Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
x38_edac.c
Go to the documentation of this file.
1 /*
2  * Intel X38 Memory Controller kernel module
3  * Copyright (C) 2008 Cluster Computing, Inc.
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * This file is based on i3200_edac.c
9  *
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/edac.h>
17 #include "edac_core.h"
18 
19 #define X38_REVISION "1.1"
20 
21 #define EDAC_MOD_STR "x38_edac"
22 
23 #define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0
24 
25 #define X38_RANKS 8
26 #define X38_RANKS_PER_CHANNEL 4
27 #define X38_CHANNELS 2
28 
29 /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
30 
31 #define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */
32 #define X38_MCHBAR_HIGH 0x4c
33 #define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */
34 #define X38_MMR_WINDOW_SIZE 16384
35 
36 #define X38_TOM 0xa0 /* Top of Memory (16b)
37  *
38  * 15:10 reserved
39  * 9:0 total populated physical memory
40  */
41 #define X38_TOM_MASK 0x3ff /* bits 9:0 */
42 #define X38_TOM_SHIFT 26 /* 64MiB grain */
43 
44 #define X38_ERRSTS 0xc8 /* Error Status Register (16b)
45  *
46  * 15 reserved
47  * 14 Isochronous TBWRR Run Behind FIFO Full
48  * (ITCV)
49  * 13 Isochronous TBWRR Run Behind FIFO Put
50  * (ITSTV)
51  * 12 reserved
52  * 11 MCH Thermal Sensor Event
53  * for SMI/SCI/SERR (GTSE)
54  * 10 reserved
55  * 9 LOCK to non-DRAM Memory Flag (LCKF)
56  * 8 reserved
57  * 7 DRAM Throttle Flag (DTF)
58  * 6:2 reserved
59  * 1 Multi-bit DRAM ECC Error Flag (DMERR)
60  * 0 Single-bit DRAM ECC Error Flag (DSERR)
61  */
62 #define X38_ERRSTS_UE 0x0002
63 #define X38_ERRSTS_CE 0x0001
64 #define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE)
65 
66 
67 /* Intel MMIO register space - device 0 function 0 - MMR space */
68 
69 #define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4)
70  *
71  * 15:10 reserved
72  * 9:0 Channel 0 DRAM Rank Boundary Address
73  */
74 #define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */
75 #define X38_DRB_MASK 0x3ff /* bits 9:0 */
76 #define X38_DRB_SHIFT 26 /* 64MiB grain */
77 
78 #define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b)
79  *
80  * 63:48 Error Column Address (ERRCOL)
81  * 47:32 Error Row Address (ERRROW)
82  * 31:29 Error Bank Address (ERRBANK)
83  * 28:27 Error Rank Address (ERRRANK)
84  * 26:24 reserved
85  * 23:16 Error Syndrome (ERRSYND)
86  * 15: 2 reserved
87  * 1 Multiple Bit Error Status (MERRSTS)
88  * 0 Correctable Error Status (CERRSTS)
89  */
90 #define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */
91 #define X38_ECCERRLOG_CE 0x1
92 #define X38_ECCERRLOG_UE 0x2
93 #define X38_ECCERRLOG_RANK_BITS 0x18000000
94 #define X38_ECCERRLOG_SYNDROME_BITS 0xff0000
95 
96 #define X38_CAPID0 0xe0 /* see P.94 of spec for details */
97 
98 static int x38_channel_num;
99 
100 static int how_many_channel(struct pci_dev *pdev)
101 {
102  unsigned char capid0_8b; /* 8th byte of CAPID0 */
103 
104  pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
105  if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */
106  edac_dbg(0, "In single channel mode\n");
107  x38_channel_num = 1;
108  } else {
109  edac_dbg(0, "In dual channel mode\n");
110  x38_channel_num = 2;
111  }
112 
113  return x38_channel_num;
114 }
115 
116 static unsigned long eccerrlog_syndrome(u64 log)
117 {
118  return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
119 }
120 
121 static int eccerrlog_row(int channel, u64 log)
122 {
123  return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
124  (channel * X38_RANKS_PER_CHANNEL);
125 }
126 
127 enum x38_chips {
128  X38 = 0,
129 };
130 
131 struct x38_dev_info {
132  const char *ctl_name;
133 };
134 
135 struct x38_error_info {
136  u16 errsts;
137  u16 errsts2;
139 };
140 
141 static const struct x38_dev_info x38_devs[] = {
142  [X38] = {
143  .ctl_name = "x38"},
144 };
145 
146 static struct pci_dev *mci_pdev;
147 static int x38_registered = 1;
148 
149 
150 static void x38_clear_error_info(struct mem_ctl_info *mci)
151 {
152  struct pci_dev *pdev;
153 
154  pdev = to_pci_dev(mci->pdev);
155 
156  /*
157  * Clear any error bits.
158  * (Yes, we really clear bits by writing 1 to them.)
