Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
traps.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  * Pentium III FXSR, SSE support
6  * Gareth Hughes <[email protected]>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/interrupt.h>
16 #include <linux/kallsyms.h>
17 #include <linux/spinlock.h>
18 #include <linux/kprobes.h>
19 #include <linux/uaccess.h>
20 #include <linux/kdebug.h>
21 #include <linux/kgdb.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/ptrace.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/kexec.h>
29 #include <linux/sched.h>
30 #include <linux/timer.h>
31 #include <linux/init.h>
32 #include <linux/bug.h>
33 #include <linux/nmi.h>
34 #include <linux/mm.h>
35 #include <linux/smp.h>
36 #include <linux/io.h>
37 
38 #ifdef CONFIG_EISA
39 #include <linux/ioport.h>
40 #include <linux/eisa.h>
41 #endif
42 
43 #if defined(CONFIG_EDAC)
44 #include <linux/edac.h>
45 #endif
46 
47 #include <asm/kmemcheck.h>
48 #include <asm/stacktrace.h>
49 #include <asm/processor.h>
50 #include <asm/debugreg.h>
51 #include <linux/atomic.h>
52 #include <asm/ftrace.h>
53 #include <asm/traps.h>
54 #include <asm/desc.h>
55 #include <asm/i387.h>
56 #include <asm/fpu-internal.h>
57 #include <asm/mce.h>
58 #include <asm/rcu.h>
59 
60 #include <asm/mach_traps.h>
61 
62 #ifdef CONFIG_X86_64
63 #include <asm/x86_init.h>
64 #include <asm/pgalloc.h>
65 #include <asm/proto.h>
66 #else
67 #include <asm/processor-flags.h>
68 #include <asm/setup.h>
69 
70 asmlinkage int system_call(void);
71 
72 /* Do we ignore FPU interrupts ? */
74 
75 /*
76  * The IDT has to be page-aligned to simplify the Pentium
77  * F0 0F bug workaround.
78  */
80 #endif
81 
82 DECLARE_BITMAP(used_vectors, NR_VECTORS);
83 EXPORT_SYMBOL_GPL(used_vectors);
84 
85 static inline void conditional_sti(struct pt_regs *regs)
86 {
87  if (regs->flags & X86_EFLAGS_IF)
89 }
90 
91 static inline void preempt_conditional_sti(struct pt_regs *regs)
92 {
94  if (regs->flags & X86_EFLAGS_IF)
96 }
97 
98 static inline void conditional_cli(struct pt_regs *regs)
99 {
100  if (regs->flags & X86_EFLAGS_IF)
102 }
103 
104 static inline void preempt_conditional_cli(struct pt_regs *regs)
105 {
106  if (regs->flags & X86_EFLAGS_IF)
109 }
110 
111 static int __kprobes
112 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
113  struct pt_regs *regs, long error_code)
114 {
115 #ifdef CONFIG_X86_32
116  if (regs->flags & X86_VM_MASK) {
117  /*
118  * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
119  * On nmi (interrupt 2), do_trap should not be called.
120  */
121  if (trapnr < X86_TRAP_UD) {
122  if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
123  error_code, trapnr))
124  return 0;
125  }
126  return -1;
127  }
128 #endif
129  if (!user_mode(regs)) {
130  if (!fixup_exception(regs)) {
131  tsk->thread.error_code = error_code;
132  tsk->thread.trap_nr = trapnr;
133  die(str, regs, error_code);
134  }
135  return 0;
136  }
137 
138  return -1;
139 }
140 
141 static void __kprobes
142 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
143  long error_code, siginfo_t *info)
144 {
145  struct task_struct *tsk = current;
146 
147 
148  if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
149  return;
150  /*
151  * We want error_code and trap_nr set for userspace faults and
152  * kernelspace faults which result in die(), but not
153  * kernelspace faults which are fixed up. die() gives the
154  * process no chance to handle the signal and notice the
155  * kernel fault information, so that won't result in polluting
156  * the information about previously queued, but not yet
157  * delivered, faults. See also do_general_protection below.
