LLVM API Documentation

BasicTargetTransformInfo.cpp
Go to the documentation of this file.
00001 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 /// \file
00010 /// This file provides the implementation of a basic TargetTransformInfo pass
00011 /// predicated on the target abstractions present in the target independent
00012 /// code generator. It uses these (primarily TargetLowering) to model as much
00013 /// of the TTI query interface as possible. It is included by most targets so
00014 /// that they can specialize only a small subset of the query space.
00015 ///
00016 //===----------------------------------------------------------------------===//
00017 
00018 #include "llvm/CodeGen/Passes.h"
00019 #include "llvm/Analysis/LoopInfo.h"
00020 #include "llvm/Analysis/TargetTransformInfo.h"
00021 #include "llvm/Support/CommandLine.h"
00022 #include "llvm/Target/TargetLowering.h"
00023 #include "llvm/Target/TargetSubtargetInfo.h"
00024 #include <utility>
00025 using namespace llvm;
00026 
00027 static cl::opt<unsigned>
00028 PartialUnrollingThreshold("partial-unrolling-threshold", cl::init(0),
00029   cl::desc("Threshold for partial unrolling"), cl::Hidden);
00030 
00031 #define DEBUG_TYPE "basictti"
00032 
00033 namespace {
00034 
00035 class BasicTTI final : public ImmutablePass, public TargetTransformInfo {
00036   const TargetMachine *TM;
00037 
00038   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
00039   /// are set if the result needs to be inserted and/or extracted from vectors.
00040   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
00041 
00042   /// Estimate the cost overhead of SK_Alternate shuffle.
00043   unsigned getAltShuffleOverhead(Type *Ty) const;
00044 
00045   const TargetLoweringBase *getTLI() const {
00046     return TM->getSubtargetImpl()->getTargetLowering();
00047   }
00048 
00049 public:
00050   BasicTTI() : ImmutablePass(ID), TM(nullptr) {
00051     llvm_unreachable("This pass cannot be directly constructed");
00052   }
00053 
00054   BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) {
00055     initializeBasicTTIPass(*PassRegistry::getPassRegistry());
00056   }
00057 
00058   void initializePass() override {
00059     pushTTIStack(this);
00060   }
00061 
00062   void getAnalysisUsage(AnalysisUsage &AU) const override {
00063     TargetTransformInfo::getAnalysisUsage(AU);
00064   }
00065 
00066   /// Pass identification.
00067   static char ID;
00068 
00069   /// Provide necessary pointer adjustments for the two base classes.
00070   void *getAdjustedAnalysisPointer(const void *ID) override {
00071     if (ID == &TargetTransformInfo::ID)
00072       return (TargetTransformInfo*)this;
00073     return this;
00074   }
00075 
00076   bool hasBranchDivergence() const override;
00077 
00078   /// \name Scalar TTI Implementations
00079   /// @{
00080 
00081   bool isLegalAddImmediate(int64_t imm) const override;
00082   bool isLegalICmpImmediate(int64_t imm) const override;
00083   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
00084                              int64_t BaseOffset, bool HasBaseReg,
00085                              int64_t Scale) const override;
00086   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
00087                            int64_t BaseOffset, bool HasBaseReg,
00088                            int64_t Scale) const override;
00089   bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
00090   bool isTypeLegal(Type *Ty) const override;
00091   unsigned getJumpBufAlignment() const override;
00092   unsigned getJumpBufSize() const override;
00093   bool shouldBuildLookupTables() const override;
00094   bool haveFastSqrt(Type *Ty) const override;
00095   void getUnrollingPreferences(const Function *F, Loop *L,
00096                                UnrollingPreferences &UP) const override;
00097 
00098   /// @}
00099 
00100   /// \name Vector TTI Implementations
00101   /// @{
00102 
00103   unsigned getNumberOfRegisters(bool Vector) const override;
00104   unsigned getMaxInterleaveFactor() const override;
00105   unsigned getRegisterBitWidth(bool Vector) const override;
00106   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
00107                                   OperandValueKind, OperandValueProperties,
00108                                   OperandValueProperties) const override;
