rcv_rtt_est.time == 0)
503  goto new_measure;
504  if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
505  return;
506  tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
507 
508 new_measure:
509  tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
510  tp->rcv_rtt_est.time = tcp_time_stamp;
511 }
512 
513 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
514  const struct sk_buff *skb)
515 {
516  struct tcp_sock *tp = tcp_sk(sk);
517  if (tp->rx_opt.rcv_tsecr &&
518  (TCP_SKB_CB(skb)->end_seq -
519  TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
520  tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
521 }
522 
523 /*
524  * This function should be called every time data is copied to user space.
525  * It calculates the appropriate TCP receive buffer space.
526  */
527 void tcp_rcv_space_adjust(struct sock *sk)
528 {
529  struct tcp_sock *tp = tcp_sk(sk);
530  int time;
531  int space;
532 
533  if (tp->rcvq_space.time == 0)
534  goto new_measure;
535 
536  time = tcp_time_stamp - tp->rcvq_space.time;
537  if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
538  return;
539 
540  space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
541 
542  space = max(tp->rcvq_space.space, space);
543 
544  if (tp->rcvq_space.space != space) {
545  int rcvmem;
546 
547  tp->rcvq_space.space = space;
548 
550  !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
551  int new_clamp = space;
552 
553  /* Receive space grows, normalize in order to
554  * take into account packet headers and sk_buff
555  * structure overhead.
556  */
557  space /= tp->advmss;
558  if (!space)
559  space = 1;
560  rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
561  while (tcp_win_from_space(rcvmem) < tp->advmss)
562  rcvmem += 128;
563  space *= rcvmem;
564  space = min(space, sysctl_tcp_rmem[2]);
565  if (space > sk->sk_rcvbuf) {
566  sk->sk_rcvbuf = space;
567 
568  /* Make the window clamp follow along. */
569  tp->window_clamp = new_clamp;
570  }
571  }
572  }
573 
574 new_measure:
575  tp->rcvq_space.seq = tp->copied_seq;
576  tp->rcvq_space.time = tcp_time_stamp;
577 }
578 
579 /* There is something which you must keep in mind when you analyze the
580  * behavior of the tp->ato delayed ack timeout interval. When a
581  * connection starts up, we want to ack as quickly as possible. The
582  * problem is that "good" TCP's do slow start at the beginning of data
583  * transmission. The means that until we send the first few ACK's the
584  * sender will sit on his end and only queue most of his data, because
585  * he can only send snd_cwnd unacked packets at any given time. For
586  * each ACK we send, he increments snd_cwnd and transmits more of his
587  * queue. -DaveM
588  */
589 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
590 {
591  struct tcp_sock *tp = tcp_sk(sk);
592  struct inet_connection_sock *icsk = inet_csk(sk);
593  u32 now;
594 
595  inet_csk_schedule_ack(sk);
596 
597  tcp_measure_rcv_mss(sk, skb);
598 
599  tcp_rcv_rtt_measure(tp);
600 
601  now = tcp_time_stamp;
602 
603  if (!icsk->icsk_ack.ato) {
604  /* The _first_ data packet received, initialize
605  * delayed ACK engine.
606  */
607  tcp_incr_quickack(sk);
608  icsk->icsk_ack.ato = TCP_ATO_MIN;
609  } else {
610  int m = now - icsk->icsk_ack.lrcvtime;
611 
612  if (m <= TCP_ATO_MIN / 2) {
613  /* The fastest case is the first. */
614  icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
615  } else if (m < icsk->icsk_ack.ato) {
616  icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
617  if (icsk->icsk_ack.ato > icsk->icsk_rto)
618  icsk->icsk_ack.ato = icsk->icsk_rto;
619  } else if (m > icsk->icsk_rto) {
620  /* Too long gap. Apparently sender failed to
621  * restart window, so that we send ACKs quickly.
622  */
623  tcp_incr_quickack(sk);
624  sk_mem_reclaim(sk);
625  }
626  }
627  icsk->icsk_ack.lrcvtime = now;
628 
629  TCP_ECN_check_ce(tp, skb);
630 
631  if (skb->len >= 128)
632  tcp_grow_window(sk, skb);
633 }
634 
635 /* Called to compute a smoothed rtt estimate. The data fed to this
636  * routine either comes from timestamps, or from segments that were
637  * known _not_ to have been retransmitted [see Karn/Partridge
638  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
639  * piece by Van Jacobson.
640  * NOTE: the next three routines used to be one big routine.
641  * To save cycles in the RFC 1323 implementation it was better to break
642  * it up into three procedures. -- erics
643  */
644 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
645 {
646  struct tcp_sock *tp = tcp_sk(sk);
647  long m = mrtt; /* RTT */
648 
649  /* The following amusing code comes from Jacobson's
650  * article in SIGCOMM '88. Note that rtt and mdev
651  * are scaled versions of rtt and mean deviation.
652  * This is designed to be as fast as possible
653  * m stands for "measurement".
654  *
655  * On a 1990 paper the rto value is changed to:
656  * RTO = rtt + 4 * mdev
657  *
658  * Funny. This algorithm seems to be very broken.
659  * These formulae increase RTO, when it should be decreased, increase
660  * too slowly, when it should be increased quickly, decrease too quickly
661  * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
662  * does not matter how to _calculate_ it. Seems, it was trap
663  * that VJ failed to avoid. 8)
664  */
665  if (m == 0)
666  m = 1;
667  if (tp->srtt != 0) {
668  m -= (tp->srtt >> 3); /* m is now error in rtt est */
669  tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
670  if (m < 0) {
671  m = -m; /* m is now abs(error) */
672  m -= (tp->mdev >> 2); /* similar update on mdev */
673  /* This is similar to one of Eifel findings.
674  * Eifel blocks mdev updates when rtt decreases.
675  * This solution is a bit different: we use finer gain
676  * for mdev in this case (alpha*beta).
677  * Like Eifel it also prevents growth of rto,
678  * but also it limits too fast rto decreases,
679  * happening in pure Eifel.
680  */
681  if (m > 0)
682  m >>= 3;
683  } else {
684  m -= (tp->mdev >> 2); /* similar update on mdev */
685  }
686  tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
687  if (tp->mdev > tp->mdev_max) {
688  tp->mdev_max = tp->mdev;
689  if (tp->mdev_max > tp->rttvar)
690  tp->rttvar = tp->mdev_max;
691  }
692  if (after(tp->snd_una, tp->rtt_seq)) {
693  if (tp->mdev_max < tp->rttvar)
694  tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
695  tp->rtt_seq = tp->snd_nxt;
696  tp->mdev_max = tcp_rto_min(sk);
697  }
698  } else {
699  /* no previous measure. */
700  tp->srtt = m << 3; /* take the measured time to be rtt */
701  tp->mdev = m << 1; /* make sure rto = 3*rtt */
702  tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
703  tp->rtt_seq = tp->snd_nxt;
704  }
705 }
706 
707 /* Calculate rto without backoff. This is the second half of Van Jacobson's
708  * routine referred to above.
709  */
710 void tcp_set_rto(struct sock *sk)
711 {
712  const struct tcp_sock *tp = tcp_sk(sk);
713  /* Old crap is replaced with new one. 8)
714  *
715  * More seriously:
716  * 1. If rtt variance happened to be less 50msec, it is hallucination.
717  * It cannot be less due to utterly erratic ACK generation made
718  * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
719  * to do with delayed acks, because at cwnd>2 true delack timeout
720  * is invisible. Actually, Linux-2.4 also generates erratic
721  * ACKs in some circumstances.
722  */
723  inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
724 
725  /* 2. Fixups made earlier cannot be right.
726  * If we do not estimate RTO correctly without them,
727  * all the algo is pure shit and should be replaced
728  * with correct one. It is exactly, which we pretend to do.
729  */
730 
731  /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
732  * guarantees that rto is higher.
733  */
734  tcp_bound_rto(sk);
735 }
736 
737 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
738 {
739  __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
740 
741  if (!cwnd)
742  cwnd = TCP_INIT_CWND;
743  return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
744 }
745 
746 /*
747  * Packet counting of FACK is based on in-order assumptions, therefore TCP
748  * disables it when reordering is detected
749  */
750 void tcp_disable_fack(struct tcp_sock *tp)
751 {
752  /* RFC3517 uses different metric in lost marker => reset on change */
753  if (tcp_is_fack(tp))
754  tp->lost_skb_hint = NULL;
755  tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
756 }
757 
758 /* Take a notice that peer is sending D-SACKs */
759 static void tcp_dsack_seen(struct tcp_sock *tp)
760 {
761  tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
762 }
763 
764 static void tcp_update_reordering(struct sock *sk, const int metric,
765  const int ts)
766 {
767  struct tcp_sock *tp = tcp_sk(sk);
768  if (metric > tp->reordering) {
769  int mib_idx;
770 
771  tp->reordering = min(TCP_MAX_REORDERING, metric);
772 
773  /* This exciting event is worth to be remembered. 8) */
774  if (ts)
775  mib_idx = LINUX_MIB_TCPTSREORDER;
776  else if (tcp_is_reno(tp))
777  mib_idx = LINUX_MIB_TCPRENOREORDER;
778  else if (tcp_is_fack(tp))
779  mib_idx = LINUX_MIB_TCPFACKREORDER;
780  else
781  mib_idx = LINUX_MIB_TCPSACKREORDER;
782 
783  NET_INC_STATS_BH(sock_net(sk), mib_idx);
784 #if FASTRETRANS_DEBUG > 1
785  pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
786  tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
787  tp->reordering,
788  tp->fackets_out,
789  tp->sacked_out,
790  tp->undo_marker ? tp->undo_retrans : 0);
791 #endif
792  tcp_disable_fack(tp);
793  }
794 
795  if (metric > 0)
796  tcp_disable_early_retrans(tp);
797 }
798 
799 /* This must be called before lost_out is incremented */
800 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
801 {
802  if ((tp->retransmit_skb_hint == NULL) ||
803  before(TCP_SKB_CB(skb)->seq,
804  TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
805  tp->retransmit_skb_hint = skb;
806 
807  if (!tp->lost_out ||
808  after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
809  tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
810 }
811 
812 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
813 {
814  if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
815  tcp_verify_retransmit_hint(tp, skb);
816 
817  tp->lost_out += tcp_skb_pcount(skb);
818  TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
819  }
820 }
821 
822 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
823  struct sk_buff *skb)
824 {
825  tcp_verify_retransmit_hint(tp, skb);
826 
827  if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
828  tp->lost_out += tcp_skb_pcount(skb);
829  TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
830  }
831 }
832 
833 /* This procedure tags the retransmission queue when SACKs arrive.
834  *
835  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
836  * Packets in queue with these bits set are counted in variables
837  * sacked_out, retrans_out and lost_out, correspondingly.
838  *
839  * Valid combinations are:
840  * Tag InFlight Description
841  * 0 1 - orig segment is in flight.
842  * S 0 - nothing flies, orig reached receiver.
843  * L 0 - nothing flies, orig lost by net.
844  * R 2 - both orig and retransmit are in flight.
845  * L|R 1 - orig is lost, retransmit is in flight.
846  * S|R 1 - orig reached receiver, retrans is still in flight.
847  * (L|S|R is logically valid, it could occur when L|R is sacked,
848  * but it is equivalent to plain S and code short-curcuits it to S.
849  * L|S is logically invalid, it would mean -1 packet in flight 8))
850  *
851  * These 6 states form finite state machine, controlled by the following events:
852  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
853  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
854  * 3. Loss detection event of two flavors:
855  * A. Scoreboard estimator decided the packet is lost.
856  * A'. Reno "three dupacks" marks head of queue lost.
857  * A''. Its FACK modification, head until snd.fack is lost.
858  * B. SACK arrives sacking SND.NXT at the moment, when the
859  * segment was retransmitted.
860  * 4. D-SACK added new rule: D-SACK changes any tag to S.
861  *
862  * It is pleasant to note, that state diagram turns out to be commutative,
863  * so that we are allowed not to be bothered by order of our actions,
864  * when multiple events arrive simultaneously. (see the function below).
865  *
866  * Reordering detection.
867  * --------------------
868  * Reordering metric is maximal distance, which a packet can be displaced
869  * in packet stream. With SACKs we can estimate it:
870  *
871  * 1. SACK fills old hole and the corresponding segment was not
872  * ever retransmitted -> reordering. Alas, we cannot use it
873  * when segment was retransmitted.
874  * 2. The last flaw is solved with D-SACK. D-SACK arrives
875  * for retransmitted and already SACKed segment -> reordering..
876  * Both of these heuristics are not used in Loss state, when we cannot
877  * account for retransmits accurately.
878  *
879  * SACK block validation.
880  * ----------------------
881  *
882  * SACK block range validation checks that the received SACK block fits to
883  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
884  * Note that SND.UNA is not included to the range though being valid because
885  * it means that the receiver is rather inconsistent with itself reporting
886  * SACK reneging when it should advance SND.UNA. Such SACK block this is
887  * perfectly valid, however, in light of RFC2018 which explicitly states
888  * that "SACK block MUST reflect the newest segment. Even if the newest
889  * segment is going to be discarded ...", not that it looks very clever
890  * in case of head skb. Due to potentional receiver driven attacks, we
891  * choose to avoid immediate execution of a walk in write queue due to
892  * reneging and defer head skb's loss recovery to standard loss recovery
893  * procedure that will eventually trigger (nothing forbids us doing this).
894  *
895  * Implements also blockage to start_seq wrap-around. Problem lies in the
896  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
897  * there's no guarantee that it will be before snd_nxt (n). The problem
898  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
899  * wrap (s_w):
900  *
901  * <- outs wnd -> <- wrapzone ->
902  * u e n u_w e_w s n_w
903  * | | | | | | |
904  * |<------------+------+----- TCP seqno space --------------+---------->|
905  * ...-- <2^31 ->| |<--------...
906  * ...---- >2^31 ------>| |<--------...
907  *
908  * Current code wouldn't be vulnerable but it's better still to discard such
909  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
910  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
911  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
912  * equal to the ideal case (infinite seqno space without wrap caused issues).
913  *
914  * With D-SACK the lower bound is extended to cover sequence space below
915  * SND.UNA down to undo_marker, which is the last point of interest. Yet
916  * again, D-SACK block must not to go across snd_una (for the same reason as
917  * for the normal SACK blocks, explained above). But there all simplicity
918  * ends, TCP might receive valid D-SACKs below that. As long as they reside
919  * fully below undo_marker they do not affect behavior in anyway and can
920  * therefore be safely ignored. In rare cases (which are more or less
921  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
922  * fragmentation and packet reordering past skb's retransmission. To consider
923  * them correctly, the acceptable range must be extended even more though
924  * the exact amount is rather hard to quantify. However, tp->max_window can
925  * be used as an exaggerated estimate.
926  */
927 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
928  u32 start_seq, u32 end_seq)
929 {
930  /* Too far in future, or reversed (interpretation is ambiguous) */
931  if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
932  return false;
933 
934  /* Nasty start_seq wrap-around check (see comments above) */
935  if (!before(start_seq, tp->snd_nxt))
936  return false;
937 
938  /* In outstanding window? ...This is valid exit for D-SACKs too.
939  * start_seq == snd_una is non-sensical (see comments above)
940  */
941  if (after(start_seq, tp->snd_una))
942  return true;
943 
944  if (!is_dsack || !tp->undo_marker)
945  return false;
946 
947  /* ...Then it's D-SACK, and must reside below snd_una completely */
948  if (after(end_seq, tp->snd_una))
949  return false;
950 
951  if (!before(start_seq, tp->undo_marker))
952  return true;
953 
954  /* Too old */
955  if (!after(end_seq, tp->undo_marker))
956  return false;
957 
958  /* Undo_marker boundary crossing (overestimates a lot). Known already:
959  * start_seq < undo_marker and end_seq >= undo_marker.
960  */
961  return !before(start_seq, end_seq - tp->max_window);
962 }
963 
964 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
965  * Event "B". Later note: FACK people cheated me again 8), we have to account
966  * for reordering! Ugly, but should help.
967  *
968  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
969  * less than what is now known to be received by the other end (derived from
970  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
971  * retransmitted skbs to avoid some costly processing per ACKs.
972  */
973 static void tcp_mark_lost_retrans(struct sock *sk)
974 {
975  const struct inet_connection_sock *icsk = inet_csk(sk);
976  struct tcp_sock *tp = tcp_sk(sk);
977  struct sk_buff *skb;
978  int cnt = 0;
979  u32 new_low_seq = tp->snd_nxt;
980  u32 received_upto = tcp_highest_sack_seq(tp);
981 
982  if (!tcp_is_fack(tp) || !tp->retrans_out ||
983  !after(received_upto, tp->lost_retrans_low) ||
985  return;
986 
987  tcp_for_write_queue(skb, sk) {
988  u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
989 
990  if (skb == tcp_send_head(sk))
991  break;
992  if (cnt == tp->retrans_out)
993  break;
994  if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
995  continue;
996 
997  if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
998  continue;
999 
1000  /* TODO: We would like to get rid of tcp_is_fack(tp) only
1001  * constraint here (see above) but figuring out that at
1002  * least tp->reordering SACK blocks reside between ack_seq
1003  * and received_upto is not easy task to do cheaply with
1004  * the available datastructures.
1005  *
1006  * Whether FACK should check here for tp->reordering segs
1007  * in-between one could argue for either way (it would be
1008  * rather simple to implement as we could count fack_count
1009  * during the walk and do tp->fackets_out - fack_count).
1010  */
1011  if (after(received_upto, ack_seq)) {
1012  TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1013  tp->retrans_out -= tcp_skb_pcount(skb);
1014 
1015  tcp_skb_mark_lost_uncond_verify(tp, skb);
1017  } else {
1018  if (before(ack_seq, new_low_seq))
1019  new_low_seq = ack_seq;
1020  cnt += tcp_skb_pcount(skb);
1021  }
1022  }
1023 
1024  if (tp->retrans_out)
1025  tp->lost_retrans_low = new_low_seq;
1026 }
1027 
1028 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1029  struct tcp_sack_block_wire *sp, int num_sacks,
1030  u32 prior_snd_una)
1031 {
1032  struct tcp_sock *tp = tcp_sk(sk);
1033  u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1034  u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1035  bool dup_sack = false;
1036 
1037  if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1038  dup_sack = true;
1039  tcp_dsack_seen(tp);
1041  } else if (num_sacks > 1) {
1042  u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1043  u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1044 
1045  if (!after(end_seq_0, end_seq_1) &&
1046  !before(start_seq_0, start_seq_1)) {
1047  dup_sack = true;
1048  tcp_dsack_seen(tp);
1049  NET_INC_STATS_BH(sock_net(sk),
1051  }
1052  }
1053 
1054  /* D-SACK for already forgotten data... Do dumb counting. */
1055  if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1056  !after(end_seq_0, prior_snd_una) &&
1057  after(end_seq_0, tp->undo_marker))
1058  tp->undo_retrans--;
1059 
1060  return dup_sack;
1061 }
1062 
1064  int reord;
1066  int flag;
1067 };
1068 
1069 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1070  * the incoming SACK may not exactly match but we can find smaller MSS
1071  * aligned portion of it that matches. Therefore we might need to fragment
1072  * which may fail and creates some hassle (caller must handle error case
1073  * returns).
1074  *
1075  * FIXME: this could be merged to shift decision code
1076  */
1077 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1078  u32 start_seq, u32 end_seq)
1079 {
1080  int err;
1081  bool in_sack;
1082  unsigned int pkt_len;
1083  unsigned int mss;
1084 
1085  in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1086  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1087 
1088  if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1089  after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1090  mss = tcp_skb_mss(skb);
1091  in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1092 
1093  if (!in_sack) {
1094  pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1095  if (pkt_len < mss)
1096  pkt_len = mss;
1097  } else {
1098  pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1099  if (pkt_len < mss)
1100  return -EINVAL;
1101  }
1102 
1103  /* Round if necessary so that SACKs cover only full MSSes
1104  * and/or the remaining small portion (if present)
1105  */
1106  if (pkt_len > mss) {
1107  unsigned int new_len = (pkt_len / mss) * mss;
1108  if (!in_sack && new_len < pkt_len) {
1109  new_len += mss;
1110  if (new_len > skb->len)
1111  return 0;
1112  }
1113  pkt_len = new_len;
1114  }
1115  err = tcp_fragment(sk, skb, pkt_len, mss);
1116  if (err < 0)
1117  return err;
1118  }
1119 
1120  return in_sack;
1121 }
1122 
1123 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1124 static u8 tcp_sacktag_one(struct sock *sk,
1125  struct tcp_sacktag_state *state, u8 sacked,
1126  u32 start_seq, u32 end_seq,
1127  bool dup_sack, int pcount)
1128 {
1129  struct tcp_sock *tp = tcp_sk(sk);
1130  int fack_count = state->fack_count;
1131 
1132  /* Account D-SACK for retransmitted packet. */
1133  if (dup_sack && (sacked & TCPCB_RETRANS)) {
1134  if (tp->undo_marker && tp->undo_retrans &&
1135  after(end_seq, tp->undo_marker))
1136  tp->undo_retrans--;
1137  if (sacked & TCPCB_SACKED_ACKED)
1138  state->reord = min(fack_count, state->reord);
1139  }
1140 
1141  /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1142  if (!after(end_seq, tp->snd_una))
1143  return sacked;
1144 
1145  if (!(sacked & TCPCB_SACKED_ACKED)) {
1146  if (sacked & TCPCB_SACKED_RETRANS) {
1147  /* If the segment is not tagged as lost,
1148  * we do not clear RETRANS, believing
1149  * that retransmission is still in flight.
1150  */
1151  if (sacked & TCPCB_LOST) {
1152  sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1153  tp->lost_out -= pcount;
1154  tp->retrans_out -= pcount;
1155  }
1156  } else {
1157  if (!(sacked & TCPCB_RETRANS)) {
1158  /* New sack for not retransmitted frame,
1159  * which was in hole. It is reordering.
