Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fw.c
Go to the documentation of this file.
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Firmware uploader
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above copyright
15  * notice, this list of conditions and the following disclaimer in
16  * the documentation and/or other materials provided with the
17  * distribution.
18  * * Neither the name of Intel Corporation nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Intel Corporation <[email protected]>
36  * Yanir Lubetkin <[email protected]>
37  * Inaky Perez-Gonzalez <[email protected]>
38  * - Initial implementation
39  *
40  *
41  * THE PROCEDURE
42  *
43  * The 2400m and derived devices work in two modes: boot-mode or
44  * normal mode. In boot mode we can execute only a handful of commands
45  * targeted at uploading the firmware and launching it.
46  *
47  * The 2400m enters boot mode when it is first connected to the
48  * system, when it crashes and when you ask it to reboot. There are
49  * two submodes of the boot mode: signed and non-signed. Signed takes
50  * firmwares signed with a certain private key, non-signed takes any
51  * firmware. Normal hardware takes only signed firmware.
52  *
53  * On boot mode, in USB, we write to the device using the bulk out
54  * endpoint and read from it in the notification endpoint.
55  *
56  * Upon entrance to boot mode, the device sends (preceded with a few
57  * zero length packets (ZLPs) on the notification endpoint in USB) a
58  * reboot barker (4 le32 words with the same value). We ack it by
59  * sending the same barker to the device. The device acks with a
60  * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
61  * then is fully booted. At this point we can upload the firmware.
62  *
63  * Note that different iterations of the device and EEPROM
64  * configurations will send different [re]boot barkers; these are
65  * collected in i2400m_barker_db along with the firmware
66  * characteristics they require.
67  *
68  * This process is accomplished by the i2400m_bootrom_init()
69  * function. All the device interaction happens through the
70  * i2400m_bm_cmd() [boot mode command]. Special return values will
71  * indicate if the device did reset during the process.
72  *
73  * After this, we read the MAC address and then (if needed)
74  * reinitialize the device. We need to read it ahead of time because
75  * in the future, we might not upload the firmware until userspace
76  * 'ifconfig up's the device.
77  *
78  * We can then upload the firmware file. The file is composed of a BCF
79  * header (basic data, keys and signatures) and a list of write
80  * commands and payloads. Optionally more BCF headers might follow the
81  * main payload. We first upload the header [i2400m_dnload_init()] and
82  * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
83  * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
84  * the new firmware [i2400m_dnload_finalize()].
85  *
86  * Once firmware is uploaded, we are good to go :)
87  *
88  * When we don't know in which mode we are, we first try by sending a
89  * warm reset request that will take us to boot-mode. If we time out
90  * waiting for a reboot barker, that means maybe we are already in
91  * boot mode, so we send a reboot barker.
92  *
93  * COMMAND EXECUTION
94  *
95  * This code (and process) is single threaded; for executing commands,
96  * we post a URB to the notification endpoint, post the command, wait
97  * for data on the notification buffer. We don't need to worry about
98  * others as we know we are the only ones in there.
99  *
100  * BACKEND IMPLEMENTATION
101  *
102  * This code is bus-generic; the bus-specific driver provides back end
103  * implementations to send a boot mode command to the device and to
104  * read an acknolwedgement from it (or an asynchronous notification)
105  * from it.
106  *
107  * FIRMWARE LOADING
108  *
109  * Note that in some cases, we can't just load a firmware file (for
110  * example, when resuming). For that, we might cache the firmware
111  * file. Thus, when doing the bootstrap, if there is a cache firmware
112  * file, it is used; if not, loading from disk is attempted.
113  *
114  * ROADMAP
115  *
116  * i2400m_barker_db_init Called by i2400m_driver_init()
117  * i2400m_barker_db_add
118  *
119  * i2400m_barker_db_exit Called by i2400m_driver_exit()
120  *
121  * i2400m_dev_bootstrap Called by __i2400m_dev_start()
122  * request_firmware
123  * i2400m_fw_bootstrap
124  * i2400m_fw_check
125  * i2400m_fw_hdr_check
126  * i2400m_fw_dnload
127  * release_firmware
128  *
129  * i2400m_fw_dnload
130  * i2400m_bootrom_init
131  * i2400m_bm_cmd
132  * i2400m_reset
133  * i2400m_dnload_init
134  * i2400m_dnload_init_signed
135  * i2400m_dnload_init_nonsigned
136  * i2400m_download_chunk
137  * i2400m_bm_cmd
138  * i2400m_dnload_bcf
139  * i2400m_bm_cmd
140  * i2400m_dnload_finalize
141  * i2400m_bm_cmd
142  *
143  * i2400m_bm_cmd
144  * i2400m->bus_bm_cmd_send()
145  * i2400m->bus_bm_wait_for_ack
146  * __i2400m_bm_ack_verify
147  * i2400m_is_boot_barker
148  *
149  * i2400m_bm_cmd_prepare Used by bus-drivers to prep
150  * commands before sending
151  *
152  * i2400m_pm_notifier Called on Power Management events
153  * i2400m_fw_cache
154  * i2400m_fw_uncache
155  */
156 #include <linux/firmware.h>
157 #include <linux/sched.h>
158 #include <linux/slab.h>
159 #include <linux/usb.h>
160 #include <linux/export.h>
161 #include "i2400m.h"
162 
163 
164 #define D_SUBMODULE fw
165 #include "debug-levels.h"
166 
167 
168 static const __le32 i2400m_ACK_BARKER[4] = {
173 };
174 
175 
189 {
190  if (i2400m_brh_get_use_checksum(cmd)) {
191  int i;
192  u32 checksum = 0;
193  const u32 *checksum_ptr = (void *) cmd->payload;
194  for (i = 0; i < cmd->data_size / 4; i++)
195  checksum += cpu_to_le32(*checksum_ptr++);
196  checksum += cmd->command + cmd->target_addr + cmd->data_size;
197  cmd->block_checksum = cpu_to_le32(checksum);
198  }
199 }
201 
202 
203 /*
204  * Database of known barkers.
205  *
206  * A barker is what the device sends indicating he is ready to be
207  * bootloaded. Different versions of the device will send different
208  * barkers. Depending on the barker, it might mean the device wants
209  * some kind of firmware or the other.
