Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
zd_chip.c
Go to the documentation of this file.
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <[email protected]>
4  * Copyright (C) 2006-2007 Daniel Drake <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  */
20 
21 /* This file implements all the hardware specific functions for the ZD1211
22  * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
23  * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/slab.h>
29 
30 #include "zd_def.h"
31 #include "zd_chip.h"
32 #include "zd_mac.h"
33 #include "zd_rf.h"
34 
35 void zd_chip_init(struct zd_chip *chip,
36  struct ieee80211_hw *hw,
37  struct usb_interface *intf)
38 {
39  memset(chip, 0, sizeof(*chip));
40  mutex_init(&chip->mutex);
41  zd_usb_init(&chip->usb, hw, intf);
42  zd_rf_init(&chip->rf);
43 }
44 
45 void zd_chip_clear(struct zd_chip *chip)
46 {
47  ZD_ASSERT(!mutex_is_locked(&chip->mutex));
48  zd_usb_clear(&chip->usb);
49  zd_rf_clear(&chip->rf);
50  mutex_destroy(&chip->mutex);
51  ZD_MEMCLEAR(chip, sizeof(*chip));
52 }
53 
54 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
55 {
56  u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
57  return scnprintf(buffer, size, "%02x-%02x-%02x",
58  addr[0], addr[1], addr[2]);
59 }
60 
61 /* Prints an identifier line, which will support debugging. */
62 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
63 {
64  int i = 0;
65 
66  i = scnprintf(buffer, size, "zd1211%s chip ",
67  zd_chip_is_zd1211b(chip) ? "b" : "");
68  i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
69  i += scnprintf(buffer+i, size-i, " ");
70  i += scnprint_mac_oui(chip, buffer+i, size-i);
71  i += scnprintf(buffer+i, size-i, " ");
72  i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
73  i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
74  chip->patch_cck_gain ? 'g' : '-',
75  chip->patch_cr157 ? '7' : '-',
76  chip->patch_6m_band_edge ? '6' : '-',
77  chip->new_phy_layout ? 'N' : '-',
78  chip->al2230s_bit ? 'S' : '-');
79  return i;
80 }
81 
82 static void print_id(struct zd_chip *chip)
83 {
84  char buffer[80];
85 
86  scnprint_id(chip, buffer, sizeof(buffer));
87  buffer[sizeof(buffer)-1] = 0;
88  dev_info(zd_chip_dev(chip), "%s\n", buffer);
89 }
90 
91 static zd_addr_t inc_addr(zd_addr_t addr)
92 {
93  u16 a = (u16)addr;
94  /* Control registers use byte addressing, but everything else uses word
95  * addressing. */
96  if ((a & 0xf000) == CR_START)
97  a += 2;
98  else
99  a += 1;
100  return (zd_addr_t)a;
101 }
102 
103 /* Read a variable number of 32-bit values. Parameter count is not allowed to
104  * exceed USB_MAX_IOREAD32_COUNT.
105  */
106 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
107  unsigned int count)
108 {
109  int r;
110  int i;
112  u16 v16[USB_MAX_IOREAD32_COUNT * 2];
113  unsigned int count16;
114 
115  if (count > USB_MAX_IOREAD32_COUNT)
116  return -EINVAL;
117 
118  /* Use stack for values and addresses. */
119  count16 = 2 * count;
120  BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
121  BUG_ON(count16 * sizeof(u16) > sizeof(v16));
122 
123  for (i = 0; i < count; i++) {
124  int j = 2*i;
125  /* We read the high word always first. */
126  a16[j] = inc_addr(addr[i]);
127  a16[j+1] = addr[i];
128  }
129 
130  r = zd_ioread16v_locked(chip, v16, a16, count16);
131  if (r) {
132  dev_dbg_f(zd_chip_dev(chip),
133  "error: zd_ioread16v_locked. Error number %d\n", r);
134  return r;
135  }
136 
137  for (i = 0; i < count; i++) {
138  int j = 2*i;
139  values[i] = (v16[j] << 16) | v16[j+1];
140  }
141 
142  return 0;
143 }
144 
145 static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
146  const struct zd_ioreq32 *ioreqs,
147  unsigned int count)
148 {
149  int i, j, r;
150  struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
151  unsigned int count16;
152 
153  /* Use stack for values and addresses. */
154 
155  ZD_ASSERT(mutex_is_locked(&chip->mutex));
156 
157  if (count == 0)
158  return 0;
159  if (count > USB_MAX_IOWRITE32_COUNT)
160  return -EINVAL;
161 
162  count16 = 2 * count;
163  BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
164 
165  for (i = 0; i < count; i++) {
166  j = 2*i;
167  /* We write the high word always first. */
168  ioreqs16[j].value = ioreqs[i].value >> 16;
169  ioreqs16[j].addr = inc_addr(ioreqs[i].addr);
170  ioreqs16[j+1].value = ioreqs[i].value;
171  ioreqs16[j+1].addr = ioreqs[i].addr;
172  }
173 
174  r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
175 #ifdef DEBUG
176  if (r) {
177  dev_dbg_f(zd_chip_dev(chip),
178  "error %d in zd_usb_write16v\n", r);
179  }
180 #endif /* DEBUG */
181  return r;
182 }
183 
184 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
185  unsigned int count)
186 {
187  int r;
188 
190  r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
191  if (r) {
192  zd_usb_iowrite16v_async_end(&chip->usb, 0);
193  return r;
194  }
195  return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
196 }
197 
198 int zd_iowrite16a_locked(struct zd_chip *chip,
199  const struct zd_ioreq16 *ioreqs, unsigned int count)
200 {
201  int r;
202  unsigned int i, j, t, max;
203 
204  ZD_ASSERT(mutex_is_locked(&chip->mutex));
206 
207  for (i = 0; i < count; i += j + t) {
208  t = 0;
209  max = count-i;
210  if (max > USB_MAX_IOWRITE16_COUNT)
212  for (j = 0; j < max; j++) {
213  if (!ioreqs[i+j].addr) {
214  t = 1;
215  break;
216  }
217  }
218 
219  r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
220  if (r) {
221  zd_usb_iowrite16v_async_end(&chip->usb, 0);
222  dev_dbg_f(zd_chip_dev(chip),
223  "error zd_usb_iowrite16v. Error number %d\n",
224  r);
225  return r;
226  }
227  }
228 
229  return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
230 }
231 
232 /* Writes a variable number of 32 bit registers. The functions will split
233  * that in several USB requests. A split can be forced by inserting an IO
234  * request with an zero address field.
