Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tcp_output.c
Go to the documentation of this file.
1 /*
2  * INET An implementation of the TCP/IP protocol suite for the LINUX
3  * operating system. INET is implemented using the BSD Socket
4  * interface as the means of communication with the user level.
5  *
6  * Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors: Ross Biro
9  * Fred N. van Kempen, <[email protected]>
10  * Mark Evans, <[email protected]>
11  * Corey Minyard <[email protected]>
12  * Florian La Roche, <[email protected]>
13  * Charles Hedrick, <[email protected]>
14  * Linus Torvalds, <[email protected]>
15  * Alan Cox, <[email protected]>
16  * Matthew Dillon, <[email protected]>
17  * Arnt Gulbrandsen, <[email protected]>
18  * Jorge Cwik, <[email protected]>
19  */
20 
21 /*
22  * Changes: Pedro Roque : Retransmit queue handled by TCP.
23  * : Fragmentation on mtu decrease
24  * : Segment collapse on retransmit
25  * : AF independence
26  *
27  * Linus Torvalds : send_delayed_ack
28  * David S. Miller : Charge memory using the right skb
29  * during syn/ack processing.
30  * David S. Miller : Output engine completely rewritten.
31  * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32  * Cacophonix Gaul : draft-minshall-nagle-01
33  * J Hadi Salim : ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
52 
53 /* Default TSQ limit of two TSO segments */
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume. Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
61 
64 
65 /* By default, RFC2861 behavior. */
67 
68 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */
69 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72  int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77  struct tcp_sock *tp = tcp_sk(sk);
78  unsigned int prior_packets = tp->packets_out;
79 
80  tcp_advance_send_head(sk, skb);
81  tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
82 
83  /* Don't override Nagle indefinitely with F-RTO */
84  if (tp->frto_counter == 2)
85  tp->frto_counter = 3;
86 
87  tp->packets_out += tcp_skb_pcount(skb);
88  if (!prior_packets || tp->early_retrans_delayed)
89  tcp_rearm_rto(sk);
90 }
91 
92 /* SND.NXT, if window was not shrunk.
93  * If window has been shrunk, what should we make? It is not clear at all.
94  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
95  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
96  * invalid. OK, let's make this for now:
97  */
98 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
99 {
100  const struct tcp_sock *tp = tcp_sk(sk);
101 
102  if (!before(tcp_wnd_end(tp), tp->snd_nxt))
103  return tp->snd_nxt;
104  else
105  return tcp_wnd_end(tp);
106 }
107 
108 /* Calculate mss to advertise in SYN segment.
109  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110  *
111  * 1. It is independent of path mtu.
112  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
113  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
114  * attached devices, because some buggy hosts are confused by
115  * large MSS.
116  * 4. We do not make 3, we advertise MSS, calculated from first
117  * hop device mtu, but allow to raise it to ip_rt_min_advmss.
118  * This may be overridden via information stored in routing table.
119  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
120  * probably even Jumbo".
121  */
122 static __u16 tcp_advertise_mss(struct sock *sk)
123 {
124  struct tcp_sock *tp = tcp_sk(sk);
125  const struct dst_entry *dst = __sk_dst_get(sk);
126  int mss = tp->advmss;
127 
128  if (dst) {
129  unsigned int metric = dst_metric_advmss(dst);
130 
131  if (metric < mss) {
132  mss = metric;
133  tp->advmss = mss;
134  }
135  }
136 
137  return (__u16)mss;
138 }
139 
140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
141  * This is the first part of cwnd validation mechanism. */
142 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
143 {
144  struct tcp_sock *tp = tcp_sk(sk);
146  u32 restart_cwnd = tcp_init_cwnd(tp, dst);
147  u32 cwnd = tp->snd_cwnd;
148 
150 
151  tp->snd_ssthresh = tcp_current_ssthresh(sk);
152  restart_cwnd = min(restart_cwnd, cwnd);
153 
154  while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
155  cwnd >>= 1;
156  tp->snd_cwnd = max(cwnd, restart_cwnd);
158  tp->snd_cwnd_used = 0;
159 }
160 
161 /* Congestion state accounting after a packet has been sent. */
162 static void tcp_event_data_sent(struct tcp_sock *tp,
163  struct sock *sk)
164 {
165  struct inet_connection_sock *icsk = inet_csk(sk);
166  const u32 now = tcp_time_stamp;
167 
168  if (sysctl_tcp_slow_start_after_idle &&
169  (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170  tcp_cwnd_restart(sk, __sk_dst_get(sk));
171 
172  tp->lsndtime = now;
173 
174  /* If it is a reply for ato after last received
175  * packet, enter pingpong mode.
176  */
177  if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178  icsk->icsk_ack.pingpong = 1;
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
183 {
184  tcp_dec_quickack_mode(sk, pkts);
185  inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
186 }
187 
188 /* Determine a window scaling and initial window to offer.
189  * Based on the assumption that the given amount of space
190  * will be offered. Store the results in the tp structure.
191  * NOTE: for smooth operation initial space offering should
192  * be a multiple of mss if possible. We assume here that mss >= 1.
193  * This MUST be enforced by all callers.
194  */
195 void tcp_select_initial_window(int __space, __u32 mss,
196  __u32 *rcv_wnd, __u32 *window_clamp,
197  int wscale_ok, __u8 *rcv_wscale,
198  __u32 init_rcv_wnd)
199 {
200  unsigned int space = (__space < 0 ? 0 : __space);
201 
202  /* If no clamp set the clamp to the max possible scaled window */
203  if (*window_clamp == 0)
204  (*window_clamp) = (65535 << 14);
205  space = min(*window_clamp, space);
206 
207  /* Quantize space offering to a multiple of mss if possible. */
208  if (space > mss)
209  space = (space / mss) * mss;
210 
211  /* NOTE: offering an initial window larger than 32767
212  * will break some buggy TCP stacks. If the admin tells us
213  * it is likely we could be speaking with such a buggy stack
214  * we will truncate our initial window offering to 32K-1
215  * unless the remote has sent us a window scaling option,
216  * which we interpret as a sign the remote TCP is not
217  * misinterpreting the window field as a signed quantity.
218  */
220  (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
221  else
222  (*rcv_wnd) = space;
223 
224  (*rcv_wscale) = 0;
225  if (wscale_ok) {
226  /* Set window scaling on max possible window
227  * See RFC1323 for an explanation of the limit to 14
228  */
230  space = min_t(u32, space, *window_clamp);
231  while (space > 65535 && (*rcv_wscale) < 14) {
232  space >>= 1;
233  (*rcv_wscale)++;
234  }
235  }
236 
237  /* Set initial window to a value enough for senders starting with
238  * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
239  * a limit on the initial window when mss is larger than 1460.
240  */
241  if (mss > (1 << *rcv_wscale)) {
242  int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
243  if (mss > 1460)
244  init_cwnd =
245  max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
246  /* when initializing use the value from init_rcv_wnd
247  * rather than the default from above
248  */
249  if (init_rcv_wnd)
250  *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251  else
252  *rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
253  }
254 
255  /* Set the clamp no higher than max representable value */
256  (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
257 }
259 
260 /* Chose a new window to advertise, update state in tcp_sock for the
261  * socket, and return result with RFC1323 scaling applied. The return
262  * value can be stuffed directly into th->window for an outgoing
263  * frame.
264  */
265 static u16 tcp_select_window(struct sock *sk)
266 {
267  struct tcp_sock *tp = tcp_sk(sk);
268  u32 cur_win = tcp_receive_window(tp);
269  u32 new_win = __tcp_select_window(sk);
270 
271  /* Never shrink the offered window */
272  if (new_win < cur_win) {
273  /* Danger Will Robinson!
274  * Don't update rcv_wup/rcv_wnd here or else
275  * we will not be able to advertise a zero
276  * window in time. --DaveM
277  *
278  * Relax Will Robinson.
279  */
280  new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
281  }
282  tp->rcv_wnd = new_win;
283  tp->rcv_wup = tp->rcv_nxt;
284 
285  /* Make sure we do not exceed the maximum possible
286  * scaled window.
287  */
288  if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
289  new_win = min(new_win, MAX_TCP_WINDOW);
290  else
291  new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
292 
293  /* RFC1323 scaling applied */
294  new_win >>= tp->rx_opt.rcv_wscale;
295 
296  /* If we advertise zero window, disable fast path. */
297  if (new_win == 0)
298  tp->pred_flags = 0;
299 
300  return new_win;
301 }
302 
303 /* Packet ECN state for a SYN-ACK */
304 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
305 {
306  TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
307  if (!(tp->ecn_flags & TCP_ECN_OK))
308  TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
309 }
310 
311 /* Packet ECN state for a SYN. */
312 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
313 {
314  struct tcp_sock *tp = tcp_sk(sk);
315 
316  tp->ecn_flags = 0;
317  if (sysctl_tcp_ecn == 1) {
318  TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
319  tp->ecn_flags = TCP_ECN_OK;
320  }
321 }
322 
323 static __inline__ void
324 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
325 {
326  if (inet_rsk(req)->ecn_ok)
327  th->ece = 1;
328 }
329 
330 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
331  * be sent.
332  */
333 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
334  int tcp_header_len)
335 {
336  struct tcp_sock *tp = tcp_sk(sk);
337 
338  if (tp->ecn_flags & TCP_ECN_OK) {
339  /* Not-retransmitted data segment: set ECT and inject CWR. */
340  if (skb->len != tcp_header_len &&
341  !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
342  INET_ECN_xmit(sk);
343  if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
345  tcp_hdr(skb)->cwr = 1;
346  skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
347  }
348  } else {
349  /* ACK or retransmitted segment: clear ECT|CE */
350  INET_ECN_dontxmit(sk);
351  }
352  if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
353  tcp_hdr(skb)->ece = 1;
354  }
355 }
356 
357 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
358  * auto increment end seqno.
359  */
360 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
361 {
363  skb->csum = 0;
364 
365  TCP_SKB_CB(skb)->tcp_flags = flags;
366  TCP_SKB_CB(skb)->sacked = 0;
367 
368  skb_shinfo(skb)->gso_segs = 1;
369  skb_shinfo(skb)->gso_size = 0;
370  skb_shinfo(skb)->gso_type = 0;
371 
372  TCP_SKB_CB(skb)->seq = seq;
373  if (flags & (TCPHDR_SYN | TCPHDR_FIN))
374  seq++;
375  TCP_SKB_CB(skb)->end_seq = seq;
376 }
377 
378 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
379 {
380  return tp->snd_una != tp->snd_up;
381 }
382 
383 #define OPTION_SACK_ADVERTISE (1 << 0)
384 #define OPTION_TS (1 << 1)
385 #define OPTION_MD5 (1 << 2)
386 #define OPTION_WSCALE (1 << 3)
387 #define OPTION_COOKIE_EXTENSION (1 << 4)
388 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
389 
391  u16 options; /* bit field of OPTION_* */
392  u16 mss; /* 0 to disable */
393  u8 ws; /* window scale, 0 to disable */
394  u8 num_sack_blocks; /* number of SACK blocks to include */
395  u8 hash_size; /* bytes in hash_location */
396  __u8 *hash_location; /* temporary pointer, overloaded */
397  __u32 tsval, tsecr; /* need to include OPTION_TS */
398  struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
399 };
400 
401 /* The sysctl int routines are generic, so check consistency here.
402  */
403 static u8 tcp_cookie_size_check(u8 desired)
404 {
405  int cookie_size;
406 
407  if (desired > 0)
408  /* previously specified */
409  return desired;
410 
411  cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size);
412  if (cookie_size <= 0)
413  /* no default specified */
414  return 0;
415 
416  if (cookie_size <= TCP_COOKIE_MIN)
417  /* value too small, specify minimum */
418  return TCP_COOKIE_MIN;
419 
420  if (cookie_size >= TCP_COOKIE_MAX)
421  /* value too large, specify maximum */
422  return TCP_COOKIE_MAX;
423 
424  if (cookie_size & 1)
425  /* 8-bit multiple, illegal, fix it */
426  cookie_size++;
427 
428  return (u8)cookie_size;
429 }
430 
431 /* Write previously computed TCP options to the packet.
432  *
433  * Beware: Something in the Internet is very sensitive to the ordering of
434  * TCP options, we learned this through the hard way, so be careful here.
435  * Luckily we can at least blame others for their non-compliance but from
436  * inter-operatibility perspective it seems that we're somewhat stuck with
437  * the ordering which we have been using if we want to keep working with
438  * those broken things (not that it currently hurts anybody as there isn't
439  * particular reason why the ordering would need to be changed).
440  *
441  * At least SACK_PERM as the first option is known to lead to a disaster
442  * (but it may well be that other scenarios fail similarly).
443  */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445  struct tcp_out_options *opts)
446 {
447  u16 options = opts->options; /* mungable copy */
448 
449  /* Having both authentication and cookies for security is redundant,
450  * and there's certainly not enough room. Instead, the cookie-less
451  * extension variant is proposed.