210  */
211 static struct i2400m_barker_db {
212  __le32 data[4];
213 } *i2400m_barker_db;
214 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
215 
216 
217 static
218 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
219  gfp_t gfp_flags)
220 {
221  size_t old_count = *_count,
222  new_count = old_count ? 2 * old_count : 2,
223  old_size = el_size * old_count,
224  new_size = el_size * new_count;
225  void *nptr = krealloc(*ptr, new_size, gfp_flags);
226  if (nptr) {
227  /* zero the other half or the whole thing if old_count
228  * was zero */
229  if (old_size == 0)
230  memset(nptr, 0, new_size);
231  else
232  memset(nptr + old_size, 0, old_size);
233  *_count = new_count;
234  *ptr = nptr;
235  return 0;
236  } else
237  return -ENOMEM;
238 }
239 
240 
241 /*
242  * Add a barker to the database
243  *
244  * This cannot used outside of this module and only at at module_init
245  * time. This is to avoid the need to do locking.
246  */
247 static
248 int i2400m_barker_db_add(u32 barker_id)
249 {
250  int result;
251 
252  struct i2400m_barker_db *barker;
253  if (i2400m_barker_db_used >= i2400m_barker_db_size) {
254  result = i2400m_zrealloc_2x(
255  (void **) &i2400m_barker_db, &i2400m_barker_db_size,
256  sizeof(i2400m_barker_db[0]), GFP_KERNEL);
257  if (result < 0)
258  return result;
259  }
260  barker = i2400m_barker_db + i2400m_barker_db_used++;
261  barker->data[0] = le32_to_cpu(barker_id);
262  barker->data[1] = le32_to_cpu(barker_id);
263  barker->data[2] = le32_to_cpu(barker_id);
264  barker->data[3] = le32_to_cpu(barker_id);
265  return 0;
266 }
267 
268 
270 {
271  kfree(i2400m_barker_db);
272  i2400m_barker_db = NULL;
273  i2400m_barker_db_size = 0;
274  i2400m_barker_db_used = 0;
275 }
276 
277 
278 /*
279  * Helper function to add all the known stable barkers to the barker
280  * database.
281  */
282 static
283 int i2400m_barker_db_known_barkers(void)
284 {
285  int result;
286 
287  result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
288  if (result < 0)
289  goto error_add;
290  result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
291  if (result < 0)
292  goto error_add;
293  result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
294  if (result < 0)
295  goto error_add;
296 error_add:
297  return result;
298 }
299 
300 
301 /*
302  * Initialize the barker database
303  *
304  * This can only be used from the module_init function for this
305  * module; this is to avoid the need to do locking.
306  *
307  * @options: command line argument with extra barkers to
308  * recognize. This is a comma-separated list of 32-bit hex
309  * numbers. They are appended to the existing list. Setting 0
310  * cleans the existing list and starts a new one.
311  */
312 int i2400m_barker_db_init(const char *_options)
313 {
314  int result;
315  char *options = NULL, *options_orig, *token;
316 
317  i2400m_barker_db = NULL;
318  i2400m_barker_db_size = 0;
319  i2400m_barker_db_used = 0;
320 
321  result = i2400m_barker_db_known_barkers();
322  if (result < 0)
323  goto error_add;
324  /* parse command line options from i2400m.barkers */
325  if (_options != NULL) {
326  unsigned barker;
327 
328  options_orig = kstrdup(_options, GFP_KERNEL);
329  if (options_orig == NULL) {
330  result = -ENOMEM;
331  goto error_parse;
332  }
333  options = options_orig;
334 
335  while ((token = strsep(&options, ",")) != NULL) {
336  if (*token == '\0') /* eat joint commas */
337  continue;
338  if (sscanf(token, "%x", &barker) != 1
339  || barker > 0xffffffff) {
340  printk(KERN_ERR "%s: can't recognize "
341  "i2400m.barkers value '%s' as "
342  "a 32-bit number\n",
343  __func__, token);
344  result = -EINVAL;
345  goto error_parse;
346  }
347  if (barker == 0) {
348  /* clean list and start new */
350  continue;
351  }
352  result = i2400m_barker_db_add(barker);
353  if (result < 0)
354  goto error_add;
355  }
356  kfree(options_orig);
357  }
358  return 0;
359 
360 error_parse:
361 error_add:
362  kfree(i2400m_barker_db);
363  return result;
364 }
365 
366 
367 /*
368  * Recognize a boot barker
369  *
370  * @buf: buffer where the boot barker.
371  * @buf_size: size of the buffer (has to be 16 bytes). It is passed
372  * here so the function can check it for the caller.
373  *
374  * Note that as a side effect, upon identifying the obtained boot
375  * barker, this function will set i2400m->barker to point to the right
376  * barker database entry. Subsequent calls to the function will result
377  * in verifying that the same type of boot barker is returned when the
378  * device [re]boots (as long as the same device instance is used).
379  *
380  * Return: 0 if @buf matches a known boot barker. -ENOENT if the
381  * buffer in @buf doesn't match any boot barker in the database or
382  * -EILSEQ if the buffer doesn't have the right size.
383  */
385  const void *buf, size_t buf_size)
386 {
387  int result;
388  struct device *dev = i2400m_dev(i2400m);
389  struct i2400m_barker_db *barker;
390  int i;
391 
392  result = -ENOENT;
393  if (buf_size != sizeof(i2400m_barker_db[i].data))
394  return result;
395 
396  /* Short circuit if we have already discovered the barker
397  * associated with the device. */
398  if (i2400m->barker
399  && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
400  unsigned index = (i2400m->barker - i2400m_barker_db)
401  / sizeof(*i2400m->barker);
402  d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
403  index, le32_to_cpu(i2400m->barker->data[0]));
404  return 0;
405  }
406 
407  for (i = 0; i < i2400m_barker_db_used; i++) {
408  barker = &i2400m_barker_db[i];
409  BUILD_BUG_ON(sizeof(barker->data) != 16);
410  if (memcmp(buf, barker->data, sizeof(barker->data)))
411  continue;
412 
413  if (i2400m->barker == NULL) {
414  i2400m->barker = barker;
415  d_printf(1, dev, "boot barker set to #%u/%08x\n",
416  i, le32_to_cpu(barker->data[0]));
417  if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
418  i2400m->sboot = 0;
419  else
420  i2400m->sboot = 1;
421  } else if (i2400m->barker != barker) {
422  dev_err(dev, "HW inconsistency: device "
423  "reports a different boot barker "
424  "than set (from %08x to %08x)\n",
425  le32_to_cpu(i2400m->barker->data[0]),
426  le32_to_cpu(barker->data[0]));
427  result = -EIO;
428  } else
429  d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
430  i, le32_to_cpu(barker->data[0]));
431  result = 0;
432  break;
433  }
434  return result;
435 }
437 
438 
439 /*
440  * Verify the ack data received
441  *
442  * Given a reply to a boot mode command, chew it and verify everything
443  * is ok.