235  */
236 int zd_iowrite32a_locked(struct zd_chip *chip,
237  const struct zd_ioreq32 *ioreqs, unsigned int count)
238 {
239  int r;
240  unsigned int i, j, t, max;
241 
243 
244  for (i = 0; i < count; i += j + t) {
245  t = 0;
246  max = count-i;
247  if (max > USB_MAX_IOWRITE32_COUNT)
249  for (j = 0; j < max; j++) {
250  if (!ioreqs[i+j].addr) {
251  t = 1;
252  break;
253  }
254  }
255 
256  r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
257  if (r) {
258  zd_usb_iowrite16v_async_end(&chip->usb, 0);
259  dev_dbg_f(zd_chip_dev(chip),
260  "error _zd_iowrite32v_locked."
261  " Error number %d\n", r);
262  return r;
263  }
264  }
265 
266  return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
267 }
268 
269 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
270 {
271  int r;
272 
273  mutex_lock(&chip->mutex);
274  r = zd_ioread16_locked(chip, value, addr);
275  mutex_unlock(&chip->mutex);
276  return r;
277 }
278 
279 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
280 {
281  int r;
282 
283  mutex_lock(&chip->mutex);
284  r = zd_ioread32_locked(chip, value, addr);
285  mutex_unlock(&chip->mutex);
286  return r;
287 }
288 
289 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
290 {
291  int r;
292 
293  mutex_lock(&chip->mutex);
294  r = zd_iowrite16_locked(chip, value, addr);
295  mutex_unlock(&chip->mutex);
296  return r;
297 }
298 
299 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
300 {
301  int r;
302 
303  mutex_lock(&chip->mutex);
304  r = zd_iowrite32_locked(chip, value, addr);
305  mutex_unlock(&chip->mutex);
306  return r;
307 }
308 
309 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
310  u32 *values, unsigned int count)
311 {
312  int r;
313 
314  mutex_lock(&chip->mutex);
315  r = zd_ioread32v_locked(chip, values, addresses, count);
316  mutex_unlock(&chip->mutex);
317  return r;
318 }
319 
320 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
321  unsigned int count)
322 {
323  int r;
324 
325  mutex_lock(&chip->mutex);
326  r = zd_iowrite32a_locked(chip, ioreqs, count);
327  mutex_unlock(&chip->mutex);
328  return r;
329 }
330 
331 static int read_pod(struct zd_chip *chip, u8 *rf_type)
332 {
333  int r;
334  u32 value;
335 
336  ZD_ASSERT(mutex_is_locked(&chip->mutex));
337  r = zd_ioread32_locked(chip, &value, E2P_POD);
338  if (r)
339  goto error;
340  dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
341 
342  /* FIXME: AL2230 handling (Bit 7 in POD) */
343  *rf_type = value & 0x0f;
344  chip->pa_type = (value >> 16) & 0x0f;
345  chip->patch_cck_gain = (value >> 8) & 0x1;
346  chip->patch_cr157 = (value >> 13) & 0x1;
347  chip->patch_6m_band_edge = (value >> 21) & 0x1;
348  chip->new_phy_layout = (value >> 31) & 0x1;
349  chip->al2230s_bit = (value >> 7) & 0x1;
350  chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
351  chip->supports_tx_led = 1;
352  if (value & (1 << 24)) { /* LED scenario */
353  if (value & (1 << 29))
354  chip->supports_tx_led = 0;
355  }
356 
357  dev_dbg_f(zd_chip_dev(chip),
358  "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
359  "patch 6M %d new PHY %d link LED%d tx led %d\n",
360  zd_rf_name(*rf_type), *rf_type,
361  chip->pa_type, chip->patch_cck_gain,
362  chip->patch_cr157, chip->patch_6m_band_edge,
363  chip->new_phy_layout,
364  chip->link_led == LED1 ? 1 : 2,
365  chip->supports_tx_led);
366  return 0;
367 error:
368  *rf_type = 0;
369  chip->pa_type = 0;
370  chip->patch_cck_gain = 0;
371  chip->patch_cr157 = 0;
372  chip->patch_6m_band_edge = 0;
373  chip->new_phy_layout = 0;
374  return r;
375 }
376 
377 static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
378  const struct zd_ioreq32 *in_reqs,
379  const char *type)
380 {
381  int r;
382  struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
383 
384  if (mac_addr) {
385  reqs[0].value = (mac_addr[3] << 24)
386  | (mac_addr[2] << 16)
387  | (mac_addr[1] << 8)
388  | mac_addr[0];
389  reqs[1].value = (mac_addr[5] << 8)
390  | mac_addr[4];
391  dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
392  } else {
393  dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
394  }
395 
396  mutex_lock(&chip->mutex);
397  r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
398  mutex_unlock(&chip->mutex);
399  return r;
400 }
401 
402 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
403  * CR_MAC_ADDR_P2 must be overwritten
404  */
405 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
406 {
407  static const struct zd_ioreq32 reqs[2] = {
408  [0] = { .addr = CR_MAC_ADDR_P1 },
409  [1] = { .addr = CR_MAC_ADDR_P2 },
410  };
411 
412  return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
413 }
414 
415 int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
416 {
417  static const struct zd_ioreq32 reqs[2] = {
418  [0] = { .addr = CR_BSSID_P1 },
419  [1] = { .addr = CR_BSSID_P2 },
420  };
421 
422  return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
423 }
424 
425 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
426 {
427  int r;
428  u32 value;
429 
430  mutex_lock(&chip->mutex);
431  r = zd_ioread32_locked(chip, &value, E2P_SUBID);
432  mutex_unlock(&chip->mutex);
433  if (r)
434  return r;
435 
436  *regdomain = value >> 16;
437  dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
438 
439  return 0;
440 }
441 
442 static int read_values(struct zd_chip *chip, u8 *values, size_t count,