1160  */
1161  if (before(start_seq,
1162  tcp_highest_sack_seq(tp)))
1163  state->reord = min(fack_count,
1164  state->reord);
1165 
1166  /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1167  if (!after(end_seq, tp->frto_highmark))
1168  state->flag |= FLAG_ONLY_ORIG_SACKED;
1169  }
1170 
1171  if (sacked & TCPCB_LOST) {
1172  sacked &= ~TCPCB_LOST;
1173  tp->lost_out -= pcount;
1174  }
1175  }
1176 
1177  sacked |= TCPCB_SACKED_ACKED;
1178  state->flag |= FLAG_DATA_SACKED;
1179  tp->sacked_out += pcount;
1180 
1181  fack_count += pcount;
1182 
1183  /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1184  if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1185  before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1186  tp->lost_cnt_hint += pcount;
1187 
1188  if (fack_count > tp->fackets_out)
1189  tp->fackets_out = fack_count;
1190  }
1191 
1192  /* D-SACK. We can detect redundant retransmission in S|R and plain R
1193  * frames and clear it. undo_retrans is decreased above, L|R frames
1194  * are accounted above as well.
1195  */
1196  if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1197  sacked &= ~TCPCB_SACKED_RETRANS;
1198  tp->retrans_out -= pcount;
1199  }
1200 
1201  return sacked;
1202 }
1203 
1204 /* Shift newly-SACKed bytes from this skb to the immediately previous
1205  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1206  */
1207 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1208  struct tcp_sacktag_state *state,
1209  unsigned int pcount, int shifted, int mss,
1210  bool dup_sack)
1211 {
1212  struct tcp_sock *tp = tcp_sk(sk);
1213  struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1214  u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1215  u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1216 
1217  BUG_ON(!pcount);
1218 
1219  /* Adjust counters and hints for the newly sacked sequence
1220  * range but discard the return value since prev is already
1221  * marked. We must tag the range first because the seq
1222  * advancement below implicitly advances
1223  * tcp_highest_sack_seq() when skb is highest_sack.
1224  */
1225  tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1226  start_seq, end_seq, dup_sack, pcount);
1227 
1228  if (skb == tp->lost_skb_hint)
1229  tp->lost_cnt_hint += pcount;
1230 
1231  TCP_SKB_CB(prev)->end_seq += shifted;
1232  TCP_SKB_CB(skb)->seq += shifted;
1233 
1234  skb_shinfo(prev)->gso_segs += pcount;
1235  BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1236  skb_shinfo(skb)->gso_segs -= pcount;
1237 
1238  /* When we're adding to gso_segs == 1, gso_size will be zero,
1239  * in theory this shouldn't be necessary but as long as DSACK
1240  * code can come after this skb later on it's better to keep
1241  * setting gso_size to something.
1242  */
1243  if (!skb_shinfo(prev)->gso_size) {
1244  skb_shinfo(prev)->gso_size = mss;
1245  skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1246  }
1247 
1248  /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1249  if (skb_shinfo(skb)->gso_segs <= 1) {
1250  skb_shinfo(skb)->gso_size = 0;
1251  skb_shinfo(skb)->gso_type = 0;
1252  }
1253 
1254  /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1255  TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1256 
1257  if (skb->len > 0) {
1258  BUG_ON(!tcp_skb_pcount(skb));
1259  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1260  return false;
1261  }
1262 
1263  /* Whole SKB was eaten :-) */
1264 
1265  if (skb == tp->retransmit_skb_hint)
1266  tp->retransmit_skb_hint = prev;
1267  if (skb == tp->scoreboard_skb_hint)
1268  tp->scoreboard_skb_hint = prev;
1269  if (skb == tp->lost_skb_hint) {
1270  tp->lost_skb_hint = prev;
1271  tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1272  }
1273 
1274  TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1275  if (skb == tcp_highest_sack(sk))
1276  tcp_advance_highest_sack(sk, skb);
1277 
1278  tcp_unlink_write_queue(skb, sk);
1279  sk_wmem_free_skb(sk, skb);
1280 
1281  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1282 
1283  return true;
1284 }
1285 
1286 /* I wish gso_size would have a bit more sane initialization than
1287  * something-or-zero which complicates things
1288  */
1289 static int tcp_skb_seglen(const struct sk_buff *skb)
1290 {
1291  return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1292 }
1293 
1294 /* Shifting pages past head area doesn't work */
1295 static int skb_can_shift(const struct sk_buff *skb)
1296 {
1297  return !skb_headlen(skb) && skb_is_nonlinear(skb);
1298 }
1299 
1300 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1301  * skb.
1302  */
1303 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1304  struct tcp_sacktag_state *state,
1305  u32 start_seq, u32 end_seq,
1306  bool dup_sack)
1307 {
1308  struct tcp_sock *tp = tcp_sk(sk);
1309  struct sk_buff *prev;
1310  int mss;
1311  int pcount = 0;
1312  int len;
1313  int in_sack;
1314 
1315  if (!sk_can_gso(sk))
1316  goto fallback;
1317 
1318  /* Normally R but no L won't result in plain S */
1319  if (!dup_sack &&
1320  (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1321  goto fallback;
1322  if (!skb_can_shift(skb))
1323  goto fallback;
1324  /* This frame is about to be dropped (was ACKed). */
1325  if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1326  goto fallback;
1327 
1328  /* Can only happen with delayed DSACK + discard craziness */
1329  if (unlikely(skb == tcp_write_queue_head(sk)))
1330  goto fallback;
1331  prev = tcp_write_queue_prev(sk, skb);
1332 
1333  if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1334  goto fallback;
1335 
1336  in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1337  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1338 
1339  if (in_sack) {
1340  len = skb->len;
1341  pcount = tcp_skb_pcount(skb);
1342  mss = tcp_skb_seglen(skb);
1343 
1344  /* TODO: Fix DSACKs to not fragment already SACKed and we can
1345  * drop this restriction as unnecessary
1346  */
1347  if (mss != tcp_skb_seglen(prev))
1348  goto fallback;
1349  } else {
1350  if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1351  goto noop;
1352  /* CHECKME: This is non-MSS split case only?, this will
1353  * cause skipped skbs due to advancing loop btw, original
1354  * has that feature too
1355  */
1356  if (tcp_skb_pcount(skb) <= 1)
1357  goto noop;
1358 
1359  in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1360  if (!in_sack) {
1361  /* TODO: head merge to next could be attempted here
1362  * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1363  * though it might not be worth of the additional hassle
1364  *
1365  * ...we can probably just fallback to what was done
1366  * previously. We could try merging non-SACKed ones
1367  * as well but it probably isn't going to buy off
1368  * because later SACKs might again split them, and
1369  * it would make skb timestamp tracking considerably
1370  * harder problem.
1371  */
1372  goto fallback;
1373  }
1374 
1375  len = end_seq - TCP_SKB_CB(skb)->seq;
1376  BUG_ON(len < 0);
1377  BUG_ON(len > skb->len);
1378 
1379  /* MSS boundaries should be honoured or else pcount will
1380  * severely break even though it makes things bit trickier.
1381  * Optimize common case to avoid most of the divides
1382  */
1383  mss = tcp_skb_mss(skb);
1384 
1385  /* TODO: Fix DSACKs to not fragment already SACKed and we can
1386  * drop this restriction as unnecessary
1387  */
1388  if (mss != tcp_skb_seglen(prev))
1389  goto fallback;
1390 
1391  if (len == mss) {
1392  pcount = 1;
1393  } else if (len < mss) {
1394  goto noop;
1395  } else {
1396  pcount = len / mss;
1397  len = pcount * mss;
1398  }
1399  }
1400 
1401  /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1402  if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1403  goto fallback;
1404 
1405  if (!skb_shift(prev, skb, len))
1406  goto fallback;
1407  if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1408  goto out;
1409 
1410  /* Hole filled allows collapsing with the next as well, this is very
1411  * useful when hole on every nth skb pattern happens
1412  */
1413  if (prev == tcp_write_queue_tail(sk))
1414  goto out;
1415  skb = tcp_write_queue_next(sk, prev);
1416 
1417  if (!skb_can_shift(skb) ||
1418  (skb == tcp_send_head(sk)) ||
1419  ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1420  (mss != tcp_skb_seglen(skb)))
1421  goto out;
1422 
1423  len = skb->len;
1424  if (skb_shift(prev, skb, len)) {
1425  pcount += tcp_skb_pcount(skb);
1426  tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1427  }
1428 
1429 out:
1430  state->fack_count += pcount;
1431  return prev;
1432 
1433 noop:
1434  return skb;
1435 
1436 fallback:
1438  return NULL;
1439 }
1440 
1441 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1442  struct tcp_sack_block *next_dup,
1443  struct tcp_sacktag_state *state,
1444  u32 start_seq, u32 end_seq,
1445  bool dup_sack_in)
1446 {
1447  struct tcp_sock *tp = tcp_sk(sk);
1448  struct sk_buff *tmp;
1449 
1450  tcp_for_write_queue_from(skb, sk) {
1451  int in_sack = 0;
1452  bool dup_sack = dup_sack_in;
1453 
1454  if (skb == tcp_send_head(sk))
1455  break;
1456 
1457  /* queue is in-order => we can short-circuit the walk early */
1458  if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1459  break;
1460 
1461  if ((next_dup != NULL) &&
1462  before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1463  in_sack = tcp_match_skb_to_sack(sk, skb,
1464  next_dup->start_seq,
1465  next_dup->end_seq);
1466  if (in_sack > 0)
1467  dup_sack = true;
1468  }
1469 
1470  /* skb reference here is a bit tricky to get right, since
1471  * shifting can eat and free both this skb and the next,
1472  * so not even _safe variant of the loop is enough.
1473  */
1474  if (in_sack <= 0) {
1475  tmp = tcp_shift_skb_data(sk, skb, state,
1476  start_seq, end_seq, dup_sack);
1477  if (tmp != NULL) {
1478  if (tmp != skb) {
1479  skb = tmp;
1480  continue;
1481  }
1482 
1483  in_sack = 0;
1484  } else {
1485  in_sack = tcp_match_skb_to_sack(sk, skb,
1486  start_seq,
1487  end_seq);
1488  }
1489  }
1490 
1491  if (unlikely(in_sack < 0))
1492  break;
1493 
1494  if (in_sack) {
1495  TCP_SKB_CB(skb)->sacked =
1496  tcp_sacktag_one(sk,
1497  state,
1498  TCP_SKB_CB(skb)->sacked,
1499  TCP_SKB_CB(skb)->seq,
1500  TCP_SKB_CB(skb)->end_seq,
1501  dup_sack,
1502  tcp_skb_pcount(skb));
1503 
1504  if (!before(TCP_SKB_CB(skb)->seq,
1505  tcp_highest_sack_seq(tp)))
1506  tcp_advance_highest_sack(sk, skb);
1507  }
1508 
1509  state->fack_count += tcp_skb_pcount(skb);
1510  }
1511  return skb;
1512 }
1513 
1514 /* Avoid all extra work that is being done by sacktag while walking in
1515  * a normal way
1516  */
1517 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1518  struct tcp_sacktag_state *state,
1519  u32 skip_to_seq)
1520 {
1521  tcp_for_write_queue_from(skb, sk) {
1522  if (skb == tcp_send_head(sk))
1523  break;
1524 
1525  if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1526  break;
1527 
1528  state->fack_count += tcp_skb_pcount(skb);
1529  }
1530  return skb;
1531 }
1532 
1533 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1534  struct sock *sk,
1535  struct tcp_sack_block *next_dup,
1536  struct tcp_sacktag_state *state,
1537  u32 skip_to_seq)
1538 {
1539  if (next_dup == NULL)
1540  return skb;
1541 
1542  if (before(next_dup->start_seq, skip_to_seq)) {
1543  skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1544  skb = tcp_sacktag_walk(skb, sk, NULL, state,
1545  next_dup->start_seq, next_dup->end_seq,
1546  1);
1547  }
1548 
1549  return skb;
1550 }
1551 
1552 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1553 {
1554  return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1555 }
1556 
1557 static int
1558 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1559  u32 prior_snd_una)
1560 {
1561  const struct inet_connection_sock *icsk = inet_csk(sk);
1562  struct tcp_sock *tp = tcp_sk(sk);
1563  const unsigned char *ptr = (skb_transport_header(ack_skb) +
1564  TCP_SKB_CB(ack_skb)->sacked);
1565  struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1566  struct tcp_sack_block sp[TCP_NUM_SACKS];
1567  struct tcp_sack_block *cache;
1568  struct tcp_sacktag_state state;
1569  struct sk_buff *skb;
1570  int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1571  int used_sacks;
1572  bool found_dup_sack = false;
1573  int i, j;
1574  int first_sack_index;
1575 
1576  state.flag = 0;
1577  state.reord = tp->packets_out;
1578 
1579  if (!tp->sacked_out) {
1580  if (WARN_ON(tp->fackets_out))
1581  tp->fackets_out = 0;
1582  tcp_highest_sack_reset(sk);
1583  }
1584 
1585  found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1586  num_sacks, prior_snd_una);
1587  if (found_dup_sack)
1588  state.flag |= FLAG_DSACKING_ACK;
1589 
1590  /* Eliminate too old ACKs, but take into
1591  * account more or less fresh ones, they can
1592  * contain valid SACK info.
1593  */
1594  if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1595  return 0;
1596 
1597  if (!tp->packets_out)
1598  goto out;
1599 
1600  used_sacks = 0;
1601  first_sack_index = 0;
1602  for (i = 0; i < num_sacks; i++) {
1603  bool dup_sack = !i && found_dup_sack;
1604 
1605  sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1606  sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1607 
1608  if (!tcp_is_sackblock_valid(tp, dup_sack,
1609  sp[used_sacks].start_seq,
1610  sp[used_sacks].end_seq)) {
1611  int mib_idx;
1612 
1613  if (dup_sack) {
1614  if (!tp->undo_marker)
1616  else
1617  mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1618  } else {
1619  /* Don't count olds caused by ACK reordering */
1620  if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1621  !after(sp[used_sacks].end_seq, tp->snd_una))
1622  continue;
1623  mib_idx = LINUX_MIB_TCPSACKDISCARD;
1624  }
1625 
1626  NET_INC_STATS_BH(sock_net(sk), mib_idx);
1627  if (i == 0)
1628  first_sack_index = -1;
1629  continue;
1630  }
1631 
1632  /* Ignore very old stuff early */
1633  if (!after(sp[used_sacks].end_seq, prior_snd_una))
1634  continue;
1635 
1636  used_sacks++;
1637  }
1638 
1639  /* order SACK blocks to allow in order walk of the retrans queue */
1640  for (i = used_sacks - 1; i > 0; i--) {
1641  for (j = 0; j < i; j++) {
1642  if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1643  swap(sp[j], sp[j + 1]);
1644 
1645  /* Track where the first SACK block goes to */
1646  if (j == first_sack_index)
1647  first_sack_index = j + 1;
1648  }
1649  }
1650  }
1651 
1652  skb = tcp_write_queue_head(sk);
1653  state.fack_count = 0;
1654  i = 0;
1655 
1656  if (!tp->sacked_out) {
1657  /* It's already past, so skip checking against it */
1658  cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1659  } else {
1660  cache = tp->recv_sack_cache;
1661  /* Skip empty blocks in at head of the cache */
1662  while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1663  !cache->end_seq)
1664  cache++;
1665  }
1666 
1667  while (i < used_sacks) {
1668  u32 start_seq = sp[i].start_seq;
1669  u32 end_seq = sp[i].end_seq;
1670  bool dup_sack = (found_dup_sack && (i == first_sack_index));
1671  struct tcp_sack_block *next_dup = NULL;
1672 
1673  if (found_dup_sack && ((i + 1) == first_sack_index))
1674  next_dup = &sp[i + 1];
1675 
1676  /* Skip too early cached blocks */
1677  while (tcp_sack_cache_ok(tp, cache) &&
1678  !before(start_seq, cache->end_seq))
1679  cache++;
1680 
1681  /* Can skip some work by looking recv_sack_cache? */
1682  if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1683  after(end_seq, cache->start_seq)) {
1684 
1685  /* Head todo? */
1686  if (before(start_seq, cache->start_seq)) {
1687  skb = tcp_sacktag_skip(skb, sk, &state,
1688  start_seq);
1689  skb = tcp_sacktag_walk(skb, sk, next_dup,
1690  &state,
1691  start_seq,
1692  cache->start_seq,
1693  dup_sack);
1694  }
1695 
1696  /* Rest of the block already fully processed? */
1697  if (!after(end_seq, cache->end_seq))
1698  goto advance_sp;
1699 
1700  skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1701  &state,
1702  cache->end_seq);
1703 
1704  /* ...tail remains todo... */
1705  if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1706  /* ...but better entrypoint exists! */
1707  skb = tcp_highest_sack(sk);
1708  if (skb == NULL)
1709  break;
1710  state.fack_count = tp->fackets_out;
1711  cache++;
1712  goto walk;
1713  }
1714 
1715  skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1716  /* Check overlap against next cached too (past this one already) */
1717  cache++;
1718  continue;
1719  }
1720 
1721  if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1722  skb = tcp_highest_sack(sk);
1723  if (skb == NULL)
1724  break;
1725  state.fack_count = tp->fackets_out;
1726  }
1727  skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1728 
1729 walk:
1730  skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1731  start_seq, end_seq, dup_sack);
1732 
1733 advance_sp:
1734  /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1735  * due to in-order walk
1736  */
1737  if (after(end_seq, tp->frto_highmark))
1738  state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1739 
1740  i++;
1741  }
1742 
1743  /* Clear the head of the cache sack blocks so we can skip it next time */
1744  for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1745  tp->recv_sack_cache[i].start_seq = 0;
1746  tp->recv_sack_cache[i].end_seq = 0;
1747  }
1748  for (j = 0; j < used_sacks; j++)
1749  tp->recv_sack_cache[i++] = sp[j];
1750 
1751  tcp_mark_lost_retrans(sk);
1752 
1753  tcp_verify_left_out(tp);
1754 
1755  if ((state.reord < tp->fackets_out) &&
1756  ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1757  (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1758  tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1759 
1760 out:
1761 
1762 #if FASTRETRANS_DEBUG > 0
1763  WARN_ON((int)tp->sacked_out < 0);
1764  WARN_ON((int)tp->lost_out < 0);
1765  WARN_ON((int)tp->retrans_out < 0);
1766  WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1767 #endif
1768  return state.flag;
1769 }
1770 
1771 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1772  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1773  */
1774 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1775 {
1776  u32 holes;
1777 
1778  holes = max(tp->lost_out, 1U);
1779  holes = min(holes, tp->packets_out);
1780 
1781  if ((tp->sacked_out + holes) > tp->packets_out) {
1782  tp->sacked_out = tp->packets_out - holes;
1783  return true;
1784  }
1785  return false;
1786 }
1787 
1788 /* If we receive more dupacks than we expected counting segments
1789  * in assumption of absent reordering, interpret this as reordering.
1790  * The only another reason could be bug in receiver TCP.
1791  */
1792 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1793 {
1794  struct tcp_sock *tp = tcp_sk(sk);
1795  if (tcp_limit_reno_sacked(tp))
1796  tcp_update_reordering(sk, tp->packets_out + addend, 0);
1797 }
1798 
1799 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1800 
1801 static void tcp_add_reno_sack(struct sock *sk)
1802 {
1803  struct tcp_sock *tp = tcp_sk(sk);
1804  tp->sacked_out++;
1805  tcp_check_reno_reordering(sk, 0);
1806  tcp_verify_left_out(tp);
1807 }
1808 
1809 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1810 
1811 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1812 {
1813  struct tcp_sock *tp = tcp_sk(sk);
1814 
1815  if (acked > 0) {
1816  /* One ACK acked hole. The rest eat duplicate ACKs. */
1817  if (acked - 1 >= tp->sacked_out)
1818  tp->sacked_out = 0;
1819  else
1820  tp->sacked_out -= acked - 1;
1821  }
1822  tcp_check_reno_reordering(sk, acked);
1823  tcp_verify_left_out(tp);
1824 }
1825 
1826 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1827 {
1828  tp->sacked_out = 0;
1829 }
1830 
1831 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1832 {
1833  return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1834 }
1835 
1836 /* F-RTO can only be used if TCP has never retransmitted anything other than
1837  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1838  */
1839 bool tcp_use_frto(struct sock *sk)
1840 {
1841  const struct tcp_sock *tp = tcp_sk(sk);
1842  const struct inet_connection_sock *icsk = inet_csk(sk);
1843  struct sk_buff *skb;
1844 
1845  if (!sysctl_tcp_frto)
1846  return false;
1847 
1848  /* MTU probe and F-RTO won't really play nicely along currently */
1849  if (icsk->icsk_mtup.probe_size)
1850  return false;
1851 
1852  if (tcp_is_sackfrto(tp))
1853  return true;
1854 
1855  /* Avoid expensive walking of rexmit queue if possible */
1856  if (tp->retrans_out > 1)
1857  return false;
1858 
1859  skb = tcp_write_queue_head(sk);
1860  if (tcp_skb_is_last(sk, skb))
1861  return true;
1862  skb = tcp_write_queue_next(sk, skb); /* Skips head */
1863  tcp_for_write_queue_from(skb, sk) {
1864  if (skb == tcp_send_head(sk))
1865  break;
1866  if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1867  return false;
1868  /* Short-circuit when first non-SACKed skb has been checked */
1869  if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1870  break;
1871  }
1872  return true;
1873 }
1874 
1875 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1876  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1877  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1878  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1879  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1880  * bits are handled if the Loss state is really to be entered (in
1881  * tcp_enter_frto_loss).
1882  *
1883  * Do like tcp_enter_loss() would; when RTO expires the second time it
1884  * does:
1885  * "Reduce ssthresh if it has not yet been made inside this window."
1886  */
1887 void tcp_enter_frto(struct sock *sk)
1888 {
1889  const struct inet_connection_sock *icsk = inet_csk(sk);
1890  struct tcp_sock *tp = tcp_sk(sk);
1891  struct sk_buff *skb;
1892 
1893  if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1894  tp->snd_una == tp->high_seq ||
1895  ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1896  !icsk->icsk_retransmits)) {
1897  tp->prior_ssthresh = tcp_current_ssthresh(sk);
1898  /* Our state is too optimistic in ssthresh() call because cwnd
1899  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1900  * recovery has not yet completed. Pattern would be this: RTO,
1901  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1902  * up here twice).