00109   unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
00110                           int Index, Type *SubTp) const override;
00111   unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
00112                             Type *Src) const override;
00113   unsigned getCFInstrCost(unsigned Opcode) const override;
00114   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
00115                               Type *CondTy) const override;
00116   unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
00117                               unsigned Index) const override;
00118   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
00119                            unsigned AddressSpace) const override;
00120   unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
00121                                  ArrayRef<Type*> Tys) const override;
00122   unsigned getNumberOfParts(Type *Tp) const override;
00123   unsigned getAddressComputationCost( Type *Ty, bool IsComplex) const override;
00124   unsigned getReductionCost(unsigned Opcode, Type *Ty,
00125                             bool IsPairwise) const override;
00126 
00127   /// @}
00128 };
00129 
00130 }
00131 
00132 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
00133                    "Target independent code generator's TTI", true, true, false)
00134 char BasicTTI::ID = 0;
00135 
00136 ImmutablePass *
00137 llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) {
00138   return new BasicTTI(TM);
00139 }
00140 
00141 bool BasicTTI::hasBranchDivergence() const { return false; }
00142 
00143 bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
00144   return getTLI()->isLegalAddImmediate(imm);
00145 }
00146 
00147 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
00148   return getTLI()->isLegalICmpImmediate(imm);
00149 }
00150 
00151 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
00152                                      int64_t BaseOffset, bool HasBaseReg,
00153                                      int64_t Scale) const {
00154   TargetLoweringBase::AddrMode AM;
00155   AM.BaseGV = BaseGV;
00156   AM.BaseOffs = BaseOffset;
00157   AM.HasBaseReg = HasBaseReg;
00158   AM.Scale = Scale;
00159   return getTLI()->isLegalAddressingMode(AM, Ty);
00160 }
00161 
00162 int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
00163                                    int64_t BaseOffset, bool HasBaseReg,
00164                                    int64_t Scale) const {
00165   TargetLoweringBase::AddrMode AM;
00166   AM.BaseGV = BaseGV;
00167   AM.BaseOffs = BaseOffset;
00168   AM.HasBaseReg = HasBaseReg;
00169   AM.Scale = Scale;
00170   return getTLI()->getScalingFactorCost(AM, Ty);
00171 }
00172 
00173 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
00174   return getTLI()->isTruncateFree(Ty1, Ty2);
00175 }
00176 
00177 bool BasicTTI::isTypeLegal(Type *Ty) const {
00178   EVT T = getTLI()->getValueType(Ty);
00179   return getTLI()->isTypeLegal(T);
00180 }
00181 
00182 unsigned BasicTTI::getJumpBufAlignment() const {
00183   return getTLI()->getJumpBufAlignment();
00184 }
00185 
00186 unsigned BasicTTI::getJumpBufSize() const {
00187   return getTLI()->getJumpBufSize();
00188 }
00189 
00190 bool BasicTTI::shouldBuildLookupTables() const {
00191   const TargetLoweringBase *TLI = getTLI();
00192   return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
00193          TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
00194 }
00195 
00196 bool BasicTTI::haveFastSqrt(Type *Ty) const {
00197   const TargetLoweringBase *TLI = getTLI();
00198   EVT VT = TLI->getValueType(Ty);
00199   return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
00200 }
00201 
00202 void BasicTTI::getUnrollingPreferences(const Function *F, Loop *L,
00203                                        UnrollingPreferences &UP) const {
00204   // This unrolling functionality is target independent, but to provide some
00205   // motivation for its intended use, for x86:
00206 
00207   // According to the Intel 64 and IA-32 Architectures Optimization Reference
00208   // Manual, Intel Core models and later have a loop stream detector
00209   // (and associated uop queue) that can benefit from partial unrolling.
00210   // The relevant requirements are:
00211   //  - The loop must have no more than 4 (8 for Nehalem and later) branches
00212   //    taken, and none of them may be calls.