444  *
445  * @opcode: opcode which generated this ack. For error messages.
446  * @ack: pointer to ack data we received
447  * @ack_size: size of that data buffer
448  * @flags: I2400M_BM_CMD_* flags we called the command with.
449  *
450  * Way too long function -- maybe it should be further split
451  */
452 static
453 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
454  struct i2400m_bootrom_header *ack,
455  size_t ack_size, int flags)
456 {
457  ssize_t result = -ENOMEM;
458  struct device *dev = i2400m_dev(i2400m);
459 
460  d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
461  i2400m, opcode, ack, ack_size);
462  if (ack_size < sizeof(*ack)) {
463  result = -EIO;
464  dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
465  "return enough data (%zu bytes vs %zu expected)\n",
466  opcode, ack_size, sizeof(*ack));
467  goto error_ack_short;
468  }
469  result = i2400m_is_boot_barker(i2400m, ack, ack_size);
470  if (result >= 0) {
471  result = -ERESTARTSYS;
472  d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
473  goto error_reboot;
474  }
475  if (ack_size == sizeof(i2400m_ACK_BARKER)
476  && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
477  result = -EISCONN;
478  d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
479  opcode);
480  goto error_reboot_ack;
481  }
482  result = 0;
483  if (flags & I2400M_BM_CMD_RAW)
484  goto out_raw;
485  ack->data_size = le32_to_cpu(ack->data_size);
486  ack->target_addr = le32_to_cpu(ack->target_addr);
488  d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
489  "response %u csum %u rr %u da %u\n",
490  opcode, i2400m_brh_get_opcode(ack),
491  i2400m_brh_get_response(ack),
492  i2400m_brh_get_use_checksum(ack),
493  i2400m_brh_get_response_required(ack),
494  i2400m_brh_get_direct_access(ack));
495  result = -EIO;
496  if (i2400m_brh_get_signature(ack) != 0xcbbc) {
497  dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
498  "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
499  goto error_ack_signature;
500  }
501  if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
502  dev_err(dev, "boot-mode cmd %d: HW BUG? "
503  "received response for opcode %u, expected %u\n",
504  opcode, i2400m_brh_get_opcode(ack), opcode);
505  goto error_ack_opcode;
506  }
507  if (i2400m_brh_get_response(ack) != 0) { /* failed? */
508  dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
509  opcode, i2400m_brh_get_response(ack));
510  goto error_ack_failed;
511  }
512  if (ack_size < ack->data_size + sizeof(*ack)) {
513  dev_err(dev, "boot-mode cmd %d: SW BUG "
514  "driver provided only %zu bytes for %zu bytes "
515  "of data\n", opcode, ack_size,
516  (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
517  goto error_ack_short_buffer;
518  }
519  result = ack_size;
520  /* Don't you love this stack of empty targets? Well, I don't
521  * either, but it helps track exactly who comes in here and
522  * why :) */
523 error_ack_short_buffer:
524 error_ack_failed:
525 error_ack_opcode:
526 error_ack_signature:
527 out_raw:
528 error_reboot_ack:
529 error_reboot:
530 error_ack_short:
531  d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
532  i2400m, opcode, ack, ack_size, (int) result);
533  return result;
534 }
535 
536 
582 static
583 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
584  const struct i2400m_bootrom_header *cmd, size_t cmd_size,
585  struct i2400m_bootrom_header *ack, size_t ack_size,
586  int flags)
587 {
588  ssize_t result = -ENOMEM, rx_bytes;
589  struct device *dev = i2400m_dev(i2400m);
590  int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
591 
592  d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
593  i2400m, cmd, cmd_size, ack, ack_size);
594  BUG_ON(ack_size < sizeof(*ack));
595  BUG_ON(i2400m->boot_mode == 0);
596 
597  if (cmd != NULL) { /* send the command */
598  result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
599  if (result < 0)
600  goto error_cmd_send;
601  if ((flags & I2400M_BM_CMD_RAW) == 0)
602  d_printf(5, dev,
603  "boot-mode cmd %d csum %u rr %u da %u: "
604  "addr 0x%04x size %u block csum 0x%04x\n",
605  opcode, i2400m_brh_get_use_checksum(cmd),
606  i2400m_brh_get_response_required(cmd),
607  i2400m_brh_get_direct_access(cmd),
608  cmd->target_addr, cmd->data_size,
609  cmd->block_checksum);
610  }
611  result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
612  if (result < 0) {
613  dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
614  opcode, (int) result); /* bah, %zd doesn't work */
615  goto error_wait_for_ack;
616  }
617  rx_bytes = result;
618  /* verify the ack and read more if necessary [result is the
619  * final amount of bytes we get in the ack] */
620  result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
621  if (result < 0)
622  goto error_bad_ack;
623  /* Don't you love this stack of empty targets? Well, I don't
624  * either, but it helps track exactly who comes in here and
625  * why :) */
626  result = rx_bytes;
627 error_bad_ack:
628 error_wait_for_ack:
629 error_cmd_send:
630  d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
631  i2400m, cmd, cmd_size, ack, ack_size, (int) result);
632  return result;
633 }
634 
635 
646 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
647  size_t __chunk_len, unsigned long addr,
648  unsigned int direct, unsigned int do_csum)
649 {
650  int ret;
651  size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
652  struct device *dev = i2400m_dev(i2400m);
653  struct {
654  struct i2400m_bootrom_header cmd;
655  u8 cmd_payload[chunk_len];
656  } __packed *buf;
657  struct i2400m_bootrom_header ack;
658 
659  d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
660  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
661  addr, direct, do_csum);
662  buf = i2400m->bm_cmd_buf;
663  memcpy(buf->cmd_payload, chunk, __chunk_len);
664  memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
665 
666  buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
667  __chunk_len & 0x3 ? 0 : do_csum,
668  __chunk_len & 0xf ? 0 : direct);
669  buf->cmd.target_addr = cpu_to_le32(addr);
670  buf->cmd.data_size = cpu_to_le32(__chunk_len);
671  ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
672  &ack, sizeof(ack), 0);
673  if (ret >= 0)
674  ret = 0;
675  d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
676  "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
677  addr, direct, do_csum, ret);
678  return ret;
679 }
680 
681 
682 /*
683  * Download a BCF file's sections to the device
684  *
685  * @i2400m: device descriptor
686  * @bcf: pointer to firmware data (first header followed by the
687  * payloads). Assumed verified and consistent.