1903  * RFC4138 should be more specific on what to do, even though
1904  * RTO is quite unlikely to occur after the first Cumulative ACK
1905  * due to back-off and complexity of triggering events ...
1906  */
1907  if (tp->frto_counter) {
1908  u32 stored_cwnd;
1909  stored_cwnd = tp->snd_cwnd;
1910  tp->snd_cwnd = 2;
1911  tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1912  tp->snd_cwnd = stored_cwnd;
1913  } else {
1914  tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1915  }
1916  /* ... in theory, cong.control module could do "any tricks" in
1917  * ssthresh(), which means that ca_state, lost bits and lost_out
1918  * counter would have to be faked before the call occurs. We
1919  * consider that too expensive, unlikely and hacky, so modules
1920  * using these in ssthresh() must deal these incompatibility
1921  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1922  */
1924  }
1925 
1926  tp->undo_marker = tp->snd_una;
1927  tp->undo_retrans = 0;
1928 
1929  skb = tcp_write_queue_head(sk);
1930  if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1931  tp->undo_marker = 0;
1932  if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1933  TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1934  tp->retrans_out -= tcp_skb_pcount(skb);
1935  }
1936  tcp_verify_left_out(tp);
1937 
1938  /* Too bad if TCP was application limited */
1939  tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1940 
1941  /* Earlier loss recovery underway (see RFC4138; Appendix B).
1942  * The last condition is necessary at least in tp->frto_counter case.
1943  */
1944  if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1945  ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1946  after(tp->high_seq, tp->snd_una)) {
1947  tp->frto_highmark = tp->high_seq;
1948  } else {
1949  tp->frto_highmark = tp->snd_nxt;
1950  }
1951  tcp_set_ca_state(sk, TCP_CA_Disorder);
1952  tp->high_seq = tp->snd_nxt;
1953  tp->frto_counter = 1;
1954 }
1955 
1956 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1957  * which indicates that we should follow the traditional RTO recovery,
1958  * i.e. mark everything lost and do go-back-N retransmission.
1959  */
1960 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1961 {
1962  struct tcp_sock *tp = tcp_sk(sk);
1963  struct sk_buff *skb;
1964 
1965  tp->lost_out = 0;
1966  tp->retrans_out = 0;
1967  if (tcp_is_reno(tp))
1968  tcp_reset_reno_sack(tp);
1969 
1970  tcp_for_write_queue(skb, sk) {
1971  if (skb == tcp_send_head(sk))
1972  break;
1973 
1974  TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1975  /*
1976  * Count the retransmission made on RTO correctly (only when
1977  * waiting for the first ACK and did not get it)...
1978  */
1979  if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1980  /* For some reason this R-bit might get cleared? */
1981  if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1982  tp->retrans_out += tcp_skb_pcount(skb);
1983  /* ...enter this if branch just for the first segment */
1984  flag |= FLAG_DATA_ACKED;
1985  } else {
1986  if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1987  tp->undo_marker = 0;
1988  TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1989  }
1990 
1991  /* Marking forward transmissions that were made after RTO lost
1992  * can cause unnecessary retransmissions in some scenarios,
1993  * SACK blocks will mitigate that in some but not in all cases.
1994  * We used to not mark them but it was causing break-ups with
1995  * receivers that do only in-order receival.
1996  *
1997  * TODO: we could detect presence of such receiver and select
1998  * different behavior per flow.
1999  */
2000  if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2001  TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2002  tp->lost_out += tcp_skb_pcount(skb);
2003  tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2004  }
2005  }
2006  tcp_verify_left_out(tp);
2007 
2008  tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2009  tp->snd_cwnd_cnt = 0;
2011  tp->frto_counter = 0;
2012  tp->bytes_acked = 0;
2013 
2014  tp->reordering = min_t(unsigned int, tp->reordering,
2015  sysctl_tcp_reordering);
2016  tcp_set_ca_state(sk, TCP_CA_Loss);
2017  tp->high_seq = tp->snd_nxt;
2018  TCP_ECN_queue_cwr(tp);
2019 
2020  tcp_clear_all_retrans_hints(tp);
2021 }
2022 
2023 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2024 {
2025  tp->retrans_out = 0;
2026  tp->lost_out = 0;
2027 
2028  tp->undo_marker = 0;
2029  tp->undo_retrans = 0;
2030 }
2031 
2032 void tcp_clear_retrans(struct tcp_sock *tp)
2033 {
2034  tcp_clear_retrans_partial(tp);
2035 
2036  tp->fackets_out = 0;
2037  tp->sacked_out = 0;
2038 }
2039 
2040 /* Enter Loss state. If "how" is not zero, forget all SACK information
2041  * and reset tags completely, otherwise preserve SACKs. If receiver
2042  * dropped its ofo queue, we will know this due to reneging detection.
2043  */
2044 void tcp_enter_loss(struct sock *sk, int how)
2045 {
2046  const struct inet_connection_sock *icsk = inet_csk(sk);
2047  struct tcp_sock *tp = tcp_sk(sk);
2048  struct sk_buff *skb;
2049 
2050  /* Reduce ssthresh if it has not yet been made inside this window. */
2051  if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2052  (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2053  tp->prior_ssthresh = tcp_current_ssthresh(sk);
2054  tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2056  }
2057  tp->snd_cwnd = 1;
2058  tp->snd_cwnd_cnt = 0;
2060 
2061  tp->bytes_acked = 0;
2062  tcp_clear_retrans_partial(tp);
2063 
2064  if (tcp_is_reno(tp))
2065  tcp_reset_reno_sack(tp);
2066 
2067  if (!how) {
2068  /* Push undo marker, if it was plain RTO and nothing
2069  * was retransmitted. */
2070  tp->undo_marker = tp->snd_una;
2071  } else {
2072  tp->sacked_out = 0;
2073  tp->fackets_out = 0;
2074  }
2075  tcp_clear_all_retrans_hints(tp);
2076 
2077  tcp_for_write_queue(skb, sk) {
2078  if (skb == tcp_send_head(sk))
2079  break;
2080 
2081  if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2082  tp->undo_marker = 0;
2083  TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2084  if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2085  TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2086  TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2087  tp->lost_out += tcp_skb_pcount(skb);
2088  tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2089  }
2090  }
2091  tcp_verify_left_out(tp);
2092 
2093  tp->reordering = min_t(unsigned int, tp->reordering,
2095  tcp_set_ca_state(sk, TCP_CA_Loss);
2096  tp->high_seq = tp->snd_nxt;
2097  TCP_ECN_queue_cwr(tp);
2098  /* Abort F-RTO algorithm if one is in progress */
2099  tp->frto_counter = 0;
2100 }
2101 
2102 /* If ACK arrived pointing to a remembered SACK, it means that our
2103  * remembered SACKs do not reflect real state of receiver i.e.
2104  * receiver _host_ is heavily congested (or buggy).
2105  *
2106  * Do processing similar to RTO timeout.
2107  */
2108 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2109 {
2110  if (flag & FLAG_SACK_RENEGING) {
2111  struct inet_connection_sock *icsk = inet_csk(sk);
2113 
2114  tcp_enter_loss(sk, 1);
2115  icsk->icsk_retransmits++;
2116  tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2117  inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2118  icsk->icsk_rto, TCP_RTO_MAX);
2119  return true;
2120  }
2121  return false;
2122 }
2123 
2124 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2125 {
2126  return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2127 }
2128 
2129 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2130  * counter when SACK is enabled (without SACK, sacked_out is used for
2131  * that purpose).
2132  *
2133  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2134  * segments up to the highest received SACK block so far and holes in
2135  * between them.
2136  *
2137  * With reordering, holes may still be in flight, so RFC3517 recovery
2138  * uses pure sacked_out (total number of SACKed segments) even though
2139  * it violates the RFC that uses duplicate ACKs, often these are equal
2140  * but when e.g. out-of-window ACKs or packet duplication occurs,
2141  * they differ. Since neither occurs due to loss, TCP should really
2142  * ignore them.
2143  */
2144 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2145 {
2146  return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2147 }
2148 
2149 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2150 {
2151  struct tcp_sock *tp = tcp_sk(sk);
2152  unsigned long delay;
2153 
2154  /* Delay early retransmit and entering fast recovery for
2155  * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2156  * available, or RTO is scheduled to fire first.
2157  */
2158  if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2159  return false;
2160 
2161  delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2162  if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2163  return false;
2164 
2165  inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2166  tp->early_retrans_delayed = 1;
2167  return true;
2168 }
2169 
2170 static inline int tcp_skb_timedout(const struct sock *sk,
2171  const struct sk_buff *skb)
2172 {
2173  return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2174 }
2175 
2176 static inline int tcp_head_timedout(const struct sock *sk)
2177 {
2178  const struct tcp_sock *tp = tcp_sk(sk);
2179 
2180  return tp->packets_out &&
2181  tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2182 }
2183 
2184 /* Linux NewReno/SACK/FACK/ECN state machine.
2185  * --------------------------------------
2186  *
2187  * "Open" Normal state, no dubious events, fast path.
2188  * "Disorder" In all the respects it is "Open",
2189  * but requires a bit more attention. It is entered when
2190  * we see some SACKs or dupacks. It is split of "Open"
2191  * mainly to move some processing from fast path to slow one.
2192  * "CWR" CWND was reduced due to some Congestion Notification event.
2193  * It can be ECN, ICMP source quench, local device congestion.
2194  * "Recovery" CWND was reduced, we are fast-retransmitting.
2195  * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2196  *
2197  * tcp_fastretrans_alert() is entered:
2198  * - each incoming ACK, if state is not "Open"
2199  * - when arrived ACK is unusual, namely:
2200  * * SACK
2201  * * Duplicate ACK.
2202  * * ECN ECE.
2203  *
2204  * Counting packets in flight is pretty simple.
2205  *
2206  * in_flight = packets_out - left_out + retrans_out
2207  *
2208  * packets_out is SND.NXT-SND.UNA counted in packets.
2209  *
2210  * retrans_out is number of retransmitted segments.
2211  *
2212  * left_out is number of segments left network, but not ACKed yet.
2213  *
2214  * left_out = sacked_out + lost_out
2215  *
2216  * sacked_out: Packets, which arrived to receiver out of order
2217  * and hence not ACKed. With SACKs this number is simply
2218  * amount of SACKed data. Even without SACKs
2219  * it is easy to give pretty reliable estimate of this number,
2220  * counting duplicate ACKs.
2221  *
2222  * lost_out: Packets lost by network. TCP has no explicit
2223  * "loss notification" feedback from network (for now).
2224  * It means that this number can be only _guessed_.
2225  * Actually, it is the heuristics to predict lossage that
2226  * distinguishes different algorithms.
2227  *
2228  * F.e. after RTO, when all the queue is considered as lost,
2229  * lost_out = packets_out and in_flight = retrans_out.
2230  *
2231  * Essentially, we have now two algorithms counting
2232  * lost packets.
2233  *
2234  * FACK: It is the simplest heuristics. As soon as we decided
2235  * that something is lost, we decide that _all_ not SACKed
2236  * packets until the most forward SACK are lost. I.e.
2237  * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2238  * It is absolutely correct estimate, if network does not reorder
2239  * packets. And it loses any connection to reality when reordering
2240  * takes place. We use FACK by default until reordering
2241  * is suspected on the path to this destination.
2242  *
2243  * NewReno: when Recovery is entered, we assume that one segment
2244  * is lost (classic Reno). While we are in Recovery and
2245  * a partial ACK arrives, we assume that one more packet
2246  * is lost (NewReno). This heuristics are the same in NewReno
2247  * and SACK.
2248  *
2249  * Imagine, that's all! Forget about all this shamanism about CWND inflation
2250  * deflation etc. CWND is real congestion window, never inflated, changes
2251  * only according to classic VJ rules.
2252  *
2253  * Really tricky (and requiring careful tuning) part of algorithm
2254  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2255  * The first determines the moment _when_ we should reduce CWND and,
2256  * hence, slow down forward transmission. In fact, it determines the moment
2257  * when we decide that hole is caused by loss, rather than by a reorder.
2258  *
2259  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2260  * holes, caused by lost packets.
2261  *
2262  * And the most logically complicated part of algorithm is undo
2263  * heuristics. We detect false retransmits due to both too early
2264  * fast retransmit (reordering) and underestimated RTO, analyzing
2265  * timestamps and D-SACKs. When we detect that some segments were
2266  * retransmitted by mistake and CWND reduction was wrong, we undo
2267  * window reduction and abort recovery phase. This logic is hidden
2268  * inside several functions named tcp_try_undo_<something>.
2269  */
2270 
2271 /* This function decides, when we should leave Disordered state
2272  * and enter Recovery phase, reducing congestion window.
2273  *
2274  * Main question: may we further continue forward transmission
2275  * with the same cwnd?
2276  */
2277 static bool tcp_time_to_recover(struct sock *sk, int flag)
2278 {
2279  struct tcp_sock *tp = tcp_sk(sk);
2281 
2282  /* Do not perform any recovery during F-RTO algorithm */
2283  if (tp->frto_counter)
2284  return false;
2285 
2286  /* Trick#1: The loss is proven. */
2287  if (tp->lost_out)
2288  return true;
2289 
2290  /* Not-A-Trick#2 : Classic rule... */
2291  if (tcp_dupack_heuristics(tp) > tp->reordering)
2292  return true;
2293 
2294  /* Trick#3 : when we use RFC2988 timer restart, fast
2295  * retransmit can be triggered by timeout of queue head.
2296  */
2297  if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2298  return true;
2299 
2300  /* Trick#4: It is still not OK... But will it be useful to delay
2301  * recovery more?
2302  */
2303  packets_out = tp->packets_out;
2304  if (packets_out <= tp->reordering &&
2305  tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2306  !tcp_may_send_now(sk)) {
2307  /* We have nothing to send. This connection is limited
2308  * either by receiver window or by application.
2309  */
2310  return true;
2311  }
2312 
2313  /* If a thin stream is detected, retransmit after first
2314  * received dupack. Employ only if SACK is supported in order
2315  * to avoid possible corner-case series of spurious retransmissions
2316  * Use only if there are no unsent data.
2317  */
2318  if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2319  tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2320  tcp_is_sack(tp) && !tcp_send_head(sk))
2321  return true;
2322 
2323  /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2324  * retransmissions due to small network reorderings, we implement
2325  * Mitigation A.3 in the RFC and delay the retransmission for a short
2326  * interval if appropriate.
2327  */
2328  if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2329  (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2330  !tcp_may_send_now(sk))
2331  return !tcp_pause_early_retransmit(sk, flag);
2332 
2333  return false;
2334 }
2335 
2336 /* New heuristics: it is possible only after we switched to restart timer
2337  * each time when something is ACKed. Hence, we can detect timed out packets
2338  * during fast retransmit without falling to slow start.
2339  *
2340  * Usefulness of this as is very questionable, since we should know which of
2341  * the segments is the next to timeout which is relatively expensive to find
2342  * in general case unless we add some data structure just for that. The
2343  * current approach certainly won't find the right one too often and when it
2344  * finally does find _something_ it usually marks large part of the window
2345  * right away (because a retransmission with a larger timestamp blocks the
2346  * loop from advancing). -ij
2347  */
2348 static void tcp_timeout_skbs(struct sock *sk)
2349 {
2350  struct tcp_sock *tp = tcp_sk(sk);
2351  struct sk_buff *skb;
2352 
2353  if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2354  return;
2355 
2356  skb = tp->scoreboard_skb_hint;
2357  if (tp->scoreboard_skb_hint == NULL)
2358  skb = tcp_write_queue_head(sk);
2359 
2360  tcp_for_write_queue_from(skb, sk) {
2361  if (skb == tcp_send_head(sk))
2362  break;
2363  if (!tcp_skb_timedout(sk, skb))
2364  break;
2365 
2366  tcp_skb_mark_lost(tp, skb);
2367  }
2368 
2369  tp->scoreboard_skb_hint = skb;
2370 
2371  tcp_verify_left_out(tp);
2372 }
2373 
2374 /* Detect loss in event "A" above by marking head of queue up as lost.
2375  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2376  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2377  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2378  * the maximum SACKed segments to pass before reaching this limit.
2379  */
2380 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2381 {
2382  struct tcp_sock *tp = tcp_sk(sk);
2383  struct sk_buff *skb;
2384  int cnt, oldcnt;
2385  int err;
2386  unsigned int mss;
2387  /* Use SACK to deduce losses of new sequences sent during recovery */
2388  const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2389 
2390  WARN_ON(packets > tp->packets_out);
2391  if (tp->lost_skb_hint) {
2392  skb = tp->lost_skb_hint;
2393  cnt = tp->lost_cnt_hint;
2394  /* Head already handled? */
2395  if (mark_head && skb != tcp_write_queue_head(sk))
2396  return;
2397  } else {
2398  skb = tcp_write_queue_head(sk);
2399  cnt = 0;
2400  }
2401 
2402  tcp_for_write_queue_from(skb, sk) {
2403  if (skb == tcp_send_head(sk))
2404  break;
2405  /* TODO: do this better */
2406  /* this is not the most efficient way to do this... */
2407  tp->lost_skb_hint = skb;
2408  tp->lost_cnt_hint = cnt;
2409 
2410  if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2411  break;
2412 
2413  oldcnt = cnt;
2414  if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2415  (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2416  cnt += tcp_skb_pcount(skb);
2417 
2418  if (cnt > packets) {
2419  if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2420  (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2421  (oldcnt >= packets))
2422  break;
2423 
2424  mss = skb_shinfo(skb)->gso_size;
2425  err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2426  if (err < 0)
2427  break;
2428  cnt = packets;
2429  }
2430 
2431  tcp_skb_mark_lost(tp, skb);
2432 
2433  if (mark_head)
2434  break;
2435  }
2436  tcp_verify_left_out(tp);
2437 }
2438 
2439 /* Account newly detected lost packet(s) */
2440 
2441 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2442 {
2443  struct tcp_sock *tp = tcp_sk(sk);
2444 
2445  if (tcp_is_reno(tp)) {
2446  tcp_mark_head_lost(sk, 1, 1);
2447  } else if (tcp_is_fack(tp)) {
2448  int lost = tp->fackets_out - tp->reordering;
2449  if (lost <= 0)
2450  lost = 1;
2451  tcp_mark_head_lost(sk, lost, 0);
2452  } else {
2453  int sacked_upto = tp->sacked_out - tp->reordering;
2454  if (sacked_upto >= 0)
2455  tcp_mark_head_lost(sk, sacked_upto, 0);
2456  else if (fast_rexmit)
2457  tcp_mark_head_lost(sk, 1, 1);
2458  }
2459 
2460  tcp_timeout_skbs(sk);
2461 }
2462 
2463 /* CWND moderation, preventing bursts due to too big ACKs
2464  * in dubious situations.
2465  */
2466 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2467 {
2468  tp->snd_cwnd = min(tp->snd_cwnd,
2469  tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2471 }
2472 
2473 /* Nothing was retransmitted or returned timestamp is less
2474  * than timestamp of the first retransmission.
2475  */
2476 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2477 {
2478  return !tp->retrans_stamp ||
2479  (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2480  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2481 }
2482 
2483 /* Undo procedures. */
2484 
2485 #if FASTRETRANS_DEBUG > 1
2486 static void DBGUNDO(struct sock *sk, const char *msg)
2487 {
2488  struct tcp_sock *tp = tcp_sk(sk);
2489  struct inet_sock *inet = inet_sk(sk);
2490 
2491  if (sk->sk_family == AF_INET) {
2492  pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2493  msg,
2494  &inet->inet_daddr, ntohs(inet->inet_dport),
2495  tp->snd_cwnd, tcp_left_out(tp),
2496  tp->snd_ssthresh, tp->prior_ssthresh,
2497  tp->packets_out);
2498  }
2499 #if IS_ENABLED(CONFIG_IPV6)
2500  else if (sk->sk_family == AF_INET6) {
2501  struct ipv6_pinfo *np = inet6_sk(sk);
2502  pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2503  msg,
2504  &np->daddr, ntohs(inet->inet_dport),
2505  tp->snd_cwnd, tcp_left_out(tp),
2506  tp->snd_ssthresh, tp->prior_ssthresh,
2507  tp->packets_out);
2508  }
2509 #endif
2510 }
2511 #else
2512 #define DBGUNDO(x...) do { } while (0)
2513 #endif
2514 
2515 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2516 {
2517  struct tcp_sock *tp = tcp_sk(sk);
2518 
2519  if (tp->prior_ssthresh) {
2520  const struct inet_connection_sock *icsk = inet_csk(sk);
2521 
2522  if (icsk->icsk_ca_ops->undo_cwnd)
2523  tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2524  else
2525  tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2526 
2527  if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2528  tp->snd_ssthresh = tp->prior_ssthresh;
2529  TCP_ECN_withdraw_cwr(tp);
2530  }
2531  } else {
2532  tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2533  }
2535 }
2536 
2537 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2538 {
2539  return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2540 }
2541 
2542 /* People celebrate: "We love our President!" */
2543 static bool tcp_try_undo_recovery(struct sock *sk)
2544 {
2545  struct tcp_sock *tp = tcp_sk(sk);
2546 
2547  if (tcp_may_undo(tp)) {
2548  int mib_idx;
2549 
2550  /* Happy end! We did not retransmit anything
2551  * or our original transmission succeeded.
2552  */
2553  DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2554  tcp_undo_cwr(sk, true);
2555  if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2556  mib_idx = LINUX_MIB_TCPLOSSUNDO;
2557  else
2558  mib_idx = LINUX_MIB_TCPFULLUNDO;
2559 
2560  NET_INC_STATS_BH(sock_net(sk), mib_idx);
2561  tp->undo_marker = 0;
2562  }
2563  if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2564  /* Hold old state until something *above* high_seq
2565  * is ACKed. For Reno it is MUST to prevent false
2566  * fast retransmits (RFC2582). SACK TCP is safe. */
2567  tcp_moderate_cwnd(tp);
2568  return true;
2569  }
2570  tcp_set_ca_state(sk, TCP_CA_Open);
2571  return false;
2572 }
2573 
2574 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2575 static void tcp_try_undo_dsack(struct sock *sk)
2576 {
2577  struct tcp_sock *tp = tcp_sk(sk);
2578 
2579  if (tp->undo_marker && !tp->undo_retrans) {
2580  DBGUNDO(sk, "D-SACK");
2581  tcp_undo_cwr(sk, true);
2582  tp->undo_marker = 0;
2584  }
2585 }
2586 
2587 /* We can clear retrans_stamp when there are no retransmissions in the
2588  * window. It would seem that it is trivially available for us in
2589  * tp->retrans_out, however, that kind of assumptions doesn't consider
2590  * what will happen if errors occur when sending retransmission for the
2591  * second time. ...It could the that such segment has only
2592  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2593  * the head skb is enough except for some reneging corner cases that
2594  * are not worth the effort.