452  *
453  * Consider the pessimal case with authentication. The options
454  * could look like:
455  * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40
456  */
457  if (unlikely(OPTION_MD5 & options)) {
458  if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
459  *ptr++ = htonl((TCPOPT_COOKIE << 24) |
460  (TCPOLEN_COOKIE_BASE << 16) |
461  (TCPOPT_MD5SIG << 8) |
463  } else {
464  *ptr++ = htonl((TCPOPT_NOP << 24) |
465  (TCPOPT_NOP << 16) |
466  (TCPOPT_MD5SIG << 8) |
468  }
469  options &= ~OPTION_COOKIE_EXTENSION;
470  /* overload cookie hash location */
471  opts->hash_location = (__u8 *)ptr;
472  ptr += 4;
473  }
474 
475  if (unlikely(opts->mss)) {
476  *ptr++ = htonl((TCPOPT_MSS << 24) |
477  (TCPOLEN_MSS << 16) |
478  opts->mss);
479  }
480 
481  if (likely(OPTION_TS & options)) {
482  if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483  *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
484  (TCPOLEN_SACK_PERM << 16) |
485  (TCPOPT_TIMESTAMP << 8) |
487  options &= ~OPTION_SACK_ADVERTISE;
488  } else {
489  *ptr++ = htonl((TCPOPT_NOP << 24) |
490  (TCPOPT_NOP << 16) |
491  (TCPOPT_TIMESTAMP << 8) |
493  }
494  *ptr++ = htonl(opts->tsval);
495  *ptr++ = htonl(opts->tsecr);
496  }
497 
498  /* Specification requires after timestamp, so do it now.
499  *
500  * Consider the pessimal case without authentication. The options
501  * could look like:
502  * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40
503  */
504  if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
505  __u8 *cookie_copy = opts->hash_location;
506  u8 cookie_size = opts->hash_size;
507 
508  /* 8-bit multiple handled in tcp_cookie_size_check() above,
509  * and elsewhere.
510  */
511  if (0x2 & cookie_size) {
512  __u8 *p = (__u8 *)ptr;
513 
514  /* 16-bit multiple */
515  *p++ = TCPOPT_COOKIE;
516  *p++ = TCPOLEN_COOKIE_BASE + cookie_size;
517  *p++ = *cookie_copy++;
518  *p++ = *cookie_copy++;
519  ptr++;
520  cookie_size -= 2;
521  } else {
522  /* 32-bit multiple */
523  *ptr++ = htonl(((TCPOPT_NOP << 24) |
524  (TCPOPT_NOP << 16) |
525  (TCPOPT_COOKIE << 8) |
527  cookie_size);
528  }
529 
530  if (cookie_size > 0) {
531  memcpy(ptr, cookie_copy, cookie_size);
532  ptr += (cookie_size / 4);
533  }
534  }
535 
536  if (unlikely(OPTION_SACK_ADVERTISE & options)) {
537  *ptr++ = htonl((TCPOPT_NOP << 24) |
538  (TCPOPT_NOP << 16) |
539  (TCPOPT_SACK_PERM << 8) |
541  }
542 
543  if (unlikely(OPTION_WSCALE & options)) {
544  *ptr++ = htonl((TCPOPT_NOP << 24) |
545  (TCPOPT_WINDOW << 16) |
546  (TCPOLEN_WINDOW << 8) |
547  opts->ws);
548  }
549 
550  if (unlikely(opts->num_sack_blocks)) {
551  struct tcp_sack_block *sp = tp->rx_opt.dsack ?
552  tp->duplicate_sack : tp->selective_acks;
553  int this_sack;
554 
555  *ptr++ = htonl((TCPOPT_NOP << 24) |
556  (TCPOPT_NOP << 16) |
557  (TCPOPT_SACK << 8) |
560 
561  for (this_sack = 0; this_sack < opts->num_sack_blocks;
562  ++this_sack) {
563  *ptr++ = htonl(sp[this_sack].start_seq);
564  *ptr++ = htonl(sp[this_sack].end_seq);
565  }
566 
567  tp->rx_opt.dsack = 0;
568  }
569 
570  if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
571  struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
572 
573  *ptr++ = htonl((TCPOPT_EXP << 24) |
574  ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
576 
577  memcpy(ptr, foc->val, foc->len);
578  if ((foc->len & 3) == 2) {
579  u8 *align = ((u8 *)ptr) + foc->len;
580  align[0] = align[1] = TCPOPT_NOP;
581  }
582  ptr += (foc->len + 3) >> 2;
583  }
584 }
585 
586 /* Compute TCP options for SYN packets. This is not the final
587  * network wire format yet.
588  */
589 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
590  struct tcp_out_options *opts,
591  struct tcp_md5sig_key **md5)
592 {
593  struct tcp_sock *tp = tcp_sk(sk);
594  struct tcp_cookie_values *cvp = tp->cookie_values;
595  unsigned int remaining = MAX_TCP_OPTION_SPACE;
596  u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ?
597  tcp_cookie_size_check(cvp->cookie_desired) :
598  0;
599  struct tcp_fastopen_request *fastopen = tp->fastopen_req;
600 
601 #ifdef CONFIG_TCP_MD5SIG
602  *md5 = tp->af_specific->md5_lookup(sk, sk);
603  if (*md5) {
604  opts->options |= OPTION_MD5;
605  remaining -= TCPOLEN_MD5SIG_ALIGNED;
606  }
607 #else
608  *md5 = NULL;
609 #endif
610 
611  /* We always get an MSS option. The option bytes which will be seen in
612  * normal data packets should timestamps be used, must be in the MSS
613  * advertised. But we subtract them from tp->mss_cache so that
614  * calculations in tcp_sendmsg are simpler etc. So account for this
615  * fact here if necessary. If we don't do this correctly, as a
616  * receiver we won't recognize data packets as being full sized when we
617  * should, and thus we won't abide by the delayed ACK rules correctly.
618  * SACKs don't matter, we never delay an ACK when we have any of those
619  * going out. */
620  opts->mss = tcp_advertise_mss(sk);
621  remaining -= TCPOLEN_MSS_ALIGNED;
622 
623  if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
624  opts->options |= OPTION_TS;
625  opts->tsval = TCP_SKB_CB(skb)->when;
626  opts->tsecr = tp->rx_opt.ts_recent;
627  remaining -= TCPOLEN_TSTAMP_ALIGNED;
628  }
629  if (likely(sysctl_tcp_window_scaling)) {
630  opts->ws = tp->rx_opt.rcv_wscale;
631  opts->options |= OPTION_WSCALE;
632  remaining -= TCPOLEN_WSCALE_ALIGNED;
633  }
634  if (likely(sysctl_tcp_sack)) {
636  if (unlikely(!(OPTION_TS & opts->options)))
637  remaining -= TCPOLEN_SACKPERM_ALIGNED;
638  }
639 
640  if (fastopen && fastopen->cookie.len >= 0) {
641  u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
642  need = (need + 3) & ~3U; /* Align to 32 bits */
643  if (remaining >= need) {
645  opts->fastopen_cookie = &fastopen->cookie;
646  remaining -= need;
647  tp->syn_fastopen = 1;
648  }
649  }
650  /* Note that timestamps are required by the specification.
651  *
652  * Odd numbers of bytes are prohibited by the specification, ensuring
653  * that the cookie is 16-bit aligned, and the resulting cookie pair is
654  * 32-bit aligned.
655  */
656  if (*md5 == NULL &&
657  (OPTION_TS & opts->options) &&
658  cookie_size > 0) {
659  int need = TCPOLEN_COOKIE_BASE + cookie_size;
660 
661  if (0x2 & need) {
662  /* 32-bit multiple */
663  need += 2; /* NOPs */
664 
665  if (need > remaining) {
666  /* try shrinking cookie to fit */
667  cookie_size -= 2;
668  need -= 4;
669  }
670  }
671  while (need > remaining && TCP_COOKIE_MIN <= cookie_size) {
672  cookie_size -= 4;
673  need -= 4;
674  }
675  if (TCP_COOKIE_MIN <= cookie_size) {
677  opts->hash_location = (__u8 *)&cvp->cookie_pair[0];
678  opts->hash_size = cookie_size;
679 
680  /* Remember for future incarnations. */
681  cvp->cookie_desired = cookie_size;
682 
683  if (cvp->cookie_desired != cvp->cookie_pair_size) {
684  /* Currently use random bytes as a nonce,
685  * assuming these are completely unpredictable
686  * by hostile users of the same system.
687  */
688  get_random_bytes(&cvp->cookie_pair[0],
689  cookie_size);
690  cvp->cookie_pair_size = cookie_size;
691  }
692 
693  remaining -= need;
694  }
695  }
696  return MAX_TCP_OPTION_SPACE - remaining;
697 }
698 
699 /* Set up TCP options for SYN-ACKs. */
700 static unsigned int tcp_synack_options(struct sock *sk,
701  struct request_sock *req,
702  unsigned int mss, struct sk_buff *skb,
703  struct tcp_out_options *opts,
704  struct tcp_md5sig_key **md5,
705  struct tcp_extend_values *xvp,
706  struct tcp_fastopen_cookie *foc)
707 {
708  struct inet_request_sock *ireq = inet_rsk(req);
709  unsigned int remaining = MAX_TCP_OPTION_SPACE;
710  u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ?
711  xvp->cookie_plus :
712  0;
713 
714 #ifdef CONFIG_TCP_MD5SIG
715  *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
716  if (*md5) {
717  opts->options |= OPTION_MD5;
718  remaining -= TCPOLEN_MD5SIG_ALIGNED;
719 
720  /* We can't fit any SACK blocks in a packet with MD5 + TS
721  * options. There was discussion about disabling SACK
722  * rather than TS in order to fit in better with old,
723  * buggy kernels, but that was deemed to be unnecessary.
724  */
725  ireq->tstamp_ok &= !ireq->sack_ok;
726  }
727 #else
728  *md5 = NULL;
729 #endif
730 
731  /* We always send an MSS option. */
732  opts->mss = mss;
733  remaining -= TCPOLEN_MSS_ALIGNED;
734 
735  if (likely(ireq->wscale_ok)) {
736  opts->ws = ireq->rcv_wscale;
737  opts->options |= OPTION_WSCALE;
738  remaining -= TCPOLEN_WSCALE_ALIGNED;
739  }
740  if (likely(ireq->tstamp_ok)) {
741  opts->options |= OPTION_TS;
742  opts->tsval = TCP_SKB_CB(skb)->when;
743  opts->tsecr = req->ts_recent;
744  remaining -= TCPOLEN_TSTAMP_ALIGNED;
745  }
746  if (likely(ireq->sack_ok)) {
748  if (unlikely(!ireq->tstamp_ok))
749  remaining -= TCPOLEN_SACKPERM_ALIGNED;
750  }
751  if (foc != NULL) {
752  u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
753  need = (need + 3) & ~3U; /* Align to 32 bits */
754  if (remaining >= need) {
756  opts->fastopen_cookie = foc;
757  remaining -= need;
758  }
759  }
760  /* Similar rationale to tcp_syn_options() applies here, too.
761  * If the <SYN> options fit, the same options should fit now!
762  */
763  if (*md5 == NULL &&
764  ireq->tstamp_ok &&
765  cookie_plus > TCPOLEN_COOKIE_BASE) {
766  int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */
767 
768  if (0x2 & need) {
769  /* 32-bit multiple */
770  need += 2; /* NOPs */
771  }
772  if (need <= remaining) {
774  opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE;
775  remaining -= need;
776  } else {
777  /* There's no error return, so flag it. */
778  xvp->cookie_out_never = 1; /* true */
779  opts->hash_size = 0;
780  }
781  }
782  return MAX_TCP_OPTION_SPACE - remaining;
783 }
784 
785 /* Compute TCP options for ESTABLISHED sockets. This is not the
786  * final wire format yet.
787  */
788 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
789  struct tcp_out_options *opts,
790  struct tcp_md5sig_key **md5)
791 {
792  struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
793  struct tcp_sock *tp = tcp_sk(sk);
794  unsigned int size = 0;
795  unsigned int eff_sacks;
796 
797 #ifdef CONFIG_TCP_MD5SIG
798  *md5 = tp->af_specific->md5_lookup(sk, sk);
799  if (unlikely(*md5)) {
800  opts->options |= OPTION_MD5;
801  size += TCPOLEN_MD5SIG_ALIGNED;
802  }
803 #else
804  *md5 = NULL;
805 #endif
806 
807  if (likely(tp->rx_opt.tstamp_ok)) {
808  opts->options |= OPTION_TS;
809  opts->tsval = tcb ? tcb->when : 0;
810  opts->tsecr = tp->rx_opt.ts_recent;
811  size += TCPOLEN_TSTAMP_ALIGNED;
812  }
813 
814  eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
815  if (unlikely(eff_sacks)) {
816  const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
817  opts->num_sack_blocks =
818  min_t(unsigned int, eff_sacks,
819  (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
821  size += TCPOLEN_SACK_BASE_ALIGNED +
823  }
824 
825  return size;
826 }
827 
828 
829 /* TCP SMALL QUEUES (TSQ)
830  *
831  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
832  * to reduce RTT and bufferbloat.