688  * @bcf_len: length (in bytes) of the @bcf buffer.
689  *
690  * Returns: < 0 errno code on error or the offset to the jump instruction.
691  *
692  * Given a BCF file, downloads each section (a command and a payload)
693  * to the device's address space. Actually, it just executes each
694  * command i the BCF file.
695  *
696  * The section size has to be aligned to 4 bytes AND the padding has
697  * to be taken from the firmware file, as the signature takes it into
698  * account.
699  */
700 static
701 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
702  const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
703 {
704  ssize_t ret;
705  struct device *dev = i2400m_dev(i2400m);
706  size_t offset, /* iterator offset */
707  data_size, /* Size of the data payload */
708  section_size, /* Size of the whole section (cmd + payload) */
709  section = 1;
710  const struct i2400m_bootrom_header *bh;
711  struct i2400m_bootrom_header ack;
712 
713  d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
714  i2400m, bcf, bcf_len);
715  /* Iterate over the command blocks in the BCF file that start
716  * after the header */
717  offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
718  while (1) { /* start sending the file */
719  bh = (void *) bcf + offset;
720  data_size = le32_to_cpu(bh->data_size);
721  section_size = ALIGN(sizeof(*bh) + data_size, 4);
722  d_printf(7, dev,
723  "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
724  section, offset, sizeof(*bh) + data_size,
725  le32_to_cpu(bh->target_addr));
726  /*
727  * We look for JUMP cmd from the bootmode header,
728  * either I2400M_BRH_SIGNED_JUMP for secure boot
729  * or I2400M_BRH_JUMP for unsecure boot, the last chunk
730  * should be the bootmode header with JUMP cmd.
731  */
732  if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
733  i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
734  d_printf(5, dev, "jump found @%zu\n", offset);
735  break;
736  }
737  if (offset + section_size > bcf_len) {
738  dev_err(dev, "fw %s: bad section #%zu, "
739  "end (@%zu) beyond EOF (@%zu)\n",
740  i2400m->fw_name, section,
741  offset + section_size, bcf_len);
742  ret = -EINVAL;
743  goto error_section_beyond_eof;
744  }
745  __i2400m_msleep(20);
746  ret = i2400m_bm_cmd(i2400m, bh, section_size,
747  &ack, sizeof(ack), I2400M_BM_CMD_RAW);
748  if (ret < 0) {
749  dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
750  "failed %d\n", i2400m->fw_name, section,
751  offset, sizeof(*bh) + data_size, (int) ret);
752  goto error_send;
753  }
754  offset += section_size;
755  section++;
756  }
757  ret = offset;
758 error_section_beyond_eof:
759 error_send:
760  d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
761  i2400m, bcf, bcf_len, (int) ret);
762  return ret;
763 }
764 
765 
766 /*
767  * Indicate if the device emitted a reboot barker that indicates
768  * "signed boot"
769  */
770 static
771 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
772 {
773  return likely(i2400m->sboot);
774 }
775 
776 
777 /*
778  * Do the final steps of uploading firmware
779  *
780  * @bcf_hdr: BCF header we are actually using
781  * @bcf: pointer to the firmware image (which matches the first header
782  * that is followed by the actual payloads).
783  * @offset: [byte] offset into @bcf for the command we need to send.
784  *
785  * Depending on the boot mode (signed vs non-signed), different
786  * actions need to be taken.
787  */
788 static
789 int i2400m_dnload_finalize(struct i2400m *i2400m,
790  const struct i2400m_bcf_hdr *bcf_hdr,
791  const struct i2400m_bcf_hdr *bcf, size_t offset)
792 {
793  int ret = 0;
794  struct device *dev = i2400m_dev(i2400m);
795  struct i2400m_bootrom_header *cmd, ack;
796  struct {
797  struct i2400m_bootrom_header cmd;
798  u8 cmd_pl[0];
799  } __packed *cmd_buf;
800  size_t signature_block_offset, signature_block_size;
801 
802  d_fnstart(3, dev, "offset %zu\n", offset);
803  cmd = (void *) bcf + offset;
804  if (i2400m_boot_is_signed(i2400m) == 0) {
805  struct i2400m_bootrom_header jump_ack;
806  d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
807  le32_to_cpu(cmd->target_addr));
808  cmd_buf = i2400m->bm_cmd_buf;
809  memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
810  cmd = &cmd_buf->cmd;
811  /* now cmd points to the actual bootrom_header in cmd_buf */
812  i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
813  cmd->data_size = 0;
814  ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
815  &jump_ack, sizeof(jump_ack), 0);
816  } else {
817  d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
818  le32_to_cpu(cmd->target_addr));
819  cmd_buf = i2400m->bm_cmd_buf;
820  memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
821  signature_block_offset =
822  sizeof(*bcf_hdr)
823  + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
824  + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
825  signature_block_size =
826  le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
827  memcpy(cmd_buf->cmd_pl,
828  (void *) bcf_hdr + signature_block_offset,
829  signature_block_size);
830  ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
831  sizeof(cmd_buf->cmd) + signature_block_size,
832  &ack, sizeof(ack), I2400M_BM_CMD_RAW);
833  }
834  d_fnend(3, dev, "returning %d\n", ret);
835  return ret;
836 }
837 
838 
883 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
884 {
885  int result;
886  struct device *dev = i2400m_dev(i2400m);
887  struct i2400m_bootrom_header *cmd;
888  struct i2400m_bootrom_header ack;
889  int count = i2400m->bus_bm_retries;
890  int ack_timeout_cnt = 1;
891  unsigned i;
892 
893  BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
894  BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
895 
896  d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
897  result = -ENOMEM;
898  cmd = i2400m->bm_cmd_buf;
899  if (flags & I2400M_BRI_SOFT)
900  goto do_reboot_ack;
901 do_reboot:
902  ack_timeout_cnt = 1;
903  if (--count < 0)
904  goto error_timeout;
905  d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
906  count);
907  if ((flags & I2400M_BRI_NO_REBOOT) == 0)
908  i2400m_reset(i2400m, I2400M_RT_WARM);
909  result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
910  I2400M_BM_CMD_RAW);
911  flags &= ~I2400M_BRI_NO_REBOOT;
912  switch (result) {
913  case -ERESTARTSYS:
914  /*
915  * at this point, i2400m_bm_cmd(), through
916  * __i2400m_bm_ack_process(), has updated
917  * i2400m->barker and we are good to go.