00213   //  - The loop can have no more than 18 (28 for Nehalem and later) uops.
00214 
00215   // According to the Software Optimization Guide for AMD Family 15h Processors,
00216   // models 30h-4fh (Steamroller and later) have a loop predictor and loop
00217   // buffer which can benefit from partial unrolling.
00218   // The relevant requirements are:
00219   //  - The loop must have fewer than 16 branches
00220   //  - The loop must have less than 40 uops in all executed loop branches
00221 
00222   // The number of taken branches in a loop is hard to estimate here, and
00223   // benchmarking has revealed that it is better not to be conservative when
00224   // estimating the branch count. As a result, we'll ignore the branch limits
00225   // until someone finds a case where it matters in practice.
00226 
00227   unsigned MaxOps;
00228   const TargetSubtargetInfo *ST = &TM->getSubtarget<TargetSubtargetInfo>(F);
00229   if (PartialUnrollingThreshold.getNumOccurrences() > 0)
00230     MaxOps = PartialUnrollingThreshold;
00231   else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
00232     MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
00233   else
00234     return;
00235 
00236   // Scan the loop: don't unroll loops with calls.
00237   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
00238        I != E; ++I) {
00239     BasicBlock *BB = *I;
00240 
00241     for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
00242       if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
00243         ImmutableCallSite CS(J);
00244         if (const Function *F = CS.getCalledFunction()) {
00245           if (!TopTTI->isLoweredToCall(F))
00246             continue;
00247         }
00248 
00249         return;
00250       }
00251   }
00252 
00253   // Enable runtime and partial unrolling up to the specified size.
00254   UP.Partial = UP.Runtime = true;
00255   UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
00256 }
00257 
00258 //===----------------------------------------------------------------------===//
00259 //
00260 // Calls used by the vectorizers.
00261 //
00262 //===----------------------------------------------------------------------===//
00263 
00264 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
00265                                             bool Extract) const {
00266   assert (Ty->isVectorTy() && "Can only scalarize vectors");
00267   unsigned Cost = 0;
00268 
00269   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
00270     if (Insert)
00271       Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
00272     if (Extract)
00273       Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
00274   }
00275 
00276   return Cost;
00277 }
00278 
00279 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
00280   return 1;
00281 }
00282 
00283 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
00284   return 32;
00285 }
00286 
00287 unsigned BasicTTI::getMaxInterleaveFactor() const {
00288   return 1;
00289 }
00290 
00291 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
00292                                           OperandValueKind, OperandValueKind,
00293                                           OperandValueProperties,
00294                                           OperandValueProperties) const {
00295   // Check if any of the operands are vector operands.
00296   const TargetLoweringBase *TLI = getTLI();
00297   int ISD = TLI->InstructionOpcodeToISD(Opcode);
00298   assert(ISD && "Invalid opcode");
00299 
00300   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
00301 
00302   bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
00303   // Assume that floating point arithmetic operations cost twice as much as
00304   // integer operations.
00305   unsigned OpCost = (IsFloat ? 2 : 1);
00306 
00307   if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
00308     // The operation is legal. Assume it costs 1.
00309     // If the type is split to multiple registers, assume that there is some
00310     // overhead to this.
00311     // TODO: Once we have extract/insert subvector cost we need to use them.
00312     if (LT.first > 1)
00313       return LT.first * 2 * OpCost;
00314     return LT.first * 1 * OpCost;
00315   }
00316 
00317   if (!TLI->isOperationExpand(ISD, LT.second)) {
00318     // If the operation is custom lowered then assume
00319     // thare the code is twice as expensive.
00320     return LT.first * 2 * OpCost;
00321   }
00322 
00323   // Else, assume that we need to scalarize this op.
00324   if (Ty->isVectorTy()) {
00325     unsigned Num = Ty->getVectorNumElements();
00326     unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
00327     // return the cost of multiple scalar invocation plus the cost of inserting
00328     // and extracting the values.
00329     return getScalarizationOverhead(Ty, true, true) + Num * Cost;
00330   }
00331 
00332   // We don't know anything about this scalar instruction.