833  * We do this using a special skb destructor (tcp_wfree).
834  *
835  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
836  * needs to be reallocated in a driver.
837  * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
838  *
839  * Since transmit from skb destructor is forbidden, we use a tasklet
840  * to process all sockets that eventually need to send more skbs.
841  * We use one tasklet per cpu, with its own queue of sockets.
842  */
843 struct tsq_tasklet {
845  struct list_head head; /* queue of tcp sockets */
846 };
847 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
848 
849 static void tcp_tsq_handler(struct sock *sk)
850 {
851  if ((1 << sk->sk_state) &
854  tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
855 }
856 /*
857  * One tasklest per cpu tries to send more skbs.
858  * We run in tasklet context but need to disable irqs when
859  * transfering tsq->head because tcp_wfree() might
860  * interrupt us (non NAPI drivers)
861  */
862 static void tcp_tasklet_func(unsigned long data)
863 {
864  struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
865  LIST_HEAD(list);
866  unsigned long flags;
867  struct list_head *q, *n;
868  struct tcp_sock *tp;
869  struct sock *sk;
870 
871  local_irq_save(flags);
872  list_splice_init(&tsq->head, &list);
873  local_irq_restore(flags);
874 
875  list_for_each_safe(q, n, &list) {
876  tp = list_entry(q, struct tcp_sock, tsq_node);
877  list_del(&tp->tsq_node);
878 
879  sk = (struct sock *)tp;
880  bh_lock_sock(sk);
881 
882  if (!sock_owned_by_user(sk)) {
883  tcp_tsq_handler(sk);
884  } else {
885  /* defer the work to tcp_release_cb() */
887  }
888  bh_unlock_sock(sk);
889 
891  sk_free(sk);
892  }
893 }
894 
895 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
896  (1UL << TCP_WRITE_TIMER_DEFERRED) | \
897  (1UL << TCP_DELACK_TIMER_DEFERRED) | \
898  (1UL << TCP_MTU_REDUCED_DEFERRED))
899 
906 void tcp_release_cb(struct sock *sk)
907 {
908  struct tcp_sock *tp = tcp_sk(sk);
909  unsigned long flags, nflags;
910 
911  /* perform an atomic operation only if at least one flag is set */
912  do {
913  flags = tp->tsq_flags;
914  if (!(flags & TCP_DEFERRED_ALL))
915  return;
916  nflags = flags & ~TCP_DEFERRED_ALL;
917  } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
918 
919  if (flags & (1UL << TCP_TSQ_DEFERRED))
920  tcp_tsq_handler(sk);
921 
922  if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
924  __sock_put(sk);
925  }
926  if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
928  __sock_put(sk);
929  }
930  if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
931  sk->sk_prot->mtu_reduced(sk);
932  __sock_put(sk);
933  }
934 }
936 
938 {
939  int i;
940 
942  struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
943 
944  INIT_LIST_HEAD(&tsq->head);
945  tasklet_init(&tsq->tasklet,
946  tcp_tasklet_func,
947  (unsigned long)tsq);
948  }
949 }
950 
951 /*
952  * Write buffer destructor automatically called from kfree_skb.
953  * We cant xmit new skbs from this context, as we might already
954  * hold qdisc lock.
955  */
956 static void tcp_wfree(struct sk_buff *skb)
957 {
958  struct sock *sk = skb->sk;
959  struct tcp_sock *tp = tcp_sk(sk);
960 
963  unsigned long flags;
964  struct tsq_tasklet *tsq;
965 
966  /* Keep a ref on socket.
967  * This last ref will be released in tcp_tasklet_func()
968  */
969  atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
970 
971  /* queue this socket to tasklet queue */
972  local_irq_save(flags);
973  tsq = &__get_cpu_var(tsq_tasklet);
974  list_add(&tp->tsq_node, &tsq->head);
975  tasklet_schedule(&tsq->tasklet);
976  local_irq_restore(flags);
977  } else {
978  sock_wfree(skb);
979  }
980 }
981 
982 /* This routine actually transmits TCP packets queued in by
983  * tcp_do_sendmsg(). This is used by both the initial
984  * transmission and possible later retransmissions.
985  * All SKB's seen here are completely headerless. It is our
986  * job to build the TCP header, and pass the packet down to
987  * IP so it can do the same plus pass the packet off to the
988  * device.
989  *
990  * We are working here with either a clone of the original
991  * SKB, or a fresh unique copy made by the retransmit engine.
992  */
993 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
994  gfp_t gfp_mask)
995 {
996  const struct inet_connection_sock *icsk = inet_csk(sk);
997  struct inet_sock *inet;
998  struct tcp_sock *tp;
999  struct tcp_skb_cb *tcb;
1000  struct tcp_out_options opts;
1001  unsigned int tcp_options_size, tcp_header_size;
1002  struct tcp_md5sig_key *md5;
1003  struct tcphdr *th;
1004  int err;
1005 
1006  BUG_ON(!skb || !tcp_skb_pcount(skb));
1007 
1008  /* If congestion control is doing timestamping, we must
1009  * take such a timestamp before we potentially clone/copy.
1010  */
1011  if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
1012  __net_timestamp(skb);
1013 
1014  if (likely(clone_it)) {
1015  if (unlikely(skb_cloned(skb)))
1016  skb = pskb_copy(skb, gfp_mask);
1017  else
1018  skb = skb_clone(skb, gfp_mask);
1019  if (unlikely(!skb))
1020  return -ENOBUFS;
1021  }
1022 
1023  inet = inet_sk(sk);
1024  tp = tcp_sk(sk);
1025  tcb = TCP_SKB_CB(skb);
1026  memset(&opts, 0, sizeof(opts));
1027 
1028  if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1029  tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1030  else
1031  tcp_options_size = tcp_established_options(sk, skb, &opts,
1032  &md5);
1033  tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1034 
1035  if (tcp_packets_in_flight(tp) == 0) {
1037  skb->ooo_okay = 1;
1038  } else
1039  skb->ooo_okay = 0;
1040 
1041  skb_push(skb, tcp_header_size);
1042  skb_reset_transport_header(skb);
1043 
1044  skb_orphan(skb);
1045  skb->sk = sk;
1047  tcp_wfree : sock_wfree;
1048  atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1049 
1050  /* Build TCP header and checksum it. */
1051  th = tcp_hdr(skb);
1052  th->source = inet->inet_sport;
1053  th->dest = inet->inet_dport;
1054  th->seq = htonl(tcb->seq);
1055  th->ack_seq = htonl(tp->rcv_nxt);
1056  *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1057  tcb->tcp_flags);
1058 
1059  if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1060  /* RFC1323: The window in SYN & SYN/ACK segments
1061  * is never scaled.
1062  */
1063  th->window = htons(min(tp->rcv_wnd, 65535U));
1064  } else {
1065  th->window = htons(tcp_select_window(sk));
1066  }
1067  th->check = 0;
1068  th->urg_ptr = 0;
1069 
1070  /* The urg_mode check is necessary during a below snd_una win probe */
1071  if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1072  if (before(tp->snd_up, tcb->seq + 0x10000)) {
1073  th->urg_ptr = htons(tp->snd_up - tcb->seq);
1074  th->urg = 1;
1075  } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1076  th->urg_ptr = htons(0xFFFF);
1077  th->urg = 1;
1078  }
1079  }
1080 
1081  tcp_options_write((__be32 *)(th + 1), tp, &opts);
1082  if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
1083  TCP_ECN_send(sk, skb, tcp_header_size);
1084 
1085 #ifdef CONFIG_TCP_MD5SIG
1086  /* Calculate the MD5 hash, as we have all we need now */
1087  if (md5) {
1088  sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1089  tp->af_specific->calc_md5_hash(opts.hash_location,
1090  md5, sk, NULL, skb);
1091  }
1092 #endif
1093 
1094  icsk->icsk_af_ops->send_check(sk, skb);
1095 
1096  if (likely(tcb->tcp_flags & TCPHDR_ACK))
1097  tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1098 
1099  if (skb->len != tcp_header_size)
1100  tcp_event_data_sent(tp, sk);
1101 
1102  if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1103  TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1104  tcp_skb_pcount(skb));
1105 
1106  err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
1107  if (likely(err <= 0))
1108  return err;
1109 
1110  tcp_enter_cwr(sk, 1);
1111 
1112  return net_xmit_eval(err);
1113 }
1114 
1115 /* This routine just queues the buffer for sending.
1116  *
1117  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1118  * otherwise socket can stall.
1119  */
1120 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1121 {
1122  struct tcp_sock *tp = tcp_sk(sk);
1123 
1124  /* Advance write_seq and place onto the write_queue. */
1125  tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1126  skb_header_release(skb);
1127  tcp_add_write_queue_tail(sk, skb);
1128  sk->sk_wmem_queued += skb->truesize;
1129  sk_mem_charge(sk, skb->truesize);
1130 }
1131 
1132 /* Initialize TSO segments for a packet. */
1133 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1134  unsigned int mss_now)
1135 {
1136  if (skb->len <= mss_now || !sk_can_gso(sk) ||
1137  skb->ip_summed == CHECKSUM_NONE) {
1138  /* Avoid the costly divide in the normal
1139  * non-TSO case.
1140  */
1141  skb_shinfo(skb)->gso_segs = 1;
1142  skb_shinfo(skb)->gso_size = 0;
1143  skb_shinfo(skb)->gso_type = 0;
1144  } else {
1145  skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1146  skb_shinfo(skb)->gso_size = mss_now;
1147  skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1148  }
1149 }
1150 
1151 /* When a modification to fackets out becomes necessary, we need to check
1152  * skb is counted to fackets_out or not.
1153  */
1154 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1155  int decr)
1156 {
1157  struct tcp_sock *tp = tcp_sk(sk);
1158 
1159  if (!tp->sacked_out || tcp_is_reno(tp))
1160  return;
1161 
1162  if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1163  tp->fackets_out -= decr;
1164 }
1165 
1166 /* Pcount in the middle of the write queue got changed, we need to do various
1167  * tweaks to fix counters
1168  */
1169 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1170 {
1171  struct tcp_sock *tp = tcp_sk(sk);
1172 
1173  tp->packets_out -= decr;
1174 
1175  if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1176  tp->sacked_out -= decr;
1177  if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1178  tp->retrans_out -= decr;
1179  if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1180  tp->lost_out -= decr;
1181 
1182  /* Reno case is special. Sigh... */
1183  if (tcp_is_reno(tp) && decr > 0)
1184  tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1185 
1186  tcp_adjust_fackets_out(sk, skb, decr);
1187 
1188  if (tp->lost_skb_hint &&
1189  before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1190  (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1191  tp->lost_cnt_hint -= decr;
1192 
1193  tcp_verify_left_out(tp);
1194 }
1195 
1196 /* Function to create two new TCP segments. Shrinks the given segment
1197  * to the specified size and appends a new segment with the rest of the
1198  * packet to the list. This won't be called frequently, I hope.
1199  * Remember, these are still headerless SKBs at this point.
1200  */
1201 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1202  unsigned int mss_now)
1203 {
1204  struct tcp_sock *tp = tcp_sk(sk);
1205  struct sk_buff *buff;
1206  int nsize, old_factor;
1207  int nlen;
1208  u8 flags;
1209 
1210  if (WARN_ON(len > skb->len))
1211  return -EINVAL;
1212 
1213  nsize = skb_headlen(skb) - len;
1214  if (nsize < 0)
1215  nsize = 0;
1216 
1217  if (skb_cloned(skb) &&
1218  skb_is_nonlinear(skb) &&
1219  pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1220  return -ENOMEM;
1221 
1222  /* Get a new skb... force flag on. */
1223  buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1224  if (buff == NULL)
1225  return -ENOMEM; /* We'll just try again later. */
1226 
1227  sk->sk_wmem_queued += buff->truesize;
1228  sk_mem_charge(sk, buff->truesize);
1229  nlen = skb->len - len - nsize;
1230  buff->truesize += nlen;
1231  skb->truesize -= nlen;
1232 
1233  /* Correct the sequence numbers. */
1234  TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1235  TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1236  TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1237 
1238  /* PSH and FIN should only be set in the second packet. */
1239  flags = TCP_SKB_CB(skb)->tcp_flags;
1240  TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1241  TCP_SKB_CB(buff)->tcp_flags = flags;
1242  TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1243 
1244  if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1245  /* Copy and checksum data tail into the new buffer. */
1246  buff->csum = csum_partial_copy_nocheck(skb->data + len,
1247  skb_put(buff, nsize),
1248  nsize, 0);
1249 
1250  skb_trim(skb, len);
1251 
1252  skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1253  } else {
1254  skb->ip_summed = CHECKSUM_PARTIAL;
1255  skb_split(skb, buff, len);
1256  }
1257 
1258  buff->ip_summed = skb->ip_summed;
1259 
1260  /* Looks stupid, but our code really uses when of
1261  * skbs, which it never sent before. --ANK
1262  */
1263  TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1264  buff->tstamp = skb->tstamp;
1265 
1266  old_factor = tcp_skb_pcount(skb);
1267 
1268  /* Fix up tso_factor for both original and new SKB. */
1269  tcp_set_skb_tso_segs(sk, skb, mss_now);
1270  tcp_set_skb_tso_segs(sk, buff, mss_now);
1271 
1272  /* If this packet has been sent out already, we must
1273  * adjust the various packet counters.