918  */
919  d_printf(4, dev, "device reboot: got reboot barker\n");
920  break;
921  case -EISCONN: /* we don't know how it got here...but we follow it */
922  d_printf(4, dev, "device reboot: got ack barker - whatever\n");
923  goto do_reboot;
924  case -ETIMEDOUT:
925  /*
926  * Device has timed out, we might be in boot mode
927  * already and expecting an ack; if we don't know what
928  * the barker is, we just send them all. Cold reset
929  * and bus reset don't work. Beats me.
930  */
931  if (i2400m->barker != NULL) {
932  dev_err(dev, "device boot: reboot barker timed out, "
933  "trying (set) %08x echo/ack\n",
934  le32_to_cpu(i2400m->barker->data[0]));
935  goto do_reboot_ack;
936  }
937  for (i = 0; i < i2400m_barker_db_used; i++) {
938  struct i2400m_barker_db *barker = &i2400m_barker_db[i];
939  memcpy(cmd, barker->data, sizeof(barker->data));
940  result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
941  &ack, sizeof(ack),
942  I2400M_BM_CMD_RAW);
943  if (result == -EISCONN) {
944  dev_warn(dev, "device boot: got ack barker "
945  "after sending echo/ack barker "
946  "#%d/%08x; rebooting j.i.c.\n",
947  i, le32_to_cpu(barker->data[0]));
948  flags &= ~I2400M_BRI_NO_REBOOT;
949  goto do_reboot;
950  }
951  }
952  dev_err(dev, "device boot: tried all the echo/acks, could "
953  "not get device to respond; giving up");
954  result = -ESHUTDOWN;
955  case -EPROTO:
956  case -ESHUTDOWN: /* dev is gone */
957  case -EINTR: /* user cancelled */
958  goto error_dev_gone;
959  default:
960  dev_err(dev, "device reboot: error %d while waiting "
961  "for reboot barker - rebooting\n", result);
962  d_dump(1, dev, &ack, result);
963  goto do_reboot;
964  }
965  /* At this point we ack back with 4 REBOOT barkers and expect
966  * 4 ACK barkers. This is ugly, as we send a raw command --
967  * hence the cast. _bm_cmd() will catch the reboot ack
968  * notification and report it as -EISCONN. */
969 do_reboot_ack:
970  d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
971  memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
972  result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
973  &ack, sizeof(ack), I2400M_BM_CMD_RAW);
974  switch (result) {
975  case -ERESTARTSYS:
976  d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
977  if (--count < 0)
978  goto error_timeout;
979  goto do_reboot_ack;
980  case -EISCONN:
981  d_printf(4, dev, "reboot ack: got ack barker - good\n");
982  break;
983  case -ETIMEDOUT: /* no response, maybe it is the other type? */
984  if (ack_timeout_cnt-- < 0) {
985  d_printf(4, dev, "reboot ack timedout: retrying\n");
986  goto do_reboot_ack;
987  } else {
988  dev_err(dev, "reboot ack timedout too long: "
989  "trying reboot\n");
990  goto do_reboot;
991  }
992  break;
993  case -EPROTO:
994  case -ESHUTDOWN: /* dev is gone */
995  goto error_dev_gone;
996  default:
997  dev_err(dev, "device reboot ack: error %d while waiting for "
998  "reboot ack barker - rebooting\n", result);
999  goto do_reboot;
1000  }
1001  d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
1002  result = 0;
1003 exit_timeout:
1004 error_dev_gone:
1005  d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1006  i2400m, flags, result);
1007  return result;
1008 
1009 error_timeout:
1010  dev_err(dev, "Timed out waiting for reboot ack\n");
1011  result = -ETIMEDOUT;
1012  goto exit_timeout;
1013 }
1014 
1015 
1016 /*
1017  * Read the MAC addr
1018  *
1019  * The position this function reads is fixed in device memory and
1020  * always available, even without firmware.
1021  *
1022  * Note we specify we want to read only six bytes, but provide space
1023  * for 16, as we always get it rounded up.
1024  */
1025 int i2400m_read_mac_addr(struct i2400m *i2400m)
1026 {
1027  int result;
1028  struct device *dev = i2400m_dev(i2400m);
1029  struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1030  struct i2400m_bootrom_header *cmd;
1031  struct {
1032  struct i2400m_bootrom_header ack;
1033  u8 ack_pl[16];
1034  } __packed ack_buf;
1035 
1036  d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1037  cmd = i2400m->bm_cmd_buf;
1038  cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1039  cmd->target_addr = cpu_to_le32(0x00203fe8);
1040  cmd->data_size = cpu_to_le32(6);
1041  result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1042  &ack_buf.ack, sizeof(ack_buf), 0);
1043  if (result < 0) {
1044  dev_err(dev, "BM: read mac addr failed: %d\n", result);
1045  goto error_read_mac;
1046  }
1047  d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1048  if (i2400m->bus_bm_mac_addr_impaired == 1) {
1049  ack_buf.ack_pl[0] = 0x00;
1050  ack_buf.ack_pl[1] = 0x16;
1051  ack_buf.ack_pl[2] = 0xd3;
1052  get_random_bytes(&ack_buf.ack_pl[3], 3);
1053  dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1054  "mac addr is %pM\n", ack_buf.ack_pl);
1055  result = 0;
1056  }
1057  net_dev->addr_len = ETH_ALEN;
1058  memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
1059  memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1060 error_read_mac:
1061  d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1062  return result;
1063 }
1064 
1065 
1066 /*
1067  * Initialize a non signed boot
1068  *
1069  * This implies sending some magic values to the device's memory. Note
1070  * we convert the values to little endian in the same array
1071  * declaration.