00333   return OpCost;
00334 }
00335 
00336 unsigned BasicTTI::getAltShuffleOverhead(Type *Ty) const {
00337   assert(Ty->isVectorTy() && "Can only shuffle vectors");
00338   unsigned Cost = 0;
00339   // Shuffle cost is equal to the cost of extracting element from its argument
00340   // plus the cost of inserting them onto the result vector.
00341 
00342   // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from index
00343   // 0 of first vector, index 1 of second vector,index 2 of first vector and
00344   // finally index 3 of second vector and insert them at index <0,1,2,3> of
00345   // result vector.
00346   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
00347     Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
00348     Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
00349   }
00350   return Cost;
00351 }
00352 
00353 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
00354                                   Type *SubTp) const {
00355   if (Kind == SK_Alternate) {
00356     return getAltShuffleOverhead(Tp);
00357   }
00358   return 1;
00359 }
00360 
00361 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
00362                                     Type *Src) const {
00363   const TargetLoweringBase *TLI = getTLI();
00364   int ISD = TLI->InstructionOpcodeToISD(Opcode);
00365   assert(ISD && "Invalid opcode");
00366 
00367   std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
00368   std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
00369 
00370   // Check for NOOP conversions.
00371   if (SrcLT.first == DstLT.first &&
00372       SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
00373 
00374       // Bitcast between types that are legalized to the same type are free.
00375       if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
00376         return 0;
00377   }
00378 
00379   if (Opcode == Instruction::Trunc &&
00380       TLI->isTruncateFree(SrcLT.second, DstLT.second))
00381     return 0;
00382 
00383   if (Opcode == Instruction::ZExt &&
00384       TLI->isZExtFree(SrcLT.second, DstLT.second))
00385     return 0;
00386 
00387   // If the cast is marked as legal (or promote) then assume low cost.
00388   if (SrcLT.first == DstLT.first &&
00389       TLI->isOperationLegalOrPromote(ISD, DstLT.second))
00390     return 1;
00391 
00392   // Handle scalar conversions.
00393   if (!Src->isVectorTy() && !Dst->isVectorTy()) {
00394 
00395     // Scalar bitcasts are usually free.
00396     if (Opcode == Instruction::BitCast)
00397       return 0;
00398 
00399     // Just check the op cost. If the operation is legal then assume it costs 1.
00400     if (!TLI->isOperationExpand(ISD, DstLT.second))
00401       return  1;
00402 
00403     // Assume that illegal scalar instruction are expensive.
00404     return 4;
00405   }
00406 
00407   // Check vector-to-vector casts.
00408   if (Dst->isVectorTy() && Src->isVectorTy()) {
00409 
00410     // If the cast is between same-sized registers, then the check is simple.
00411     if (SrcLT.first == DstLT.first &&
00412         SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
00413 
00414       // Assume that Zext is done using AND.
00415       if (Opcode == Instruction::ZExt)
00416         return 1;
00417 
00418       // Assume that sext is done using SHL and SRA.
00419       if (Opcode == Instruction::SExt)
00420         return 2;
00421 
00422       // Just check the op cost. If the operation is legal then assume it costs
00423       // 1 and multiply by the type-legalization overhead.
00424       if (!TLI->isOperationExpand(ISD, DstLT.second))
00425         return SrcLT.first * 1;
00426     }
00427 
00428     // If we are converting vectors and the operation is illegal, or
00429     // if the vectors are legalized to different types, estimate the
00430     // scalarization costs.
00431     unsigned Num = Dst->getVectorNumElements();
00432     unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
00433                                              Src->getScalarType());
00434 
00435     // Return the cost of multiple scalar invocation plus the cost of
00436     // inserting and extracting the values.
00437     return getScalarizationOverhead(Dst, true, true) + Num * Cost;
00438   }
00439 
00440   // We already handled vector-to-vector and scalar-to-scalar conversions. This
00441   // is where we handle bitcast between vectors and scalars. We need to assume
00442   //  that the conversion is scalarized in one way or another.
