LLVM API Documentation
00001 //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains a pass (at IR level) to replace atomic instructions with 00011 // either (intrinsic-based) ldrex/strex loops or AtomicCmpXchg. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "llvm/CodeGen/Passes.h" 00016 #include "llvm/IR/Function.h" 00017 #include "llvm/IR/IRBuilder.h" 00018 #include "llvm/IR/InstIterator.h" 00019 #include "llvm/IR/Instructions.h" 00020 #include "llvm/IR/Intrinsics.h" 00021 #include "llvm/IR/Module.h" 00022 #include "llvm/Support/Debug.h" 00023 #include "llvm/Target/TargetLowering.h" 00024 #include "llvm/Target/TargetMachine.h" 00025 #include "llvm/Target/TargetSubtargetInfo.h" 00026 00027 using namespace llvm; 00028 00029 #define DEBUG_TYPE "atomic-expand" 00030 00031 namespace { 00032 class AtomicExpand: public FunctionPass { 00033 const TargetMachine *TM; 00034 public: 00035 static char ID; // Pass identification, replacement for typeid 00036 explicit AtomicExpand(const TargetMachine *TM = nullptr) 00037 : FunctionPass(ID), TM(TM) { 00038 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 00039 } 00040 00041 bool runOnFunction(Function &F) override; 00042 00043 private: 00044 bool expandAtomicLoad(LoadInst *LI); 00045 bool expandAtomicStore(StoreInst *SI); 00046 bool expandAtomicRMW(AtomicRMWInst *AI); 00047 bool expandAtomicRMWToLLSC(AtomicRMWInst *AI); 00048 bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI); 00049 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 00050 }; 00051 } 00052 00053 char AtomicExpand::ID = 0; 00054 char &llvm::AtomicExpandID = AtomicExpand::ID; 00055 INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", 00056 "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg", 00057 false, false) 00058 00059 FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { 00060 return new AtomicExpand(TM); 00061 } 00062 00063 bool AtomicExpand::runOnFunction(Function &F) { 00064 if (!TM || !TM->getSubtargetImpl()->enableAtomicExpand()) 00065 return false; 00066 auto TargetLowering = TM->getSubtargetImpl()->getTargetLowering(); 00067 00068 SmallVector<Instruction *, 1> AtomicInsts; 00069 00070 // Changing control-flow while iterating through it is a bad idea, so gather a 00071 // list of all atomic instructions before we start. 00072 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { 00073 if (I->isAtomic()) 00074 AtomicInsts.push_back(&*I); 00075 } 00076 00077 bool MadeChange = false; 00078 for (auto I : AtomicInsts) { 00079 auto LI = dyn_cast<LoadInst>(I); 00080 auto SI = dyn_cast<StoreInst>(I); 00081 auto RMWI = dyn_cast<AtomicRMWInst>(I); 00082 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 00083 00084 assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) && 00085 "Unknown atomic instruction"); 00086 00087 if (LI && TargetLowering->shouldExpandAtomicLoadInIR(LI)) { 00088 MadeChange |= expandAtomicLoad(LI); 00089 } else if (SI && TargetLowering->shouldExpandAtomicStoreInIR(SI)) { 00090 MadeChange |= expandAtomicStore(SI); 00091 } else if (RMWI && TargetLowering->shouldExpandAtomicRMWInIR(RMWI)) { 00092 MadeChange |= expandAtomicRMW(RMWI); 00093 } else if (CASI && TargetLowering->hasLoadLinkedStoreConditional()) { 00094 MadeChange |= expandAtomicCmpXchg(CASI); 00095 } 00096 } 00097 return MadeChange; 00098 } 00099 00100 bool AtomicExpand::expandAtomicLoad(LoadInst *LI) { 00101 auto TLI = TM->getSubtargetImpl()->getTargetLowering(); 00102 // If getInsertFencesForAtomic() returns true, then the target does not want 00103 // to deal with memory orders, and emitLeading/TrailingFence should take care 00104 // of everything. Otherwise, emitLeading/TrailingFence are no-op and we 00105 // should preserve the ordering. 00106 AtomicOrdering MemOpOrder = 00107 TLI->getInsertFencesForAtomic() ? Monotonic : LI->getOrdering(); 00108 IRBuilder<> Builder(LI); 00109 00110 // Note that although no fence is required before atomic load on ARM, it is 00111 // required before SequentiallyConsistent loads for the recommended Power 00112 // mapping (see http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html). 00113 // So we let the target choose what to emit. 00114 TLI->emitLeadingFence(Builder, LI->getOrdering(), 00115 /*IsStore=*/false, /*IsLoad=*/true); 00116 00117 // The only 64-bit load guaranteed to be single-copy atomic by ARM is 00118 // an ldrexd (A3.5.3). 