1072  */
1073 static
1074 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1075 {
1076  unsigned i = 0;
1077  int ret = 0;
1078  struct device *dev = i2400m_dev(i2400m);
1079  d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1080  if (i2400m->bus_bm_pokes_table) {
1081  while (i2400m->bus_bm_pokes_table[i].address) {
1082  ret = i2400m_download_chunk(
1083  i2400m,
1084  &i2400m->bus_bm_pokes_table[i].data,
1085  sizeof(i2400m->bus_bm_pokes_table[i].data),
1086  i2400m->bus_bm_pokes_table[i].address, 1, 1);
1087  if (ret < 0)
1088  break;
1089  i++;
1090  }
1091  }
1092  d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1093  return ret;
1094 }
1095 
1096 
1097 /*
1098  * Initialize the signed boot process
1099  *
1100  * @i2400m: device descriptor
1101  *
1102  * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1103  * memory (it has gone through basic validation).
1104  *
1105  * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1106  * rebooted.
1107  *
1108  * This writes the firmware BCF header to the device using the
1109  * HASH_PAYLOAD_ONLY command.
1110  */
1111 static
1112 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1113  const struct i2400m_bcf_hdr *bcf_hdr)
1114 {
1115  int ret;
1116  struct device *dev = i2400m_dev(i2400m);
1117  struct {
1118  struct i2400m_bootrom_header cmd;
1119  struct i2400m_bcf_hdr cmd_pl;
1120  } __packed *cmd_buf;
1121  struct i2400m_bootrom_header ack;
1122 
1123  d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1124  cmd_buf = i2400m->bm_cmd_buf;
1125  cmd_buf->cmd.command =
1126  i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1127  cmd_buf->cmd.target_addr = 0;
1128  cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1129  memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1130  ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1131  &ack, sizeof(ack), 0);
1132  if (ret >= 0)
1133  ret = 0;
1134  d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1135  return ret;
1136 }
1137 
1138 
1139 /*
1140  * Initialize the firmware download at the device size
1141  *
1142  * Multiplex to the one that matters based on the device's mode
1143  * (signed or non-signed).
1144  */
1145 static
1146 int i2400m_dnload_init(struct i2400m *i2400m,
1147  const struct i2400m_bcf_hdr *bcf_hdr)
1148 {
1149  int result;
1150  struct device *dev = i2400m_dev(i2400m);
1151 
1152  if (i2400m_boot_is_signed(i2400m)) {
1153  d_printf(1, dev, "signed boot\n");
1154  result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1155  if (result == -ERESTARTSYS)
1156  return result;
1157  if (result < 0)
1158  dev_err(dev, "firmware %s: signed boot download "
1159  "initialization failed: %d\n",
1160  i2400m->fw_name, result);
1161  } else {
1162  /* non-signed boot process without pokes */
1163  d_printf(1, dev, "non-signed boot\n");
1164  result = i2400m_dnload_init_nonsigned(i2400m);
1165  if (result == -ERESTARTSYS)
1166  return result;
1167  if (result < 0)
1168  dev_err(dev, "firmware %s: non-signed download "
1169  "initialization failed: %d\n",
1170  i2400m->fw_name, result);
1171  }
1172  return result;
1173 }
1174 
1175 
1176 /*
1177  * Run consistency tests on the firmware file and load up headers
1178  *
1179  * Check for the firmware being made for the i2400m device,
1180  * etc...These checks are mostly informative, as the device will make
1181  * them too; but the driver's response is more informative on what
1182  * went wrong.
1183  *
1184  * This will also look at all the headers present on the firmware
1185  * file, and update i2400m->fw_bcf_hdr to point to them.
1186  */
1187 static
1188 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1189  const struct i2400m_bcf_hdr *bcf_hdr,
1190  size_t index, size_t offset)
1191 {
1192  struct device *dev = i2400m_dev(i2400m);
1193 
1196 
1197  module_type = le32_to_cpu(bcf_hdr->module_type);
1198  header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1199  major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1200  >> 16;
1201  minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1202  module_id = le32_to_cpu(bcf_hdr->module_id);
1203  module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1204  date = le32_to_cpu(bcf_hdr->date);
1205  size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1206 
1207  d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1208  "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1209  i2400m->fw_name, index, offset,
1210  module_type, module_vendor, module_id,
1211  major_version, minor_version, header_len, size, date);
1212 
1213  /* Hard errors */
1214  if (major_version != 1) {
1215  dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1216  "v%u.%u not supported\n",
1217  i2400m->fw_name, index, offset,
1218  major_version, minor_version);
1219  return -EBADF;
1220  }
1221 
1222  if (module_type != 6) { /* built for the right hardware? */
1223  dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1224  "type 0x%x; aborting\n",
1225  i2400m->fw_name, index, offset,
1226  module_type);
1227  return -EBADF;
1228  }
1229 
1230  if (module_vendor != 0x8086) {
1231  dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1232  "vendor 0x%x; aborting\n",
1233  i2400m->fw_name, index, offset, module_vendor);
1234  return -EBADF;
1235  }
1236 
1237  if (date < 0x20080300)
1238  dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1239  "too old; unsupported\n",
1240  i2400m->fw_name, index, offset, date);
1241  return 0;
1242 }
1243 
1244 
1245 /*
1246  * Run consistency tests on the firmware file and load up headers
1247  *
1248  * Check for the firmware being made for the i2400m device,
1249  * etc...These checks are mostly informative, as the device will make
1250  * them too; but the driver's response is more informative on what
1251  * went wrong.
1252  *
1253  * This will also look at all the headers present on the firmware
1254  * file, and update i2400m->fw_hdrs to point to them.