2595  *
2596  * Main reason for all this complexity is the fact that connection dying
2597  * time now depends on the validity of the retrans_stamp, in particular,
2598  * that successive retransmissions of a segment must not advance
2599  * retrans_stamp under any conditions.
2600  */
2601 static bool tcp_any_retrans_done(const struct sock *sk)
2602 {
2603  const struct tcp_sock *tp = tcp_sk(sk);
2604  struct sk_buff *skb;
2605 
2606  if (tp->retrans_out)
2607  return true;
2608 
2609  skb = tcp_write_queue_head(sk);
2610  if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2611  return true;
2612 
2613  return false;
2614 }
2615 
2616 /* Undo during fast recovery after partial ACK. */
2617 
2618 static int tcp_try_undo_partial(struct sock *sk, int acked)
2619 {
2620  struct tcp_sock *tp = tcp_sk(sk);
2621  /* Partial ACK arrived. Force Hoe's retransmit. */
2622  int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2623 
2624  if (tcp_may_undo(tp)) {
2625  /* Plain luck! Hole if filled with delayed
2626  * packet, rather than with a retransmit.
2627  */
2628  if (!tcp_any_retrans_done(sk))
2629  tp->retrans_stamp = 0;
2630 
2631  tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2632 
2633  DBGUNDO(sk, "Hoe");
2634  tcp_undo_cwr(sk, false);
2636 
2637  /* So... Do not make Hoe's retransmit yet.
2638  * If the first packet was delayed, the rest
2639  * ones are most probably delayed as well.
2640  */
2641  failed = 0;
2642  }
2643  return failed;
2644 }
2645 
2646 /* Undo during loss recovery after partial ACK. */
2647 static bool tcp_try_undo_loss(struct sock *sk)
2648 {
2649  struct tcp_sock *tp = tcp_sk(sk);
2650 
2651  if (tcp_may_undo(tp)) {
2652  struct sk_buff *skb;
2653  tcp_for_write_queue(skb, sk) {
2654  if (skb == tcp_send_head(sk))
2655  break;
2656  TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2657  }
2658 
2659  tcp_clear_all_retrans_hints(tp);
2660 
2661  DBGUNDO(sk, "partial loss");
2662  tp->lost_out = 0;
2663  tcp_undo_cwr(sk, true);
2664  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2665  inet_csk(sk)->icsk_retransmits = 0;
2666  tp->undo_marker = 0;
2667  if (tcp_is_sack(tp))
2668  tcp_set_ca_state(sk, TCP_CA_Open);
2669  return true;
2670  }
2671  return false;
2672 }
2673 
2674 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2675  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2676  * It computes the number of packets to send (sndcnt) based on packets newly
2677  * delivered:
2678  * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2679  * cwnd reductions across a full RTT.
2680  * 2) If packets in flight is lower than ssthresh (such as due to excess
2681  * losses and/or application stalls), do not perform any further cwnd
2682  * reductions, but instead slow start up to ssthresh.
2683  */
2684 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2685 {
2686  struct tcp_sock *tp = tcp_sk(sk);
2687 
2688  tp->high_seq = tp->snd_nxt;
2689  tp->bytes_acked = 0;
2690  tp->snd_cwnd_cnt = 0;
2691  tp->prior_cwnd = tp->snd_cwnd;
2692  tp->prr_delivered = 0;
2693  tp->prr_out = 0;
2694  if (set_ssthresh)
2695  tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2696  TCP_ECN_queue_cwr(tp);
2697 }
2698 
2699 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2700  int fast_rexmit)
2701 {
2702  struct tcp_sock *tp = tcp_sk(sk);
2703  int sndcnt = 0;
2704  int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2705 
2706  tp->prr_delivered += newly_acked_sacked;
2707  if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2708  u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2709  tp->prior_cwnd - 1;
2710  sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2711  } else {
2712  sndcnt = min_t(int, delta,
2713  max_t(int, tp->prr_delivered - tp->prr_out,
2714  newly_acked_sacked) + 1);
2715  }
2716 
2717  sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2718  tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2719 }
2720 
2721 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2722 {
2723  struct tcp_sock *tp = tcp_sk(sk);
2724 
2725  /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2726  if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2728  tp->snd_cwnd = tp->snd_ssthresh;
2730  }
2732 }
2733 
2734 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2735 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2736 {
2737  struct tcp_sock *tp = tcp_sk(sk);
2738 
2739  tp->prior_ssthresh = 0;
2740  tp->bytes_acked = 0;
2741  if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2742  tp->undo_marker = 0;
2743  tcp_init_cwnd_reduction(sk, set_ssthresh);
2744  tcp_set_ca_state(sk, TCP_CA_CWR);
2745  }
2746 }
2747 
2748 static void tcp_try_keep_open(struct sock *sk)
2749 {
2750  struct tcp_sock *tp = tcp_sk(sk);
2751  int state = TCP_CA_Open;
2752 
2753  if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2754  state = TCP_CA_Disorder;
2755 
2756  if (inet_csk(sk)->icsk_ca_state != state) {
2757  tcp_set_ca_state(sk, state);
2758  tp->high_seq = tp->snd_nxt;
2759  }
2760 }
2761 
2762 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2763 {
2764  struct tcp_sock *tp = tcp_sk(sk);
2765 
2766  tcp_verify_left_out(tp);
2767 
2768  if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2769  tp->retrans_stamp = 0;
2770 
2771  if (flag & FLAG_ECE)
2772  tcp_enter_cwr(sk, 1);
2773 
2774  if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2775  tcp_try_keep_open(sk);
2776  if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2777  tcp_moderate_cwnd(tp);
2778  } else {
2779  tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2780  }
2781 }
2782 
2783 static void tcp_mtup_probe_failed(struct sock *sk)
2784 {
2785  struct inet_connection_sock *icsk = inet_csk(sk);
2786 
2787  icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2788  icsk->icsk_mtup.probe_size = 0;
2789 }
2790 
2791 static void tcp_mtup_probe_success(struct sock *sk)
2792 {
2793  struct tcp_sock *tp = tcp_sk(sk);
2794  struct inet_connection_sock *icsk = inet_csk(sk);
2795 
2796  /* FIXME: breaks with very large cwnd */
2797  tp->prior_ssthresh = tcp_current_ssthresh(sk);
2798  tp->snd_cwnd = tp->snd_cwnd *
2799  tcp_mss_to_mtu(sk, tp->mss_cache) /
2800  icsk->icsk_mtup.probe_size;
2801  tp->snd_cwnd_cnt = 0;
2803  tp->snd_ssthresh = tcp_current_ssthresh(sk);
2804 
2805  icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2806  icsk->icsk_mtup.probe_size = 0;
2807  tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2808 }
2809 
2810 /* Do a simple retransmit without using the backoff mechanisms in
2811  * tcp_timer. This is used for path mtu discovery.
2812  * The socket is already locked here.
2813  */
2814 void tcp_simple_retransmit(struct sock *sk)
2815 {
2816  const struct inet_connection_sock *icsk = inet_csk(sk);
2817  struct tcp_sock *tp = tcp_sk(sk);
2818  struct sk_buff *skb;
2819  unsigned int mss = tcp_current_mss(sk);
2820  u32 prior_lost = tp->lost_out;
2821 
2822  tcp_for_write_queue(skb, sk) {
2823  if (skb == tcp_send_head(sk))
2824  break;
2825  if (tcp_skb_seglen(skb) > mss &&
2826  !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2827  if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2828  TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2829  tp->retrans_out -= tcp_skb_pcount(skb);
2830  }
2831  tcp_skb_mark_lost_uncond_verify(tp, skb);
2832  }
2833  }
2834 
2835  tcp_clear_retrans_hints_partial(tp);
2836 
2837  if (prior_lost == tp->lost_out)
2838  return;
2839 
2840  if (tcp_is_reno(tp))
2841  tcp_limit_reno_sacked(tp);
2842 
2843  tcp_verify_left_out(tp);
2844 
2845  /* Don't muck with the congestion window here.
2846  * Reason is that we do not increase amount of _data_
2847  * in network, but units changed and effective
2848  * cwnd/ssthresh really reduced now.
2849  */
2850  if (icsk->icsk_ca_state != TCP_CA_Loss) {
2851  tp->high_seq = tp->snd_nxt;
2852  tp->snd_ssthresh = tcp_current_ssthresh(sk);
2853  tp->prior_ssthresh = 0;
2854  tp->undo_marker = 0;
2855  tcp_set_ca_state(sk, TCP_CA_Loss);
2856  }
2858 }
2860 
2861 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2862 {
2863  struct tcp_sock *tp = tcp_sk(sk);
2864  int mib_idx;
2865 
2866  if (tcp_is_reno(tp))
2867  mib_idx = LINUX_MIB_TCPRENORECOVERY;
2868  else
2869  mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2870 
2871  NET_INC_STATS_BH(sock_net(sk), mib_idx);
2872 
2873  tp->prior_ssthresh = 0;
2874  tp->undo_marker = tp->snd_una;
2875  tp->undo_retrans = tp->retrans_out;
2876 
2877  if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2878  if (!ece_ack)
2879  tp->prior_ssthresh = tcp_current_ssthresh(sk);
2880  tcp_init_cwnd_reduction(sk, true);
2881  }
2882  tcp_set_ca_state(sk, TCP_CA_Recovery);
2883 }
2884 
2885 /* Process an event, which can update packets-in-flight not trivially.
2886  * Main goal of this function is to calculate new estimate for left_out,
2887  * taking into account both packets sitting in receiver's buffer and
2888  * packets lost by network.
2889  *
2890  * Besides that it does CWND reduction, when packet loss is detected
2891  * and changes state of machine.
2892  *
2893  * It does _not_ decide what to send, it is made in function
2894  * tcp_xmit_retransmit_queue().
2895  */
2896 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2897  int prior_sacked, bool is_dupack,
2898  int flag)
2899 {
2900  struct inet_connection_sock *icsk = inet_csk(sk);
2901  struct tcp_sock *tp = tcp_sk(sk);
2902  int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2903  (tcp_fackets_out(tp) > tp->reordering));
2904  int newly_acked_sacked = 0;
2905  int fast_rexmit = 0;
2906 
2907  if (WARN_ON(!tp->packets_out && tp->sacked_out))
2908  tp->sacked_out = 0;
2909  if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2910  tp->fackets_out = 0;
2911 
2912  /* Now state machine starts.
2913  * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2914  if (flag & FLAG_ECE)
2915  tp->prior_ssthresh = 0;
2916 
2917  /* B. In all the states check for reneging SACKs. */
2918  if (tcp_check_sack_reneging(sk, flag))
2919  return;
2920 
2921  /* C. Check consistency of the current state. */
2922  tcp_verify_left_out(tp);
2923 
2924  /* D. Check state exit conditions. State can be terminated
2925  * when high_seq is ACKed. */
2926  if (icsk->icsk_ca_state == TCP_CA_Open) {
2927  WARN_ON(tp->retrans_out != 0);
2928  tp->retrans_stamp = 0;
2929  } else if (!before(tp->snd_una, tp->high_seq)) {
2930  switch (icsk->icsk_ca_state) {
2931  case TCP_CA_Loss:
2932  icsk->icsk_retransmits = 0;
2933  if (tcp_try_undo_recovery(sk))
2934  return;
2935  break;
2936 
2937  case TCP_CA_CWR:
2938  /* CWR is to be held something *above* high_seq
2939  * is ACKed for CWR bit to reach receiver. */
2940  if (tp->snd_una != tp->high_seq) {
2941  tcp_end_cwnd_reduction(sk);
2942  tcp_set_ca_state(sk, TCP_CA_Open);
2943  }
2944  break;
2945 
2946  case TCP_CA_Recovery:
2947  if (tcp_is_reno(tp))
2948  tcp_reset_reno_sack(tp);
2949  if (tcp_try_undo_recovery(sk))
2950  return;
2951  tcp_end_cwnd_reduction(sk);
2952  break;
2953  }
2954  }
2955 
2956  /* E. Process state. */
2957  switch (icsk->icsk_ca_state) {
2958  case TCP_CA_Recovery:
2959  if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2960  if (tcp_is_reno(tp) && is_dupack)
2961  tcp_add_reno_sack(sk);
2962  } else
2963  do_lost = tcp_try_undo_partial(sk, pkts_acked);
2964  newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2965  break;
2966  case TCP_CA_Loss:
2967  if (flag & FLAG_DATA_ACKED)
2968  icsk->icsk_retransmits = 0;
2969  if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2970  tcp_reset_reno_sack(tp);
2971  if (!tcp_try_undo_loss(sk)) {
2972  tcp_moderate_cwnd(tp);
2974  return;
2975  }
2976  if (icsk->icsk_ca_state != TCP_CA_Open)
2977  return;
2978  /* Loss is undone; fall through to processing in Open state. */
2979  default:
2980  if (tcp_is_reno(tp)) {
2981  if (flag & FLAG_SND_UNA_ADVANCED)
2982  tcp_reset_reno_sack(tp);
2983  if (is_dupack)
2984  tcp_add_reno_sack(sk);
2985  }
2986  newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2987 
2988  if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2989  tcp_try_undo_dsack(sk);
2990 
2991  if (!tcp_time_to_recover(sk, flag)) {
2992  tcp_try_to_open(sk, flag, newly_acked_sacked);
2993  return;
2994  }
2995 
2996  /* MTU probe failure: don't reduce cwnd */
2997  if (icsk->icsk_ca_state < TCP_CA_CWR &&
2998  icsk->icsk_mtup.probe_size &&
2999  tp->snd_una == tp->mtu_probe.probe_seq_start) {
3000  tcp_mtup_probe_failed(sk);
3001  /* Restores the reduction we did in tcp_mtup_probe() */
3002  tp->snd_cwnd++;
3004  return;
3005  }
3006 
3007  /* Otherwise enter Recovery state */
3008  tcp_enter_recovery(sk, (flag & FLAG_ECE));
3009  fast_rexmit = 1;
3010  }
3011 
3012  if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3013  tcp_update_scoreboard(sk, fast_rexmit);
3014  tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
3016 }
3017 
3018 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3019 {
3020  tcp_rtt_estimator(sk, seq_rtt);
3021  tcp_set_rto(sk);
3022  inet_csk(sk)->icsk_backoff = 0;
3023 }
3025 
3026 /* Read draft-ietf-tcplw-high-performance before mucking
3027  * with this code. (Supersedes RFC1323)
3028  */
3029 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3030 {
3031  /* RTTM Rule: A TSecr value received in a segment is used to
3032  * update the averaged RTT measurement only if the segment
3033  * acknowledges some new data, i.e., only if it advances the
3034  * left edge of the send window.
3035  *
3036  * See draft-ietf-tcplw-high-performance-00, section 3.3.
3037  * 1998/04/10 Andrey V. Savochkin <[email protected]>
3038  *
3039  * Changed: reset backoff as soon as we see the first valid sample.
3040  * If we do not, we get strongly overestimated rto. With timestamps
3041  * samples are accepted even from very old segments: f.e., when rtt=1
3042  * increases to 8, we retransmit 5 times and after 8 seconds delayed
3043  * answer arrives rto becomes 120 seconds! If at least one of segments
3044  * in window is lost... Voila. --ANK (010210)
3045  */
3046  struct tcp_sock *tp = tcp_sk(sk);
3047 
3048  tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3049 }
3050 
3051 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3052 {
3053  /* We don't have a timestamp. Can only use
3054  * packets that are not retransmitted to determine
3055  * rtt estimates. Also, we must not reset the
3056  * backoff for rto until we get a non-retransmitted
3057  * packet. This allows us to deal with a situation
3058  * where the network delay has increased suddenly.
3059  * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3060  */
3061 
3062  if (flag & FLAG_RETRANS_DATA_ACKED)
3063  return;
3064 
3065  tcp_valid_rtt_meas(sk, seq_rtt);
3066 }
3067 
3068 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3069  const s32 seq_rtt)
3070 {
3071  const struct tcp_sock *tp = tcp_sk(sk);
3072  /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3073  if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3074  tcp_ack_saw_tstamp(sk, flag);
3075  else if (seq_rtt >= 0)
3076  tcp_ack_no_tstamp(sk, seq_rtt, flag);
3077 }
3078 
3079 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3080 {
3081  const struct inet_connection_sock *icsk = inet_csk(sk);
3082  icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3083  tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3084 }
3085 
3086 /* Restart timer after forward progress on connection.
3087  * RFC2988 recommends to restart timer to now+rto.
3088  */
3089 void tcp_rearm_rto(struct sock *sk)
3090 {
3091  struct tcp_sock *tp = tcp_sk(sk);
3092 
3093  /* If the retrans timer is currently being used by Fast Open
3094  * for SYN-ACK retrans purpose, stay put.
3095  */
3096  if (tp->fastopen_rsk)
3097  return;
3098 
3099  if (!tp->packets_out) {
3100  inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3101  } else {
3102  u32 rto = inet_csk(sk)->icsk_rto;
3103  /* Offset the time elapsed after installing regular RTO */
3104  if (tp->early_retrans_delayed) {
3105  struct sk_buff *skb = tcp_write_queue_head(sk);
3106  const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3107  s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3108  /* delta may not be positive if the socket is locked
3109  * when the delayed ER timer fires and is rescheduled.
3110  */
3111  if (delta > 0)
3112  rto = delta;
3113  }
3114  inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3115  TCP_RTO_MAX);
3116  }
3117  tp->early_retrans_delayed = 0;
3118 }
3119 
3120 /* This function is called when the delayed ER timer fires. TCP enters
3121  * fast recovery and performs fast-retransmit.
3122  */
3124 {
3125  struct tcp_sock *tp = tcp_sk(sk);
3126 
3127  tcp_rearm_rto(sk);
3128 
3129  /* Stop if ER is disabled after the delayed ER timer is scheduled */
3130  if (!tp->do_early_retrans)
3131  return;
3132 
3133  tcp_enter_recovery(sk, false);
3134  tcp_update_scoreboard(sk, 1);
3136 }
3137 
3138 /* If we get here, the whole TSO packet has not been acked. */
3139 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3140 {
3141  struct tcp_sock *tp = tcp_sk(sk);
3142  u32 packets_acked;
3143 
3144  BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3145 
3146  packets_acked = tcp_skb_pcount(skb);
3147  if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3148  return 0;
3149  packets_acked -= tcp_skb_pcount(skb);
3150 
3151  if (packets_acked) {
3152  BUG_ON(tcp_skb_pcount(skb) == 0);
3153  BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3154  }
3155 
3156  return packets_acked;
3157 }
3158 
3159 /* Remove acknowledged frames from the retransmission queue. If our packet
3160  * is before the ack sequence we can discard it as it's confirmed to have
3161  * arrived at the other end.
3162  */
3163 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3164  u32 prior_snd_una)
3165 {
3166  struct tcp_sock *tp = tcp_sk(sk);
3167  const struct inet_connection_sock *icsk = inet_csk(sk);
3168  struct sk_buff *skb;
3169  u32 now = tcp_time_stamp;
3170  int fully_acked = true;
3171  int flag = 0;
3172  u32 pkts_acked = 0;
3173  u32 reord = tp->packets_out;
3174  u32 prior_sacked = tp->sacked_out;
3175  s32 seq_rtt = -1;
3176  s32 ca_seq_rtt = -1;
3177  ktime_t last_ackt = net_invalid_timestamp();
3178 
3179  while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3180  struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3181  u32 acked_pcount;
3182  u8 sacked = scb->sacked;
3183 
3184  /* Determine how many packets and what bytes were acked, tso and else */
3185  if (after(scb->end_seq, tp->snd_una)) {
3186  if (tcp_skb_pcount(skb) == 1 ||
3187  !after(tp->snd_una, scb->seq))
3188  break;
3189 
3190  acked_pcount = tcp_tso_acked(sk, skb);
3191  if (!acked_pcount)
3192  break;
3193 
3194  fully_acked = false;
3195  } else {
3196  acked_pcount = tcp_skb_pcount(skb);
3197  }
3198 
3199  if (sacked & TCPCB_RETRANS) {
3200  if (sacked & TCPCB_SACKED_RETRANS)
3201  tp->retrans_out -= acked_pcount;
3202  flag |= FLAG_RETRANS_DATA_ACKED;
3203  ca_seq_rtt = -1;
3204  seq_rtt = -1;
3205  if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3207  } else {
3208  ca_seq_rtt = now - scb->when;
3209  last_ackt = skb->tstamp;
3210  if (seq_rtt < 0) {
3211  seq_rtt = ca_seq_rtt;
3212  }
3213  if (!(sacked & TCPCB_SACKED_ACKED))
3214  reord = min(pkts_acked, reord);
3215  }
3216 
3217  if (sacked & TCPCB_SACKED_ACKED)
3218  tp->sacked_out -= acked_pcount;
3219  if (sacked & TCPCB_LOST)
3220  tp->lost_out -= acked_pcount;
3221 
3222  tp->packets_out -= acked_pcount;
3223  pkts_acked += acked_pcount;
3224 
3225  /* Initial outgoing SYN's get put onto the write_queue
3226  * just like anything else we transmit. It is not
3227  * true data, and if we misinform our callers that
3228  * this ACK acks real data, we will erroneously exit
3229  * connection startup slow start one packet too
3230  * quickly. This is severely frowned upon behavior.