443  zd_addr_t e2p_addr, u32 guard)
444 {
445  int r;
446  int i;
447  u32 v;
448 
449  ZD_ASSERT(mutex_is_locked(&chip->mutex));
450  for (i = 0;;) {
451  r = zd_ioread32_locked(chip, &v,
452  (zd_addr_t)((u16)e2p_addr+i/2));
453  if (r)
454  return r;
455  v -= guard;
456  if (i+4 < count) {
457  values[i++] = v;
458  values[i++] = v >> 8;
459  values[i++] = v >> 16;
460  values[i++] = v >> 24;
461  continue;
462  }
463  for (;i < count; i++)
464  values[i] = v >> (8*(i%3));
465  return 0;
466  }
467 }
468 
469 static int read_pwr_cal_values(struct zd_chip *chip)
470 {
471  return read_values(chip, chip->pwr_cal_values,
473  0);
474 }
475 
476 static int read_pwr_int_values(struct zd_chip *chip)
477 {
478  return read_values(chip, chip->pwr_int_values,
481 }
482 
483 static int read_ofdm_cal_values(struct zd_chip *chip)
484 {
485  int r;
486  int i;
487  static const zd_addr_t addresses[] = {
491  };
492 
493  for (i = 0; i < 3; i++) {
494  r = read_values(chip, chip->ofdm_cal_values[i],
495  E2P_CHANNEL_COUNT, addresses[i], 0);
496  if (r)
497  return r;
498  }
499  return 0;
500 }
501 
502 static int read_cal_int_tables(struct zd_chip *chip)
503 {
504  int r;
505 
506  r = read_pwr_cal_values(chip);
507  if (r)
508  return r;
509  r = read_pwr_int_values(chip);
510  if (r)
511  return r;
512  r = read_ofdm_cal_values(chip);
513  if (r)
514  return r;
515  return 0;
516 }
517 
518 /* phy means physical registers */
520 {
521  int r;
522  u32 tmp;
523 
524  ZD_ASSERT(mutex_is_locked(&chip->mutex));
525  r = zd_ioread32_locked(chip, &tmp, CR_REG1);
526  if (r) {
527  dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
528  return r;
529  }
530 
531  tmp &= ~UNLOCK_PHY_REGS;
532 
533  r = zd_iowrite32_locked(chip, tmp, CR_REG1);
534  if (r)
535  dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
536  return r;
537 }
538 
540 {
541  int r;
542  u32 tmp;
543 
544  ZD_ASSERT(mutex_is_locked(&chip->mutex));
545  r = zd_ioread32_locked(chip, &tmp, CR_REG1);
546  if (r) {
547  dev_err(zd_chip_dev(chip),
548  "error ioread32(CR_REG1): %d\n", r);
549  return r;
550  }
551 
552  tmp |= UNLOCK_PHY_REGS;
553 
554  r = zd_iowrite32_locked(chip, tmp, CR_REG1);
555  if (r)
556  dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
557  return r;
558 }
559 
560 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
561 static int patch_cr157(struct zd_chip *chip)
562 {
563  int r;
564  u16 value;
565 
566  if (!chip->patch_cr157)
567  return 0;
568 
569  r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
570  if (r)
571  return r;
572 
573  dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
574  return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
575 }
576 
577 /*
578  * 6M band edge can be optionally overwritten for certain RF's
579  * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
580  * bit (for AL2230, AL2230S)
581  */
582 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
583 {
584  ZD_ASSERT(mutex_is_locked(&chip->mutex));
585  if (!chip->patch_6m_band_edge)
586  return 0;
587 
588  return zd_rf_patch_6m_band_edge(&chip->rf, channel);
589 }
590 
591 /* Generic implementation of 6M band edge patching, used by most RFs via
592  * zd_rf_generic_patch_6m() */
593 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
594 {
595  struct zd_ioreq16 ioreqs[] = {
596  { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
597  { ZD_CR47, 0x1e },
598  };
599 
600  /* FIXME: Channel 11 is not the edge for all regulatory domains. */
601  if (channel == 1 || channel == 11)
602  ioreqs[0].value = 0x12;
603 
604  dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
605  return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
606 }
607 
608 static int zd1211_hw_reset_phy(struct zd_chip *chip)
609 {
610  static const struct zd_ioreq16 ioreqs[] = {
611  { ZD_CR0, 0x0a }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
612  { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xa0 },
613  { ZD_CR10, 0x81 }, { ZD_CR11, 0x00 }, { ZD_CR12, 0x7f },
614  { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 }, { ZD_CR15, 0x3d },
615  { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e }, { ZD_CR18, 0x0a },
616  { ZD_CR19, 0x48 }, { ZD_CR20, 0x0c }, { ZD_CR21, 0x0c },
617  { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 }, { ZD_CR24, 0x14 },
618  { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 }, { ZD_CR27, 0x19 },
619  { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 }, { ZD_CR30, 0x4b },
620  { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
621  { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
622  { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
623  { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
624  { ZD_CR43, 0x10 }, { ZD_CR44, 0x12 }, { ZD_CR46, 0xff },
625  { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
626  { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
627  { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
628  { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
629  { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
630  { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
631  { ZD_CR79, 0x68 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
632  { ZD_CR82, 0x00 }, { ZD_CR83, 0x00 }, { ZD_CR84, 0x00 },
633  { ZD_CR85, 0x02 }, { ZD_CR86, 0x00 }, { ZD_CR87, 0x00 },
634  { ZD_CR88, 0xff }, { ZD_CR89, 0xfc }, { ZD_CR90, 0x00 },