1255  */
1256 static
1257 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1258 {
1259  int result;
1260  struct device *dev = i2400m_dev(i2400m);
1261  size_t headers = 0;
1262  const struct i2400m_bcf_hdr *bcf_hdr;
1263  const void *itr, *next, *top;
1264  size_t slots = 0, used_slots = 0;
1265 
1266  for (itr = bcf, top = itr + bcf_size;
1267  itr < top;
1268  headers++, itr = next) {
1269  size_t leftover, offset, header_len, size;
1270 
1271  leftover = top - itr;
1272  offset = itr - bcf;
1273  if (leftover <= sizeof(*bcf_hdr)) {
1274  dev_err(dev, "firmware %s: %zu B left at @%zx, "
1275  "not enough for BCF header\n",
1276  i2400m->fw_name, leftover, offset);
1277  break;
1278  }
1279  bcf_hdr = itr;
1280  /* Only the first header is supposed to be followed by
1281  * payload */
1282  header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1283  size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1284  if (headers == 0)
1285  next = itr + size;
1286  else
1287  next = itr + header_len;
1288 
1289  result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1290  if (result < 0)
1291  continue;
1292  if (used_slots + 1 >= slots) {
1293  /* +1 -> we need to account for the one we'll
1294  * occupy and at least an extra one for
1295  * always being NULL */
1296  result = i2400m_zrealloc_2x(
1297  (void **) &i2400m->fw_hdrs, &slots,
1298  sizeof(i2400m->fw_hdrs[0]),
1299  GFP_KERNEL);
1300  if (result < 0)
1301  goto error_zrealloc;
1302  }
1303  i2400m->fw_hdrs[used_slots] = bcf_hdr;
1304  used_slots++;
1305  }
1306  if (headers == 0) {
1307  dev_err(dev, "firmware %s: no usable headers found\n",
1308  i2400m->fw_name);
1309  result = -EBADF;
1310  } else
1311  result = 0;
1312 error_zrealloc:
1313  return result;
1314 }
1315 
1316 
1317 /*
1318  * Match a barker to a BCF header module ID
1319  *
1320  * The device sends a barker which tells the firmware loader which
1321  * header in the BCF file has to be used. This does the matching.
1322  */
1323 static
1324 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1325  const struct i2400m_bcf_hdr *bcf_hdr)
1326 {
1327  u32 barker = le32_to_cpu(i2400m->barker->data[0])
1328  & 0x7fffffff;
1329  u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1330  & 0x7fffffff; /* high bit used for something else */
1331 
1332  /* special case for 5x50 */
1333  if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1334  return 1;
1335  if (module_id == barker)
1336  return 1;
1337  return 0;
1338 }
1339 
1340 static
1341 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1342 {
1343  struct device *dev = i2400m_dev(i2400m);
1344  const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1345  unsigned i = 0;
1346  u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1347 
1348  d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1349  if (barker == I2400M_NBOOT_BARKER) {
1350  bcf_hdr = i2400m->fw_hdrs[0];
1351  d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1352  "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1353  return bcf_hdr;
1354  }
1355  for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1356  bcf_hdr = *bcf_itr;
1357  if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1358  d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1359  i, le32_to_cpu(bcf_hdr->module_id));
1360  return bcf_hdr;
1361  } else
1362  d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1363  i, le32_to_cpu(bcf_hdr->module_id));
1364  }
1365  dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1366  barker);
1367  return NULL;
1368 }
1369 
1370 
1371 /*
1372  * Download the firmware to the device
1373  *
1374  * @i2400m: device descriptor
1375  * @bcf: pointer to loaded (and minimally verified for consistency)
1376  * firmware
1377  * @bcf_size: size of the @bcf buffer (header plus payloads)
1378  *
1379  * The process for doing this is described in this file's header.
1380  *
1381  * Note we only reinitialize boot-mode if the flags say so. Some hw
1382  * iterations need it, some don't. In any case, if we loop, we always
1383  * need to reinitialize the boot room, hence the flags modification.
1384  */
1385 static
1386 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1387  size_t fw_size, enum i2400m_bri flags)
1388 {
1389  int ret = 0;
1390  struct device *dev = i2400m_dev(i2400m);
1391  int count = i2400m->bus_bm_retries;
1392  const struct i2400m_bcf_hdr *bcf_hdr;
1393  size_t bcf_size;
1394 
1395  d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1396  i2400m, bcf, fw_size);
1397  i2400m->boot_mode = 1;
1398  wmb(); /* Make sure other readers see it */
1399 hw_reboot:
1400  if (count-- == 0) {
1401  ret = -ERESTARTSYS;
1402  dev_err(dev, "device rebooted too many times, aborting\n");
1403  goto error_too_many_reboots;
1404  }
1405  if (flags & I2400M_BRI_MAC_REINIT) {
1406  ret = i2400m_bootrom_init(i2400m, flags);
1407  if (ret < 0) {
1408  dev_err(dev, "bootrom init failed: %d\n", ret);
1409  goto error_bootrom_init;
1410  }
1411  }
1412  flags |= I2400M_BRI_MAC_REINIT;
1413 
1414  /*
1415  * Initialize the download, push the bytes to the device and
1416  * then jump to the new firmware. Note @ret is passed with the
1417  * offset of the jump instruction to _dnload_finalize()
1418  *
1419  * Note we need to use the BCF header in the firmware image
1420  * that matches the barker that the device sent when it
1421  * rebooted, so it has to be passed along.