158  */
159  tsk->thread.error_code = error_code;
160  tsk->thread.trap_nr = trapnr;
161 
162 #ifdef CONFIG_X86_64
163  if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
164  printk_ratelimit()) {
165  pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
166  tsk->comm, tsk->pid, str,
167  regs->ip, regs->sp, error_code);
168  print_vma_addr(" in ", regs->ip);
169  pr_cont("\n");
170  }
171 #endif
172 
173  if (info)
174  force_sig_info(signr, info, tsk);
175  else
176  force_sig(signr, tsk);
177 }
178 
179 #define DO_ERROR(trapnr, signr, str, name) \
180 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
181 { \
182  exception_enter(regs); \
183  if (notify_die(DIE_TRAP, str, regs, error_code, \
184  trapnr, signr) == NOTIFY_STOP) { \
185  exception_exit(regs); \
186  return; \
187  } \
188  conditional_sti(regs); \
189  do_trap(trapnr, signr, str, regs, error_code, NULL); \
190  exception_exit(regs); \
191 }
192 
193 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
194 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
195 { \
196  siginfo_t info; \
197  info.si_signo = signr; \
198  info.si_errno = 0; \
199  info.si_code = sicode; \
200  info.si_addr = (void __user *)siaddr; \
201  exception_enter(regs); \
202  if (notify_die(DIE_TRAP, str, regs, error_code, \
203  trapnr, signr) == NOTIFY_STOP) { \
204  exception_exit(regs); \
205  return; \
206  } \
207  conditional_sti(regs); \
208  do_trap(trapnr, signr, str, regs, error_code, &info); \
209  exception_exit(regs); \
210 }
211 
213  regs->ip)
214 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
215 DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
217  regs->ip)
222 #ifdef CONFIG_X86_32
223 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
224 #endif
225 DO_ERROR_INFO(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check,
226  BUS_ADRALN, 0)
227 
228 #ifdef CONFIG_X86_64
229 /* Runs on IST stack */
230 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
231 {
232  exception_enter(regs);
233  if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
234  X86_TRAP_SS, SIGBUS) != NOTIFY_STOP) {
235  preempt_conditional_sti(regs);
236  do_trap(X86_TRAP_SS, SIGBUS, "stack segment", regs, error_code, NULL);
237  preempt_conditional_cli(regs);
238  }
239  exception_exit(regs);
240 }
241 
242 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
243 {
244  static const char str[] = "double fault";
245  struct task_struct *tsk = current;
246 
247  exception_enter(regs);
248  /* Return not checked because double check cannot be ignored */
249  notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
250 
251  tsk->thread.error_code = error_code;
252  tsk->thread.trap_nr = X86_TRAP_DF;
253 
254  /*
255  * This is always a kernel trap and never fixable (and thus must
256  * never return).
257  */
258  for (;;)
259  die(str, regs, error_code);
260 }
261 #endif
262 
264 do_general_protection(struct pt_regs *regs, long error_code)
265 {
266  struct task_struct *tsk;
267 
268  exception_enter(regs);
269  conditional_sti(regs);
270 
271 #ifdef CONFIG_X86_32
272  if (regs->flags & X86_VM_MASK) {
274  handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
275  goto exit;
276  }
277 #endif
278 
279  tsk = current;
280  if (!user_mode(regs)) {
281  if (fixup_exception(regs))
282  goto exit;
283 
284  tsk->thread.error_code = error_code;
285  tsk->thread.trap_nr = X86_TRAP_GP;
286  if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
287  X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
288  die("general protection fault", regs, error_code);
289  goto exit;
290  }
291 
292  tsk->thread.error_code = error_code;
293  tsk->thread.trap_nr = X86_TRAP_GP;
294 
295  if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
296  printk_ratelimit()) {
297  pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
298  tsk->comm, task_pid_nr(tsk),
299  regs->ip, regs->sp, error_code);
300  print_vma_addr(" in ", regs->ip);
301  pr_cont("\n");
302  }
303 
304  force_sig(SIGSEGV, tsk);
305 exit:
306  exception_exit(regs);
307 }
308 
309 /* May run on IST stack. */
310 dotraplinkage void __kprobes notrace do_int3(struct pt_regs *regs, long error_code)
311 {
312 #ifdef CONFIG_DYNAMIC_FTRACE
313  /*
314  * ftrace must be first, everything else may cause a recursive crash.
315  * See note by declaration of modifying_ftrace_code in ftrace.c
316  */
317  if (unlikely(atomic_read(&modifying_ftrace_code)) &&
318  ftrace_int3_handler(regs))
319  return;
320 #endif
321  exception_enter(regs);
322 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
323  if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
324  SIGTRAP) == NOTIFY_STOP)
325  goto exit;
326 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
327 
328  if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
329  SIGTRAP) == NOTIFY_STOP)
330  goto exit;
331 
332  /*
333  * Let others (NMI) know that the debug stack is in use
334  * as we may switch to the interrupt stack.