159  */
160  pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
162 }
163 
164 static u64 x38_readq(const void __iomem *addr)
165 {
166  return readl(addr) | (((u64)readl(addr + 4)) << 32);
167 }
168 
169 static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
170  struct x38_error_info *info)
171 {
172  struct pci_dev *pdev;
173  void __iomem *window = mci->pvt_info;
174 
175  pdev = to_pci_dev(mci->pdev);
176 
177  /*
178  * This is a mess because there is no atomic way to read all the
179  * registers at once and the registers can transition from CE being
180  * overwritten by UE.
181  */
182  pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
183  if (!(info->errsts & X38_ERRSTS_BITS))
184  return;
185 
186  info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
187  if (x38_channel_num == 2)
188  info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG);
189 
190  pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
191 
192  /*
193  * If the error is the same for both reads then the first set
194  * of reads is valid. If there is a change then there is a CE
195  * with no info and the second set of reads is valid and
196  * should be UE info.
197  */
198  if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
199  info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
200  if (x38_channel_num == 2)
201  info->eccerrlog[1] =
202  x38_readq(window + X38_C1ECCERRLOG);
203  }
204 
205  x38_clear_error_info(mci);
206 }
207 
208 static void x38_process_error_info(struct mem_ctl_info *mci,
209  struct x38_error_info *info)
210 {
211  int channel;
212  u64 log;
213 
214  if (!(info->errsts & X38_ERRSTS_BITS))
215  return;
217  if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
219  -1, -1, -1,
220  "UE overwrote CE", "");
221  info->errsts = info->errsts2;
222  }
223 
224  for (channel = 0; channel < x38_channel_num; channel++) {
225  log = info->eccerrlog[channel];
226  if (log & X38_ECCERRLOG_UE) {
228  0, 0, 0,
229  eccerrlog_row(channel, log),
230  -1, -1,
231  "x38 UE", "");
232  } else if (log & X38_ECCERRLOG_CE) {
234  0, 0, eccerrlog_syndrome(log),
235  eccerrlog_row(channel, log),
236  -1, -1,
237  "x38 CE", "");
238  }
239  }
240 }
241 
242 static void x38_check(struct mem_ctl_info *mci)
243 {
244  struct x38_error_info info;
245 
246  edac_dbg(1, "MC%d\n", mci->mc_idx);
247  x38_get_and_clear_error_info(mci, &info);
248  x38_process_error_info(mci, &info);
249 }
250 
251 
252 void __iomem *x38_map_mchbar(struct pci_dev *pdev)
253 {
254  union {
255  u64 mchbar;
256  struct {
257  u32 mchbar_low;
258  u32 mchbar_high;
259  };
260  } u;
261  void __iomem *window;
262 
263  pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
264  pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
265  pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
266  u.mchbar &= X38_MCHBAR_MASK;
267 
268  if (u.mchbar != (resource_size_t)u.mchbar) {
270  "x38: mmio space beyond accessible range (0x%llx)\n",
271  (unsigned long long)u.mchbar);
272  return NULL;
273  }
274 
275  window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
276  if (!window)
277  printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
278  (unsigned long long)u.mchbar);
279 
280  return window;
281 }
282 
283 
284 static void x38_get_drbs(void __iomem *window,
286 {
287  int i;
288 
289  for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
290  drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
291  drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
292  }
293 }
294 
295 static bool x38_is_stacked(struct pci_dev *pdev,
296  u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
297 {
298  u16 tom;
299 
300  pci_read_config_word(pdev, X38_TOM, &tom);
301  tom &= X38_TOM_MASK;
302 
303  return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
304 }
305 
306 static unsigned long drb_to_nr_pages(
307  u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
308  bool stacked, int channel, int rank)
309 {
310  int n;
311 
312  n = drbs[channel][rank];
313  if (rank > 0)
314  n -= drbs[channel][rank - 1];
315  if (stacked && (channel == 1) && drbs[channel][rank] ==
316  drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
317  n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
318  }
319 
320  n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
321  return n;
322 }
323 
324 static int x38_probe1(struct pci_dev *pdev, int dev_idx)
325 {
326  int rc;
327  int i, j;
328  struct mem_ctl_info *mci = NULL;
329  struct edac_mc_layer layers[2];
331  bool stacked;
332  void __iomem *window;
333 
334  edac_dbg(0, "MC:\n");
335 
336  window = x38_map_mchbar(pdev);
337  if (!window)
338  return -ENODEV;
339 
340  x38_get_drbs(window, drbs);
341 
342  how_many_channel(pdev);
343 
344  /* FIXME: unconventional pvt_info usage */
346  layers[0].size = X38_RANKS;
347  layers[0].is_virt_csrow = true;
348  layers[1].type = EDAC_MC_LAYER_CHANNEL;
349  layers[1].size = x38_channel_num;
350  layers[1].is_virt_csrow = false;
351  mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
352  if (!mci)
353  return -ENOMEM;
354 
355  edac_dbg(3, "MC: init mci\n");
356 
357  mci->pdev = &pdev->dev;
358  mci->mtype_cap = MEM_FLAG_DDR2;
359 
361  mci->edac_cap = EDAC_FLAG_SECDED;
362 
363  mci->mod_name = EDAC_MOD_STR;
364  mci->mod_ver = X38_REVISION;
365  mci->ctl_name = x38_devs[dev_idx].ctl_name;
366  mci->dev_name = pci_name(pdev);
367  mci->edac_check = x38_check;
368  mci->ctl_page_to_phys = NULL;
369  mci->pvt_info = window;
370 
371  stacked = x38_is_stacked(pdev, drbs);
372 
373  /*
374  * The dram rank boundary (DRB) reg values are boundary addresses
375  * for each DRAM rank with a granularity of 64MB. DRB regs are
376  * cumulative; the last one will contain the total memory
377  * contained in all ranks.