1422  */
1423  ret = -EBADF;
1424  bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1425  if (bcf_hdr == NULL)
1426  goto error_bcf_hdr_find;
1427 
1428  ret = i2400m_dnload_init(i2400m, bcf_hdr);
1429  if (ret == -ERESTARTSYS)
1430  goto error_dev_rebooted;
1431  if (ret < 0)
1432  goto error_dnload_init;
1433 
1434  /*
1435  * bcf_size refers to one header size plus the fw sections size
1436  * indicated by the header,ie. if there are other extended headers
1437  * at the tail, they are not counted
1438  */
1439  bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1440  ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1441  if (ret == -ERESTARTSYS)
1442  goto error_dev_rebooted;
1443  if (ret < 0) {
1444  dev_err(dev, "fw %s: download failed: %d\n",
1445  i2400m->fw_name, ret);
1446  goto error_dnload_bcf;
1447  }
1448 
1449  ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1450  if (ret == -ERESTARTSYS)
1451  goto error_dev_rebooted;
1452  if (ret < 0) {
1453  dev_err(dev, "fw %s: "
1454  "download finalization failed: %d\n",
1455  i2400m->fw_name, ret);
1456  goto error_dnload_finalize;
1457  }
1458 
1459  d_printf(2, dev, "fw %s successfully uploaded\n",
1460  i2400m->fw_name);
1461  i2400m->boot_mode = 0;
1462  wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
1463 error_dnload_finalize:
1464 error_dnload_bcf:
1465 error_dnload_init:
1466 error_bcf_hdr_find:
1467 error_bootrom_init:
1468 error_too_many_reboots:
1469  d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1470  i2400m, bcf, fw_size, ret);
1471  return ret;
1472 
1473 error_dev_rebooted:
1474  dev_err(dev, "device rebooted, %d tries left\n", count);
1475  /* we got the notification already, no need to wait for it again */
1476  flags |= I2400M_BRI_SOFT;
1477  goto hw_reboot;
1478 }
1479 
1480 static
1481 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1482  enum i2400m_bri flags)
1483 {
1484  int ret;
1485  struct device *dev = i2400m_dev(i2400m);
1486  const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1487 
1488  d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1489  bcf = (void *) fw->data;
1490  ret = i2400m_fw_check(i2400m, bcf, fw->size);
1491  if (ret >= 0)
1492  ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1493  if (ret < 0)
1494  dev_err(dev, "%s: cannot use: %d, skipping\n",
1495  i2400m->fw_name, ret);
1496  kfree(i2400m->fw_hdrs);
1497  i2400m->fw_hdrs = NULL;
1498  d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1499  return ret;
1500 }
1501 
1502 
1503 /* Refcounted container for firmware data */
1504 struct i2400m_fw {
1505  struct kref kref;
1506  const struct firmware *fw;
1507 };
1508 
1509 
1510 static
1511 void i2400m_fw_destroy(struct kref *kref)
1512 {
1513  struct i2400m_fw *i2400m_fw =
1514  container_of(kref, struct i2400m_fw, kref);
1515  release_firmware(i2400m_fw->fw);
1516  kfree(i2400m_fw);
1517 }
1518 
1519 
1520 static
1521 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1522 {
1523  if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1524  kref_get(&i2400m_fw->kref);
1525  return i2400m_fw;
1526 }
1527 
1528 
1529 static
1530 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1531 {
1532  kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1533 }
1534 
1535 
1551 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1552 {
1553  int ret, itr;
1554  struct device *dev = i2400m_dev(i2400m);
1555  struct i2400m_fw *i2400m_fw;
1556  const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1557  const struct firmware *fw;
1558  const char *fw_name;
1559 
1560  d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1561 
1562  ret = -ENODEV;
1563  spin_lock(&i2400m->rx_lock);
1564  i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1565  spin_unlock(&i2400m->rx_lock);
1566  if (i2400m_fw == (void *) ~0) {
1567  dev_err(dev, "can't load firmware now!");
1568  goto out;
1569  } else if (i2400m_fw != NULL) {
1570  dev_info(dev, "firmware %s: loading from cache\n",
1571  i2400m->fw_name);
1572  ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1573  i2400m_fw_put(i2400m_fw);
1574  goto out;
1575  }
1576 
1577  /* Load firmware files to memory. */
1578  for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1579  fw_name = i2400m->bus_fw_names[itr];
1580  if (fw_name == NULL) {
1581  dev_err(dev, "Could not find a usable firmware image\n");
1582  break;
1583  }
1584  d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1585  ret = request_firmware(&fw, fw_name, dev);
1586  if (ret < 0) {
1587  dev_err(dev, "fw %s: cannot load file: %d\n",
1588  fw_name, ret);
1589  continue;
1590  }
1591  i2400m->fw_name = fw_name;
1592  ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1593  release_firmware(fw);
1594  if (ret >= 0) /* firmware loaded successfully */
1595  break;
1596  i2400m->fw_name = NULL;
1597  }
1598 out:
1599  d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1600  return ret;
1601 }
1603 
1604 
1605 void i2400m_fw_cache(struct i2400m *i2400m)
1606 {
1607  int result;
1608  struct i2400m_fw *i2400m_fw;
1609  struct device *dev = i2400m_dev(i2400m);
1610 
1611  /* if there is anything there, free it -- now, this'd be weird */
1612  spin_lock(&i2400m->rx_lock);
1613  i2400m_fw = i2400m->fw_cached;
1614  spin_unlock(&i2400m->rx_lock);
1615  if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1616  i2400m_fw_put(i2400m_fw);
1617  WARN(1, "%s:%u: still cached fw still present?\n",
1618  __func__, __LINE__);
1619  }
1620 
1621  if (i2400m->fw_name == NULL) {
1622  dev_err(dev, "firmware n/a: can't cache\n");
1623  i2400m_fw = (void *) ~0;
1624  goto out;
1625  }
1626 
1627  i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1628  if (i2400m_fw == NULL)
1629  goto out;
1630  kref_init(&i2400m_fw->kref);
1631  result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1632  if (result < 0) {
1633  dev_err(dev, "firmware %s: failed to cache: %d\n",
1634  i2400m->fw_name, result);
1635  kfree(i2400m_fw);
1636  i2400m_fw = (void *) ~0;
1637  } else
1638  dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1639 out:
1640  spin_lock(&i2400m->rx_lock);
1641  i2400m->fw_cached = i2400m_fw;
1642  spin_unlock(&i2400m->rx_lock);
1643 }
1644 
1645 
1646 void i2400m_fw_uncache(struct i2400m *i2400m)
1647 {
1648  struct i2400m_fw *i2400m_fw;
1649 
1650  spin_lock(&i2400m->rx_lock);
1651  i2400m_fw = i2400m->fw_cached;
1652  i2400m->fw_cached = NULL;
1653  spin_unlock(&i2400m->rx_lock);
1654 
1655  if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1656  i2400m_fw_put(i2400m_fw);
1657 }
1658