00119 Value *Val = 00120 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), MemOpOrder); 00121 00122 TLI->emitTrailingFence(Builder, LI->getOrdering(), 00123 /*IsStore=*/false, /*IsLoad=*/true); 00124 00125 LI->replaceAllUsesWith(Val); 00126 LI->eraseFromParent(); 00127 00128 return true; 00129 } 00130 00131 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 00132 // This function is only called on atomic stores that are too large to be 00133 // atomic if implemented as a native store. So we replace them by an 00134 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 00135 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 00136 // It is the responsibility of the target to only return true in 00137 // shouldExpandAtomicRMW in cases where this is required and possible. 00138 IRBuilder<> Builder(SI); 00139 AtomicRMWInst *AI = 00140 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 00141 SI->getValueOperand(), SI->getOrdering()); 00142 SI->eraseFromParent(); 00143 00144 // Now we have an appropriate swap instruction, lower it as usual. 00145 return expandAtomicRMW(AI); 00146 } 00147 00148 bool AtomicExpand::expandAtomicRMW(AtomicRMWInst *AI) { 00149 if (TM->getSubtargetImpl() 00150 ->getTargetLowering() 00151 ->hasLoadLinkedStoreConditional()) 00152 return expandAtomicRMWToLLSC(AI); 00153 else 00154 return expandAtomicRMWToCmpXchg(AI); 00155 } 00156 00157 /// Emit IR to implement the given atomicrmw operation on values in registers, 00158 /// returning the new value. 00159 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 00160 Value *Loaded, Value *Inc) { 00161 Value *NewVal; 00162 switch (Op) { 00163 case AtomicRMWInst::Xchg: 00164 return Inc; 00165 case AtomicRMWInst::Add: 00166 return Builder.CreateAdd(Loaded, Inc, "new"); 00167 case AtomicRMWInst::Sub: 00168 return Builder.CreateSub(Loaded, Inc, "new"); 00169 case AtomicRMWInst::And: 00170 return Builder.CreateAnd(Loaded, Inc, "new"); 00171 case AtomicRMWInst::Nand: 00172 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 00173 case AtomicRMWInst::Or: 00174 return Builder.CreateOr(Loaded, Inc, "new"); 00175 case AtomicRMWInst::Xor: 00176 return Builder.CreateXor(Loaded, Inc, "new"); 00177 case AtomicRMWInst::Max: 00178 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 00179 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 00180 case AtomicRMWInst::Min: 00181 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 00182 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 00183 case AtomicRMWInst::UMax: 00184 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 00185 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 00186 case AtomicRMWInst::UMin: 00187 NewVal = Builder.CreateICmpULE(Loaded, Inc); 00188 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 00189 default: 00190 llvm_unreachable("Unknown atomic op"); 00191 } 00192 } 00193 00194 bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) { 00195 auto TLI = TM->getSubtargetImpl()->getTargetLowering(); 00196 AtomicOrdering FenceOrder = AI->getOrdering(); 00197 Value *Addr = AI->getPointerOperand(); 00198 BasicBlock *BB = AI->getParent(); 00199 Function *F = BB->getParent(); 00200 LLVMContext &Ctx = F->getContext(); 00201 // If getInsertFencesForAtomic() returns true, then the target does not want 00202 // to deal with memory orders, and emitLeading/TrailingFence should take care 00203 // of everything. Otherwise, emitLeading/TrailingFence are no-op and we 00204 // should preserve the ordering. 00205 AtomicOrdering MemOpOrder = 00206 TLI->getInsertFencesForAtomic() ? Monotonic : FenceOrder; 00207 00208 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 00209 // 00210 // The standard expansion we produce is: 00211 // [...] 00212 // fence? 00213 // atomicrmw.start: 00214 // %loaded = @load.linked(%addr) 00215 // %new = some_op iN %loaded, %incr 00216 // %stored = @store_conditional(%new, %addr) 00217 // %try_again = icmp i32 ne %stored, 0 00218 // br i1 %try_again, label %loop, label %atomicrmw.end 00219 // atomicrmw.end: 00220 // fence? 00221 // [...] 00222 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); 00223 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 00224 00225 // This grabs the DebugLoc from AI. 00226 IRBuilder<> Builder(AI); 00227 00228 // The split call above "helpfully" added a branch at the end of BB (to the 00229 // wrong place), but we might want a fence too. It's easiest to just remove 00230 // the branch entirely. 00231 std::prev(BB->end())->eraseFromParent(); 00232 Builder.SetInsertPoint(BB); 00233 TLI->emitLeadingFence(Builder, FenceOrder, /*IsStore=*/true, /*IsLoad=*/true); 00234 Builder.CreateBr(LoopBB); 00235 00236 // Start the main loop block now that we've taken care of the preliminaries. 