3231  */
3232  if (!(scb->tcp_flags & TCPHDR_SYN)) {
3233  flag |= FLAG_DATA_ACKED;
3234  } else {
3235  flag |= FLAG_SYN_ACKED;
3236  tp->retrans_stamp = 0;
3237  }
3238 
3239  if (!fully_acked)
3240  break;
3241 
3242  tcp_unlink_write_queue(skb, sk);
3243  sk_wmem_free_skb(sk, skb);
3244  tp->scoreboard_skb_hint = NULL;
3245  if (skb == tp->retransmit_skb_hint)
3246  tp->retransmit_skb_hint = NULL;
3247  if (skb == tp->lost_skb_hint)
3248  tp->lost_skb_hint = NULL;
3249  }
3250 
3251  if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3252  tp->snd_up = tp->snd_una;
3253 
3254  if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3255  flag |= FLAG_SACK_RENEGING;
3256 
3257  if (flag & FLAG_ACKED) {
3258  const struct tcp_congestion_ops *ca_ops
3259  = inet_csk(sk)->icsk_ca_ops;
3260 
3261  if (unlikely(icsk->icsk_mtup.probe_size &&
3262  !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3263  tcp_mtup_probe_success(sk);
3264  }
3265 
3266  tcp_ack_update_rtt(sk, flag, seq_rtt);
3267  tcp_rearm_rto(sk);
3268 
3269  if (tcp_is_reno(tp)) {
3270  tcp_remove_reno_sacks(sk, pkts_acked);
3271  } else {
3272  int delta;
3273 
3274  /* Non-retransmitted hole got filled? That's reordering */
3275  if (reord < prior_fackets)
3276  tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3277 
3278  delta = tcp_is_fack(tp) ? pkts_acked :
3279  prior_sacked - tp->sacked_out;
3280  tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3281  }
3282 
3283  tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3284 
3285  if (ca_ops->pkts_acked) {
3286  s32 rtt_us = -1;
3287 
3288  /* Is the ACK triggering packet unambiguous? */
3289  if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3290  /* High resolution needed and available? */
3291  if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3292  !ktime_equal(last_ackt,
3293  net_invalid_timestamp()))
3294  rtt_us = ktime_us_delta(ktime_get_real(),
3295  last_ackt);
3296  else if (ca_seq_rtt >= 0)
3297  rtt_us = jiffies_to_usecs(ca_seq_rtt);
3298  }
3299 
3300  ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3301  }
3302  }
3303 
3304 #if FASTRETRANS_DEBUG > 0
3305  WARN_ON((int)tp->sacked_out < 0);
3306  WARN_ON((int)tp->lost_out < 0);
3307  WARN_ON((int)tp->retrans_out < 0);
3308  if (!tp->packets_out && tcp_is_sack(tp)) {
3309  icsk = inet_csk(sk);
3310  if (tp->lost_out) {
3311  pr_debug("Leak l=%u %d\n",
3312  tp->lost_out, icsk->icsk_ca_state);
3313  tp->lost_out = 0;
3314  }
3315  if (tp->sacked_out) {
3316  pr_debug("Leak s=%u %d\n",
3317  tp->sacked_out, icsk->icsk_ca_state);
3318  tp->sacked_out = 0;
3319  }
3320  if (tp->retrans_out) {
3321  pr_debug("Leak r=%u %d\n",
3322  tp->retrans_out, icsk->icsk_ca_state);
3323  tp->retrans_out = 0;
3324  }
3325  }
3326 #endif
3327  return flag;
3328 }
3329 
3330 static void tcp_ack_probe(struct sock *sk)
3331 {
3332  const struct tcp_sock *tp = tcp_sk(sk);
3333  struct inet_connection_sock *icsk = inet_csk(sk);
3334 
3335  /* Was it a usable window open? */
3336 
3337  if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3338  icsk->icsk_backoff = 0;
3339  inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3340  /* Socket must be waked up by subsequent tcp_data_snd_check().
3341  * This function is not for random using!
3342  */
3343  } else {
3344  inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3345  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3346  TCP_RTO_MAX);
3347  }
3348 }
3349 
3350 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3351 {
3352  return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3353  inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3354 }
3355 
3356 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3357 {
3358  const struct tcp_sock *tp = tcp_sk(sk);
3359  return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3360  !tcp_in_cwnd_reduction(sk);
3361 }
3362 
3363 /* Check that window update is acceptable.
3364  * The function assumes that snd_una<=ack<=snd_next.
3365  */
3366 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3367  const u32 ack, const u32 ack_seq,
3368  const u32 nwin)
3369 {
3370  return after(ack, tp->snd_una) ||
3371  after(ack_seq, tp->snd_wl1) ||
3372  (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3373 }
3374 
3375 /* Update our send window.
3376  *
3377  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3378  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3379  */
3380 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3381  u32 ack_seq)
3382 {
3383  struct tcp_sock *tp = tcp_sk(sk);
3384  int flag = 0;
3385  u32 nwin = ntohs(tcp_hdr(skb)->window);
3386 
3387  if (likely(!tcp_hdr(skb)->syn))
3388  nwin <<= tp->rx_opt.snd_wscale;
3389 
3390  if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3391  flag |= FLAG_WIN_UPDATE;
3392  tcp_update_wl(tp, ack_seq);
3393 
3394  if (tp->snd_wnd != nwin) {
3395  tp->snd_wnd = nwin;
3396 
3397  /* Note, it is the only place, where
3398  * fast path is recovered for sending TCP.
3399  */
3400  tp->pred_flags = 0;
3401  tcp_fast_path_check(sk);
3402 
3403  if (nwin > tp->max_window) {
3404  tp->max_window = nwin;
3405  tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3406  }
3407  }
3408  }
3409 
3410  tp->snd_una = ack;
3411 
3412  return flag;
3413 }
3414 
3415 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3416  * continue in congestion avoidance.
3417  */
3418 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3419 {
3420  tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3421  tp->snd_cwnd_cnt = 0;
3422  tp->bytes_acked = 0;
3423  TCP_ECN_queue_cwr(tp);
3424  tcp_moderate_cwnd(tp);
3425 }
3426 
3427 /* A conservative spurious RTO response algorithm: reduce cwnd using
3428  * PRR and continue in congestion avoidance.
3429  */
3430 static void tcp_cwr_spur_to_response(struct sock *sk)
3431 {
3432  tcp_enter_cwr(sk, 0);
3433 }
3434 
3435 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3436 {
3437  if (flag & FLAG_ECE)
3438  tcp_cwr_spur_to_response(sk);
3439  else
3440  tcp_undo_cwr(sk, true);
3441 }
3442 
3443 /* F-RTO spurious RTO detection algorithm (RFC4138)
3444  *
3445  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3446  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3447  * window (but not to or beyond highest sequence sent before RTO):
3448  * On First ACK, send two new segments out.
3449  * On Second ACK, RTO was likely spurious. Do spurious response (response
3450  * algorithm is not part of the F-RTO detection algorithm
3451  * given in RFC4138 but can be selected separately).
3452  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3453  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3454  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3455  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3456  *
3457  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3458  * original window even after we transmit two new data segments.
3459  *
3460  * SACK version:
3461  * on first step, wait until first cumulative ACK arrives, then move to
3462  * the second step. In second step, the next ACK decides.
3463  *
3464  * F-RTO is implemented (mainly) in four functions:
3465  * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3466  * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3467  * called when tcp_use_frto() showed green light
3468  * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3469  * - tcp_enter_frto_loss() is called if there is not enough evidence
3470  * to prove that the RTO is indeed spurious. It transfers the control
3471  * from F-RTO to the conventional RTO recovery
3472  */
3473 static bool tcp_process_frto(struct sock *sk, int flag)
3474 {
3475  struct tcp_sock *tp = tcp_sk(sk);
3476 
3477  tcp_verify_left_out(tp);
3478 
3479  /* Duplicate the behavior from Loss state (fastretrans_alert) */
3480  if (flag & FLAG_DATA_ACKED)
3481  inet_csk(sk)->icsk_retransmits = 0;
3482 
3483  if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3484  ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3485  tp->undo_marker = 0;
3486 
3487  if (!before(tp->snd_una, tp->frto_highmark)) {
3488  tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3489  return true;
3490  }
3491 
3492  if (!tcp_is_sackfrto(tp)) {
3493  /* RFC4138 shortcoming in step 2; should also have case c):
3494  * ACK isn't duplicate nor advances window, e.g., opposite dir
3495  * data, winupdate
3496  */
3497  if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3498  return true;
3499 
3500  if (!(flag & FLAG_DATA_ACKED)) {
3501  tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3502  flag);
3503  return true;
3504  }
3505  } else {
3506  if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3507  /* Prevent sending of new data. */
3508  tp->snd_cwnd = min(tp->snd_cwnd,
3509  tcp_packets_in_flight(tp));
3510  return true;
3511  }
3512 
3513  if ((tp->frto_counter >= 2) &&
3514  (!(flag & FLAG_FORWARD_PROGRESS) ||
3515  ((flag & FLAG_DATA_SACKED) &&
3516  !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3517  /* RFC4138 shortcoming (see comment above) */
3518  if (!(flag & FLAG_FORWARD_PROGRESS) &&
3519  (flag & FLAG_NOT_DUP))
3520  return true;
3521 
3522  tcp_enter_frto_loss(sk, 3, flag);
3523  return true;
3524  }
3525  }
3526 
3527  if (tp->frto_counter == 1) {
3528  /* tcp_may_send_now needs to see updated state */
3529  tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3530  tp->frto_counter = 2;
3531 
3532  if (!tcp_may_send_now(sk))
3533  tcp_enter_frto_loss(sk, 2, flag);
3534 
3535  return true;
3536  } else {
3537  switch (sysctl_tcp_frto_response) {
3538  case 2:
3539  tcp_undo_spur_to_response(sk, flag);
3540  break;
3541  case 1:
3542  tcp_conservative_spur_to_response(tp);
3543  break;
3544  default:
3545  tcp_cwr_spur_to_response(sk);
3546  break;
3547  }
3548  tp->frto_counter = 0;
3549  tp->undo_marker = 0;
3551  }
3552  return false;
3553 }
3554 
3555 /* This routine deals with incoming acks, but not outgoing ones. */
3556 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3557 {
3558  struct inet_connection_sock *icsk = inet_csk(sk);
3559  struct tcp_sock *tp = tcp_sk(sk);
3560  u32 prior_snd_una = tp->snd_una;
3561  u32 ack_seq = TCP_SKB_CB(skb)->seq;
3562  u32 ack = TCP_SKB_CB(skb)->ack_seq;
3563  bool is_dupack = false;
3564  u32 prior_in_flight;
3565  u32 prior_fackets;
3566  int prior_packets;
3567  int prior_sacked = tp->sacked_out;
3568  int pkts_acked = 0;
3569  bool frto_cwnd = false;
3570 
3571  /* If the ack is older than previous acks
3572  * then we can probably ignore it.
3573  */
3574  if (before(ack, prior_snd_una))
3575  goto old_ack;
3576 
3577  /* If the ack includes data we haven't sent yet, discard
3578  * this segment (RFC793 Section 3.9).
3579  */
3580  if (after(ack, tp->snd_nxt))
3581  goto invalid_ack;
3582 
3583  if (tp->early_retrans_delayed)
3584  tcp_rearm_rto(sk);
3585 
3586  if (after(ack, prior_snd_una))
3587  flag |= FLAG_SND_UNA_ADVANCED;
3588 
3589  if (sysctl_tcp_abc) {
3590  if (icsk->icsk_ca_state < TCP_CA_CWR)
3591  tp->bytes_acked += ack - prior_snd_una;
3592  else if (icsk->icsk_ca_state == TCP_CA_Loss)
3593  /* we assume just one segment left network */
3594  tp->bytes_acked += min(ack - prior_snd_una,
3595  tp->mss_cache);
3596  }
3597 
3598  prior_fackets = tp->fackets_out;
3599  prior_in_flight = tcp_packets_in_flight(tp);
3600 
3601  if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3602  /* Window is constant, pure forward advance.
3603  * No more checks are required.
3604  * Note, we use the fact that SND.UNA>=SND.WL2.
3605  */
3606  tcp_update_wl(tp, ack_seq);
3607  tp->snd_una = ack;
3608  flag |= FLAG_WIN_UPDATE;
3609 
3611 
3612  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3613  } else {
3614  if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3615  flag |= FLAG_DATA;
3616  else
3617  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3618 
3619  flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3620 
3621  if (TCP_SKB_CB(skb)->sacked)
3622  flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3623 
3624  if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3625  flag |= FLAG_ECE;
3626 
3628  }
3629 
3630  /* We passed data and got it acked, remove any soft error
3631  * log. Something worked...
3632  */
3633  sk->sk_err_soft = 0;
3634  icsk->icsk_probes_out = 0;
3635  tp->rcv_tstamp = tcp_time_stamp;
3636  prior_packets = tp->packets_out;
3637  if (!prior_packets)
3638  goto no_queue;
3639 
3640  /* See if we can take anything off of the retransmit queue. */
3641  flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3642 
3643  pkts_acked = prior_packets - tp->packets_out;
3644 
3645  if (tp->frto_counter)
3646  frto_cwnd = tcp_process_frto(sk, flag);
3647  /* Guarantee sacktag reordering detection against wrap-arounds */
3648  if (before(tp->frto_highmark, tp->snd_una))
3649  tp->frto_highmark = 0;
3650 
3651  if (tcp_ack_is_dubious(sk, flag)) {
3652  /* Advance CWND, if state allows this. */
3653  if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3654  tcp_may_raise_cwnd(sk, flag))
3655  tcp_cong_avoid(sk, ack, prior_in_flight);
3656  is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3657  tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3658  is_dupack, flag);
3659  } else {
3660  if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3661  tcp_cong_avoid(sk, ack, prior_in_flight);
3662  }
3663 
3664  if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3665  struct dst_entry *dst = __sk_dst_get(sk);
3666  if (dst)
3667  dst_confirm(dst);
3668  }
3669  return 1;
3670 
3671 no_queue:
3672  /* If data was DSACKed, see if we can undo a cwnd reduction. */
3673  if (flag & FLAG_DSACKING_ACK)
3674  tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3675  is_dupack, flag);
3676  /* If this ack opens up a zero window, clear backoff. It was
3677  * being used to time the probes, and is probably far higher than
3678  * it needs to be for normal retransmission.
3679  */
3680  if (tcp_send_head(sk))
3681  tcp_ack_probe(sk);
3682  return 1;
3683 
3684 invalid_ack:
3685  SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3686  return -1;
3687 
3688 old_ack:
3689  /* If data was SACKed, tag it and see if we should send more data.
3690  * If data was DSACKed, see if we can undo a cwnd reduction.
3691  */
3692  if (TCP_SKB_CB(skb)->sacked) {
3693  flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3694  tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3695  is_dupack, flag);
3696  }
3697 
3698  SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3699  return 0;
3700 }
3701 
3702 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3703  * But, this can also be called on packets in the established flow when
3704  * the fast version below fails.
3705  */
3706 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3707  const u8 **hvpp, int estab,
3708  struct tcp_fastopen_cookie *foc)
3709 {
3710  const unsigned char *ptr;
3711  const struct tcphdr *th = tcp_hdr(skb);
3712  int length = (th->doff * 4) - sizeof(struct tcphdr);
3713 
3714  ptr = (const unsigned char *)(th + 1);
3715  opt_rx->saw_tstamp = 0;
3716 
3717  while (length > 0) {
3718  int opcode = *ptr++;
3719  int opsize;
3720 
3721  switch (opcode) {
3722  case TCPOPT_EOL:
3723  return;
3724  case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3725  length--;
3726  continue;
3727  default:
3728  opsize = *ptr++;
3729  if (opsize < 2) /* "silly options" */
3730  return;
3731  if (opsize > length)
3732  return; /* don't parse partial options */
3733  switch (opcode) {
3734  case TCPOPT_MSS:
3735  if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3736  u16 in_mss = get_unaligned_be16(ptr);
3737  if (in_mss) {
3738  if (opt_rx->user_mss &&
3739  opt_rx->user_mss < in_mss)
3740  in_mss = opt_rx->user_mss;
3741  opt_rx->mss_clamp = in_mss;
3742  }
3743  }
3744  break;
3745  case TCPOPT_WINDOW:
3746  if (opsize == TCPOLEN_WINDOW && th->syn &&
3747  !estab && sysctl_tcp_window_scaling) {
3748  __u8 snd_wscale = *(__u8 *)ptr;
3749  opt_rx->wscale_ok = 1;
3750  if (snd_wscale > 14) {
3751  net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3752  __func__,
3753  snd_wscale);
3754  snd_wscale = 14;
3755  }
3756  opt_rx->snd_wscale = snd_wscale;
3757  }
3758  break;
3759  case TCPOPT_TIMESTAMP:
3760  if ((opsize == TCPOLEN_TIMESTAMP) &&
3761  ((estab && opt_rx->tstamp_ok) ||
3762  (!estab && sysctl_tcp_timestamps))) {
3763  opt_rx->saw_tstamp = 1;
3764  opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3765  opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3766  }
3767  break;
3768  case TCPOPT_SACK_PERM:
3769  if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3770  !estab && sysctl_tcp_sack) {
3771  opt_rx->sack_ok = TCP_SACK_SEEN;
3772  tcp_sack_reset(opt_rx);
3773  }
3774  break;
3775 
3776  case TCPOPT_SACK:
3777  if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3778  !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3779  opt_rx->sack_ok) {
3780  TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3781  }
3782  break;
3783 #ifdef CONFIG_TCP_MD5SIG
3784  case TCPOPT_MD5SIG:
3785  /*
3786  * The MD5 Hash has already been
3787  * checked (see tcp_v{4,6}_do_rcv()).
3788  */
3789  break;
3790 #endif
3791  case TCPOPT_COOKIE:
3792  /* This option is variable length.
3793  */
3794  switch (opsize) {
3795  case TCPOLEN_COOKIE_BASE:
3796  /* not yet implemented */
3797  break;
3798  case TCPOLEN_COOKIE_PAIR:
3799  /* not yet implemented */
3800  break;
3801  case TCPOLEN_COOKIE_MIN+0:
3802  case TCPOLEN_COOKIE_MIN+2:
3803  case TCPOLEN_COOKIE_MIN+4:
3804  case TCPOLEN_COOKIE_MIN+6:
3805  case TCPOLEN_COOKIE_MAX:
3806  /* 16-bit multiple */
3807  opt_rx->cookie_plus = opsize;
3808  *hvpp = ptr;
3809  break;
3810  default:
3811  /* ignore option */
3812  break;
3813  }
3814  break;
3815 
3816  case TCPOPT_EXP:
3817  /* Fast Open option shares code 254 using a
3818  * 16 bits magic number. It's valid only in
3819  * SYN or SYN-ACK with an even size.
3820  */
3821  if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3822  get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3823  foc == NULL || !th->syn || (opsize & 1))
3824  break;
3825  foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3826  if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3827  foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3828  memcpy(foc->val, ptr + 2, foc->len);
3829  else if (foc->len != 0)
3830  foc->len = -1;
3831  break;
3832 
3833  }
3834  ptr += opsize-2;
3835  length -= opsize;
3836  }
3837  }
3838 }
3840 
3841 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3842 {
3843  const __be32 *ptr = (const __be32 *)(th + 1);
3844 
3845  if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3846  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3847  tp->rx_opt.saw_tstamp = 1;
3848  ++ptr;
3849  tp->rx_opt.rcv_tsval = ntohl(*ptr);
3850  ++ptr;
3851  tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3852  return true;
3853  }
3854  return false;
3855 }
3856 
3857 /* Fast parse options. This hopes to only see timestamps.
3858  * If it is wrong it falls back on tcp_parse_options().
3859  */
3860 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3861  const struct tcphdr *th,
3862  struct tcp_sock *tp, const u8 **hvpp)
3863 {
3864  /* In the spirit of fast parsing, compare doff directly to constant
3865  * values. Because equality is used, short doff can be ignored here.
3866  */
3867  if (th->doff == (sizeof(*th) / 4)) {
3868  tp->rx_opt.saw_tstamp = 0;
3869  return false;
3870  } else if (tp->rx_opt.tstamp_ok &&
3871  th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3872  if (tcp_parse_aligned_timestamp(tp, th))
3873  return true;
3874  }
3875  tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3876  return true;
3877 }
3878 
3879 #ifdef CONFIG_TCP_MD5SIG
3880 /*
3881  * Parse MD5 Signature option
3882  */
3883 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3884 {
3885  int length = (th->doff << 2) - sizeof(*th);
3886  const u8 *ptr = (const u8 *)(th + 1);
3887 
3888  /* If the TCP option is too short, we can short cut */
3889  if (length < TCPOLEN_MD5SIG)
3890  return NULL;
3891 
3892  while (length > 0) {
3893  int opcode = *ptr++;
3894  int opsize;
3895 
3896  switch(opcode) {
3897  case TCPOPT_EOL:
3898  return NULL;
3899  case TCPOPT_NOP:
3900  length--;
3901  continue;
3902  default:
3903  opsize = *ptr++;
3904  if (opsize < 2 || opsize > length)
3905  return NULL;
3906  if (opcode == TCPOPT_MD5SIG)
3907  return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3908  }
3909  ptr += opsize - 2;
3910  length -= opsize;
3911  }
3912  return NULL;
3913 }
3915 #endif
3916 
3917 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3918 {
3919  tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3920  tp->rx_opt.ts_recent_stamp = get_seconds();
3921 }
3922 
3923 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3924 {
3925  if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3926  /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3927  * extra check below makes sure this can only happen
3928  * for pure ACK frames. -DaveM
3929  *
3930  * Not only, also it occurs for expired timestamps.
3931  */
3932 
3933  if (tcp_paws_check(&tp->rx_opt, 0))
3934  tcp_store_ts_recent(tp);
3935  }
3936 }
3937 
3938 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3939  *
3940  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3941  * it can pass through stack. So, the following predicate verifies that
3942  * this segment is not used for anything but congestion avoidance or
3943  * fast retransmit. Moreover, we even are able to eliminate most of such
3944  * second order effects, if we apply some small "replay" window (~RTO)
3945  * to timestamp space.
3946  *
3947  * All these measures still do not guarantee that we reject wrapped ACKs
3948  * on networks with high bandwidth, when sequence space is recycled fastly,
3949  * but it guarantees that such events will be very rare and do not affect
3950  * connection seriously. This doesn't look nice, but alas, PAWS is really
3951  * buggy extension.
3952  *
3953  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3954  * states that events when retransmit arrives after original data are rare.
3955  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3956  * the biggest problem on large power networks even with minor reordering.