335  */
336  debug_stack_usage_inc();
337  preempt_conditional_sti(regs);
338  do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
339  preempt_conditional_cli(regs);
340  debug_stack_usage_dec();
341 exit:
342  exception_exit(regs);
343 }
344 
345 #ifdef CONFIG_X86_64
346 /*
347  * Help handler running on IST stack to switch back to user stack
348  * for scheduling or signal handling. The actual stack switch is done in
349  * entry.S
350  */
351 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
352 {
353  struct pt_regs *regs = eregs;
354  /* Did already sync */
355  if (eregs == (struct pt_regs *)eregs->sp)
356  ;
357  /* Exception from user space */
358  else if (user_mode(eregs))
359  regs = task_pt_regs(current);
360  /*
361  * Exception from kernel and interrupts are enabled. Move to
362  * kernel process stack.
363  */
364  else if (eregs->flags & X86_EFLAGS_IF)
365  regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
366  if (eregs != regs)
367  *regs = *eregs;
368  return regs;
369 }
370 #endif
371 
372 /*
373  * Our handling of the processor debug registers is non-trivial.
374  * We do not clear them on entry and exit from the kernel. Therefore
375  * it is possible to get a watchpoint trap here from inside the kernel.
376  * However, the code in ./ptrace.c has ensured that the user can
377  * only set watchpoints on userspace addresses. Therefore the in-kernel
378  * watchpoint trap can only occur in code which is reading/writing
379  * from user space. Such code must not hold kernel locks (since it
380  * can equally take a page fault), therefore it is safe to call
381  * force_sig_info even though that claims and releases locks.
382  *
383  * Code in ./signal.c ensures that the debug control register
384  * is restored before we deliver any signal, and therefore that
385  * user code runs with the correct debug control register even though
386  * we clear it here.
387  *
388  * Being careful here means that we don't have to be as careful in a
389  * lot of more complicated places (task switching can be a bit lazy
390  * about restoring all the debug state, and ptrace doesn't have to
391  * find every occurrence of the TF bit that could be saved away even
392  * by user code)
393  *
394  * May run on IST stack.
395  */
396 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
397 {
398  struct task_struct *tsk = current;
399  int user_icebp = 0;
400  unsigned long dr6;
401  int si_code;
402 
403  exception_enter(regs);
404 
405  get_debugreg(dr6, 6);
406 
407  /* Filter out all the reserved bits which are preset to 1 */
408  dr6 &= ~DR6_RESERVED;
409 
410  /*
411  * If dr6 has no reason to give us about the origin of this trap,
412  * then it's very likely the result of an icebp/int01 trap.
413  * User wants a sigtrap for that.
414  */
415  if (!dr6 && user_mode(regs))
416  user_icebp = 1;
417 
418  /* Catch kmemcheck conditions first of all! */
419  if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
420  goto exit;
421 
422  /* DR6 may or may not be cleared by the CPU */
423  set_debugreg(0, 6);
424 
425  /*
426  * The processor cleared BTF, so don't mark that we need it set.
427  */
428  clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
429 
430  /* Store the virtualized DR6 value */
431  tsk->thread.debugreg6 = dr6;
432 
433  if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
434  SIGTRAP) == NOTIFY_STOP)
435  goto exit;
436 
437  /*
438  * Let others (NMI) know that the debug stack is in use
439  * as we may switch to the interrupt stack.
440  */
441  debug_stack_usage_inc();
442 
443  /* It's safe to allow irq's after DR6 has been saved */
444  preempt_conditional_sti(regs);
445 
446  if (regs->flags & X86_VM_MASK) {
447  handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
448  X86_TRAP_DB);
449  preempt_conditional_cli(regs);
450  debug_stack_usage_dec();
451  goto exit;
452  }
453 
454  /*
455  * Single-stepping through system calls: ignore any exceptions in
456  * kernel space, but re-enable TF when returning to user mode.
457  *
458  * We already checked v86 mode above, so we can check for kernel mode
459  * by just checking the CPL of CS.