635  { ZD_CR91, 0x00 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x08 },
636  { ZD_CR94, 0x00 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0xff },
637  { ZD_CR97, 0xe7 }, { ZD_CR98, 0x00 }, { ZD_CR99, 0x00 },
638  { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
639  { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
640  { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
641  { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
642  { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
643  { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
644  { },
645  { ZD_CR5, 0x00 }, { ZD_CR6, 0x00 }, { ZD_CR7, 0x00 },
646  { ZD_CR8, 0x00 }, { ZD_CR9, 0x20 }, { ZD_CR12, 0xf0 },
647  { ZD_CR20, 0x0e }, { ZD_CR21, 0x0e }, { ZD_CR27, 0x10 },
648  { ZD_CR44, 0x33 }, { ZD_CR47, 0x1E }, { ZD_CR83, 0x24 },
649  { ZD_CR84, 0x04 }, { ZD_CR85, 0x00 }, { ZD_CR86, 0x0C },
650  { ZD_CR87, 0x12 }, { ZD_CR88, 0x0C }, { ZD_CR89, 0x00 },
651  { ZD_CR90, 0x10 }, { ZD_CR91, 0x08 }, { ZD_CR93, 0x00 },
652  { ZD_CR94, 0x01 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0x50 },
653  { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 }, { ZD_CR101, 0x13 },
654  { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
655  { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
656  { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
657  { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
658  { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
659  { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
660  { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
661  { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
662  { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
663  { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
664  { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
665  { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
666  { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
667  { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
668  { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
669  { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
670  /* Note: ZD_CR204 must lead the ZD_CR203 */
671  { ZD_CR204, 0x7d },
672  { },
673  { ZD_CR203, 0x30 },
674  };
675 
676  int r, t;
677 
678  dev_dbg_f(zd_chip_dev(chip), "\n");
679 
680  r = zd_chip_lock_phy_regs(chip);
681  if (r)
682  goto out;
683 
684  r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
685  if (r)
686  goto unlock;
687 
688  r = patch_cr157(chip);
689 unlock:
690  t = zd_chip_unlock_phy_regs(chip);
691  if (t && !r)
692  r = t;
693 out:
694  return r;
695 }
696 
697 static int zd1211b_hw_reset_phy(struct zd_chip *chip)
698 {
699  static const struct zd_ioreq16 ioreqs[] = {
700  { ZD_CR0, 0x14 }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
701  { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xe0 },
702  { ZD_CR10, 0x81 },
703  /* power control { { ZD_CR11, 1 << 6 }, */
704  { ZD_CR11, 0x00 },
705  { ZD_CR12, 0xf0 }, { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 },
706  { ZD_CR15, 0x3d }, { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e },
707  { ZD_CR18, 0x0a }, { ZD_CR19, 0x48 },
708  { ZD_CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
709  { ZD_CR21, 0x0e }, { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 },
710  { ZD_CR24, 0x14 }, { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 },
711  { ZD_CR27, 0x10 }, { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 },
712  { ZD_CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */
713  { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
714  { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
715  { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
716  { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
717  { ZD_CR43, 0x10 }, { ZD_CR44, 0x33 }, { ZD_CR46, 0xff },
718  { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
719  { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
720  { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
721  { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
722  { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
723  { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
724  { ZD_CR79, 0xf0 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
725  { ZD_CR82, 0x00 }, { ZD_CR83, 0x24 }, { ZD_CR84, 0x04 },
726  { ZD_CR85, 0x00 }, { ZD_CR86, 0x0c }, { ZD_CR87, 0x12 },
727  { ZD_CR88, 0x0c }, { ZD_CR89, 0x00 }, { ZD_CR90, 0x58 },
728  { ZD_CR91, 0x04 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x00 },
729  { ZD_CR94, 0x01 },
730  { ZD_CR95, 0x20 }, /* ZD1211B */
731  { ZD_CR96, 0x50 }, { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 },
732  { ZD_CR99, 0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
733  { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
734  { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
735  { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
736  { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
737  { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
738  { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
739  { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
740  { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
741  { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
742  { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