1274  */
1275  if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1276  int diff = old_factor - tcp_skb_pcount(skb) -
1277  tcp_skb_pcount(buff);
1278 
1279  if (diff)
1280  tcp_adjust_pcount(sk, skb, diff);
1281  }
1282 
1283  /* Link BUFF into the send queue. */
1284  skb_header_release(buff);
1285  tcp_insert_write_queue_after(skb, buff, sk);
1286 
1287  return 0;
1288 }
1289 
1290 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1291  * eventually). The difference is that pulled data not copied, but
1292  * immediately discarded.
1293  */
1294 static void __pskb_trim_head(struct sk_buff *skb, int len)
1295 {
1296  int i, k, eat;
1297 
1298  eat = min_t(int, len, skb_headlen(skb));
1299  if (eat) {
1300  __skb_pull(skb, eat);
1301  skb->avail_size -= eat;
1302  len -= eat;
1303  if (!len)
1304  return;
1305  }
1306  eat = len;
1307  k = 0;
1308  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1309  int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1310 
1311  if (size <= eat) {
1312  skb_frag_unref(skb, i);
1313  eat -= size;
1314  } else {
1315  skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1316  if (eat) {
1317  skb_shinfo(skb)->frags[k].page_offset += eat;
1318  skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1319  eat = 0;
1320  }
1321  k++;
1322  }
1323  }
1324  skb_shinfo(skb)->nr_frags = k;
1325 
1326  skb_reset_tail_pointer(skb);
1327  skb->data_len -= len;
1328  skb->len = skb->data_len;
1329 }
1330 
1331 /* Remove acked data from a packet in the transmit queue. */
1332 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1333 {
1334  if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1335  return -ENOMEM;
1336 
1337  __pskb_trim_head(skb, len);
1338 
1339  TCP_SKB_CB(skb)->seq += len;
1340  skb->ip_summed = CHECKSUM_PARTIAL;
1341 
1342  skb->truesize -= len;
1343  sk->sk_wmem_queued -= len;
1344  sk_mem_uncharge(sk, len);
1345  sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1346 
1347  /* Any change of skb->len requires recalculation of tso factor. */
1348  if (tcp_skb_pcount(skb) > 1)
1349  tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1350 
1351  return 0;
1352 }
1353 
1354 /* Calculate MSS. Not accounting for SACKs here. */
1355 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1356 {
1357  const struct tcp_sock *tp = tcp_sk(sk);
1358  const struct inet_connection_sock *icsk = inet_csk(sk);
1359  int mss_now;
1360 
1361  /* Calculate base mss without TCP options:
1362  It is MMS_S - sizeof(tcphdr) of rfc1122
1363  */
1364  mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1365 
1366  /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1367  if (icsk->icsk_af_ops->net_frag_header_len) {
1368  const struct dst_entry *dst = __sk_dst_get(sk);
1369 
1370  if (dst && dst_allfrag(dst))
1371  mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1372  }
1373 
1374  /* Clamp it (mss_clamp does not include tcp options) */
1375  if (mss_now > tp->rx_opt.mss_clamp)
1376  mss_now = tp->rx_opt.mss_clamp;
1377 
1378  /* Now subtract optional transport overhead */
1379  mss_now -= icsk->icsk_ext_hdr_len;
1380 
1381  /* Then reserve room for full set of TCP options and 8 bytes of data */
1382  if (mss_now < 48)
1383  mss_now = 48;
1384 
1385  /* Now subtract TCP options size, not including SACKs */
1386  mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
1387 
1388  return mss_now;
1389 }
1390 
1391 /* Inverse of above */
1392 int tcp_mss_to_mtu(struct sock *sk, int mss)
1393 {
1394  const struct tcp_sock *tp = tcp_sk(sk);
1395  const struct inet_connection_sock *icsk = inet_csk(sk);
1396  int mtu;
1397 
1398  mtu = mss +
1399  tp->tcp_header_len +
1400  icsk->icsk_ext_hdr_len +
1401  icsk->icsk_af_ops->net_header_len;
1402 
1403  /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1404  if (icsk->icsk_af_ops->net_frag_header_len) {
1405  const struct dst_entry *dst = __sk_dst_get(sk);
1406 
1407  if (dst && dst_allfrag(dst))
1408  mtu += icsk->icsk_af_ops->net_frag_header_len;
1409  }
1410  return mtu;
1411 }
1412 
1413 /* MTU probing init per socket */
1414 void tcp_mtup_init(struct sock *sk)
1415 {
1416  struct tcp_sock *tp = tcp_sk(sk);
1417  struct inet_connection_sock *icsk = inet_csk(sk);
1418 
1419  icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1420  icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1421  icsk->icsk_af_ops->net_header_len;
1422  icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1423  icsk->icsk_mtup.probe_size = 0;
1424 }
1426 
1427 /* This function synchronize snd mss to current pmtu/exthdr set.
1428 
1429  tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1430  for TCP options, but includes only bare TCP header.
1431 
1432  tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1433  It is minimum of user_mss and mss received with SYN.
1434  It also does not include TCP options.
1435 
1436  inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1437 
1438  tp->mss_cache is current effective sending mss, including
1439  all tcp options except for SACKs. It is evaluated,
1440  taking into account current pmtu, but never exceeds
1441  tp->rx_opt.mss_clamp.
1442 
1443  NOTE1. rfc1122 clearly states that advertised MSS
1444  DOES NOT include either tcp or ip options.
1445 
1446  NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1447  are READ ONLY outside this function. --ANK (980731)
1448  */
1449 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1450 {
1451  struct tcp_sock *tp = tcp_sk(sk);
1452  struct inet_connection_sock *icsk = inet_csk(sk);
1453  int mss_now;
1454 
1455  if (icsk->icsk_mtup.search_high > pmtu)
1456  icsk->icsk_mtup.search_high = pmtu;
1457 
1458  mss_now = tcp_mtu_to_mss(sk, pmtu);
1459  mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1460 
1461  /* And store cached results */
1462  icsk->icsk_pmtu_cookie = pmtu;
1463  if (icsk->icsk_mtup.enabled)
1464  mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1465  tp->mss_cache = mss_now;
1466 
1467  return mss_now;
1468 }
1470 
1471 /* Compute the current effective MSS, taking SACKs and IP options,
1472  * and even PMTU discovery events into account.
1473  */
1474 unsigned int tcp_current_mss(struct sock *sk)
1475 {
1476  const struct tcp_sock *tp = tcp_sk(sk);
1477  const struct dst_entry *dst = __sk_dst_get(sk);
1478  u32 mss_now;
1479  unsigned int header_len;
1480  struct tcp_out_options opts;
1481  struct tcp_md5sig_key *md5;
1482 
1483  mss_now = tp->mss_cache;
1484 
1485  if (dst) {
1486  u32 mtu = dst_mtu(dst);
1487  if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1488  mss_now = tcp_sync_mss(sk, mtu);
1489  }
1490 
1491  header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1492  sizeof(struct tcphdr);
1493  /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1494  * some common options. If this is an odd packet (because we have SACK
1495  * blocks etc) then our calculated header_len will be different, and
1496  * we have to adjust mss_now correspondingly */
1497  if (header_len != tp->tcp_header_len) {
1498  int delta = (int) header_len - tp->tcp_header_len;
1499  mss_now -= delta;
1500  }
1501 
1502  return mss_now;
1503 }
1504 
1505 /* Congestion window validation. (RFC2861) */
1506 static void tcp_cwnd_validate(struct sock *sk)
1507 {
1508  struct tcp_sock *tp = tcp_sk(sk);
1509 
1510  if (tp->packets_out >= tp->snd_cwnd) {
1511  /* Network is feed fully. */
1512  tp->snd_cwnd_used = 0;
1514  } else {
1515  /* Network starves. */
1516  if (tp->packets_out > tp->snd_cwnd_used)
1517  tp->snd_cwnd_used = tp->packets_out;
1518 
1519  if (sysctl_tcp_slow_start_after_idle &&
1520  (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1522  }
1523 }
1524 
1525 /* Returns the portion of skb which can be sent right away without
1526  * introducing MSS oddities to segment boundaries. In rare cases where
1527  * mss_now != mss_cache, we will request caller to create a small skb
1528  * per input skb which could be mostly avoided here (if desired).
1529  *
1530  * We explicitly want to create a request for splitting write queue tail
1531  * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1532  * thus all the complexity (cwnd_len is always MSS multiple which we
1533  * return whenever allowed by the other factors). Basically we need the
1534  * modulo only when the receiver window alone is the limiting factor or
1535  * when we would be allowed to send the split-due-to-Nagle skb fully.
1536  */
1537 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1538  unsigned int mss_now, unsigned int max_segs)
1539 {
1540  const struct tcp_sock *tp = tcp_sk(sk);
1541  u32 needed, window, max_len;
1542 
1543  window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1544  max_len = mss_now * max_segs;
1545 
1546  if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1547  return max_len;
1548 
1549  needed = min(skb->len, window);
1550 
1551  if (max_len <= needed)
1552  return max_len;
1553 
1554  return needed - needed % mss_now;
1555 }
1556 
1557 /* Can at least one segment of SKB be sent right now, according to the
1558  * congestion window rules? If so, return how many segments are allowed.
1559  */
1560 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1561  const struct sk_buff *skb)
1562 {
1563  u32 in_flight, cwnd;
1564 
1565  /* Don't be strict about the congestion window for the final FIN. */
1566  if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1567  tcp_skb_pcount(skb) == 1)
1568  return 1;
1569 
1570  in_flight = tcp_packets_in_flight(tp);
1571  cwnd = tp->snd_cwnd;
1572  if (in_flight < cwnd)
1573  return (cwnd - in_flight);
1574 
1575  return 0;
1576 }
1577 
1578 /* Initialize TSO state of a skb.
1579  * This must be invoked the first time we consider transmitting
1580  * SKB onto the wire.
1581  */
1582 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1583  unsigned int mss_now)
1584 {
1585  int tso_segs = tcp_skb_pcount(skb);
1586 
1587  if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1588  tcp_set_skb_tso_segs(sk, skb, mss_now);
1589  tso_segs = tcp_skb_pcount(skb);
1590  }
1591  return tso_segs;
1592 }
1593 
1594 /* Minshall's variant of the Nagle send check. */
1595 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1596 {
1597  return after(tp->snd_sml, tp->snd_una) &&
1598  !after(tp->snd_sml, tp->snd_nxt);
1599 }
1600 
1601 /* Return false, if packet can be sent now without violation Nagle's rules:
1602  * 1. It is full sized.
1603  * 2. Or it contains FIN. (already checked by caller)
1604  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1605  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1606  * With Minshall's modification: all sent small packets are ACKed.
1607  */
1608 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1609  const struct sk_buff *skb,
1610  unsigned int mss_now, int nonagle)
1611 {
1612  return skb->len < mss_now &&
1613  ((nonagle & TCP_NAGLE_CORK) ||
1614  (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1615 }
1616 
1617 /* Return true if the Nagle test allows this packet to be
1618  * sent now.
1619  */
1620 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1621  unsigned int cur_mss, int nonagle)
1622 {
1623  /* Nagle rule does not apply to frames, which sit in the middle of the
1624  * write_queue (they have no chances to get new data).
1625  *
1626  * This is implemented in the callers, where they modify the 'nonagle'
1627  * argument based upon the location of SKB in the send queue.
1628  */
1629  if (nonagle & TCP_NAGLE_PUSH)
1630  return true;
1631 
1632  /* Don't use the nagle rule for urgent data (or for the final FIN).
1633  * Nagle can be ignored during F-RTO too (see RFC4138).