460  */
461  if ((dr6 & DR_STEP) && !user_mode(regs)) {
462  tsk->thread.debugreg6 &= ~DR_STEP;
463  set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
464  regs->flags &= ~X86_EFLAGS_TF;
465  }
466  si_code = get_si_code(tsk->thread.debugreg6);
467  if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
468  send_sigtrap(tsk, regs, error_code, si_code);
469  preempt_conditional_cli(regs);
470  debug_stack_usage_dec();
471 
472 exit:
473  exception_exit(regs);
474 }
475 
476 /*
477  * Note that we play around with the 'TS' bit in an attempt to get
478  * the correct behaviour even in the presence of the asynchronous
479  * IRQ13 behaviour
480  */
481 void math_error(struct pt_regs *regs, int error_code, int trapnr)
482 {
483  struct task_struct *task = current;
484  siginfo_t info;
485  unsigned short err;
486  char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
487  "simd exception";
488 
489  if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
490  return;
491  conditional_sti(regs);
492 
493  if (!user_mode_vm(regs))
494  {
495  if (!fixup_exception(regs)) {
496  task->thread.error_code = error_code;
497  task->thread.trap_nr = trapnr;
498  die(str, regs, error_code);
499  }
500  return;
501  }
502 
503  /*
504  * Save the info for the exception handler and clear the error.
505  */
506  save_init_fpu(task);
507  task->thread.trap_nr = trapnr;
508  task->thread.error_code = error_code;
509  info.si_signo = SIGFPE;
510  info.si_errno = 0;
511  info.si_addr = (void __user *)regs->ip;
512  if (trapnr == X86_TRAP_MF) {
513  unsigned short cwd, swd;
514  /*
515  * (~cwd & swd) will mask out exceptions that are not set to unmasked
516  * status. 0x3f is the exception bits in these regs, 0x200 is the
517  * C1 reg you need in case of a stack fault, 0x040 is the stack
518  * fault bit. We should only be taking one exception at a time,
519  * so if this combination doesn't produce any single exception,
520  * then we have a bad program that isn't synchronizing its FPU usage
521  * and it will suffer the consequences since we won't be able to
522  * fully reproduce the context of the exception
523  */
524  cwd = get_fpu_cwd(task);
525  swd = get_fpu_swd(task);
526 
527  err = swd & ~cwd;
528  } else {
529  /*
530  * The SIMD FPU exceptions are handled a little differently, as there
531  * is only a single status/control register. Thus, to determine which
532  * unmasked exception was caught we must mask the exception mask bits
533  * at 0x1f80, and then use these to mask the exception bits at 0x3f.
534  */
535  unsigned short mxcsr = get_fpu_mxcsr(task);
536  err = ~(mxcsr >> 7) & mxcsr;
537  }
538 
539  if (err & 0x001) { /* Invalid op */
540  /*
541  * swd & 0x240 == 0x040: Stack Underflow
542  * swd & 0x240 == 0x240: Stack Overflow
543  * User must clear the SF bit (0x40) if set
544  */
545  info.si_code = FPE_FLTINV;
546  } else if (err & 0x004) { /* Divide by Zero */
547  info.si_code = FPE_FLTDIV;
548  } else if (err & 0x008) { /* Overflow */
549  info.si_code = FPE_FLTOVF;
550  } else if (err & 0x012) { /* Denormal, Underflow */
551  info.si_code = FPE_FLTUND;
552  } else if (err & 0x020) { /* Precision */
553  info.si_code = FPE_FLTRES;
554  } else {
555  /*
556  * If we're using IRQ 13, or supposedly even some trap
557  * X86_TRAP_MF implementations, it's possible
558  * we get a spurious trap, which is not an error.
559  */
560  return;
561  }
562  force_sig_info(SIGFPE, &info, task);
563 }
564 
565 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
566 {
567 #ifdef CONFIG_X86_32
568  ignore_fpu_irq = 1;
569 #endif
570  exception_enter(regs);
571  math_error(regs, error_code, X86_TRAP_MF);
572  exception_exit(regs);
573 }
574 
575 dotraplinkage void
576 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
577 {
578  exception_enter(regs);
579  math_error(regs, error_code, X86_TRAP_XF);
580  exception_exit(regs);
581 }
582 
583 dotraplinkage void
584 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
585 {
586  conditional_sti(regs);
587 #if 0
588  /* No need to warn about this any longer. */
589  pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
590 #endif
591 }
592 
594 {
595 }
596 
597 asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
598 {
599 }
600 
601 /*
602  * 'math_state_restore()' saves the current math information in the
603  * old math state array, and gets the new ones from the current task
604  *
605  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
606  * Don't touch unless you *really* know how it works.
607  *
608  * Must be called with kernel preemption disabled (eg with local
609  * local interrupts as in the case of do_device_not_available).