743  { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
744  { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
745  { ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
746  { ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
747  { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
748  { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
749  { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
750  { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
751  { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
752  /* Note: ZD_CR204 must lead the ZD_CR203 */
753  { ZD_CR204, 0x7d },
754  {},
755  { ZD_CR203, 0x30 },
756  };
757 
758  int r, t;
759 
760  dev_dbg_f(zd_chip_dev(chip), "\n");
761 
762  r = zd_chip_lock_phy_regs(chip);
763  if (r)
764  goto out;
765 
766  r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
767  t = zd_chip_unlock_phy_regs(chip);
768  if (t && !r)
769  r = t;
770 out:
771  return r;
772 }
773 
774 static int hw_reset_phy(struct zd_chip *chip)
775 {
776  return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
777  zd1211_hw_reset_phy(chip);
778 }
779 
780 static int zd1211_hw_init_hmac(struct zd_chip *chip)
781 {
782  static const struct zd_ioreq32 ioreqs[] = {
784  { CR_RX_THRESHOLD, 0x000c0640 },
785  };
786 
787  dev_dbg_f(zd_chip_dev(chip), "\n");
788  ZD_ASSERT(mutex_is_locked(&chip->mutex));
789  return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
790 }
791 
792 static int zd1211b_hw_init_hmac(struct zd_chip *chip)
793 {
794  static const struct zd_ioreq32 ioreqs[] = {
796  { CR_ZD1211B_CWIN_MAX_MIN_AC0, 0x007f003f },
797  { CR_ZD1211B_CWIN_MAX_MIN_AC1, 0x007f003f },
798  { CR_ZD1211B_CWIN_MAX_MIN_AC2, 0x003f001f },
799  { CR_ZD1211B_CWIN_MAX_MIN_AC3, 0x001f000f },
800  { CR_ZD1211B_AIFS_CTL1, 0x00280028 },
801  { CR_ZD1211B_AIFS_CTL2, 0x008C003C },
802  { CR_ZD1211B_TXOP, 0x01800824 },
803  { CR_RX_THRESHOLD, 0x000c0eff, },
804  };
805 
806  dev_dbg_f(zd_chip_dev(chip), "\n");
807  ZD_ASSERT(mutex_is_locked(&chip->mutex));
808  return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
809 }
810 
811 static int hw_init_hmac(struct zd_chip *chip)
812 {
813  int r;
814  static const struct zd_ioreq32 ioreqs[] = {
815  { CR_ACK_TIMEOUT_EXT, 0x20 },
816  { CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
817  { CR_SNIFFER_ON, 0 },
819  { CR_GROUP_HASH_P1, 0x00 },
820  { CR_GROUP_HASH_P2, 0x80000000 },
821  { CR_REG1, 0xa4 },
822  { CR_ADDA_PWR_DWN, 0x7f },
823  { CR_BCN_PLCP_CFG, 0x00f00401 },
824  { CR_PHY_DELAY, 0x00 },
825  { CR_ACK_TIMEOUT_EXT, 0x80 },
826  { CR_ADDA_PWR_DWN, 0x00 },
827  { CR_ACK_TIME_80211, 0x100 },
828  { CR_RX_PE_DELAY, 0x70 },
829  { CR_PS_CTRL, 0x10000000 },
830  { CR_RTS_CTS_RATE, 0x02030203 },
831  { CR_AFTER_PNP, 0x1 },
832  { CR_WEP_PROTECT, 0x114 },
835  };
836 
837  ZD_ASSERT(mutex_is_locked(&chip->mutex));
838  r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
839  if (r)
840  return r;
841 
842  return zd_chip_is_zd1211b(chip) ?
843  zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
844 }
845 
846 struct aw_pt_bi {
850 };
851 
852 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
853 {
854  int r;
855  static const zd_addr_t aw_pt_bi_addr[] =
857  u32 values[3];
858 
859  r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
860  ARRAY_SIZE(aw_pt_bi_addr));
861  if (r) {
862  memset(s, 0, sizeof(*s));
863  return r;
864  }
865 
866  s->atim_wnd_period = values[0];
867  s->pre_tbtt = values[1];
868  s->beacon_interval = values[2];
869  return 0;
870 }
871 
872 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
873 {
874  struct zd_ioreq32 reqs[3];
875  u16 b_interval = s->beacon_interval & 0xffff;
876 
877  if (b_interval <= 5)
878  b_interval = 5;
879  if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
880  s->pre_tbtt = b_interval - 1;
881  if (s->atim_wnd_period >= s->pre_tbtt)
882  s->atim_wnd_period = s->pre_tbtt - 1;
883 
884  reqs[0].addr = CR_ATIM_WND_PERIOD;
885  reqs[0].value = s->atim_wnd_period;
886  reqs[1].addr = CR_PRE_TBTT;
887  reqs[1].value = s->pre_tbtt;
888  reqs[2].addr = CR_BCN_INTERVAL;
889  reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
890 
891  return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
892 }
893 
894 
895 static int set_beacon_interval(struct zd_chip *chip, u16 interval,
896  u8 dtim_period, int type)
897 {
898  int r;
899  struct aw_pt_bi s;
900  u32 b_interval, mode_flag;
901 
902  ZD_ASSERT(mutex_is_locked(&chip->mutex));
903 
904  if (interval > 0) {
905  switch (type) {
908  mode_flag = BCN_MODE_IBSS;
909  break;
910  case NL80211_IFTYPE_AP:
911  mode_flag = BCN_MODE_AP;
912  break;
913  default:
914  mode_flag = 0;
915  break;
916  }
917  } else {
918  dtim_period = 0;
919  mode_flag = 0;
920  }
921 
922  b_interval = mode_flag | (dtim_period << 16) | interval;
923 
924  r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
925  if (r)
926  return r;
927  r = get_aw_pt_bi(chip, &s);
928  if (r)
929  return r;
930  return set_aw_pt_bi(chip, &s);
931 }
932 
933 int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
934  int type)
935 {
936  int r;
937 
938  mutex_lock(&chip->mutex);
939  r = set_beacon_interval(chip, interval, dtim_period, type);
940  mutex_unlock(&chip->mutex);
941  return r;
942 }
943 
944 static int hw_init(struct zd_chip *chip)
945 {
946  int r;
947 
948  dev_dbg_f(zd_chip_dev(chip), "\n");