1634  */
1635  if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1636  (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1637  return true;
1638 
1639  if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1640  return true;
1641 
1642  return false;
1643 }
1644 
1645 /* Does at least the first segment of SKB fit into the send window? */
1646 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1647  const struct sk_buff *skb,
1648  unsigned int cur_mss)
1649 {
1650  u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1651 
1652  if (skb->len > cur_mss)
1653  end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1654 
1655  return !after(end_seq, tcp_wnd_end(tp));
1656 }
1657 
1658 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1659  * should be put on the wire right now. If so, it returns the number of
1660  * packets allowed by the congestion window.
1661  */
1662 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1663  unsigned int cur_mss, int nonagle)
1664 {
1665  const struct tcp_sock *tp = tcp_sk(sk);
1666  unsigned int cwnd_quota;
1667 
1668  tcp_init_tso_segs(sk, skb, cur_mss);
1669 
1670  if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1671  return 0;
1672 
1673  cwnd_quota = tcp_cwnd_test(tp, skb);
1674  if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1675  cwnd_quota = 0;
1676 
1677  return cwnd_quota;
1678 }
1679 
1680 /* Test if sending is allowed right now. */
1681 bool tcp_may_send_now(struct sock *sk)
1682 {
1683  const struct tcp_sock *tp = tcp_sk(sk);
1684  struct sk_buff *skb = tcp_send_head(sk);
1685 
1686  return skb &&
1687  tcp_snd_test(sk, skb, tcp_current_mss(sk),
1688  (tcp_skb_is_last(sk, skb) ?
1689  tp->nonagle : TCP_NAGLE_PUSH));
1690 }
1691 
1692 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1693  * which is put after SKB on the list. It is very much like
1694  * tcp_fragment() except that it may make several kinds of assumptions
1695  * in order to speed up the splitting operation. In particular, we
1696  * know that all the data is in scatter-gather pages, and that the
1697  * packet has never been sent out before (and thus is not cloned).
1698  */
1699 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1700  unsigned int mss_now, gfp_t gfp)
1701 {
1702  struct sk_buff *buff;
1703  int nlen = skb->len - len;
1704  u8 flags;
1705 
1706  /* All of a TSO frame must be composed of paged data. */
1707  if (skb->len != skb->data_len)
1708  return tcp_fragment(sk, skb, len, mss_now);
1709 
1710  buff = sk_stream_alloc_skb(sk, 0, gfp);
1711  if (unlikely(buff == NULL))
1712  return -ENOMEM;
1713 
1714  sk->sk_wmem_queued += buff->truesize;
1715  sk_mem_charge(sk, buff->truesize);
1716  buff->truesize += nlen;
1717  skb->truesize -= nlen;
1718 
1719  /* Correct the sequence numbers. */
1720  TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1721  TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1722  TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1723 
1724  /* PSH and FIN should only be set in the second packet. */
1725  flags = TCP_SKB_CB(skb)->tcp_flags;
1726  TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1727  TCP_SKB_CB(buff)->tcp_flags = flags;
1728 
1729  /* This packet was never sent out yet, so no SACK bits. */
1730  TCP_SKB_CB(buff)->sacked = 0;
1731 
1732  buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1733  skb_split(skb, buff, len);
1734 
1735  /* Fix up tso_factor for both original and new SKB. */
1736  tcp_set_skb_tso_segs(sk, skb, mss_now);
1737  tcp_set_skb_tso_segs(sk, buff, mss_now);
1738 
1739  /* Link BUFF into the send queue. */
1740  skb_header_release(buff);
1741  tcp_insert_write_queue_after(skb, buff, sk);
1742 
1743  return 0;
1744 }
1745 
1746 /* Try to defer sending, if possible, in order to minimize the amount
1747  * of TSO splitting we do. View it as a kind of TSO Nagle test.
1748  *
1749  * This algorithm is from John Heffner.
1750  */
1751 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1752 {
1753  struct tcp_sock *tp = tcp_sk(sk);
1754  const struct inet_connection_sock *icsk = inet_csk(sk);
1755  u32 send_win, cong_win, limit, in_flight;
1756  int win_divisor;
1757 
1758  if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1759  goto send_now;
1760 
1761  if (icsk->icsk_ca_state != TCP_CA_Open)
1762  goto send_now;
1763 
1764  /* Defer for less than two clock ticks. */
1765  if (tp->tso_deferred &&
1766  (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1767  goto send_now;
1768 
1769  in_flight = tcp_packets_in_flight(tp);
1770 
1771  BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1772 
1773  send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1774 
1775  /* From in_flight test above, we know that cwnd > in_flight. */
1776  cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1777 
1778  limit = min(send_win, cong_win);
1779 
1780  /* If a full-sized TSO skb can be sent, do it. */
1781  if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1782  sk->sk_gso_max_segs * tp->mss_cache))
1783  goto send_now;
1784 
1785  /* Middle in queue won't get any more data, full sendable already? */
1786  if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1787  goto send_now;
1788 
1789  win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1790  if (win_divisor) {
1791  u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1792 
1793  /* If at least some fraction of a window is available,
1794  * just use it.
1795  */
1796  chunk /= win_divisor;
1797  if (limit >= chunk)
1798  goto send_now;
1799  } else {
1800  /* Different approach, try not to defer past a single
1801  * ACK. Receiver should ACK every other full sized
1802  * frame, so if we have space for more than 3 frames
1803  * then send now.
1804  */
1805  if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1806  goto send_now;
1807  }
1808 
1809  /* Ok, it looks like it is advisable to defer. */
1810  tp->tso_deferred = 1 | (jiffies << 1);
1811 
1812  return true;
1813 
1814 send_now:
1815  tp->tso_deferred = 0;
1816  return false;
1817 }
1818 
1819 /* Create a new MTU probe if we are ready.
1820  * MTU probe is regularly attempting to increase the path MTU by
1821  * deliberately sending larger packets. This discovers routing
1822  * changes resulting in larger path MTUs.
1823  *
1824  * Returns 0 if we should wait to probe (no cwnd available),
1825  * 1 if a probe was sent,
1826  * -1 otherwise
1827  */
1828 static int tcp_mtu_probe(struct sock *sk)
1829 {
1830  struct tcp_sock *tp = tcp_sk(sk);
1831  struct inet_connection_sock *icsk = inet_csk(sk);
1832  struct sk_buff *skb, *nskb, *next;
1833  int len;
1834  int probe_size;
1835  int size_needed;
1836  int copy;
1837  int mss_now;
1838 
1839  /* Not currently probing/verifying,
1840  * not in recovery,
1841  * have enough cwnd, and
1842  * not SACKing (the variable headers throw things off) */
1843  if (!icsk->icsk_mtup.enabled ||
1844  icsk->icsk_mtup.probe_size ||
1845  inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1846  tp->snd_cwnd < 11 ||
1847  tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1848  return -1;
1849 
1850  /* Very simple search strategy: just double the MSS. */
1851  mss_now = tcp_current_mss(sk);
1852  probe_size = 2 * tp->mss_cache;
1853  size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1854  if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1855  /* TODO: set timer for probe_converge_event */
1856  return -1;
1857  }
1858 
1859  /* Have enough data in the send queue to probe? */
1860  if (tp->write_seq - tp->snd_nxt < size_needed)
1861  return -1;
1862 
1863  if (tp->snd_wnd < size_needed)
1864  return -1;
1865  if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1866  return 0;
1867 
1868  /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1869  if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1870  if (!tcp_packets_in_flight(tp))
1871  return -1;
1872  else
1873  return 0;
1874  }
1875 
1876  /* We're allowed to probe. Build it now. */
1877  if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1878  return -1;
1879  sk->sk_wmem_queued += nskb->truesize;
1880  sk_mem_charge(sk, nskb->truesize);
1881 
1882  skb = tcp_send_head(sk);
1883 
1884  TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1885  TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1886  TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1887  TCP_SKB_CB(nskb)->sacked = 0;
1888  nskb->csum = 0;
1889  nskb->ip_summed = skb->ip_summed;
1890 
1891  tcp_insert_write_queue_before(nskb, skb, sk);
1892 
1893  len = 0;
1894  tcp_for_write_queue_from_safe(skb, next, sk) {
1895  copy = min_t(int, skb->len, probe_size - len);
1896  if (nskb->ip_summed)
1897  skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1898  else
1899  nskb->csum = skb_copy_and_csum_bits(skb, 0,
1900  skb_put(nskb, copy),
1901  copy, nskb->csum);
1902 
1903  if (skb->len <= copy) {
1904  /* We've eaten all the data from this skb.
1905  * Throw it away. */
1906  TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1907  tcp_unlink_write_queue(skb, sk);
1908  sk_wmem_free_skb(sk, skb);
1909  } else {
1910  TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1911  ~(TCPHDR_FIN|TCPHDR_PSH);
1912  if (!skb_shinfo(skb)->nr_frags) {
1913  skb_pull(skb, copy);
1914  if (skb->ip_summed != CHECKSUM_PARTIAL)
1915  skb->csum = csum_partial(skb->data,
1916  skb->len, 0);
1917  } else {
1918  __pskb_trim_head(skb, copy);
1919  tcp_set_skb_tso_segs(sk, skb, mss_now);
1920  }
1921  TCP_SKB_CB(skb)->seq += copy;
1922  }
1923 
1924  len += copy;
1925 
1926  if (len >= probe_size)
1927  break;
1928  }
1929  tcp_init_tso_segs(sk, nskb, nskb->len);
1930 
1931  /* We're ready to send. If this fails, the probe will
1932  * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1933  TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1934  if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1935  /* Decrement cwnd here because we are sending
1936  * effectively two packets. */
1937  tp->snd_cwnd--;
1938  tcp_event_new_data_sent(sk, nskb);
1939 
1940  icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1941  tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1942  tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1943 
1944  return 1;
1945  }
1946 
1947  return -1;
1948 }
1949 
1950 /* This routine writes packets to the network. It advances the
1951  * send_head. This happens as incoming acks open up the remote
1952  * window for us.
1953  *
1954  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1955  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1956  * account rare use of URG, this is not a big flaw.
1957  *
1958  * Returns true, if no segments are in flight and we have queued segments,
1959  * but cannot send anything now because of SWS or another problem.
1960  */
1961 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1962  int push_one, gfp_t gfp)
1963 {
1964  struct tcp_sock *tp = tcp_sk(sk);
1965  struct sk_buff *skb;
1966  unsigned int tso_segs, sent_pkts;
1967  int cwnd_quota;
1968  int result;
1969 
1970  sent_pkts = 0;
1971 
1972  if (!push_one) {
1973  /* Do MTU probing. */
1974  result = tcp_mtu_probe(sk);
1975  if (!result) {
1976  return false;
1977  } else if (result > 0) {
1978  sent_pkts = 1;
1979  }
1980  }
1981 
1982  while ((skb = tcp_send_head(sk))) {
1983  unsigned int limit;
1984 
1985 
1986  tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1987  BUG_ON(!tso_segs);
1988 
1989  if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1990  goto repair; /* Skip network transmission */
1991 
1992  cwnd_quota = tcp_cwnd_test(tp, skb);
1993  if (!cwnd_quota)
1994  break;
1995 
1996  if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1997  break;
1998 
1999  if (tso_segs == 1) {
2000  if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2001  (tcp_skb_is_last(sk, skb) ?
2002  nonagle : TCP_NAGLE_PUSH))))
2003  break;
2004  } else {
2005  if (!push_one && tcp_tso_should_defer(sk, skb))
2006  break;
2007  }
2008 
2009  /* TSQ : sk_wmem_alloc accounts skb truesize,
2010  * including skb overhead. But thats OK.
2011  */
2012  if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
2014  break;
2015  }
2016  limit = mss_now;
2017  if (tso_segs > 1 && !tcp_urg_mode(tp))
2018  limit = tcp_mss_split_point(sk, skb, mss_now,
2019  min_t(unsigned int,
2020  cwnd_quota,
2021  sk->sk_gso_max_segs));
2022 
2023  if (skb->len > limit &&
2024  unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2025  break;
2026 
2027  TCP_SKB_CB(skb)->when = tcp_time_stamp;
2028 
2029  if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2030  break;
2031 
2032 repair:
2033  /* Advance the send_head. This one is sent out.
2034  * This call will increment packets_out.
2035  */
2036  tcp_event_new_data_sent(sk, skb);
2037 
2038  tcp_minshall_update(tp, mss_now, skb);
2039  sent_pkts += tcp_skb_pcount(skb);
2040 
2041  if (push_one)
2042  break;
2043  }
2044 
2045  if (likely(sent_pkts)) {
2046  if (tcp_in_cwnd_reduction(sk))
2047  tp->prr_out += sent_pkts;
2048  tcp_cwnd_validate(sk);
2049  return false;
2050  }
2051  return !tp->packets_out && tcp_send_head(sk);
2052 }
2053 
2054 /* Push out any pending frames which were held back due to
2055  * TCP_CORK or attempt at coalescing tiny packets.
2056  * The socket must be locked by the caller.
2057  */
2058 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2059  int nonagle)
2060 {
2061  /* If we are closed, the bytes will have to remain here.