00237 Builder.SetInsertPoint(LoopBB); 00238 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 00239 00240 Value *NewVal = 00241 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 00242 00243 Value *StoreSuccess = 00244 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 00245 Value *TryAgain = Builder.CreateICmpNE( 00246 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 00247 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 00248 00249 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 00250 TLI->emitTrailingFence(Builder, FenceOrder, /*IsStore=*/true, /*IsLoad=*/true); 00251 00252 AI->replaceAllUsesWith(Loaded); 00253 AI->eraseFromParent(); 00254 00255 return true; 00256 } 00257 00258 bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) { 00259 auto TargetLowering = TM->getSubtargetImpl()->getTargetLowering(); 00260 AtomicOrdering FenceOrder = 00261 AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering(); 00262 AtomicOrdering MemOpOrder = 00263 TargetLowering->getInsertFencesForAtomic() ? Monotonic : FenceOrder; 00264 Value *Addr = AI->getPointerOperand(); 00265 BasicBlock *BB = AI->getParent(); 00266 Function *F = BB->getParent(); 00267 LLVMContext &Ctx = F->getContext(); 00268 00269 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 00270 // 00271 // The standard expansion we produce is: 00272 // [...] 00273 // %init_loaded = load atomic iN* %addr 00274 // br label %loop 00275 // loop: 00276 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 00277 // %new = some_op iN %loaded, %incr 00278 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 00279 // %new_loaded = extractvalue { iN, i1 } %pair, 0 00280 // %success = extractvalue { iN, i1 } %pair, 1 00281 // br i1 %success, label %atomicrmw.end, label %loop 00282 // atomicrmw.end: 00283 // [...] 00284 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); 00285 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 00286 00287 // This grabs the DebugLoc from AI. 00288 IRBuilder<> Builder(AI); 00289 00290 // The split call above "helpfully" added a branch at the end of BB (to the 00291 // wrong place), but we want a load. It's easiest to just remove 00292 // the branch entirely. 00293 std::prev(BB->end())->eraseFromParent(); 00294 Builder.SetInsertPoint(BB); 00295 TargetLowering->emitLeadingFence(Builder, FenceOrder, 00296 /*IsStore=*/true, /*IsLoad=*/true); 00297 LoadInst *InitLoaded = Builder.CreateLoad(Addr); 00298 // Atomics require at least natural alignment. 00299 InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits()); 00300 Builder.CreateBr(LoopBB); 00301 00302 // Start the main loop block now that we've taken care of the preliminaries. 00303 Builder.SetInsertPoint(LoopBB); 00304 PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded"); 00305 Loaded->addIncoming(InitLoaded, BB); 00306 00307 Value *NewVal = 00308 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 00309 00310 Value *Pair = Builder.CreateAtomicCmpXchg( 00311 Addr, Loaded, NewVal, MemOpOrder, 00312 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 00313 Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 00314 Loaded->addIncoming(NewLoaded, LoopBB); 00315 00316 Value *Success = Builder.CreateExtractValue(Pair, 1, "success"); 00317 Builder.CreateCondBr(Success, ExitBB, LoopBB); 00318 00319 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 00320 TargetLowering->emitTrailingFence(Builder, FenceOrder, 00321 /*IsStore=*/true, /*IsLoad=*/true); 00322 00323 AI->replaceAllUsesWith(NewLoaded); 00324 AI->eraseFromParent(); 00325 00326 return true; 00327 } 00328 00329 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 00330 auto TLI = TM->getSubtargetImpl()->getTargetLowering(); 00331 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 00332 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 00333 Value *Addr = CI->getPointerOperand(); 00334 BasicBlock *BB = CI->getParent(); 00335 Function *F = BB->getParent(); 00336 LLVMContext &Ctx = F->getContext(); 00337 // If getInsertFencesForAtomic() returns true, then the target does not want 00338 // to deal with memory orders, and emitLeading/TrailingFence should take care 00339 // of everything. Otherwise, emitLeading/TrailingFence are no-op and we 00340 // should preserve the ordering. 00341 AtomicOrdering MemOpOrder = 00342 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder; 00343 00344 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 00345 // 00346 // The full expansion we produce is: 00347 // [...] 00348 // fence? 