949  ZD_ASSERT(mutex_is_locked(&chip->mutex));
950  r = hw_reset_phy(chip);
951  if (r)
952  return r;
953 
954  r = hw_init_hmac(chip);
955  if (r)
956  return r;
957 
958  return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
959 }
960 
961 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
962 {
963  return (zd_addr_t)((u16)chip->fw_regs_base + offset);
964 }
965 
966 #ifdef DEBUG
967 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
968  const char *addr_string)
969 {
970  int r;
971  u32 value;
972 
973  r = zd_ioread32_locked(chip, &value, addr);
974  if (r) {
975  dev_dbg_f(zd_chip_dev(chip),
976  "error reading %s. Error number %d\n", addr_string, r);
977  return r;
978  }
979 
980  dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
981  addr_string, (unsigned int)value);
982  return 0;
983 }
984 
985 static int test_init(struct zd_chip *chip)
986 {
987  int r;
988 
989  r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
990  if (r)
991  return r;
992  r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
993  if (r)
994  return r;
995  return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
996 }
997 
998 static void dump_fw_registers(struct zd_chip *chip)
999 {
1000  const zd_addr_t addr[4] = {
1001  fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
1002  fw_reg_addr(chip, FW_REG_USB_SPEED),
1003  fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
1004  fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1005  };
1006 
1007  int r;
1008  u16 values[4];
1009 
1010  r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
1011  ARRAY_SIZE(addr));
1012  if (r) {
1013  dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1014  r);
1015  return;
1016  }
1017 
1018  dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1019  dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1020  dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1021  dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1022 }
1023 #endif /* DEBUG */
1024 
1025 static int print_fw_version(struct zd_chip *chip)
1026 {
1027  struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1028  int r;
1029  u16 version;
1030 
1031  r = zd_ioread16_locked(chip, &version,
1032  fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1033  if (r)
1034  return r;
1035 
1036  dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1037 
1038  snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1039  "%04hx", version);
1040 
1041  return 0;
1042 }
1043 
1044 static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1045 {
1046  u32 rates;
1047  ZD_ASSERT(mutex_is_locked(&chip->mutex));
1048  /* This sets the mandatory rates, which only depend from the standard
1049  * that the device is supporting. Until further notice we should try
1050  * to support 802.11g also for full speed USB.
1051  */
1052  if (!gmode)
1054  else
1057 
1058  return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1059 }
1060 
1062  int preamble)
1063 {
1064  u32 value = 0;
1065 
1066  dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1067  value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1068  value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1069 
1070  /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1072  value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1074  value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1075 
1076  return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1077 }
1078 
1080 {
1081  int r;
1082 
1083  mutex_lock(&chip->mutex);
1084  r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1085  mutex_unlock(&chip->mutex);
1086  return r;
1087 }
1088 
1089 static int disable_hwint(struct zd_chip *chip)
1090 {
1091  return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1092 }
1093 
1095 {
1096  int r;
1097 
1098  mutex_lock(&chip->mutex);
1099  r = disable_hwint(chip);
1100  mutex_unlock(&chip->mutex);
1101  return r;
1102 }
1103 
1104 static int read_fw_regs_offset(struct zd_chip *chip)
1105 {
1106  int r;
1107 
1108  ZD_ASSERT(mutex_is_locked(&chip->mutex));
1109  r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1110  FWRAW_REGS_ADDR);
1111  if (r)
1112  return r;
1113  dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1114  (u16)chip->fw_regs_base);
1115 
1116  return 0;
1117 }
1118 
1119 /* Read mac address using pre-firmware interface */
1120 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1121 {
1122  dev_dbg_f(zd_chip_dev(chip), "\n");
1123  return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1124  ETH_ALEN);
1125 }
1126 
1127 int zd_chip_init_hw(struct zd_chip *chip)
1128 {
1129  int r;
1130  u8 rf_type;
1131 
1132  dev_dbg_f(zd_chip_dev(chip), "\n");
1133 
1134  mutex_lock(&chip->mutex);
1135 
1136 #ifdef DEBUG
1137  r = test_init(chip);
1138  if (r)
1139  goto out;
1140 #endif
1141  r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1142  if (r)
1143  goto out;
1144 
1145  r = read_fw_regs_offset(chip);
1146  if (r)
1147  goto out;
1148 
1149  /* GPI is always disabled, also in the other driver.
1150  */
1151  r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1152  if (r)
1153  goto out;
1154  r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1155  if (r)
1156  goto out;
1157  /* Currently we support IEEE 802.11g for full and high speed USB.
1158  * It might be discussed, whether we should suppport pure b mode for
1159  * full speed USB.