2062  * In time closedown will finish, we empty the write queue and
2063  * all will be happy.
2064  */
2065  if (unlikely(sk->sk_state == TCP_CLOSE))
2066  return;
2067 
2068  if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2069  sk_gfp_atomic(sk, GFP_ATOMIC)))
2070  tcp_check_probe_timer(sk);
2071 }
2072 
2073 /* Send _single_ skb sitting at the send head. This function requires
2074  * true push pending frames to setup probe timer etc.
2075  */
2076 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2077 {
2078  struct sk_buff *skb = tcp_send_head(sk);
2079 
2080  BUG_ON(!skb || skb->len < mss_now);
2081 
2082  tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2083 }
2084 
2085 /* This function returns the amount that we can raise the
2086  * usable window based on the following constraints
2087  *
2088  * 1. The window can never be shrunk once it is offered (RFC 793)
2089  * 2. We limit memory per socket
2090  *
2091  * RFC 1122:
2092  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2093  * RECV.NEXT + RCV.WIN fixed until:
2094  * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2095  *
2096  * i.e. don't raise the right edge of the window until you can raise
2097  * it at least MSS bytes.
2098  *
2099  * Unfortunately, the recommended algorithm breaks header prediction,
2100  * since header prediction assumes th->window stays fixed.
2101  *
2102  * Strictly speaking, keeping th->window fixed violates the receiver
2103  * side SWS prevention criteria. The problem is that under this rule
2104  * a stream of single byte packets will cause the right side of the
2105  * window to always advance by a single byte.
2106  *
2107  * Of course, if the sender implements sender side SWS prevention
2108  * then this will not be a problem.
2109  *
2110  * BSD seems to make the following compromise:
2111  *
2112  * If the free space is less than the 1/4 of the maximum
2113  * space available and the free space is less than 1/2 mss,
2114  * then set the window to 0.
2115  * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2116  * Otherwise, just prevent the window from shrinking
2117  * and from being larger than the largest representable value.
2118  *
2119  * This prevents incremental opening of the window in the regime
2120  * where TCP is limited by the speed of the reader side taking
2121  * data out of the TCP receive queue. It does nothing about
2122  * those cases where the window is constrained on the sender side
2123  * because the pipeline is full.
2124  *
2125  * BSD also seems to "accidentally" limit itself to windows that are a
2126  * multiple of MSS, at least until the free space gets quite small.
2127  * This would appear to be a side effect of the mbuf implementation.
2128  * Combining these two algorithms results in the observed behavior
2129  * of having a fixed window size at almost all times.
2130  *
2131  * Below we obtain similar behavior by forcing the offered window to
2132  * a multiple of the mss when it is feasible to do so.
2133  *
2134  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2135  * Regular options like TIMESTAMP are taken into account.
2136  */
2138 {
2139  struct inet_connection_sock *icsk = inet_csk(sk);
2140  struct tcp_sock *tp = tcp_sk(sk);
2141  /* MSS for the peer's data. Previous versions used mss_clamp
2142  * here. I don't know if the value based on our guesses
2143  * of peer's MSS is better for the performance. It's more correct
2144  * but may be worse for the performance because of rcv_mss
2145  * fluctuations. --SAW 1998/11/1
2146  */
2147  int mss = icsk->icsk_ack.rcv_mss;
2148  int free_space = tcp_space(sk);
2149  int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2150  int window;
2151 
2152  if (mss > full_space)
2153  mss = full_space;
2154 
2155  if (free_space < (full_space >> 1)) {
2156  icsk->icsk_ack.quick = 0;
2157 
2158  if (sk_under_memory_pressure(sk))
2159  tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2160  4U * tp->advmss);
2161 
2162  if (free_space < mss)
2163  return 0;
2164  }
2165 
2166  if (free_space > tp->rcv_ssthresh)
2167  free_space = tp->rcv_ssthresh;
2168 
2169  /* Don't do rounding if we are using window scaling, since the
2170  * scaled window will not line up with the MSS boundary anyway.
2171  */
2172  window = tp->rcv_wnd;
2173  if (tp->rx_opt.rcv_wscale) {
2174  window = free_space;
2175 
2176  /* Advertise enough space so that it won't get scaled away.
2177  * Import case: prevent zero window announcement if
2178  * 1<<rcv_wscale > mss.
2179  */
2180  if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2181  window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2182  << tp->rx_opt.rcv_wscale);
2183  } else {
2184  /* Get the largest window that is a nice multiple of mss.
2185  * Window clamp already applied above.
2186  * If our current window offering is within 1 mss of the
2187  * free space we just keep it. This prevents the divide
2188  * and multiply from happening most of the time.
2189  * We also don't do any window rounding when the free space
2190  * is too small.
2191  */
2192  if (window <= free_space - mss || window > free_space)
2193  window = (free_space / mss) * mss;
2194  else if (mss == full_space &&
2195  free_space > window + (full_space >> 1))
2196  window = free_space;
2197  }
2198 
2199  return window;
2200 }
2201 
2202 /* Collapses two adjacent SKB's during retransmission. */
2203 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2204 {
2205  struct tcp_sock *tp = tcp_sk(sk);
2206  struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2207  int skb_size, next_skb_size;
2208 
2209  skb_size = skb->len;
2210  next_skb_size = next_skb->len;
2211 
2212  BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2213 
2214  tcp_highest_sack_combine(sk, next_skb, skb);
2215 
2216  tcp_unlink_write_queue(next_skb, sk);
2217 
2218  skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2219  next_skb_size);
2220 
2221  if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2222  skb->ip_summed = CHECKSUM_PARTIAL;
2223 
2224  if (skb->ip_summed != CHECKSUM_PARTIAL)
2225  skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2226 
2227  /* Update sequence range on original skb. */
2228  TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2229 
2230  /* Merge over control information. This moves PSH/FIN etc. over */
2231  TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2232 
2233  /* All done, get rid of second SKB and account for it so
2234  * packet counting does not break.
2235  */
2236  TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2237 
2238  /* changed transmit queue under us so clear hints */
2239  tcp_clear_retrans_hints_partial(tp);
2240  if (next_skb == tp->retransmit_skb_hint)
2241  tp->retransmit_skb_hint = skb;
2242 
2243  tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2244 
2245  sk_wmem_free_skb(sk, next_skb);
2246 }
2247 
2248 /* Check if coalescing SKBs is legal. */
2249 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2250 {
2251  if (tcp_skb_pcount(skb) > 1)
2252  return false;
2253  /* TODO: SACK collapsing could be used to remove this condition */
2254  if (skb_shinfo(skb)->nr_frags != 0)
2255  return false;
2256  if (skb_cloned(skb))
2257  return false;
2258  if (skb == tcp_send_head(sk))
2259  return false;
2260  /* Some heurestics for collapsing over SACK'd could be invented */
2261  if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2262  return false;
2263 
2264  return true;
2265 }
2266 
2267 /* Collapse packets in the retransmit queue to make to create
2268  * less packets on the wire. This is only done on retransmission.
2269  */
2270 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2271  int space)
2272 {
2273  struct tcp_sock *tp = tcp_sk(sk);
2274  struct sk_buff *skb = to, *tmp;
2275  bool first = true;
2276 
2277  if (!sysctl_tcp_retrans_collapse)
2278  return;
2279  if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2280  return;
2281 
2282  tcp_for_write_queue_from_safe(skb, tmp, sk) {
2283  if (!tcp_can_collapse(sk, skb))
2284  break;
2285 
2286  space -= skb->len;
2287 
2288  if (first) {
2289  first = false;
2290  continue;
2291  }
2292 
2293  if (space < 0)
2294  break;
2295  /* Punt if not enough space exists in the first SKB for
2296  * the data in the second
2297  */
2298  if (skb->len > skb_availroom(to))
2299  break;
2300 
2301  if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2302  break;
2303 
2304  tcp_collapse_retrans(sk, to);
2305  }
2306 }
2307 
2308 /* This retransmits one SKB. Policy decisions and retransmit queue
2309  * state updates are done by the caller. Returns non-zero if an
2310  * error occurred which prevented the send.
2311  */
2312 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2313 {
2314  struct tcp_sock *tp = tcp_sk(sk);
2315  struct inet_connection_sock *icsk = inet_csk(sk);
2316  unsigned int cur_mss;
2317 
2318  /* Inconslusive MTU probe */
2319  if (icsk->icsk_mtup.probe_size) {
2320  icsk->icsk_mtup.probe_size = 0;
2321  }
2322 
2323  /* Do not sent more than we queued. 1/4 is reserved for possible
2324  * copying overhead: fragmentation, tunneling, mangling etc.
2325  */
2326  if (atomic_read(&sk->sk_wmem_alloc) >
2327  min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2328  return -EAGAIN;
2329 
2330  if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2331  if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2332  BUG();
2333  if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2334  return -ENOMEM;
2335  }
2336 
2337  if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2338  return -EHOSTUNREACH; /* Routing failure or similar. */
2339 
2340  cur_mss = tcp_current_mss(sk);
2341 
2342  /* If receiver has shrunk his window, and skb is out of
2343  * new window, do not retransmit it. The exception is the
2344  * case, when window is shrunk to zero. In this case
2345  * our retransmit serves as a zero window probe.
2346  */
2347  if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2348  TCP_SKB_CB(skb)->seq != tp->snd_una)
2349  return -EAGAIN;
2350 
2351  if (skb->len > cur_mss) {
2352  if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2353  return -ENOMEM; /* We'll try again later. */
2354  } else {
2355  int oldpcount = tcp_skb_pcount(skb);
2356 
2357  if (unlikely(oldpcount > 1)) {
2358  tcp_init_tso_segs(sk, skb, cur_mss);
2359  tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2360  }
2361  }
2362 
2363  tcp_retrans_try_collapse(sk, skb, cur_mss);
2364 
2365  /* Some Solaris stacks overoptimize and ignore the FIN on a
2366  * retransmit when old data is attached. So strip it off
2367  * since it is cheap to do so and saves bytes on the network.
2368  */
2369  if (skb->len > 0 &&
2370  (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2371  tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2372  if (!pskb_trim(skb, 0)) {
2373  /* Reuse, even though it does some unnecessary work */
2374  tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2375  TCP_SKB_CB(skb)->tcp_flags);
2376  skb->ip_summed = CHECKSUM_NONE;
2377  }
2378  }
2379 
2380  /* Make a copy, if the first transmission SKB clone we made
2381  * is still in somebody's hands, else make a clone.
2382  */
2383  TCP_SKB_CB(skb)->when = tcp_time_stamp;
2384 
2385  /* make sure skb->data is aligned on arches that require it */
2386  if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) {
2387  struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2388  GFP_ATOMIC);
2389  return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2390  -ENOBUFS;
2391  } else {
2392  return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2393  }
2394 }
2395 
2396 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2397 {
2398  struct tcp_sock *tp = tcp_sk(sk);
2399  int err = __tcp_retransmit_skb(sk, skb);
2400 
2401  if (err == 0) {
2402  /* Update global TCP statistics. */
2403  TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2404 
2405  tp->total_retrans++;
2406 
2407 #if FASTRETRANS_DEBUG > 0
2408  if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2409  net_dbg_ratelimited("retrans_out leaked\n");
2410  }
2411 #endif
2412  if (!tp->retrans_out)
2413  tp->lost_retrans_low = tp->snd_nxt;
2414  TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2415  tp->retrans_out += tcp_skb_pcount(skb);
2416 
2417  /* Save stamp of the first retransmit. */
2418  if (!tp->retrans_stamp)
2419  tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2420 
2421  tp->undo_retrans += tcp_skb_pcount(skb);
2422 
2423  /* snd_nxt is stored to detect loss of retransmitted segment,
2424  * see tcp_input.c tcp_sacktag_write_queue().
2425  */
2426  TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2427  }
2428  return err;
2429 }
2430 
2431 /* Check if we forward retransmits are possible in the current
2432  * window/congestion state.
2433  */
2434 static bool tcp_can_forward_retransmit(struct sock *sk)
2435 {
2436  const struct inet_connection_sock *icsk = inet_csk(sk);
2437  const struct tcp_sock *tp = tcp_sk(sk);
2438 
2439  /* Forward retransmissions are possible only during Recovery. */
2440  if (icsk->icsk_ca_state != TCP_CA_Recovery)
2441  return false;
2442 
2443  /* No forward retransmissions in Reno are possible. */
2444  if (tcp_is_reno(tp))
2445  return false;
2446 
2447  /* Yeah, we have to make difficult choice between forward transmission
2448  * and retransmission... Both ways have their merits...
2449  *
2450  * For now we do not retransmit anything, while we have some new
2451  * segments to send. In the other cases, follow rule 3 for
2452  * NextSeg() specified in RFC3517.
