LLVM API Documentation
00001 //===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // Local-dynamic access to thread-local variables proceeds in three stages. 00011 // 00012 // 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated 00013 // in much the same way as a general-dynamic TLS-descriptor access against 00014 // the special symbol _TLS_MODULE_BASE. 00015 // 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using 00016 // instructions with "dtprel" modifiers. 00017 // 3. These two are added, together with TPIDR_EL0, to obtain the variable's 00018 // true address. 00019 // 00020 // This is only better than general-dynamic access to the variable if two or 00021 // more of the first stage TLS-descriptor calculations can be combined. This 00022 // pass looks through a function and performs such combinations. 00023 // 00024 //===----------------------------------------------------------------------===// 00025 #include "AArch64.h" 00026 #include "AArch64InstrInfo.h" 00027 #include "AArch64MachineFunctionInfo.h" 00028 #include "AArch64TargetMachine.h" 00029 #include "llvm/CodeGen/MachineDominators.h" 00030 #include "llvm/CodeGen/MachineFunction.h" 00031 #include "llvm/CodeGen/MachineFunctionPass.h" 00032 #include "llvm/CodeGen/MachineInstrBuilder.h" 00033 #include "llvm/CodeGen/MachineRegisterInfo.h" 00034 using namespace llvm; 00035 00036 namespace { 00037 struct LDTLSCleanup : public MachineFunctionPass { 00038 static char ID; 00039 LDTLSCleanup() : MachineFunctionPass(ID) {} 00040 00041 bool runOnMachineFunction(MachineFunction &MF) override { 00042 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 00043 if (AFI->getNumLocalDynamicTLSAccesses() < 2) { 00044 // No point folding accesses if there isn't at least two. 00045 return false; 00046 } 00047 00048 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 00049 return VisitNode(DT->getRootNode(), 0); 00050 } 00051 00052 // Visit the dominator subtree rooted at Node in pre-order. 00053 // If TLSBaseAddrReg is non-null, then use that to replace any 00054 // TLS_base_addr instructions. Otherwise, create the register 00055 // when the first such instruction is seen, and then use it 00056 // as we encounter more instructions. 00057 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 00058 MachineBasicBlock *BB = Node->getBlock(); 00059 bool Changed = false; 00060 00061 // Traverse the current block. 00062 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 00063 ++I) { 00064 switch (I->getOpcode()) { 00065 case AArch64::TLSDESC_BLR: 00066 // Make sure it's a local dynamic access. 00067 if (!I->getOperand(1).isSymbol() || 00068 strcmp(I->getOperand(1).getSymbolName(), "_TLS_MODULE_BASE_")) 00069 break; 00070 00071 if (TLSBaseAddrReg) 00072 I = replaceTLSBaseAddrCall(I, TLSBaseAddrReg); 00073 else 00074 I = setRegister(I, &TLSBaseAddrReg); 00075 Changed = true; 00076 break; 00077 default: 00078 break; 00079 } 00080 } 00081 00082 // Visit the children of this block in the dominator tree. 00083 for (MachineDomTreeNode *N : *Node) { 00084 Changed |= VisitNode(N, TLSBaseAddrReg); 00085 } 00086 00087 return Changed; 00088 } 00089 00090 // Replace the TLS_base_addr instruction I with a copy from 00091 // TLSBaseAddrReg, returning the new instruction. 00092 MachineInstr *replaceTLSBaseAddrCall(MachineInstr *I, 00093 unsigned TLSBaseAddrReg) { 00094 MachineFunction *MF = I->getParent()->getParent(); 00095 const AArch64TargetMachine *TM = 00096 static_cast<const AArch64TargetMachine *>(&MF->getTarget()); 00097 const AArch64InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo(); 00098 00099 // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the 00100 // code sequence assumes the address will be. 00101 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(), 00102 TII->get(TargetOpcode::COPY), 00103 AArch64::X0).addReg(TLSBaseAddrReg); 00104 00105 // Erase the TLS_base_addr instruction. 00106 I->eraseFromParent(); 00107 00108 return Copy; 00109 } 00110 00111 // Create a virtal register in *TLSBaseAddrReg, and populate it by 00112 // inserting a copy instruction after I. Returns the new instruction. 00113 MachineInstr *setRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) { 00114 MachineFunction *MF = I->getParent()->getParent(); 00115 const AArch64TargetMachine *TM = 00116 static_cast<const AArch64TargetMachine *>(&MF->getTarget()); 00117 const AArch64InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo(); 00118 00119 // Create a virtual register for the TLS base address. 00120 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 00121 *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass); 00122 00123 // Insert a copy from X0 to TLSBaseAddrReg for later. 00124 MachineInstr *Next = I->getNextNode(); 00125 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(), 00126 TII->get(TargetOpcode::COPY), 00127 *TLSBaseAddrReg).addReg(AArch64::X0); 00128 00129 return Copy; 00130 } 00131 00132 const char *getPassName() const override { 00133 return "Local Dynamic TLS Access Clean-up"; 00134 } 00135 00136 void getAnalysisUsage(AnalysisUsage &AU) const override { 00137 AU.setPreservesCFG(); 00138 AU.addRequired<MachineDominatorTree>(); 00139 MachineFunctionPass::getAnalysisUsage(AU); 00140 } 00141 }; 00142 } 00143 00144 char LDTLSCleanup::ID = 0; 00145 FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() { 00146 return new LDTLSCleanup(); 00147 }