1160  */
1161  r = set_mandatory_rates(chip, 1);
1162  if (r)
1163  goto out;
1164  /* Disabling interrupts is certainly a smart thing here.
1165  */
1166  r = disable_hwint(chip);
1167  if (r)
1168  goto out;
1169  r = read_pod(chip, &rf_type);
1170  if (r)
1171  goto out;
1172  r = hw_init(chip);
1173  if (r)
1174  goto out;
1175  r = zd_rf_init_hw(&chip->rf, rf_type);
1176  if (r)
1177  goto out;
1178 
1179  r = print_fw_version(chip);
1180  if (r)
1181  goto out;
1182 
1183 #ifdef DEBUG
1184  dump_fw_registers(chip);
1185  r = test_init(chip);
1186  if (r)
1187  goto out;
1188 #endif /* DEBUG */
1189 
1190  r = read_cal_int_tables(chip);
1191  if (r)
1192  goto out;
1193 
1194  print_id(chip);
1195 out:
1196  mutex_unlock(&chip->mutex);
1197  return r;
1198 }
1199 
1200 static int update_pwr_int(struct zd_chip *chip, u8 channel)
1201 {
1202  u8 value = chip->pwr_int_values[channel - 1];
1203  return zd_iowrite16_locked(chip, value, ZD_CR31);
1204 }
1205 
1206 static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1207 {
1208  u8 value = chip->pwr_cal_values[channel-1];
1209  return zd_iowrite16_locked(chip, value, ZD_CR68);
1210 }
1211 
1212 static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1213 {
1214  struct zd_ioreq16 ioreqs[3];
1215 
1216  ioreqs[0].addr = ZD_CR67;
1217  ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1218  ioreqs[1].addr = ZD_CR66;
1219  ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1220  ioreqs[2].addr = ZD_CR65;
1221  ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1222 
1223  return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1224 }
1225 
1226 static int update_channel_integration_and_calibration(struct zd_chip *chip,
1227  u8 channel)
1228 {
1229  int r;
1230 
1231  if (!zd_rf_should_update_pwr_int(&chip->rf))
1232  return 0;
1233 
1234  r = update_pwr_int(chip, channel);
1235  if (r)
1236  return r;
1237  if (zd_chip_is_zd1211b(chip)) {
1238  static const struct zd_ioreq16 ioreqs[] = {
1239  { ZD_CR69, 0x28 },
1240  {},
1241  { ZD_CR69, 0x2a },
1242  };
1243 
1244  r = update_ofdm_cal(chip, channel);
1245  if (r)
1246  return r;
1247  r = update_pwr_cal(chip, channel);
1248  if (r)
1249  return r;
1250  r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1251  if (r)
1252  return r;
1253  }
1254 
1255  return 0;
1256 }
1257 
1258 /* The CCK baseband gain can be optionally patched by the EEPROM */
1259 static int patch_cck_gain(struct zd_chip *chip)
1260 {
1261  int r;
1262  u32 value;
1263 
1264  if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1265  return 0;
1266 
1267  ZD_ASSERT(mutex_is_locked(&chip->mutex));
1268  r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1269  if (r)
1270  return r;
1271  dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1272  return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1273 }
1274 
1275 int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1276 {
1277  int r, t;
1278 
1279  mutex_lock(&chip->mutex);
1280  r = zd_chip_lock_phy_regs(chip);
1281  if (r)
1282  goto out;
1283  r = zd_rf_set_channel(&chip->rf, channel);
1284  if (r)
1285  goto unlock;
1286  r = update_channel_integration_and_calibration(chip, channel);
1287  if (r)
1288  goto unlock;
1289  r = patch_cck_gain(chip);
1290  if (r)
1291  goto unlock;
1292  r = patch_6m_band_edge(chip, channel);
1293  if (r)
1294  goto unlock;
1295  r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1296 unlock:
1297  t = zd_chip_unlock_phy_regs(chip);
1298  if (t && !r)
1299  r = t;
1300 out:
1301  mutex_unlock(&chip->mutex);
1302  return r;
1303 }
1304 
1306 {
1307  u8 channel;
1308 
1309  mutex_lock(&chip->mutex);
1310  channel = chip->rf.channel;
1311  mutex_unlock(&chip->mutex);
1312  return channel;
1313 }
1314 
1316 {
1317  const zd_addr_t a[] = {
1318  fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1319  CR_LED,
1320  };
1321 
1322  int r;
1323  u16 v[ARRAY_SIZE(a)];
1324  struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1325  [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1326  [1] = { CR_LED },
1327  };
1328  u16 other_led;
1329 
1330  mutex_lock(&chip->mutex);
1331  r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1332  if (r)
1333  goto out;
1334 
1335  other_led = chip->link_led == LED1 ? LED2 : LED1;
1336 
1337  switch (status) {
1338  case ZD_LED_OFF:
1339  ioreqs[0].value = FW_LINK_OFF;
1340  ioreqs[1].value = v[1] & ~(LED1|LED2);
1341  break;
1342  case ZD_LED_SCANNING:
1343  ioreqs[0].value = FW_LINK_OFF;
1344  ioreqs[1].value = v[1] & ~other_led;
1345  if (get_seconds() % 3 == 0) {
1346  ioreqs[1].value &= ~chip->link_led;
1347  } else {
1348  ioreqs[1].value |= chip->link_led;