610  */
612 {
613  struct task_struct *tsk = current;
614 
615  if (!tsk_used_math(tsk)) {
617  /*
618  * does a slab alloc which can sleep
619  */
620  if (init_fpu(tsk)) {
621  /*
622  * ran out of memory!
623  */
625  return;
626  }
628  }
629 
630  __thread_fpu_begin(tsk);
631 
632  /*
633  * Paranoid restore. send a SIGSEGV if we fail to restore the state.
634  */
635  if (unlikely(restore_fpu_checking(tsk))) {
636  drop_init_fpu(tsk);
637  force_sig(SIGSEGV, tsk);
638  return;
639  }
640 
641  tsk->fpu_counter++;
642 }
644 
646 do_device_not_available(struct pt_regs *regs, long error_code)
647 {
648  exception_enter(regs);
649  BUG_ON(use_eager_fpu());
650 
651 #ifdef CONFIG_MATH_EMULATION
652  if (read_cr0() & X86_CR0_EM) {
653  struct math_emu_info info = { };
654 
655  conditional_sti(regs);
656 
657  info.regs = regs;
658  math_emulate(&info);
659  exception_exit(regs);
660  return;
661  }
662 #endif
663  math_state_restore(); /* interrupts still off */
664 #ifdef CONFIG_X86_32
665  conditional_sti(regs);
666 #endif
667  exception_exit(regs);
668 }
669 
670 #ifdef CONFIG_X86_32
671 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
672 {
673  siginfo_t info;
674 
675  exception_enter(regs);
677 
678  info.si_signo = SIGILL;
679  info.si_errno = 0;
680  info.si_code = ILL_BADSTK;
681  info.si_addr = NULL;
682  if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
683  X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
684  do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
685  &info);
686  }
687  exception_exit(regs);
688 }
689 #endif
690 
691 /* Set of traps needed for early debugging. */
693 {
694  set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
695  /* int3 can be called from all */
696  set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
697  set_intr_gate(X86_TRAP_PF, &page_fault);
699 }
700 
701 void __init trap_init(void)
702 {
703  int i;
704 
705 #ifdef CONFIG_EISA
706  void __iomem *p = early_ioremap(0x0FFFD9, 4);
707 
708  if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
709  EISA_bus = 1;
710  early_iounmap(p, 4);
711 #endif
712 
713  set_intr_gate(X86_TRAP_DE, &divide_error);
714  set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
715  /* int4 can be called from all */
716  set_system_intr_gate(X86_TRAP_OF, &overflow);
717  set_intr_gate(X86_TRAP_BR, &bounds);
718  set_intr_gate(X86_TRAP_UD, &invalid_op);
719  set_intr_gate(X86_TRAP_NM, &device_not_available);
720 #ifdef CONFIG_X86_32
721  set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
722 #else
723  set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
724 #endif
725  set_intr_gate(X86_TRAP_OLD_MF, &coprocessor_segment_overrun);
726  set_intr_gate(X86_TRAP_TS, &invalid_TSS);
727  set_intr_gate(X86_TRAP_NP, &segment_not_present);
728  set_intr_gate_ist(X86_TRAP_SS, &stack_segment, STACKFAULT_STACK);
729  set_intr_gate(X86_TRAP_GP, &general_protection);
730  set_intr_gate(X86_TRAP_SPURIOUS, &spurious_interrupt_bug);
731  set_intr_gate(X86_TRAP_MF, &coprocessor_error);
732  set_intr_gate(X86_TRAP_AC, &alignment_check);
733 #ifdef CONFIG_X86_MCE
734  set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
735 #endif
736  set_intr_gate(X86_TRAP_XF, &simd_coprocessor_error);
737 
738  /* Reserve all the builtin and the syscall vector: */
739  for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
740  set_bit(i, used_vectors);
741 
742 #ifdef CONFIG_IA32_EMULATION
743  set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
745 #endif
746 
747 #ifdef CONFIG_X86_32
748  set_system_trap_gate(SYSCALL_VECTOR, &system_call);
750 #endif
751 
752  /*
753  * Should be a barrier for any external CPU state:
754  */
755  cpu_init();
756 
757  x86_init.irqs.trap_init();
758 
759 #ifdef CONFIG_X86_64
761  set_nmi_gate(X86_TRAP_DB, &debug);
762  set_nmi_gate(X86_TRAP_BP, &int3);
763 #endif
764 }