378  */
379  for (i = 0; i < mci->nr_csrows; i++) {
380  unsigned long nr_pages;
381  struct csrow_info *csrow = mci->csrows[i];
382 
383  nr_pages = drb_to_nr_pages(drbs, stacked,
384  i / X38_RANKS_PER_CHANNEL,
385  i % X38_RANKS_PER_CHANNEL);
386 
387  if (nr_pages == 0)
388  continue;
389 
390  for (j = 0; j < x38_channel_num; j++) {
391  struct dimm_info *dimm = csrow->channels[j]->dimm;
392 
393  dimm->nr_pages = nr_pages / x38_channel_num;
394  dimm->grain = nr_pages << PAGE_SHIFT;
395  dimm->mtype = MEM_DDR2;
396  dimm->dtype = DEV_UNKNOWN;
397  dimm->edac_mode = EDAC_UNKNOWN;
398  }
399  }
400 
401  x38_clear_error_info(mci);
402 
403  rc = -ENODEV;
404  if (edac_mc_add_mc(mci)) {
405  edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
406  goto fail;
407  }
408 
409  /* get this far and it's successful */
410  edac_dbg(3, "MC: success\n");
411  return 0;
412 
413 fail:
414  iounmap(window);
415  if (mci)
416  edac_mc_free(mci);
417 
418  return rc;
419 }
420 
421 static int __devinit x38_init_one(struct pci_dev *pdev,
422  const struct pci_device_id *ent)
423 {
424  int rc;
425 
426  edac_dbg(0, "MC:\n");
427 
428  if (pci_enable_device(pdev) < 0)
429  return -EIO;
430 
431  rc = x38_probe1(pdev, ent->driver_data);
432  if (!mci_pdev)
433  mci_pdev = pci_dev_get(pdev);
434 
435  return rc;
436 }
437 
438 static void __devexit x38_remove_one(struct pci_dev *pdev)
439 {
440  struct mem_ctl_info *mci;
441 
442  edac_dbg(0, "\n");
443 
444  mci = edac_mc_del_mc(&pdev->dev);
445  if (!mci)
446  return;
447 
448  iounmap(mci->pvt_info);
449 
450  edac_mc_free(mci);
451 }
452 
453 static DEFINE_PCI_DEVICE_TABLE(x38_pci_tbl) = {
454  {
455  PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
456  X38},
457  {
458  0,
459  } /* 0 terminated list. */
460 };
461 
462 MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
463 
464 static struct pci_driver x38_driver = {
465  .name = EDAC_MOD_STR,
466  .probe = x38_init_one,
467  .remove = __devexit_p(x38_remove_one),
468  .id_table = x38_pci_tbl,
469 };
470 
471 static int __init x38_init(void)
472 {
473  int pci_rc;
474 
475  edac_dbg(3, "MC:\n");
476 
477  /* Ensure that the OPSTATE is set correctly for POLL or NMI */
478  opstate_init();
479 
480  pci_rc = pci_register_driver(&x38_driver);
481  if (pci_rc < 0)
482  goto fail0;
483 
484  if (!mci_pdev) {
485  x38_registered = 0;
488  if (!mci_pdev) {
489  edac_dbg(0, "x38 pci_get_device fail\n");
490  pci_rc = -ENODEV;
491  goto fail1;
492  }
493 
494  pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
495  if (pci_rc < 0) {
496  edac_dbg(0, "x38 init fail\n");
497  pci_rc = -ENODEV;
498  goto fail1;
499  }
500  }
501 
502  return 0;
503 
504 fail1:
505  pci_unregister_driver(&x38_driver);
506 
507 fail0:
508  if (mci_pdev)
509  pci_dev_put(mci_pdev);
510 
511  return pci_rc;
512 }
513 
514 static void __exit x38_exit(void)
515 {
516  edac_dbg(3, "MC:\n");
517 
518  pci_unregister_driver(&x38_driver);
519  if (!x38_registered) {
520  x38_remove_one(mci_pdev);
521  pci_dev_put(mci_pdev);
522  }
523 }
524 
525 module_init(x38_init);
526 module_exit(x38_exit);
527 
528 MODULE_LICENSE("GPL");
529 MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
530 MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
531 
532 module_param(edac_op_state, int, 0444);
533 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");