1349  }
1350  break;
1351  case ZD_LED_ASSOCIATED:
1352  ioreqs[0].value = FW_LINK_TX;
1353  ioreqs[1].value = v[1] & ~other_led;
1354  ioreqs[1].value |= chip->link_led;
1355  break;
1356  default:
1357  r = -EINVAL;
1358  goto out;
1359  }
1360 
1361  if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1362  r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1363  if (r)
1364  goto out;
1365  }
1366  r = 0;
1367 out:
1368  mutex_unlock(&chip->mutex);
1369  return r;
1370 }
1371 
1372 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1373 {
1374  int r;
1375 
1376  if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1377  return -EINVAL;
1378 
1379  mutex_lock(&chip->mutex);
1380  r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1381  mutex_unlock(&chip->mutex);
1382  return r;
1383 }
1384 
1385 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1386 {
1387  return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1388 }
1389 
1398 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1399 {
1400  u8 zd_rate;
1401  if (status->frame_status & ZD_RX_OFDM) {
1402  zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1403  } else {
1404  switch (zd_cck_plcp_header_signal(rx_frame)) {
1405  case ZD_CCK_PLCP_SIGNAL_1M:
1406  zd_rate = ZD_CCK_RATE_1M;
1407  break;
1408  case ZD_CCK_PLCP_SIGNAL_2M:
1409  zd_rate = ZD_CCK_RATE_2M;
1410  break;
1412  zd_rate = ZD_CCK_RATE_5_5M;
1413  break;
1415  zd_rate = ZD_CCK_RATE_11M;
1416  break;
1417  default:
1418  zd_rate = 0;
1419  }
1420  }
1421 
1422  return zd_rate;
1423 }
1424 
1426 {
1427  int r;
1428 
1429  mutex_lock(&chip->mutex);
1430  r = zd_switch_radio_on(&chip->rf);
1431  mutex_unlock(&chip->mutex);
1432  return r;
1433 }
1434 
1436 {
1437  int r;
1438 
1439  mutex_lock(&chip->mutex);
1440  r = zd_switch_radio_off(&chip->rf);
1441  mutex_unlock(&chip->mutex);
1442  return r;
1443 }
1444 
1445 int zd_chip_enable_int(struct zd_chip *chip)
1446 {
1447  int r;
1448 
1449  mutex_lock(&chip->mutex);
1450  r = zd_usb_enable_int(&chip->usb);
1451  mutex_unlock(&chip->mutex);
1452  return r;
1453 }
1454 
1455 void zd_chip_disable_int(struct zd_chip *chip)
1456 {
1457  mutex_lock(&chip->mutex);
1458  zd_usb_disable_int(&chip->usb);
1459  mutex_unlock(&chip->mutex);
1460 
1461  /* cancel pending interrupt work */
1462  cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1463 }
1464 
1465 int zd_chip_enable_rxtx(struct zd_chip *chip)
1466 {
1467  int r;
1468 
1469  mutex_lock(&chip->mutex);
1470  zd_usb_enable_tx(&chip->usb);
1471  r = zd_usb_enable_rx(&chip->usb);
1472  zd_tx_watchdog_enable(&chip->usb);
1473  mutex_unlock(&chip->mutex);
1474  return r;
1475 }
1476 
1477 void zd_chip_disable_rxtx(struct zd_chip *chip)
1478 {
1479  mutex_lock(&chip->mutex);
1480  zd_tx_watchdog_disable(&chip->usb);
1481  zd_usb_disable_rx(&chip->usb);
1482  zd_usb_disable_tx(&chip->usb);
1483  mutex_unlock(&chip->mutex);
1484 }
1485 
1486 int zd_rfwritev_locked(struct zd_chip *chip,
1487  const u32* values, unsigned int count, u8 bits)
1488 {
1489  int r;
1490  unsigned int i;
1491 
1492  for (i = 0; i < count; i++) {
1493  r = zd_rfwrite_locked(chip, values[i], bits);
1494  if (r)
1495  return r;
1496  }
1497 
1498  return 0;
1499 }
1500 
1501 /*
1502  * We can optionally program the RF directly through CR regs, if supported by
1503  * the hardware. This is much faster than the older method.
1504  */
1505 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1506 {
1507  const struct zd_ioreq16 ioreqs[] = {
1508  { ZD_CR244, (value >> 16) & 0xff },
1509  { ZD_CR243, (value >> 8) & 0xff },
1510  { ZD_CR242, value & 0xff },
1511  };
1512  ZD_ASSERT(mutex_is_locked(&chip->mutex));
1513  return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1514 }
1515 
1517  const u32 *values, unsigned int count)
1518 {
1519  int r;
1520  unsigned int i;
1521 
1522  for (i = 0; i < count; i++) {
1523  r = zd_rfwrite_cr_locked(chip, values[i]);
1524  if (r)
1525  return r;
1526  }
1527 
1528  return 0;
1529 }
1530 
1532  struct zd_mc_hash *hash)
1533 {
1534  const struct zd_ioreq32 ioreqs[] = {
1535  { CR_GROUP_HASH_P1, hash->low },
1536  { CR_GROUP_HASH_P2, hash->high },
1537  };
1538 
1539  return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1540 }
1541 
1543 {
1544  int r;
1545  static const zd_addr_t aw_pt_bi_addr[] =
1547  u32 values[2];
1548  u64 tsf;
1549 
1550  mutex_lock(&chip->mutex);
1551  r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1552  ARRAY_SIZE(aw_pt_bi_addr));
1553  mutex_unlock(&chip->mutex);
1554  if (r)
1555  return 0;
1556 
1557  tsf = values[1];
1558  tsf = (tsf << 32) | values[0];
1559 
1560  return tsf;
1561 }