3957  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3958  * up to bandwidth of 18Gigabit/sec. 8) ]
3959  */
3960 
3961 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3962 {
3963  const struct tcp_sock *tp = tcp_sk(sk);
3964  const struct tcphdr *th = tcp_hdr(skb);
3965  u32 seq = TCP_SKB_CB(skb)->seq;
3966  u32 ack = TCP_SKB_CB(skb)->ack_seq;
3967 
3968  return (/* 1. Pure ACK with correct sequence number. */
3969  (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3970 
3971  /* 2. ... and duplicate ACK. */
3972  ack == tp->snd_una &&
3973 
3974  /* 3. ... and does not update window. */
3975  !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3976 
3977  /* 4. ... and sits in replay window. */
3978  (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3979 }
3980 
3981 static inline bool tcp_paws_discard(const struct sock *sk,
3982  const struct sk_buff *skb)
3983 {
3984  const struct tcp_sock *tp = tcp_sk(sk);
3985 
3986  return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3987  !tcp_disordered_ack(sk, skb);
3988 }
3989 
3990 /* Check segment sequence number for validity.
3991  *
3992  * Segment controls are considered valid, if the segment
3993  * fits to the window after truncation to the window. Acceptability
3994  * of data (and SYN, FIN, of course) is checked separately.
3995  * See tcp_data_queue(), for example.
3996  *
3997  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3998  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3999  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4000  * (borrowed from freebsd)
4001  */
4002 
4003 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4004 {
4005  return !before(end_seq, tp->rcv_wup) &&
4006  !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4007 }
4008 
4009 /* When we get a reset we do this. */
4010 void tcp_reset(struct sock *sk)
4011 {
4012  /* We want the right error as BSD sees it (and indeed as we do). */
4013  switch (sk->sk_state) {
4014  case TCP_SYN_SENT:
4015  sk->sk_err = ECONNREFUSED;
4016  break;
4017  case TCP_CLOSE_WAIT:
4018  sk->sk_err = EPIPE;
4019  break;
4020  case TCP_CLOSE:
4021  return;
4022  default:
4023  sk->sk_err = ECONNRESET;
4024  }
4025  /* This barrier is coupled with smp_rmb() in tcp_poll() */
4026  smp_wmb();
4027 
4028  if (!sock_flag(sk, SOCK_DEAD))
4029  sk->sk_error_report(sk);
4030 
4031  tcp_done(sk);
4032 }
4033 
4034 /*
4035  * Process the FIN bit. This now behaves as it is supposed to work
4036  * and the FIN takes effect when it is validly part of sequence
4037  * space. Not before when we get holes.
4038  *
4039  * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040  * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4041  * TIME-WAIT)
4042  *
4043  * If we are in FINWAIT-1, a received FIN indicates simultaneous
4044  * close and we go into CLOSING (and later onto TIME-WAIT)
4045  *
4046  * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4047  */
4048 static void tcp_fin(struct sock *sk)
4049 {
4050  struct tcp_sock *tp = tcp_sk(sk);
4051 
4052  inet_csk_schedule_ack(sk);
4053 
4054  sk->sk_shutdown |= RCV_SHUTDOWN;
4055  sock_set_flag(sk, SOCK_DONE);
4056 
4057  switch (sk->sk_state) {
4058  case TCP_SYN_RECV:
4059  case TCP_ESTABLISHED:
4060  /* Move to CLOSE_WAIT */
4062  inet_csk(sk)->icsk_ack.pingpong = 1;
4063  break;
4064 
4065  case TCP_CLOSE_WAIT:
4066  case TCP_CLOSING:
4067  /* Received a retransmission of the FIN, do
4068  * nothing.
4069  */
4070  break;
4071  case TCP_LAST_ACK:
4072  /* RFC793: Remain in the LAST-ACK state. */
4073  break;
4074 
4075  case TCP_FIN_WAIT1:
4076  /* This case occurs when a simultaneous close
4077  * happens, we must ack the received FIN and
4078  * enter the CLOSING state.
4079  */
4080  tcp_send_ack(sk);
4082  break;
4083  case TCP_FIN_WAIT2:
4084  /* Received a FIN -- send ACK and enter TIME_WAIT. */
4085  tcp_send_ack(sk);
4086  tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087  break;
4088  default:
4089  /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090  * cases we should never reach this piece of code.
4091  */
4092  pr_err("%s: Impossible, sk->sk_state=%d\n",
4093  __func__, sk->sk_state);
4094  break;
4095  }
4096 
4097  /* It _is_ possible, that we have something out-of-order _after_ FIN.
4098  * Probably, we should reset in this case. For now drop them.
4099  */
4100  __skb_queue_purge(&tp->out_of_order_queue);
4101  if (tcp_is_sack(tp))
4102  tcp_sack_reset(&tp->rx_opt);
4103  sk_mem_reclaim(sk);
4104 
4105  if (!sock_flag(sk, SOCK_DEAD)) {
4106  sk->sk_state_change(sk);
4107 
4108  /* Do not send POLL_HUP for half duplex close. */
4109  if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110  sk->sk_state == TCP_CLOSE)
4111  sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112  else
4113  sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4114  }
4115 }
4116 
4117 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118  u32 end_seq)
4119 {
4120  if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121  if (before(seq, sp->start_seq))
4122  sp->start_seq = seq;
4123  if (after(end_seq, sp->end_seq))
4124  sp->end_seq = end_seq;
4125  return true;
4126  }
4127  return false;
4128 }
4129 
4130 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4131 {
4132  struct tcp_sock *tp = tcp_sk(sk);
4133 
4134  if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135  int mib_idx;
4136 
4137  if (before(seq, tp->rcv_nxt))
4138  mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139  else
4140  mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4141 
4142  NET_INC_STATS_BH(sock_net(sk), mib_idx);
4143 
4144  tp->rx_opt.dsack = 1;
4145  tp->duplicate_sack[0].start_seq = seq;
4146  tp->duplicate_sack[0].end_seq = end_seq;
4147  }
4148 }
4149 
4150 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4151 {
4152  struct tcp_sock *tp = tcp_sk(sk);
4153 
4154  if (!tp->rx_opt.dsack)
4155  tcp_dsack_set(sk, seq, end_seq);
4156  else
4157  tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4158 }
4159 
4160 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4161 {
4162  struct tcp_sock *tp = tcp_sk(sk);
4163 
4164  if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165  before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4167  tcp_enter_quickack_mode(sk);
4168 
4169  if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170  u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4171 
4172  if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173  end_seq = tp->rcv_nxt;
4174  tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4175  }
4176  }
4177 
4178  tcp_send_ack(sk);
4179 }
4180 
4181 /* These routines update the SACK block as out-of-order packets arrive or
4182  * in-order packets close up the sequence space.
4183  */
4184 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4185 {
4186  int this_sack;
4187  struct tcp_sack_block *sp = &tp->selective_acks[0];
4188  struct tcp_sack_block *swalk = sp + 1;
4189 
4190  /* See if the recent change to the first SACK eats into
4191  * or hits the sequence space of other SACK blocks, if so coalesce.
4192  */
4193  for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194  if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195  int i;
4196 
4197  /* Zap SWALK, by moving every further SACK up by one slot.
4198  * Decrease num_sacks.
4199  */
4200  tp->rx_opt.num_sacks--;
4201  for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202  sp[i] = sp[i + 1];
4203  continue;
4204  }
4205  this_sack++, swalk++;
4206  }
4207 }
4208 
4209 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4210 {
4211  struct tcp_sock *tp = tcp_sk(sk);
4212  struct tcp_sack_block *sp = &tp->selective_acks[0];
4213  int cur_sacks = tp->rx_opt.num_sacks;
4214  int this_sack;
4215 
4216  if (!cur_sacks)
4217  goto new_sack;
4218 
4219  for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220  if (tcp_sack_extend(sp, seq, end_seq)) {
4221  /* Rotate this_sack to the first one. */
4222  for (; this_sack > 0; this_sack--, sp--)
4223  swap(*sp, *(sp - 1));
4224  if (cur_sacks > 1)
4225  tcp_sack_maybe_coalesce(tp);
4226  return;
4227  }
4228  }
4229 
4230  /* Could not find an adjacent existing SACK, build a new one,
4231  * put it at the front, and shift everyone else down. We
4232  * always know there is at least one SACK present already here.
4233  *
4234  * If the sack array is full, forget about the last one.
4235  */
4236  if (this_sack >= TCP_NUM_SACKS) {
4237  this_sack--;
4238  tp->rx_opt.num_sacks--;
4239  sp--;
4240  }
4241  for (; this_sack > 0; this_sack--, sp--)
4242  *sp = *(sp - 1);
4243 
4244 new_sack:
4245  /* Build the new head SACK, and we're done. */
4246  sp->start_seq = seq;
4247  sp->end_seq = end_seq;
4248  tp->rx_opt.num_sacks++;
4249 }
4250 
4251 /* RCV.NXT advances, some SACKs should be eaten. */
4252 
4253 static void tcp_sack_remove(struct tcp_sock *tp)
4254 {
4255  struct tcp_sack_block *sp = &tp->selective_acks[0];
4256  int num_sacks = tp->rx_opt.num_sacks;
4257  int this_sack;
4258 
4259  /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260  if (skb_queue_empty(&tp->out_of_order_queue)) {
4261  tp->rx_opt.num_sacks = 0;
4262  return;
4263  }
4264 
4265  for (this_sack = 0; this_sack < num_sacks;) {
4266  /* Check if the start of the sack is covered by RCV.NXT. */
4267  if (!before(tp->rcv_nxt, sp->start_seq)) {
4268  int i;
4269 
4270  /* RCV.NXT must cover all the block! */
4271  WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4272 
4273  /* Zap this SACK, by moving forward any other SACKS. */
4274  for (i=this_sack+1; i < num_sacks; i++)
4275  tp->selective_acks[i-1] = tp->selective_acks[i];
4276  num_sacks--;
4277  continue;
4278  }
4279  this_sack++;
4280  sp++;
4281  }
4282  tp->rx_opt.num_sacks = num_sacks;
4283 }
4284 
4285 /* This one checks to see if we can put data from the
4286  * out_of_order queue into the receive_queue.
4287  */
4288 static void tcp_ofo_queue(struct sock *sk)
4289 {
4290  struct tcp_sock *tp = tcp_sk(sk);
4291  __u32 dsack_high = tp->rcv_nxt;
4292  struct sk_buff *skb;
4293 
4294  while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4295  if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4296  break;
4297 
4298  if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4299  __u32 dsack = dsack_high;
4300  if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4301  dsack_high = TCP_SKB_CB(skb)->end_seq;
4302  tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4303  }
4304 
4305  if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4306  SOCK_DEBUG(sk, "ofo packet was already received\n");
4307  __skb_unlink(skb, &tp->out_of_order_queue);
4308  __kfree_skb(skb);
4309  continue;
4310  }
4311  SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4312  tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4313  TCP_SKB_CB(skb)->end_seq);
4314 
4315  __skb_unlink(skb, &tp->out_of_order_queue);
4316  __skb_queue_tail(&sk->sk_receive_queue, skb);
4317  tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4318  if (tcp_hdr(skb)->fin)
4319  tcp_fin(sk);
4320  }
4321 }
4322 
4323 static bool tcp_prune_ofo_queue(struct sock *sk);
4324 static int tcp_prune_queue(struct sock *sk);
4325 
4326 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4327  unsigned int size)
4328 {
4329  if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4330  !sk_rmem_schedule(sk, skb, size)) {
4331 
4332  if (tcp_prune_queue(sk) < 0)
4333  return -1;
4334 
4335  if (!sk_rmem_schedule(sk, skb, size)) {
4336  if (!tcp_prune_ofo_queue(sk))
4337  return -1;
4338 
4339  if (!sk_rmem_schedule(sk, skb, size))
4340  return -1;
4341  }
4342  }
4343  return 0;
4344 }
4345 
4359 static bool tcp_try_coalesce(struct sock *sk,
4360  struct sk_buff *to,
4361  struct sk_buff *from,
4362  bool *fragstolen)
4363 {
4364  int delta;
4365 
4366  *fragstolen = false;
4367 
4368  if (tcp_hdr(from)->fin)
4369  return false;
4370 
4371  /* Its possible this segment overlaps with prior segment in queue */
4372  if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4373  return false;
4374 
4375  if (!skb_try_coalesce(to, from, fragstolen, &delta))
4376  return false;
4377 
4378  atomic_add(delta, &sk->sk_rmem_alloc);
4379  sk_mem_charge(sk, delta);
4381  TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4382  TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4383  return true;
4384 }
4385 
4386 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4387 {
4388  struct tcp_sock *tp = tcp_sk(sk);
4389  struct sk_buff *skb1;
4390  u32 seq, end_seq;
4391 
4392  TCP_ECN_check_ce(tp, skb);
4393 
4394  if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4395  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4396  __kfree_skb(skb);
4397  return;
4398  }
4399 
4400  /* Disable header prediction. */
4401  tp->pred_flags = 0;
4402  inet_csk_schedule_ack(sk);
4403 
4404  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4405  SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4406  tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4407 
4408  skb1 = skb_peek_tail(&tp->out_of_order_queue);
4409  if (!skb1) {
4410  /* Initial out of order segment, build 1 SACK. */
4411  if (tcp_is_sack(tp)) {
4412  tp->rx_opt.num_sacks = 1;
4413  tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4414  tp->selective_acks[0].end_seq =
4415  TCP_SKB_CB(skb)->end_seq;
4416  }
4417  __skb_queue_head(&tp->out_of_order_queue, skb);
4418  goto end;
4419  }
4420 
4421  seq = TCP_SKB_CB(skb)->seq;
4422  end_seq = TCP_SKB_CB(skb)->end_seq;
4423 
4424  if (seq == TCP_SKB_CB(skb1)->end_seq) {
4425  bool fragstolen;
4426 
4427  if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4428  __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4429  } else {
4430  kfree_skb_partial(skb, fragstolen);
4431  skb = NULL;
4432  }
4433 
4434  if (!tp->rx_opt.num_sacks ||
4435  tp->selective_acks[0].end_seq != seq)
4436  goto add_sack;
4437 
4438  /* Common case: data arrive in order after hole. */
4439  tp->selective_acks[0].end_seq = end_seq;
4440  goto end;
4441  }
4442 
4443  /* Find place to insert this segment. */
4444  while (1) {
4445  if (!after(TCP_SKB_CB(skb1)->seq, seq))
4446  break;
4447  if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4448  skb1 = NULL;
4449  break;
4450  }
4451  skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4452  }
4453 
4454  /* Do skb overlap to previous one? */
4455  if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4456  if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4457  /* All the bits are present. Drop. */
4458  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4459  __kfree_skb(skb);
4460  skb = NULL;
4461  tcp_dsack_set(sk, seq, end_seq);
4462  goto add_sack;
4463  }
4464  if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4465  /* Partial overlap. */
4466  tcp_dsack_set(sk, seq,
4467  TCP_SKB_CB(skb1)->end_seq);
4468  } else {
4469  if (skb_queue_is_first(&tp->out_of_order_queue,
4470  skb1))
4471  skb1 = NULL;
4472  else
4473  skb1 = skb_queue_prev(
4474  &tp->out_of_order_queue,
4475  skb1);
4476  }
4477  }
4478  if (!skb1)
4479  __skb_queue_head(&tp->out_of_order_queue, skb);
4480  else
4481  __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4482 
4483  /* And clean segments covered by new one as whole. */
4484  while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4485  skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4486 
4487  if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4488  break;
4489  if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4490  tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4491  end_seq);
4492  break;
4493  }
4494  __skb_unlink(skb1, &tp->out_of_order_queue);
4495  tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4496  TCP_SKB_CB(skb1)->end_seq);
4497  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4498  __kfree_skb(skb1);
4499  }
4500 
4501 add_sack:
4502  if (tcp_is_sack(tp))
4503  tcp_sack_new_ofo_skb(sk, seq, end_seq);
4504 end:
4505  if (skb)
4506  skb_set_owner_r(skb, sk);
4507 }
4508 
4509 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4510  bool *fragstolen)
4511 {
4512  int eaten;
4513  struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4514 
4515  __skb_pull(skb, hdrlen);
4516  eaten = (tail &&
4517  tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4518  tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4519  if (!eaten) {
4520  __skb_queue_tail(&sk->sk_receive_queue, skb);
4521  skb_set_owner_r(skb, sk);
4522  }
4523  return eaten;
4524 }
4525 
4526 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4527 {
4528  struct sk_buff *skb = NULL;
4529  struct tcphdr *th;
4530  bool fragstolen;
4531 
4532  if (size == 0)
4533  return 0;
4534 
4535  skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4536  if (!skb)
4537  goto err;
4538 
4539  if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4540  goto err_free;
4541 
4542  th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4543  skb_reset_transport_header(skb);
4544  memset(th, 0, sizeof(*th));
4545 
4546  if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4547  goto err_free;
4548 
4549  TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4550  TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4551  TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4552 
4553  if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4554  WARN_ON_ONCE(fragstolen); /* should not happen */
4555  __kfree_skb(skb);
4556  }
4557  return size;
4558 
4559 err_free:
4560  kfree_skb(skb);
4561 err:
4562  return -ENOMEM;
4563 }
4564 
4565 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4566 {
4567  const struct tcphdr *th = tcp_hdr(skb);
4568  struct tcp_sock *tp = tcp_sk(sk);
4569  int eaten = -1;
4570  bool fragstolen = false;
4571 
4572  if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4573  goto drop;
4574 
4575  skb_dst_drop(skb);
4576  __skb_pull(skb, th->doff * 4);
4577 
4578  TCP_ECN_accept_cwr(tp, skb);
4579 
4580  tp->rx_opt.dsack = 0;
4581 
4582  /* Queue data for delivery to the user.
4583  * Packets in sequence go to the receive queue.
4584  * Out of sequence packets to the out_of_order_queue.
4585  */
4586  if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4587  if (tcp_receive_window(tp) == 0)
4588  goto out_of_window;
4589 
4590  /* Ok. In sequence. In window. */
4591  if (tp->ucopy.task == current &&
4592  tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4593  sock_owned_by_user(sk) && !tp->urg_data) {
4594  int chunk = min_t(unsigned int, skb->len,
4595  tp->ucopy.len);
4596 
4598 
4599  local_bh_enable();
4600  if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4601  tp->ucopy.len -= chunk;
4602  tp->copied_seq += chunk;
4603  eaten = (chunk == skb->len);
4605  }
4606  local_bh_disable();
4607  }
4608 
4609  if (eaten <= 0) {
4610 queue_and_out:
4611  if (eaten < 0 &&
4612  tcp_try_rmem_schedule(sk, skb, skb->truesize))
4613  goto drop;
4614 
4615  eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4616  }
4617  tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4618  if (skb->len)
4619  tcp_event_data_recv(sk, skb);
4620  if (th->fin)
4621  tcp_fin(sk);
4622 
4623  if (!skb_queue_empty(&tp->out_of_order_queue)) {
4624  tcp_ofo_queue(sk);
4625 
4626  /* RFC2581. 4.2. SHOULD send immediate ACK, when
4627  * gap in queue is filled.
4628  */
4629  if (skb_queue_empty(&tp->out_of_order_queue))
4630  inet_csk(sk)->icsk_ack.pingpong = 0;
4631  }
4632 
4633  if (tp->rx_opt.num_sacks)
4634  tcp_sack_remove(tp);
4635 
4636  tcp_fast_path_check(sk);
4637 
4638  if (eaten > 0)
4639  kfree_skb_partial(skb, fragstolen);
4640  if (!sock_flag(sk, SOCK_DEAD))
4641  sk->sk_data_ready(sk, 0);
4642  return;
4643  }
4644 
4645  if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4646  /* A retransmit, 2nd most common case. Force an immediate ack. */
4648  tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4649 
4650 out_of_window:
4651  tcp_enter_quickack_mode(sk);
4652  inet_csk_schedule_ack(sk);
4653 drop:
4654  __kfree_skb(skb);
4655  return;
4656  }
4657 
4658  /* Out of window. F.e. zero window probe. */
4659  if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4660  goto out_of_window;
4661 
4662  tcp_enter_quickack_mode(sk);
4663 
4664  if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4665  /* Partial packet, seq < rcv_next < end_seq */
4666  SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4667  tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4668  TCP_SKB_CB(skb)->end_seq);
4669 
4670  tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4671 
4672  /* If window is closed, drop tail of packet. But after
4673  * remembering D-SACK for its head made in previous line.
4674  */
4675  if (!tcp_receive_window(tp))
4676  goto out_of_window;
4677  goto queue_and_out;
4678  }
4679 
4680  tcp_data_queue_ofo(sk, skb);
4681 }
4682 
4683 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4684  struct sk_buff_head *list)
4685 {
4686  struct sk_buff *next = NULL;
4687 
4688  if (!skb_queue_is_last(list, skb))
4689  next = skb_queue_next(list, skb);
4690 
4691  __skb_unlink(skb, list);
4692  __kfree_skb(skb);
4694 
4695  return next;
4696 }
4697 
4698 /* Collapse contiguous sequence of skbs head..tail with
4699  * sequence numbers start..end.
4700  *
4701  * If tail is NULL, this means until the end of the list.
4702  *
4703  * Segments with FIN/SYN are not collapsed (only because this
4704  * simplifies code)
4705  */
4706 static void
4707 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4708  struct sk_buff *head, struct sk_buff *tail,
4709  u32 start, u32 end)
4710 {
4711  struct sk_buff *skb, *n;
4712  bool end_of_skbs;
4713 
4714  /* First, check that queue is collapsible and find
4715  * the point where collapsing can be useful. */
4716  skb = head;
4717 restart:
4718  end_of_skbs = true;
4719  skb_queue_walk_from_safe(list, skb, n) {
4720  if (skb == tail)
4721  break;
4722  /* No new bits? It is possible on ofo queue. */
4723  if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4724  skb = tcp_collapse_one(sk, skb, list);
4725  if (!skb)
4726  break;
4727  goto restart;
4728  }
4729 
4730  /* The first skb to collapse is:
4731  * - not SYN/FIN and
4732  * - bloated or contains data before "start" or
4733  * overlaps to the next one.