2453  */
2454 
2455  if (tcp_may_send_now(sk))
2456  return false;
2457 
2458  return true;
2459 }
2460 
2461 /* This gets called after a retransmit timeout, and the initially
2462  * retransmitted data is acknowledged. It tries to continue
2463  * resending the rest of the retransmit queue, until either
2464  * we've sent it all or the congestion window limit is reached.
2465  * If doing SACK, the first ACK which comes back for a timeout
2466  * based retransmit packet might feed us FACK information again.
2467  * If so, we use it to avoid unnecessarily retransmissions.
2468  */
2470 {
2471  const struct inet_connection_sock *icsk = inet_csk(sk);
2472  struct tcp_sock *tp = tcp_sk(sk);
2473  struct sk_buff *skb;
2474  struct sk_buff *hole = NULL;
2475  u32 last_lost;
2476  int mib_idx;
2477  int fwd_rexmitting = 0;
2478 
2479  if (!tp->packets_out)
2480  return;
2481 
2482  if (!tp->lost_out)
2483  tp->retransmit_high = tp->snd_una;
2484 
2485  if (tp->retransmit_skb_hint) {
2486  skb = tp->retransmit_skb_hint;
2487  last_lost = TCP_SKB_CB(skb)->end_seq;
2488  if (after(last_lost, tp->retransmit_high))
2489  last_lost = tp->retransmit_high;
2490  } else {
2491  skb = tcp_write_queue_head(sk);
2492  last_lost = tp->snd_una;
2493  }
2494 
2495  tcp_for_write_queue_from(skb, sk) {
2496  __u8 sacked = TCP_SKB_CB(skb)->sacked;
2497 
2498  if (skb == tcp_send_head(sk))
2499  break;
2500  /* we could do better than to assign each time */
2501  if (hole == NULL)
2502  tp->retransmit_skb_hint = skb;
2503 
2504  /* Assume this retransmit will generate
2505  * only one packet for congestion window
2506  * calculation purposes. This works because
2507  * tcp_retransmit_skb() will chop up the
2508  * packet to be MSS sized and all the
2509  * packet counting works out.
2510  */
2511  if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2512  return;
2513 
2514  if (fwd_rexmitting) {
2515 begin_fwd:
2516  if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2517  break;
2518  mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2519 
2520  } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2521  tp->retransmit_high = last_lost;
2522  if (!tcp_can_forward_retransmit(sk))
2523  break;
2524  /* Backtrack if necessary to non-L'ed skb */
2525  if (hole != NULL) {
2526  skb = hole;
2527  hole = NULL;
2528  }
2529  fwd_rexmitting = 1;
2530  goto begin_fwd;
2531 
2532  } else if (!(sacked & TCPCB_LOST)) {
2533  if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2534  hole = skb;
2535  continue;
2536 
2537  } else {
2538  last_lost = TCP_SKB_CB(skb)->end_seq;
2539  if (icsk->icsk_ca_state != TCP_CA_Loss)
2540  mib_idx = LINUX_MIB_TCPFASTRETRANS;
2541  else
2543  }
2544 
2545  if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2546  continue;
2547 
2548  if (tcp_retransmit_skb(sk, skb)) {
2550  return;
2551  }
2552  NET_INC_STATS_BH(sock_net(sk), mib_idx);
2553 
2554  if (tcp_in_cwnd_reduction(sk))
2555  tp->prr_out += tcp_skb_pcount(skb);
2556 
2557  if (skb == tcp_write_queue_head(sk))
2558  inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2559  inet_csk(sk)->icsk_rto,
2560  TCP_RTO_MAX);
2561  }
2562 }
2563 
2564 /* Send a fin. The caller locks the socket for us. This cannot be
2565  * allowed to fail queueing a FIN frame under any circumstances.
2566  */
2567 void tcp_send_fin(struct sock *sk)
2568 {
2569  struct tcp_sock *tp = tcp_sk(sk);
2570  struct sk_buff *skb = tcp_write_queue_tail(sk);
2571  int mss_now;
2572 
2573  /* Optimization, tack on the FIN if we have a queue of
2574  * unsent frames. But be careful about outgoing SACKS
2575  * and IP options.
2576  */
2577  mss_now = tcp_current_mss(sk);
2578 
2579  if (tcp_send_head(sk) != NULL) {
2580  TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2581  TCP_SKB_CB(skb)->end_seq++;
2582  tp->write_seq++;
2583  } else {
2584  /* Socket is locked, keep trying until memory is available. */
2585  for (;;) {
2586  skb = alloc_skb_fclone(MAX_TCP_HEADER,
2587  sk->sk_allocation);
2588  if (skb)
2589  break;
2590  yield();
2591  }
2592 
2593  /* Reserve space for headers and prepare control bits. */
2594  skb_reserve(skb, MAX_TCP_HEADER);
2595  /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2596  tcp_init_nondata_skb(skb, tp->write_seq,
2597  TCPHDR_ACK | TCPHDR_FIN);
2598  tcp_queue_skb(sk, skb);
2599  }
2601 }
2602 
2603 /* We get here when a process closes a file descriptor (either due to
2604  * an explicit close() or as a byproduct of exit()'ing) and there
2605  * was unread data in the receive queue. This behavior is recommended
2606  * by RFC 2525, section 2.17. -DaveM
2607  */
2609 {
2610  struct sk_buff *skb;
2611 
2612  /* NOTE: No TCP options attached and we never retransmit this. */
2613  skb = alloc_skb(MAX_TCP_HEADER, priority);
2614  if (!skb) {
2615  NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2616  return;
2617  }
2618 
2619  /* Reserve space for headers and prepare control bits. */
2620  skb_reserve(skb, MAX_TCP_HEADER);
2621  tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2623  /* Send it off. */
2624  TCP_SKB_CB(skb)->when = tcp_time_stamp;
2625  if (tcp_transmit_skb(sk, skb, 0, priority))
2626  NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2627 
2628  TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2629 }
2630 
2631 /* Send a crossed SYN-ACK during socket establishment.
2632  * WARNING: This routine must only be called when we have already sent
2633  * a SYN packet that crossed the incoming SYN that caused this routine
2634  * to get called. If this assumption fails then the initial rcv_wnd
2635  * and rcv_wscale values will not be correct.
2636  */
2637 int tcp_send_synack(struct sock *sk)
2638 {
2639  struct sk_buff *skb;
2640 
2641  skb = tcp_write_queue_head(sk);
2642  if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2643  pr_debug("%s: wrong queue state\n", __func__);
2644  return -EFAULT;
2645  }
2646  if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2647  if (skb_cloned(skb)) {
2648  struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2649  if (nskb == NULL)
2650  return -ENOMEM;
2651  tcp_unlink_write_queue(skb, sk);
2652  skb_header_release(nskb);
2653  __tcp_add_write_queue_head(sk, nskb);
2654  sk_wmem_free_skb(sk, skb);
2655  sk->sk_wmem_queued += nskb->truesize;
2656  sk_mem_charge(sk, nskb->truesize);
2657  skb = nskb;
2658  }
2659 
2660  TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2661  TCP_ECN_send_synack(tcp_sk(sk), skb);
2662  }
2663  TCP_SKB_CB(skb)->when = tcp_time_stamp;
2664  return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2665 }
2666 
2677 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2678  struct request_sock *req,
2679  struct request_values *rvp,
2680  struct tcp_fastopen_cookie *foc)
2681 {
2682  struct tcp_out_options opts;
2683  struct tcp_extend_values *xvp = tcp_xv(rvp);
2684  struct inet_request_sock *ireq = inet_rsk(req);
2685  struct tcp_sock *tp = tcp_sk(sk);
2686  const struct tcp_cookie_values *cvp = tp->cookie_values;
2687  struct tcphdr *th;
2688  struct sk_buff *skb;
2689  struct tcp_md5sig_key *md5;
2690  int tcp_header_size;
2691  int mss;
2692  int s_data_desired = 0;
2693 
2694  if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired)
2695  s_data_desired = cvp->s_data_desired;
2696  skb = alloc_skb(MAX_TCP_HEADER + 15 + s_data_desired,
2697  sk_gfp_atomic(sk, GFP_ATOMIC));
2698  if (unlikely(!skb)) {
2699  dst_release(dst);
2700  return NULL;
2701  }
2702  /* Reserve space for headers. */
2703  skb_reserve(skb, MAX_TCP_HEADER);
2704 
2705  skb_dst_set(skb, dst);
2706 
2707  mss = dst_metric_advmss(dst);
2708  if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2709  mss = tp->rx_opt.user_mss;
2710 
2711  if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2712  __u8 rcv_wscale;
2713  /* Set this up on the first call only */
2714  req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2715 
2716  /* limit the window selection if the user enforce a smaller rx buffer */
2717  if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2718  (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2719  req->window_clamp = tcp_full_space(sk);
2720 
2721  /* tcp_full_space because it is guaranteed to be the first packet */
2722  tcp_select_initial_window(tcp_full_space(sk),
2723  mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2724  &req->rcv_wnd,
2725  &req->window_clamp,
2726  ireq->wscale_ok,
2727  &rcv_wscale,
2728  dst_metric(dst, RTAX_INITRWND));
2729  ireq->rcv_wscale = rcv_wscale;
2730  }
2731 
2732  memset(&opts, 0, sizeof(opts));
2733 #ifdef CONFIG_SYN_COOKIES
2734  if (unlikely(req->cookie_ts))
2735  TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2736  else
2737 #endif
2738  TCP_SKB_CB(skb)->when = tcp_time_stamp;
2739  tcp_header_size = tcp_synack_options(sk, req, mss,
2740  skb, &opts, &md5, xvp, foc)
2741  + sizeof(*th);
2742 
2743  skb_push(skb, tcp_header_size);
2744  skb_reset_transport_header(skb);
2745 
2746  th = tcp_hdr(skb);
2747  memset(th, 0, sizeof(struct tcphdr));
2748  th->syn = 1;
2749  th->ack = 1;
2750  TCP_ECN_make_synack(req, th);
2751  th->source = ireq->loc_port;
2752  th->dest = ireq->rmt_port;
2753  /* Setting of flags are superfluous here for callers (and ECE is
2754  * not even correctly set)
2755  */
2756  tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2757  TCPHDR_SYN | TCPHDR_ACK);
2758 
2759  if (OPTION_COOKIE_EXTENSION & opts.options) {
2760  if (s_data_desired) {
2761  u8 *buf = skb_put(skb, s_data_desired);
2762 
2763  /* copy data directly from the listening socket. */
2764  memcpy(buf, cvp->s_data_payload, s_data_desired);
2765  TCP_SKB_CB(skb)->end_seq += s_data_desired;
2766  }
2767 
2768  if (opts.hash_size > 0) {
2770  u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS];
2771  u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1];
2772 
2773  /* Secret recipe depends on the Timestamp, (future)
2774  * Sequence and Acknowledgment Numbers, Initiator
2775  * Cookie, and others handled by IP variant caller.
2776  */
2777  *tail-- ^= opts.tsval;
2778  *tail-- ^= tcp_rsk(req)->rcv_isn + 1;
2779  *tail-- ^= TCP_SKB_CB(skb)->seq + 1;
2780 
2781  /* recommended */
2782  *tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source);
2783  *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */
2784 
2785  sha_transform((__u32 *)&xvp->cookie_bakery[0],
2786  (char *)mess,
2787  &workspace[0]);
2788  opts.hash_location =
2789  (__u8 *)&xvp->cookie_bakery[0];
2790  }
2791  }
2792 
2793  th->seq = htonl(TCP_SKB_CB(skb)->seq);
2794  /* XXX data is queued and acked as is. No buffer/window check */
2795  th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2796 
2797  /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2798  th->window = htons(min(req->rcv_wnd, 65535U));
2799  tcp_options_write((__be32 *)(th + 1), tp, &opts);
2800  th->doff = (tcp_header_size >> 2);
2801  TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2802 
2803 #ifdef CONFIG_TCP_MD5SIG
2804  /* Okay, we have all we need - do the md5 hash if needed */
2805  if (md5) {
2806  tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2807  md5, NULL, req, skb);
2808  }
2809 #endif
2810 
2811  return skb;
2812 }
2814 
2815 /* Do all connect socket setups that can be done AF independent. */
2816 void tcp_connect_init(struct sock *sk)
2817 {
2818  const struct dst_entry *dst = __sk_dst_get(sk);
2819  struct tcp_sock *tp = tcp_sk(sk);
2820  __u8 rcv_wscale;
2821 
2822  /* We'll fix this up when we get a response from the other end.