00349 // cmpxchg.start: 00350 // %loaded = @load.linked(%addr) 00351 // %should_store = icmp eq %loaded, %desired 00352 // br i1 %should_store, label %cmpxchg.trystore, 00353 // label %cmpxchg.failure 00354 // cmpxchg.trystore: 00355 // %stored = @store_conditional(%new, %addr) 00356 // %success = icmp eq i32 %stored, 0 00357 // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure 00358 // cmpxchg.success: 00359 // fence? 00360 // br label %cmpxchg.end 00361 // cmpxchg.failure: 00362 // fence? 00363 // br label %cmpxchg.end 00364 // cmpxchg.end: 00365 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 00366 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 00367 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 00368 // [...] 00369 BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end"); 00370 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 00371 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB); 00372 auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); 00373 auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); 00374 00375 // This grabs the DebugLoc from CI 00376 IRBuilder<> Builder(CI); 00377 00378 // The split call above "helpfully" added a branch at the end of BB (to the 00379 // wrong place), but we might want a fence too. It's easiest to just remove 00380 // the branch entirely. 00381 std::prev(BB->end())->eraseFromParent(); 00382 Builder.SetInsertPoint(BB); 00383 TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, 00384 /*IsLoad=*/true); 00385 Builder.CreateBr(LoopBB); 00386 00387 // Start the main loop block now that we've taken care of the preliminaries. 00388 Builder.SetInsertPoint(LoopBB); 00389 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 00390 Value *ShouldStore = 00391 Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); 00392 00393 // If the the cmpxchg doesn't actually need any ordering when it fails, we can 00394 // jump straight past that fence instruction (if it exists). 00395 Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB); 00396 00397 Builder.SetInsertPoint(TryStoreBB); 00398 Value *StoreSuccess = TLI->emitStoreConditional( 00399 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 00400 StoreSuccess = Builder.CreateICmpEQ( 00401 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 00402 Builder.CreateCondBr(StoreSuccess, SuccessBB, 00403 CI->isWeak() ? FailureBB : LoopBB); 00404 00405 // Make sure later instructions don't get reordered with a fence if necessary. 00406 Builder.SetInsertPoint(SuccessBB); 00407 TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, 00408 /*IsLoad=*/true); 00409 Builder.CreateBr(ExitBB); 00410 00411 Builder.SetInsertPoint(FailureBB); 00412 TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, 00413 /*IsLoad=*/true); 00414 Builder.CreateBr(ExitBB); 00415 00416 // Finally, we have control-flow based knowledge of whether the cmpxchg 00417 // succeeded or not. We expose this to later passes by converting any 00418 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. 00419 00420 // Setup the builder so we can create any PHIs we need. 00421 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 00422 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 00423 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 00424 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 00425 00426 // Look for any users of the cmpxchg that are just comparing the loaded value 00427 // against the desired one, and replace them with the CFG-derived version. 00428 SmallVector<ExtractValueInst *, 2> PrunedInsts; 00429 for (auto User : CI->users()) { 00430 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 00431 if (!EV) 00432 continue; 00433 00434 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 00435 "weird extraction from { iN, i1 }"); 00436 00437 if (EV->getIndices()[0] == 0) 00438 EV->replaceAllUsesWith(Loaded); 00439 else 00440 EV->replaceAllUsesWith(Success); 00441 00442 PrunedInsts.push_back(EV); 00443 } 00444 00445 // We can remove the instructions now we're no longer iterating through them. 00446 for (auto EV : PrunedInsts) 00447 EV->eraseFromParent(); 00448 00449 if (!CI->use_empty()) { 00450 // Some use of the full struct return that we don't understand has happened, 00451 // so we've got to reconstruct it properly. 00452 Value *Res; 00453 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 00454 Res = Builder.CreateInsertValue(Res, Success, 1); 00455 00456 CI->replaceAllUsesWith(Res); 00457 } 00458 00459 CI->eraseFromParent(); 00460 return true; 00461 }