4734  */
4735  if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4736  (tcp_win_from_space(skb->truesize) > skb->len ||
4737  before(TCP_SKB_CB(skb)->seq, start))) {
4738  end_of_skbs = false;
4739  break;
4740  }
4741 
4742  if (!skb_queue_is_last(list, skb)) {
4743  struct sk_buff *next = skb_queue_next(list, skb);
4744  if (next != tail &&
4745  TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4746  end_of_skbs = false;
4747  break;
4748  }
4749  }
4750 
4751  /* Decided to skip this, advance start seq. */
4752  start = TCP_SKB_CB(skb)->end_seq;
4753  }
4754  if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4755  return;
4756 
4757  while (before(start, end)) {
4758  struct sk_buff *nskb;
4759  unsigned int header = skb_headroom(skb);
4760  int copy = SKB_MAX_ORDER(header, 0);
4761 
4762  /* Too big header? This can happen with IPv6. */
4763  if (copy < 0)
4764  return;
4765  if (end - start < copy)
4766  copy = end - start;
4767  nskb = alloc_skb(copy + header, GFP_ATOMIC);
4768  if (!nskb)
4769  return;
4770 
4771  skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4772  skb_set_network_header(nskb, (skb_network_header(skb) -
4773  skb->head));
4774  skb_set_transport_header(nskb, (skb_transport_header(skb) -
4775  skb->head));
4776  skb_reserve(nskb, header);
4777  memcpy(nskb->head, skb->head, header);
4778  memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4779  TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4780  __skb_queue_before(list, skb, nskb);
4781  skb_set_owner_r(nskb, sk);
4782 
4783  /* Copy data, releasing collapsed skbs. */
4784  while (copy > 0) {
4785  int offset = start - TCP_SKB_CB(skb)->seq;
4786  int size = TCP_SKB_CB(skb)->end_seq - start;
4787 
4788  BUG_ON(offset < 0);
4789  if (size > 0) {
4790  size = min(copy, size);
4791  if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4792  BUG();
4793  TCP_SKB_CB(nskb)->end_seq += size;
4794  copy -= size;
4795  start += size;
4796  }
4797  if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4798  skb = tcp_collapse_one(sk, skb, list);
4799  if (!skb ||
4800  skb == tail ||
4801  tcp_hdr(skb)->syn ||
4802  tcp_hdr(skb)->fin)
4803  return;
4804  }
4805  }
4806  }
4807 }
4808 
4809 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4810  * and tcp_collapse() them until all the queue is collapsed.
4811  */
4812 static void tcp_collapse_ofo_queue(struct sock *sk)
4813 {
4814  struct tcp_sock *tp = tcp_sk(sk);
4815  struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4816  struct sk_buff *head;
4817  u32 start, end;
4818 
4819  if (skb == NULL)
4820  return;
4821 
4822  start = TCP_SKB_CB(skb)->seq;
4823  end = TCP_SKB_CB(skb)->end_seq;
4824  head = skb;
4825 
4826  for (;;) {
4827  struct sk_buff *next = NULL;
4828 
4829  if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4830  next = skb_queue_next(&tp->out_of_order_queue, skb);
4831  skb = next;
4832 
4833  /* Segment is terminated when we see gap or when
4834  * we are at the end of all the queue. */
4835  if (!skb ||
4836  after(TCP_SKB_CB(skb)->seq, end) ||
4837  before(TCP_SKB_CB(skb)->end_seq, start)) {
4838  tcp_collapse(sk, &tp->out_of_order_queue,
4839  head, skb, start, end);
4840  head = skb;
4841  if (!skb)
4842  break;
4843  /* Start new segment */
4844  start = TCP_SKB_CB(skb)->seq;
4845  end = TCP_SKB_CB(skb)->end_seq;
4846  } else {
4847  if (before(TCP_SKB_CB(skb)->seq, start))
4848  start = TCP_SKB_CB(skb)->seq;
4849  if (after(TCP_SKB_CB(skb)->end_seq, end))
4850  end = TCP_SKB_CB(skb)->end_seq;
4851  }
4852  }
4853 }
4854 
4855 /*
4856  * Purge the out-of-order queue.
4857  * Return true if queue was pruned.
4858  */
4859 static bool tcp_prune_ofo_queue(struct sock *sk)
4860 {
4861  struct tcp_sock *tp = tcp_sk(sk);
4862  bool res = false;
4863 
4864  if (!skb_queue_empty(&tp->out_of_order_queue)) {
4865  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4866  __skb_queue_purge(&tp->out_of_order_queue);
4867 
4868  /* Reset SACK state. A conforming SACK implementation will
4869  * do the same at a timeout based retransmit. When a connection
4870  * is in a sad state like this, we care only about integrity
4871  * of the connection not performance.
4872  */
4873  if (tp->rx_opt.sack_ok)
4874  tcp_sack_reset(&tp->rx_opt);
4875  sk_mem_reclaim(sk);
4876  res = true;
4877  }
4878  return res;
4879 }
4880 
4881 /* Reduce allocated memory if we can, trying to get
4882  * the socket within its memory limits again.
4883  *
4884  * Return less than zero if we should start dropping frames
4885  * until the socket owning process reads some of the data
4886  * to stabilize the situation.
4887  */
4888 static int tcp_prune_queue(struct sock *sk)
4889 {
4890  struct tcp_sock *tp = tcp_sk(sk);
4891 
4892  SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4893 
4894  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4895 
4896  if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4897  tcp_clamp_window(sk);
4898  else if (sk_under_memory_pressure(sk))
4899  tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4900 
4901  tcp_collapse_ofo_queue(sk);
4902  if (!skb_queue_empty(&sk->sk_receive_queue))
4903  tcp_collapse(sk, &sk->sk_receive_queue,
4904  skb_peek(&sk->sk_receive_queue),
4905  NULL,
4906  tp->copied_seq, tp->rcv_nxt);
4907  sk_mem_reclaim(sk);
4908 
4909  if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4910  return 0;
4911 
4912  /* Collapsing did not help, destructive actions follow.
4913  * This must not ever occur. */
4914 
4915  tcp_prune_ofo_queue(sk);
4916 
4917  if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4918  return 0;
4919 
4920  /* If we are really being abused, tell the caller to silently
4921  * drop receive data on the floor. It will get retransmitted
4922  * and hopefully then we'll have sufficient space.
4923  */
4924  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4925 
4926  /* Massive buffer overcommit. */
4927  tp->pred_flags = 0;
4928  return -1;
4929 }
4930 
4931 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4932  * As additional protections, we do not touch cwnd in retransmission phases,
4933  * and if application hit its sndbuf limit recently.
4934  */
4936 {
4937  struct tcp_sock *tp = tcp_sk(sk);
4938 
4939  if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4940  sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4941  /* Limited by application or receiver window. */
4942  u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4943  u32 win_used = max(tp->snd_cwnd_used, init_win);
4944  if (win_used < tp->snd_cwnd) {
4945  tp->snd_ssthresh = tcp_current_ssthresh(sk);
4946  tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4947  }
4948  tp->snd_cwnd_used = 0;
4949  }
4951 }
4952 
4953 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4954 {
4955  const struct tcp_sock *tp = tcp_sk(sk);
4956 
4957  /* If the user specified a specific send buffer setting, do
4958  * not modify it.
4959  */
4960  if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4961  return false;
4962 
4963  /* If we are under global TCP memory pressure, do not expand. */
4964  if (sk_under_memory_pressure(sk))
4965  return false;
4966 
4967  /* If we are under soft global TCP memory pressure, do not expand. */
4968  if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4969  return false;
4970 
4971  /* If we filled the congestion window, do not expand. */
4972  if (tp->packets_out >= tp->snd_cwnd)
4973  return false;
4974 
4975  return true;
4976 }
4977 
4978 /* When incoming ACK allowed to free some skb from write_queue,
4979  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4980  * on the exit from tcp input handler.
4981  *
4982  * PROBLEM: sndbuf expansion does not work well with largesend.
4983  */
4984 static void tcp_new_space(struct sock *sk)
4985 {
4986  struct tcp_sock *tp = tcp_sk(sk);
4987 
4988  if (tcp_should_expand_sndbuf(sk)) {
4989  int sndmem = SKB_TRUESIZE(max_t(u32,
4990  tp->rx_opt.mss_clamp,
4991  tp->mss_cache) +
4992  MAX_TCP_HEADER);
4993  int demanded = max_t(unsigned int, tp->snd_cwnd,
4994  tp->reordering + 1);
4995  sndmem *= 2 * demanded;
4996  if (sndmem > sk->sk_sndbuf)
4997  sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4999  }
5000 
5001  sk->sk_write_space(sk);
5002 }
5003 
5004 static void tcp_check_space(struct sock *sk)
5005 {
5006  if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5007  sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5008  if (sk->sk_socket &&
5009  test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5010  tcp_new_space(sk);
5011  }
5012 }
5013 
5014 static inline void tcp_data_snd_check(struct sock *sk)
5015 {
5016  tcp_push_pending_frames(sk);
5017  tcp_check_space(sk);
5018 }
5019 
5020 /*
5021  * Check if sending an ack is needed.
5022  */
5023 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5024 {
5025  struct tcp_sock *tp = tcp_sk(sk);
5026 
5027  /* More than one full frame received... */
5028  if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5029  /* ... and right edge of window advances far enough.
5030  * (tcp_recvmsg() will send ACK otherwise). Or...
5031  */
5032  __tcp_select_window(sk) >= tp->rcv_wnd) ||
5033  /* We ACK each frame or... */
5034  tcp_in_quickack_mode(sk) ||
5035  /* We have out of order data. */
5036  (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5037  /* Then ack it now */
5038  tcp_send_ack(sk);
5039  } else {
5040  /* Else, send delayed ack. */
5042  }
5043 }
5044 
5045 static inline void tcp_ack_snd_check(struct sock *sk)
5046 {
5047  if (!inet_csk_ack_scheduled(sk)) {
5048  /* We sent a data segment already. */
5049  return;
5050  }
5051  __tcp_ack_snd_check(sk, 1);
5052 }
5053 
5054 /*
5055  * This routine is only called when we have urgent data
5056  * signaled. Its the 'slow' part of tcp_urg. It could be
5057  * moved inline now as tcp_urg is only called from one
5058  * place. We handle URGent data wrong. We have to - as
5059  * BSD still doesn't use the correction from RFC961.
5060  * For 1003.1g we should support a new option TCP_STDURG to permit
5061  * either form (or just set the sysctl tcp_stdurg).
5062  */
5063 
5064 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5065 {
5066  struct tcp_sock *tp = tcp_sk(sk);
5067  u32 ptr = ntohs(th->urg_ptr);
5068 
5069  if (ptr && !sysctl_tcp_stdurg)
5070  ptr--;
5071  ptr += ntohl(th->seq);
5072 
5073  /* Ignore urgent data that we've already seen and read. */
5074  if (after(tp->copied_seq, ptr))
5075  return;
5076 
5077  /* Do not replay urg ptr.
5078  *
5079  * NOTE: interesting situation not covered by specs.
5080  * Misbehaving sender may send urg ptr, pointing to segment,
5081  * which we already have in ofo queue. We are not able to fetch
5082  * such data and will stay in TCP_URG_NOTYET until will be eaten
5083  * by recvmsg(). Seems, we are not obliged to handle such wicked
5084  * situations. But it is worth to think about possibility of some
5085  * DoSes using some hypothetical application level deadlock.
5086  */
5087  if (before(ptr, tp->rcv_nxt))
5088  return;
5089 
5090  /* Do we already have a newer (or duplicate) urgent pointer? */
5091  if (tp->urg_data && !after(ptr, tp->urg_seq))
5092  return;
5093 
5094  /* Tell the world about our new urgent pointer. */
5095  sk_send_sigurg(sk);
5096 
5097  /* We may be adding urgent data when the last byte read was
5098  * urgent. To do this requires some care. We cannot just ignore
5099  * tp->copied_seq since we would read the last urgent byte again
5100  * as data, nor can we alter copied_seq until this data arrives
5101  * or we break the semantics of SIOCATMARK (and thus sockatmark())
5102  *
5103  * NOTE. Double Dutch. Rendering to plain English: author of comment
5104  * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5105  * and expect that both A and B disappear from stream. This is _wrong_.
5106  * Though this happens in BSD with high probability, this is occasional.
5107  * Any application relying on this is buggy. Note also, that fix "works"
5108  * only in this artificial test. Insert some normal data between A and B and we will
5109  * decline of BSD again. Verdict: it is better to remove to trap
5110  * buggy users.
5111  */
5112  if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5113  !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5114  struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5115  tp->copied_seq++;
5116  if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5117  __skb_unlink(skb, &sk->sk_receive_queue);
5118  __kfree_skb(skb);
5119  }
5120  }
5121 
5122  tp->urg_data = TCP_URG_NOTYET;
5123  tp->urg_seq = ptr;
5124 
5125  /* Disable header prediction. */
5126  tp->pred_flags = 0;
5127 }
5128 
5129 /* This is the 'fast' part of urgent handling. */
5130 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5131 {
5132  struct tcp_sock *tp = tcp_sk(sk);
5133 
5134  /* Check if we get a new urgent pointer - normally not. */
5135  if (th->urg)
5136  tcp_check_urg(sk, th);
5137 
5138  /* Do we wait for any urgent data? - normally not... */
5139  if (tp->urg_data == TCP_URG_NOTYET) {
5140  u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5141  th->syn;
5142 
5143  /* Is the urgent pointer pointing into this packet? */
5144  if (ptr < skb->len) {
5145  u8 tmp;
5146  if (skb_copy_bits(skb, ptr, &tmp, 1))
5147  BUG();
5148  tp->urg_data = TCP_URG_VALID | tmp;
5149  if (!sock_flag(sk, SOCK_DEAD))
5150  sk->sk_data_ready(sk, 0);
5151  }
5152  }
5153 }
5154 
5155 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5156 {
5157  struct tcp_sock *tp = tcp_sk(sk);
5158  int chunk = skb->len - hlen;
5159  int err;
5160 
5161  local_bh_enable();
5162  if (skb_csum_unnecessary(skb))
5163  err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5164  else
5165  err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5166  tp->ucopy.iov);
5167 
5168  if (!err) {
5169  tp->ucopy.len -= chunk;
5170  tp->copied_seq += chunk;
5172  }
5173 
5174  local_bh_disable();
5175  return err;
5176 }
5177 
5178 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5179  struct sk_buff *skb)
5180 {
5181  __sum16 result;
5182 
5183  if (sock_owned_by_user(sk)) {
5184  local_bh_enable();
5185  result = __tcp_checksum_complete(skb);
5186  local_bh_disable();
5187  } else {
5188  result = __tcp_checksum_complete(skb);
5189  }
5190  return result;
5191 }
5192 
5193 static inline bool tcp_checksum_complete_user(struct sock *sk,
5194  struct sk_buff *skb)
5195 {
5196  return !skb_csum_unnecessary(skb) &&
5197  __tcp_checksum_complete_user(sk, skb);
5198 }
5199 
5200 #ifdef CONFIG_NET_DMA
5201 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5202  int hlen)
5203 {
5204  struct tcp_sock *tp = tcp_sk(sk);
5205  int chunk = skb->len - hlen;
5206  int dma_cookie;
5207  bool copied_early = false;
5208 
5209  if (tp->ucopy.wakeup)
5210  return false;
5211 
5212  if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5213  tp->ucopy.dma_chan = net_dma_find_channel();
5214 
5215  if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5216 
5217  dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5218  skb, hlen,
5219  tp->ucopy.iov, chunk,
5220  tp->ucopy.pinned_list);
5221 
5222  if (dma_cookie < 0)
5223  goto out;
5224 
5225  tp->ucopy.dma_cookie = dma_cookie;
5226  copied_early = true;
5227 
5228  tp->ucopy.len -= chunk;
5229  tp->copied_seq += chunk;
5231 
5232  if ((tp->ucopy.len == 0) ||
5233  (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5234  (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5235  tp->ucopy.wakeup = 1;
5236  sk->sk_data_ready(sk, 0);
5237  }
5238  } else if (chunk > 0) {
5239  tp->ucopy.wakeup = 1;
5240  sk->sk_data_ready(sk, 0);
5241  }
5242 out:
5243  return copied_early;
5244 }
5245 #endif /* CONFIG_NET_DMA */
5246 
5247 static void tcp_send_challenge_ack(struct sock *sk)
5248 {
5249  /* unprotected vars, we dont care of overwrites */
5250  static u32 challenge_timestamp;
5251  static unsigned int challenge_count;
5252  u32 now = jiffies / HZ;
5253 
5254  if (now != challenge_timestamp) {
5255  challenge_timestamp = now;
5256  challenge_count = 0;
5257  }
5258  if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
5260  tcp_send_ack(sk);
5261  }
5262 }
5263 
5264 /* Does PAWS and seqno based validation of an incoming segment, flags will
5265  * play significant role here.
5266  */
5267 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5268  const struct tcphdr *th, int syn_inerr)
5269 {
5270  const u8 *hash_location;
5271  struct tcp_sock *tp = tcp_sk(sk);
5272 
5273  /* RFC1323: H1. Apply PAWS check first. */
5274  if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5275  tp->rx_opt.saw_tstamp &&
5276  tcp_paws_discard(sk, skb)) {
5277  if (!th->rst) {
5279  tcp_send_dupack(sk, skb);
5280  goto discard;
5281  }
5282  /* Reset is accepted even if it did not pass PAWS. */
5283  }
5284 
5285  /* Step 1: check sequence number */
5286  if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5287  /* RFC793, page 37: "In all states except SYN-SENT, all reset
5288  * (RST) segments are validated by checking their SEQ-fields."
5289  * And page 69: "If an incoming segment is not acceptable,
5290  * an acknowledgment should be sent in reply (unless the RST
5291  * bit is set, if so drop the segment and return)".
5292  */
5293  if (!th->rst) {
5294  if (th->syn)
5295  goto syn_challenge;
5296  tcp_send_dupack(sk, skb);
5297  }
5298  goto discard;
5299  }
5300 
5301  /* Step 2: check RST bit */
5302  if (th->rst) {
5303  /* RFC 5961 3.2 :
5304  * If sequence number exactly matches RCV.NXT, then
5305  * RESET the connection
5306  * else
5307  * Send a challenge ACK
5308  */
5309  if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5310  tcp_reset(sk);
5311  else
5312  tcp_send_challenge_ack(sk);
5313  goto discard;
5314  }
5315 
5316  /* step 3: check security and precedence [ignored] */
5317 
5318  /* step 4: Check for a SYN
5319  * RFC 5691 4.2 : Send a challenge ack
5320  */
5321  if (th->syn) {
5322 syn_challenge:
5323  if (syn_inerr)
5324  TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5326  tcp_send_challenge_ack(sk);
5327  goto discard;
5328  }
5329 
5330  return true;
5331 
5332 discard:
5333  __kfree_skb(skb);
5334  return false;
5335 }
5336 
5337 /*
5338  * TCP receive function for the ESTABLISHED state.
5339  *
5340  * It is split into a fast path and a slow path. The fast path is
5341  * disabled when:
5342  * - A zero window was announced from us - zero window probing
5343  * is only handled properly in the slow path.
5344  * - Out of order segments arrived.
5345  * - Urgent data is expected.
5346  * - There is no buffer space left
5347  * - Unexpected TCP flags/window values/header lengths are received
5348  * (detected by checking the TCP header against pred_flags)
5349  * - Data is sent in both directions. Fast path only supports pure senders
5350  * or pure receivers (this means either the sequence number or the ack
5351  * value must stay constant)
5352  * - Unexpected TCP option.
5353  *
5354  * When these conditions are not satisfied it drops into a standard
5355  * receive procedure patterned after RFC793 to handle all cases.
5356  * The first three cases are guaranteed by proper pred_flags setting,
5357  * the rest is checked inline. Fast processing is turned on in
5358  * tcp_data_queue when everything is OK.
5359  */
5360 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5361  const struct tcphdr *th, unsigned int len)
5362 {
5363  struct tcp_sock *tp = tcp_sk(sk);
5364 
5365  if (unlikely(sk->sk_rx_dst == NULL))
5366  inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5367  /*
5368  * Header prediction.
5369  * The code loosely follows the one in the famous
5370  * "30 instruction TCP receive" Van Jacobson mail.
5371  *
5372  * Van's trick is to deposit buffers into socket queue
5373  * on a device interrupt, to call tcp_recv function
5374  * on the receive process context and checksum and copy
5375  * the buffer to user space. smart...
5376  *
5377  * Our current scheme is not silly either but we take the
5378  * extra cost of the net_bh soft interrupt processing...
5379  * We do checksum and copy also but from device to kernel.
5380  */
5381 
5382  tp->rx_opt.saw_tstamp = 0;
5383 
5384  /* pred_flags is 0xS?10 << 16 + snd_wnd
5385  * if header_prediction is to be made
5386  * 'S' will always be tp->tcp_header_len >> 2
5387  * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5388  * turn it off (when there are holes in the receive
5389  * space for instance)
5390  * PSH flag is ignored.
5391  */
5392 
5393  if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5394  TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5395  !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5396  int tcp_header_len = tp->tcp_header_len;
5397 
5398  /* Timestamp header prediction: tcp_header_len
5399  * is automatically equal to th->doff*4 due to pred_flags
5400  * match.
5401  */
5402 
5403  /* Check timestamp */
5404  if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5405  /* No? Slow path! */
5406  if (!tcp_parse_aligned_timestamp(tp, th))
5407  goto slow_path;
5408 
5409  /* If PAWS failed, check it more carefully in slow path */
5410  if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5411  goto slow_path;
5412 
5413  /* DO NOT update ts_recent here, if checksum fails
5414  * and timestamp was corrupted part, it will result
5415  * in a hung connection since we will drop all
5416  * future packets due to the PAWS test.
5417  */
5418  }
5419 
5420  if (len <= tcp_header_len) {
5421  /* Bulk data transfer: sender */
5422  if (len == tcp_header_len) {
5423  /* Predicted packet is in window by definition.
5424  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5425  * Hence, check seq<=rcv_wup reduces to:
5426  */
5427  if (tcp_header_len ==
5428  (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5429  tp->rcv_nxt == tp->rcv_wup)
5430  tcp_store_ts_recent(tp);
5431 
5432  /* We know that such packets are checksummed
5433  * on entry.