2823  * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2824  */
2825  tp->tcp_header_len = sizeof(struct tcphdr) +
2826  (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2827 
2828 #ifdef CONFIG_TCP_MD5SIG
2829  if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2830  tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2831 #endif
2832 
2833  /* If user gave his TCP_MAXSEG, record it to clamp */
2834  if (tp->rx_opt.user_mss)
2835  tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2836  tp->max_window = 0;
2837  tcp_mtup_init(sk);
2838  tcp_sync_mss(sk, dst_mtu(dst));
2839 
2840  if (!tp->window_clamp)
2841  tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2842  tp->advmss = dst_metric_advmss(dst);
2843  if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2844  tp->advmss = tp->rx_opt.user_mss;
2845 
2847 
2848  /* limit the window selection if the user enforce a smaller rx buffer */
2849  if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2850  (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2851  tp->window_clamp = tcp_full_space(sk);
2852 
2853  tcp_select_initial_window(tcp_full_space(sk),
2854  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2855  &tp->rcv_wnd,
2856  &tp->window_clamp,
2858  &rcv_wscale,
2859  dst_metric(dst, RTAX_INITRWND));
2860 
2861  tp->rx_opt.rcv_wscale = rcv_wscale;
2862  tp->rcv_ssthresh = tp->rcv_wnd;
2863 
2864  sk->sk_err = 0;
2865  sock_reset_flag(sk, SOCK_DONE);
2866  tp->snd_wnd = 0;
2867  tcp_init_wl(tp, 0);
2868  tp->snd_una = tp->write_seq;
2869  tp->snd_sml = tp->write_seq;
2870  tp->snd_up = tp->write_seq;
2871  tp->snd_nxt = tp->write_seq;
2872 
2873  if (likely(!tp->repair))
2874  tp->rcv_nxt = 0;
2875  tp->rcv_wup = tp->rcv_nxt;
2876  tp->copied_seq = tp->rcv_nxt;
2877 
2878  inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2879  inet_csk(sk)->icsk_retransmits = 0;
2880  tcp_clear_retrans(tp);
2881 }
2882 
2883 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2884 {
2885  struct tcp_sock *tp = tcp_sk(sk);
2886  struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2887 
2888  tcb->end_seq += skb->len;
2889  skb_header_release(skb);
2890  __tcp_add_write_queue_tail(sk, skb);
2891  sk->sk_wmem_queued += skb->truesize;
2892  sk_mem_charge(sk, skb->truesize);
2893  tp->write_seq = tcb->end_seq;
2894  tp->packets_out += tcp_skb_pcount(skb);
2895 }
2896 
2897 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2898  * queue a data-only packet after the regular SYN, such that regular SYNs
2899  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2900  * only the SYN sequence, the data are retransmitted in the first ACK.
2901  * If cookie is not cached or other error occurs, falls back to send a
2902  * regular SYN with Fast Open cookie request option.
2903  */
2904 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2905 {
2906  struct tcp_sock *tp = tcp_sk(sk);
2907  struct tcp_fastopen_request *fo = tp->fastopen_req;
2908  int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2909  struct sk_buff *syn_data = NULL, *data;
2910  unsigned long last_syn_loss = 0;
2911 
2912  tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2913  tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2914  &syn_loss, &last_syn_loss);
2915  /* Recurring FO SYN losses: revert to regular handshake temporarily */
2916  if (syn_loss > 1 &&
2917  time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2918  fo->cookie.len = -1;
2919  goto fallback;
2920  }
2921 
2923  fo->cookie.len = -1;
2924  else if (fo->cookie.len <= 0)
2925  goto fallback;
2926 
2927  /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2928  * user-MSS. Reserve maximum option space for middleboxes that add
2929  * private TCP options. The cost is reduced data space in SYN :(
2930  */
2931  if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2932  tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2933  space = tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2935 
2936  syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2937  sk->sk_allocation);
2938  if (syn_data == NULL)
2939  goto fallback;
2940 
2941  for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2942  struct iovec *iov = &fo->data->msg_iov[i];
2943  unsigned char __user *from = iov->iov_base;
2944  int len = iov->iov_len;
2945 
2946  if (syn_data->len + len > space)
2947  len = space - syn_data->len;
2948  else if (i + 1 == iovlen)
2949  /* No more data pending in inet_wait_for_connect() */
2950  fo->data = NULL;
2951 
2952  if (skb_add_data(syn_data, from, len))
2953  goto fallback;
2954  }
2955 
2956  /* Queue a data-only packet after the regular SYN for retransmission */
2957  data = pskb_copy(syn_data, sk->sk_allocation);
2958  if (data == NULL)
2959  goto fallback;
2960  TCP_SKB_CB(data)->seq++;
2961  TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2962  TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2963  tcp_connect_queue_skb(sk, data);
2964  fo->copied = data->len;
2965 
2966  if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2967  tp->syn_data = (fo->copied > 0);
2969  goto done;
2970  }
2971  syn_data = NULL;
2972 
2973 fallback:
2974  /* Send a regular SYN with Fast Open cookie request option */
2975  if (fo->cookie.len > 0)
2976  fo->cookie.len = 0;
2977  err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2978  if (err)
2979  tp->syn_fastopen = 0;
2980  kfree_skb(syn_data);
2981 done:
2982  fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2983  return err;
2984 }
2985 
2986 /* Build a SYN and send it off. */
2987 int tcp_connect(struct sock *sk)
2988 {
2989  struct tcp_sock *tp = tcp_sk(sk);
2990  struct sk_buff *buff;
2991  int err;
2992 
2993  tcp_connect_init(sk);
2994 
2995  buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2996  if (unlikely(buff == NULL))
2997  return -ENOBUFS;
2998 
2999  /* Reserve space for headers. */
3000  skb_reserve(buff, MAX_TCP_HEADER);
3001 
3002  tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3003  tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3004  tcp_connect_queue_skb(sk, buff);
3005  TCP_ECN_send_syn(sk, buff);
3006 
3007  /* Send off SYN; include data in Fast Open. */
3008  err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3009  tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3010  if (err == -ECONNREFUSED)
3011  return err;
3012 
3013  /* We change tp->snd_nxt after the tcp_transmit_skb() call
3014  * in order to make this packet get counted in tcpOutSegs.
3015  */
3016  tp->snd_nxt = tp->write_seq;
3017  tp->pushed_seq = tp->write_seq;
3018  TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3019 
3020  /* Timer for repeating the SYN until an answer. */
3021  inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3022  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3023  return 0;
3024 }
3026 
3027 /* Send out a delayed ack, the caller does the policy checking
3028  * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3029  * for details.
3030  */
3031 void tcp_send_delayed_ack(struct sock *sk)
3032 {
3033  struct inet_connection_sock *icsk = inet_csk(sk);
3034  int ato = icsk->icsk_ack.ato;
3035  unsigned long timeout;
3036 
3037  if (ato > TCP_DELACK_MIN) {
3038  const struct tcp_sock *tp = tcp_sk(sk);
3039  int max_ato = HZ / 2;
3040 
3041  if (icsk->icsk_ack.pingpong ||
3042  (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3043  max_ato = TCP_DELACK_MAX;
3044 
3045  /* Slow path, intersegment interval is "high". */
3046 
3047  /* If some rtt estimate is known, use it to bound delayed ack.
3048  * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3049  * directly.
3050  */
3051  if (tp->srtt) {
3052  int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3053 
3054  if (rtt < max_ato)
3055  max_ato = rtt;
3056  }
3057 
3058  ato = min(ato, max_ato);
3059  }
3060 
3061  /* Stay within the limit we were given */
3062  timeout = jiffies + ato;
3063 
3064  /* Use new timeout only if there wasn't a older one earlier. */
3065  if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3066  /* If delack timer was blocked or is about to expire,
3067  * send ACK now.
3068  */
3069  if (icsk->icsk_ack.blocked ||
3070  time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3071  tcp_send_ack(sk);
3072  return;
3073  }
3074 
3075  if (!time_before(timeout, icsk->icsk_ack.timeout))
3076  timeout = icsk->icsk_ack.timeout;
3077  }
3078  icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3079  icsk->icsk_ack.timeout = timeout;
3080  sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3081 }
3082 
3083 /* This routine sends an ack and also updates the window. */
3084 void tcp_send_ack(struct sock *sk)
3085 {
3086  struct sk_buff *buff;
3087 
3088  /* If we have been reset, we may not send again. */
3089  if (sk->sk_state == TCP_CLOSE)
3090  return;
3091 
3092  /* We are not putting this on the write queue, so
3093  * tcp_transmit_skb() will set the ownership to this
3094  * sock.
3095  */
3096  buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3097  if (buff == NULL) {
3098  inet_csk_schedule_ack(sk);
3099  inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3100  inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3102  return;
3103  }
3104 
3105  /* Reserve space for headers and prepare control bits. */
3106  skb_reserve(buff, MAX_TCP_HEADER);
3107  tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3108 
3109  /* Send it off, this clears delayed acks for us. */
3110  TCP_SKB_CB(buff)->when = tcp_time_stamp;
3111  tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3112 }
3113 
3114 /* This routine sends a packet with an out of date sequence
3115  * number. It assumes the other end will try to ack it.
3116  *
3117  * Question: what should we make while urgent mode?
3118  * 4.4BSD forces sending single byte of data. We cannot send
3119  * out of window data, because we have SND.NXT==SND.MAX...
3120  *
3121  * Current solution: to send TWO zero-length segments in urgent mode:
3122  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3123  * out-of-date with SND.UNA-1 to probe window.
3124  */
3125 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3126 {
3127  struct tcp_sock *tp = tcp_sk(sk);
3128  struct sk_buff *skb;
3129 
3130  /* We don't queue it, tcp_transmit_skb() sets ownership. */
3131  skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3132  if (skb == NULL)
3133  return -1;
3134 
3135  /* Reserve space for headers and set control bits. */
3136  skb_reserve(skb, MAX_TCP_HEADER);
3137  /* Use a previous sequence. This should cause the other
3138  * end to send an ack. Don't queue or clone SKB, just
3139  * send it.
3140  */
3141  tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3142  TCP_SKB_CB(skb)->when = tcp_time_stamp;
3143  return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3144 }
3145 
3146 void tcp_send_window_probe(struct sock *sk)
3147 {
3148  if (sk->sk_state == TCP_ESTABLISHED) {
3149  tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3150  tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3151  tcp_xmit_probe_skb(sk, 0);
3152  }
3153 }
3154 
3155 /* Initiate keepalive or window probe from timer. */
3156 int tcp_write_wakeup(struct sock *sk)
3157 {
3158  struct tcp_sock *tp = tcp_sk(sk);
3159  struct sk_buff *skb;
3160 
3161  if (sk->sk_state == TCP_CLOSE)
3162  return -1;
3163 
3164  if ((skb = tcp_send_head(sk)) != NULL &&
3165  before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3166  int err;
3167  unsigned int mss = tcp_current_mss(sk);
3168  unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3169 
3170  if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3171  tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3172 
3173  /* We are probing the opening of a window
3174  * but the window size is != 0
3175  * must have been a result SWS avoidance ( sender )
3176  */
3177  if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3178  skb->len > mss) {
3179  seg_size = min(seg_size, mss);
3180  TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3181  if (tcp_fragment(sk, skb, seg_size, mss))
3182  return -1;
3183  } else if (!tcp_skb_pcount(skb))
3184  tcp_set_skb_tso_segs(sk, skb, mss);
3185 
3186  TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3187  TCP_SKB_CB(skb)->when = tcp_time_stamp;
3188  err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3189  if (!err)
3190  tcp_event_new_data_sent(sk, skb);
3191  return err;
3192  } else {
3193  if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3194  tcp_xmit_probe_skb(sk, 1);
3195  return tcp_xmit_probe_skb(sk, 0);
3196  }
3197 }
3198 
3199 /* A window probe timeout has occurred. If window is not closed send
3200  * a partial packet else a zero probe.
3201  */
3202 void tcp_send_probe0(struct sock *sk)
3203 {
3204  struct inet_connection_sock *icsk = inet_csk(sk);
3205  struct tcp_sock *tp = tcp_sk(sk);
3206  int err;
3207 
3208  err = tcp_write_wakeup(sk);
3209 
3210  if (tp->packets_out || !tcp_send_head(sk)) {
3211  /* Cancel probe timer, if it is not required. */
3212  icsk->icsk_probes_out = 0;
3213  icsk->icsk_backoff = 0;
3214  return;
3215  }
3216 
3217  if (err <= 0) {
3218  if (icsk->icsk_backoff < sysctl_tcp_retries2)
3219  icsk->icsk_backoff++;
3220  icsk->icsk_probes_out++;
3221  inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3222  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3223  TCP_RTO_MAX);
3224  } else {
3225  /* If packet was not sent due to local congestion,
3226  * do not backoff and do not remember icsk_probes_out.
3227  * Let local senders to fight for local resources.
3228  *
3229  * Use accumulated backoff yet.
3230  */
3231  if (!icsk->icsk_probes_out)
3232  icsk->icsk_probes_out = 1;
3233  inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3234  min(icsk->icsk_rto << icsk->icsk_backoff,
3236  TCP_RTO_MAX);
3237  }
3238 }