5434  */
5435  tcp_ack(sk, skb, 0);
5436  __kfree_skb(skb);
5437  tcp_data_snd_check(sk);
5438  return 0;
5439  } else { /* Header too small */
5440  TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5441  goto discard;
5442  }
5443  } else {
5444  int eaten = 0;
5445  int copied_early = 0;
5446  bool fragstolen = false;
5447 
5448  if (tp->copied_seq == tp->rcv_nxt &&
5449  len - tcp_header_len <= tp->ucopy.len) {
5450 #ifdef CONFIG_NET_DMA
5451  if (tp->ucopy.task == current &&
5452  sock_owned_by_user(sk) &&
5453  tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5454  copied_early = 1;
5455  eaten = 1;
5456  }
5457 #endif
5458  if (tp->ucopy.task == current &&
5459  sock_owned_by_user(sk) && !copied_early) {
5461 
5462  if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5463  eaten = 1;
5464  }
5465  if (eaten) {
5466  /* Predicted packet is in window by definition.
5467  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5468  * Hence, check seq<=rcv_wup reduces to:
5469  */
5470  if (tcp_header_len ==
5471  (sizeof(struct tcphdr) +
5473  tp->rcv_nxt == tp->rcv_wup)
5474  tcp_store_ts_recent(tp);
5475 
5476  tcp_rcv_rtt_measure_ts(sk, skb);
5477 
5478  __skb_pull(skb, tcp_header_len);
5479  tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5481  }
5482  if (copied_early)
5483  tcp_cleanup_rbuf(sk, skb->len);
5484  }
5485  if (!eaten) {
5486  if (tcp_checksum_complete_user(sk, skb))
5487  goto csum_error;
5488 
5489  /* Predicted packet is in window by definition.
5490  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5491  * Hence, check seq<=rcv_wup reduces to:
5492  */
5493  if (tcp_header_len ==
5494  (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5495  tp->rcv_nxt == tp->rcv_wup)
5496  tcp_store_ts_recent(tp);
5497 
5498  tcp_rcv_rtt_measure_ts(sk, skb);
5499 
5500  if ((int)skb->truesize > sk->sk_forward_alloc)
5501  goto step5;
5502 
5503  NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5504 
5505  /* Bulk data transfer: receiver */
5506  eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5507  &fragstolen);
5508  }
5509 
5510  tcp_event_data_recv(sk, skb);
5511 
5512  if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5513  /* Well, only one small jumplet in fast path... */
5514  tcp_ack(sk, skb, FLAG_DATA);
5515  tcp_data_snd_check(sk);
5516  if (!inet_csk_ack_scheduled(sk))
5517  goto no_ack;
5518  }
5519 
5520  if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5521  __tcp_ack_snd_check(sk, 0);
5522 no_ack:
5523 #ifdef CONFIG_NET_DMA
5524  if (copied_early)
5525  __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5526  else
5527 #endif
5528  if (eaten)
5529  kfree_skb_partial(skb, fragstolen);
5530  sk->sk_data_ready(sk, 0);
5531  return 0;
5532  }
5533  }
5534 
5535 slow_path:
5536  if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5537  goto csum_error;
5538 
5539  /*
5540  * Standard slow path.
5541  */
5542 
5543  if (!tcp_validate_incoming(sk, skb, th, 1))
5544  return 0;
5545 
5546 step5:
5547  if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5548  goto discard;
5549 
5550  /* ts_recent update must be made after we are sure that the packet
5551  * is in window.
5552  */
5553  tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5554 
5555  tcp_rcv_rtt_measure_ts(sk, skb);
5556 
5557  /* Process urgent data. */
5558  tcp_urg(sk, skb, th);
5559 
5560  /* step 7: process the segment text */
5561  tcp_data_queue(sk, skb);
5562 
5563  tcp_data_snd_check(sk);
5564  tcp_ack_snd_check(sk);
5565  return 0;
5566 
5567 csum_error:
5568  TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5569 
5570 discard:
5571  __kfree_skb(skb);
5572  return 0;
5573 }
5575 
5576 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5577 {
5578  struct tcp_sock *tp = tcp_sk(sk);
5579  struct inet_connection_sock *icsk = inet_csk(sk);
5580 
5582 
5583  if (skb != NULL) {
5584  icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5585  security_inet_conn_established(sk, skb);
5586  }
5587 
5588  /* Make sure socket is routed, for correct metrics. */
5589  icsk->icsk_af_ops->rebuild_header(sk);
5590 
5591  tcp_init_metrics(sk);
5592 
5594 
5595  /* Prevent spurious tcp_cwnd_restart() on first data
5596  * packet.
5597  */
5598  tp->lsndtime = tcp_time_stamp;
5599 
5601 
5602  if (sock_flag(sk, SOCK_KEEPOPEN))
5603  inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5604 
5605  if (!tp->rx_opt.snd_wscale)
5606  __tcp_fast_path_on(tp, tp->snd_wnd);
5607  else
5608  tp->pred_flags = 0;
5609 
5610  if (!sock_flag(sk, SOCK_DEAD)) {
5611  sk->sk_state_change(sk);
5612  sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5613  }
5614 }
5615 
5616 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5617  struct tcp_fastopen_cookie *cookie)
5618 {
5619  struct tcp_sock *tp = tcp_sk(sk);
5620  struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5621  u16 mss = tp->rx_opt.mss_clamp;
5622  bool syn_drop;
5623 
5624  if (mss == tp->rx_opt.user_mss) {
5625  struct tcp_options_received opt;
5626  const u8 *hash_location;
5627 
5628  /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5629  tcp_clear_options(&opt);
5630  opt.user_mss = opt.mss_clamp = 0;
5631  tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
5632  mss = opt.mss_clamp;
5633  }
5634 
5635  if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5636  cookie->len = -1;
5637 
5638  /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5639  * the remote receives only the retransmitted (regular) SYNs: either
5640  * the original SYN-data or the corresponding SYN-ACK is lost.
5641  */
5642  syn_drop = (cookie->len <= 0 && data &&
5643  inet_csk(sk)->icsk_retransmits);
5644 
5645  tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5646 
5647  if (data) { /* Retransmit unacked data in SYN */
5648  tcp_for_write_queue_from(data, sk) {
5649  if (data == tcp_send_head(sk) ||
5650  __tcp_retransmit_skb(sk, data))
5651  break;
5652  }
5653  tcp_rearm_rto(sk);
5654  return true;
5655  }
5656  tp->syn_data_acked = tp->syn_data;
5657  return false;
5658 }
5659 
5660 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5661  const struct tcphdr *th, unsigned int len)
5662 {
5663  const u8 *hash_location;
5664  struct inet_connection_sock *icsk = inet_csk(sk);
5665  struct tcp_sock *tp = tcp_sk(sk);
5666  struct tcp_cookie_values *cvp = tp->cookie_values;
5667  struct tcp_fastopen_cookie foc = { .len = -1 };
5668  int saved_clamp = tp->rx_opt.mss_clamp;
5669 
5670  tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
5671 
5672  if (th->ack) {
5673  /* rfc793:
5674  * "If the state is SYN-SENT then
5675  * first check the ACK bit
5676  * If the ACK bit is set
5677  * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5678  * a reset (unless the RST bit is set, if so drop
5679  * the segment and return)"
5680  */
5681  if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5682  after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5683  goto reset_and_undo;
5684 
5685  if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5686  !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5687  tcp_time_stamp)) {
5689  goto reset_and_undo;
5690  }
5691 
5692  /* Now ACK is acceptable.
5693  *
5694  * "If the RST bit is set
5695  * If the ACK was acceptable then signal the user "error:
5696  * connection reset", drop the segment, enter CLOSED state,
5697  * delete TCB, and return."
5698  */
5699 
5700  if (th->rst) {
5701  tcp_reset(sk);
5702  goto discard;
5703  }
5704 
5705  /* rfc793:
5706  * "fifth, if neither of the SYN or RST bits is set then
5707  * drop the segment and return."
5708  *
5709  * See note below!
5710  * --ANK(990513)
5711  */
5712  if (!th->syn)
5713  goto discard_and_undo;
5714 
5715  /* rfc793:
5716  * "If the SYN bit is on ...
5717  * are acceptable then ...
5718  * (our SYN has been ACKed), change the connection
5719  * state to ESTABLISHED..."
5720  */
5721 
5722  TCP_ECN_rcv_synack(tp, th);
5723 
5724  tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5725  tcp_ack(sk, skb, FLAG_SLOWPATH);
5726 
5727  /* Ok.. it's good. Set up sequence numbers and
5728  * move to established.
5729  */
5730  tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5731  tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5732 
5733  /* RFC1323: The window in SYN & SYN/ACK segments is
5734  * never scaled.
5735  */
5736  tp->snd_wnd = ntohs(th->window);
5737 
5738  if (!tp->rx_opt.wscale_ok) {
5739  tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5740  tp->window_clamp = min(tp->window_clamp, 65535U);
5741  }
5742 
5743  if (tp->rx_opt.saw_tstamp) {
5744  tp->rx_opt.tstamp_ok = 1;
5745  tp->tcp_header_len =
5746  sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5748  tcp_store_ts_recent(tp);
5749  } else {
5750  tp->tcp_header_len = sizeof(struct tcphdr);
5751  }
5752 
5753  if (tcp_is_sack(tp) && sysctl_tcp_fack)
5754  tcp_enable_fack(tp);
5755 
5756  tcp_mtup_init(sk);
5757  tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5759 
5760  /* Remember, tcp_poll() does not lock socket!
5761  * Change state from SYN-SENT only after copied_seq
5762  * is initialized. */
5763  tp->copied_seq = tp->rcv_nxt;
5764 
5765  if (cvp != NULL &&
5766  cvp->cookie_pair_size > 0 &&
5767  tp->rx_opt.cookie_plus > 0) {
5768  int cookie_size = tp->rx_opt.cookie_plus
5770  int cookie_pair_size = cookie_size
5771  + cvp->cookie_desired;
5772 
5773  /* A cookie extension option was sent and returned.
5774  * Note that each incoming SYNACK replaces the
5775  * Responder cookie. The initial exchange is most
5776  * fragile, as protection against spoofing relies
5777  * entirely upon the sequence and timestamp (above).
5778  * This replacement strategy allows the correct pair to
5779  * pass through, while any others will be filtered via
5780  * Responder verification later.
5781  */
5782  if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5783  memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5784  hash_location, cookie_size);
5785  cvp->cookie_pair_size = cookie_pair_size;
5786  }
5787  }
5788 
5789  smp_mb();
5790 
5791  tcp_finish_connect(sk, skb);
5792 
5793  if ((tp->syn_fastopen || tp->syn_data) &&
5794  tcp_rcv_fastopen_synack(sk, skb, &foc))
5795  return -1;
5796 
5797  if (sk->sk_write_pending ||
5798  icsk->icsk_accept_queue.rskq_defer_accept ||
5799  icsk->icsk_ack.pingpong) {
5800  /* Save one ACK. Data will be ready after
5801  * several ticks, if write_pending is set.
5802  *
5803  * It may be deleted, but with this feature tcpdumps
5804  * look so _wonderfully_ clever, that I was not able
5805  * to stand against the temptation 8) --ANK
5806  */
5807  inet_csk_schedule_ack(sk);
5808  icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5809  tcp_enter_quickack_mode(sk);
5810  inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5812 
5813 discard:
5814  __kfree_skb(skb);
5815  return 0;
5816  } else {
5817  tcp_send_ack(sk);
5818  }
5819  return -1;
5820  }
5821 
5822  /* No ACK in the segment */
5823 
5824  if (th->rst) {
5825  /* rfc793:
5826  * "If the RST bit is set
5827  *
5828  * Otherwise (no ACK) drop the segment and return."
5829  */
5830 
5831  goto discard_and_undo;
5832  }
5833 
5834  /* PAWS check. */
5835  if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5836  tcp_paws_reject(&tp->rx_opt, 0))
5837  goto discard_and_undo;
5838 
5839  if (th->syn) {
5840  /* We see SYN without ACK. It is attempt of
5841  * simultaneous connect with crossed SYNs.
5842  * Particularly, it can be connect to self.
5843  */
5845 
5846  if (tp->rx_opt.saw_tstamp) {
5847  tp->rx_opt.tstamp_ok = 1;
5848  tcp_store_ts_recent(tp);
5849  tp->tcp_header_len =
5850  sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5851  } else {
5852  tp->tcp_header_len = sizeof(struct tcphdr);
5853  }
5854 
5855  tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5856  tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5857 
5858  /* RFC1323: The window in SYN & SYN/ACK segments is
5859  * never scaled.
5860  */
5861  tp->snd_wnd = ntohs(th->window);
5862  tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5863  tp->max_window = tp->snd_wnd;
5864 
5865  TCP_ECN_rcv_syn(tp, th);
5866 
5867  tcp_mtup_init(sk);
5868  tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5870 
5871  tcp_send_synack(sk);
5872 #if 0
5873  /* Note, we could accept data and URG from this segment.
5874  * There are no obstacles to make this (except that we must
5875  * either change tcp_recvmsg() to prevent it from returning data
5876  * before 3WHS completes per RFC793, or employ TCP Fast Open).
5877  *
5878  * However, if we ignore data in ACKless segments sometimes,
5879  * we have no reasons to accept it sometimes.
5880  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5881  * is not flawless. So, discard packet for sanity.
5882  * Uncomment this return to process the data.
5883  */
5884  return -1;
5885 #else
5886  goto discard;
5887 #endif
5888  }
5889  /* "fifth, if neither of the SYN or RST bits is set then
5890  * drop the segment and return."
5891  */
5892 
5893 discard_and_undo:
5894  tcp_clear_options(&tp->rx_opt);
5895  tp->rx_opt.mss_clamp = saved_clamp;
5896  goto discard;
5897 
5898 reset_and_undo:
5899  tcp_clear_options(&tp->rx_opt);
5900  tp->rx_opt.mss_clamp = saved_clamp;
5901  return 1;
5902 }
5903 
5904 /*
5905  * This function implements the receiving procedure of RFC 793 for
5906  * all states except ESTABLISHED and TIME_WAIT.
5907  * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5908  * address independent.
5909  */
5910 
5911 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5912  const struct tcphdr *th, unsigned int len)
5913 {
5914  struct tcp_sock *tp = tcp_sk(sk);
5915  struct inet_connection_sock *icsk = inet_csk(sk);
5916  struct request_sock *req;
5917  int queued = 0;
5918 
5919  tp->rx_opt.saw_tstamp = 0;
5920 
5921  switch (sk->sk_state) {
5922  case TCP_CLOSE:
5923  goto discard;
5924 
5925  case TCP_LISTEN:
5926  if (th->ack)
5927  return 1;
5928 
5929  if (th->rst)
5930  goto discard;
5931 
5932  if (th->syn) {
5933  if (th->fin)
5934  goto discard;
5935  if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5936  return 1;
5937 
5938  /* Now we have several options: In theory there is
5939  * nothing else in the frame. KA9Q has an option to
5940  * send data with the syn, BSD accepts data with the
5941  * syn up to the [to be] advertised window and
5942  * Solaris 2.1 gives you a protocol error. For now
5943  * we just ignore it, that fits the spec precisely
5944  * and avoids incompatibilities. It would be nice in
5945  * future to drop through and process the data.
5946  *
5947  * Now that TTCP is starting to be used we ought to
5948  * queue this data.
5949  * But, this leaves one open to an easy denial of
5950  * service attack, and SYN cookies can't defend
5951  * against this problem. So, we drop the data
5952  * in the interest of security over speed unless
5953  * it's still in use.
5954  */
5955  kfree_skb(skb);
5956  return 0;
5957  }
5958  goto discard;
5959 
5960  case TCP_SYN_SENT:
5961  queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5962  if (queued >= 0)
5963  return queued;
5964 
5965  /* Do step6 onward by hand. */
5966  tcp_urg(sk, skb, th);
5967  __kfree_skb(skb);
5968  tcp_data_snd_check(sk);
5969  return 0;
5970  }
5971 
5972  req = tp->fastopen_rsk;
5973  if (req != NULL) {
5974  WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5975  sk->sk_state != TCP_FIN_WAIT1);
5976 
5977  if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5978  goto discard;
5979  }
5980  if (!tcp_validate_incoming(sk, skb, th, 0))
5981  return 0;
5982 
5983  /* step 5: check the ACK field */
5984  if (th->ack) {
5985  int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5986 
5987  switch (sk->sk_state) {
5988  case TCP_SYN_RECV:
5989  if (acceptable) {
5990  /* Once we leave TCP_SYN_RECV, we no longer
5991  * need req so release it.
5992  */
5993  if (req) {
5994  tcp_synack_rtt_meas(sk, req);
5995  tp->total_retrans = req->retrans;
5996 
5997  reqsk_fastopen_remove(sk, req, false);
5998  } else {
5999  /* Make sure socket is routed, for
6000  * correct metrics.
6001  */
6002  icsk->icsk_af_ops->rebuild_header(sk);
6004 
6005  tcp_mtup_init(sk);
6007  tp->copied_seq = tp->rcv_nxt;
6008  }
6009  smp_mb();
6011  sk->sk_state_change(sk);
6012 
6013  /* Note, that this wakeup is only for marginal
6014  * crossed SYN case. Passively open sockets
6015  * are not waked up, because sk->sk_sleep ==
6016  * NULL and sk->sk_socket == NULL.
6017  */
6018  if (sk->sk_socket)
6019  sk_wake_async(sk,
6021 
6022  tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6023  tp->snd_wnd = ntohs(th->window) <<
6024  tp->rx_opt.snd_wscale;
6025  tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6026 
6027  if (tp->rx_opt.tstamp_ok)
6029 
6030  if (req) {
6031  /* Re-arm the timer because data may
6032  * have been sent out. This is similar
6033  * to the regular data transmission case
6034  * when new data has just been ack'ed.
6035  *
6036  * (TFO) - we could try to be more
6037  * aggressive and retranmitting any data
6038  * sooner based on when they were sent
6039  * out.
6040  */
6041  tcp_rearm_rto(sk);
6042  } else
6043  tcp_init_metrics(sk);
6044 
6045  /* Prevent spurious tcp_cwnd_restart() on
6046  * first data packet.
6047  */
6048  tp->lsndtime = tcp_time_stamp;
6049 
6051  tcp_fast_path_on(tp);
6052  } else {
6053  return 1;
6054  }
6055  break;
6056 
6057  case TCP_FIN_WAIT1:
6058  /* If we enter the TCP_FIN_WAIT1 state and we are a
6059  * Fast Open socket and this is the first acceptable
6060  * ACK we have received, this would have acknowledged
6061  * our SYNACK so stop the SYNACK timer.
6062  */
6063  if (req != NULL) {
6064  /* Return RST if ack_seq is invalid.
6065  * Note that RFC793 only says to generate a
6066  * DUPACK for it but for TCP Fast Open it seems
6067  * better to treat this case like TCP_SYN_RECV
6068  * above.
6069  */
6070  if (!acceptable)
6071  return 1;
6072  /* We no longer need the request sock. */
6073  reqsk_fastopen_remove(sk, req, false);
6074  tcp_rearm_rto(sk);
6075  }
6076  if (tp->snd_una == tp->write_seq) {
6077  struct dst_entry *dst;
6078 
6080  sk->sk_shutdown |= SEND_SHUTDOWN;
6081 
6082  dst = __sk_dst_get(sk);
6083  if (dst)
6084  dst_confirm(dst);
6085 
6086  if (!sock_flag(sk, SOCK_DEAD))
6087  /* Wake up lingering close() */
6088  sk->sk_state_change(sk);
6089  else {
6090  int tmo;
6091 
6092  if (tp->linger2 < 0 ||
6093  (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6094  after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6095  tcp_done(sk);
6097  return 1;
6098  }
6099 
6100  tmo = tcp_fin_time(sk);
6101  if (tmo > TCP_TIMEWAIT_LEN) {
6103  } else if (th->fin || sock_owned_by_user(sk)) {
6104  /* Bad case. We could lose such FIN otherwise.
6105  * It is not a big problem, but it looks confusing
6106  * and not so rare event. We still can lose it now,
6107  * if it spins in bh_lock_sock(), but it is really
6108  * marginal case.
6109  */
6111  } else {
6112  tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6113  goto discard;
6114  }
6115  }
6116  }
6117  break;
6118 
6119  case TCP_CLOSING:
6120  if (tp->snd_una == tp->write_seq) {
6121  tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6122  goto discard;
6123  }
6124  break;
6125 
6126  case TCP_LAST_ACK:
6127  if (tp->snd_una == tp->write_seq) {
6128  tcp_update_metrics(sk);
6129  tcp_done(sk);
6130  goto discard;
6131  }
6132  break;
6133  }
6134  } else
6135  goto discard;
6136 
6137  /* ts_recent update must be made after we are sure that the packet
6138  * is in window.
6139  */
6140  tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
6141 
6142  /* step 6: check the URG bit */
6143  tcp_urg(sk, skb, th);
6144 
6145  /* step 7: process the segment text */
6146  switch (sk->sk_state) {
6147  case TCP_CLOSE_WAIT:
6148  case TCP_CLOSING:
6149  case TCP_LAST_ACK:
6150  if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6151  break;
6152  case TCP_FIN_WAIT1:
6153  case TCP_FIN_WAIT2:
6154  /* RFC 793 says to queue data in these states,
6155  * RFC 1122 says we MUST send a reset.
6156  * BSD 4.4 also does reset.
6157  */
6158  if (sk->sk_shutdown & RCV_SHUTDOWN) {
6159  if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6160  after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6162  tcp_reset(sk);
6163  return 1;
6164  }
6165  }
6166  /* Fall through */
6167  case TCP_ESTABLISHED:
6168  tcp_data_queue(sk, skb);
6169  queued = 1;
6170  break;
6171  }
6172 
6173  /* tcp_data could move socket to TIME-WAIT */
6174  if (sk->sk_state != TCP_CLOSE) {
6175  tcp_data_snd_check(sk);
6176  tcp_ack_snd_check(sk);
6177  }
6178 
6179  if (!queued) {
6180 discard:
6181  __kfree_skb(skb);
6182  }
6183  return 0;
6184 }