00443   if (Opcode == Instruction::BitCast)
00444     // Illegal bitcasts are done by storing and loading from a stack slot.
00445     return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
00446            (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
00447 
00448   llvm_unreachable("Unhandled cast");
00449  }
00450 
00451 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
00452   // Branches are assumed to be predicted.
00453   return 0;
00454 }
00455 
00456 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
00457                                       Type *CondTy) const {
00458   const TargetLoweringBase *TLI = getTLI();
00459   int ISD = TLI->InstructionOpcodeToISD(Opcode);
00460   assert(ISD && "Invalid opcode");
00461 
00462   // Selects on vectors are actually vector selects.
00463   if (ISD == ISD::SELECT) {
00464     assert(CondTy && "CondTy must exist");
00465     if (CondTy->isVectorTy())
00466       ISD = ISD::VSELECT;
00467   }
00468 
00469   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
00470 
00471   if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
00472       !TLI->isOperationExpand(ISD, LT.second)) {
00473     // The operation is legal. Assume it costs 1. Multiply
00474     // by the type-legalization overhead.
00475     return LT.first * 1;
00476   }
00477 
00478   // Otherwise, assume that the cast is scalarized.
00479   if (ValTy->isVectorTy()) {
00480     unsigned Num = ValTy->getVectorNumElements();
00481     if (CondTy)
00482       CondTy = CondTy->getScalarType();
00483     unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
00484                                                CondTy);
00485 
00486     // Return the cost of multiple scalar invocation plus the cost of inserting
00487     // and extracting the values.
00488     return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
00489   }
00490 
00491   // Unknown scalar opcode.
00492   return 1;
00493 }
00494 
00495 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
00496                                       unsigned Index) const {
00497   std::pair<unsigned, MVT> LT =  getTLI()->getTypeLegalizationCost(Val->getScalarType());
00498 
00499   return LT.first;
00500 }
00501 
00502 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
00503                                    unsigned Alignment,
00504                                    unsigned AddressSpace) const {
00505   assert(!Src->isVoidTy() && "Invalid type");
00506   std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
00507 
00508   // Assuming that all loads of legal types cost 1.
00509   unsigned Cost = LT.first;
00510 
00511   if (Src->isVectorTy() &&
00512       Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
00513     // This is a vector load that legalizes to a larger type than the vector
00514     // itself. Unless the corresponding extending load or truncating store is
00515     // legal, then this will scalarize.
00516     TargetLowering::LegalizeAction LA = TargetLowering::Expand;
00517     EVT MemVT = getTLI()->getValueType(Src, true);
00518     if (MemVT.isSimple() && MemVT != MVT::Other) {
00519       if (Opcode == Instruction::Store)
00520         LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
00521       else
00522         LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, MemVT.getSimpleVT());
00523     }
00524 
00525     if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
00526       // This is a vector load/store for some illegal type that is scalarized.
00527       // We must account for the cost of building or decomposing the vector.
00528       Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
00529                                             Opcode == Instruction::Store);
00530     }
00531   }
00532 
00533   return Cost;
00534 }
00535 
00536 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
00537                                          ArrayRef<Type *> Tys) const {
00538   unsigned ISD = 0;
00539   switch (IID) {
00540   default: {
00541     // Assume that we need to scalarize this intrinsic.
00542     unsigned ScalarizationCost = 0;
00543     unsigned ScalarCalls = 1;
00544     if (RetTy->isVectorTy()) {
00545       ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
00546       ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
00547     }
00548     for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
00549       if (Tys[i]->isVectorTy()) {
00550         ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
00551         ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
00552       }
00553     }
00554 
00555     return ScalarCalls + ScalarizationCost;
00556   }
00557   // Look for intrinsics that can be lowered directly or turned into a scalar
00558   // intrinsic call.
00559   case Intrinsic::sqrt:    ISD = ISD::FSQRT;  break;
00560   case Intrinsic::sin:     ISD = ISD::FSIN;   break;
00561   case Intrinsic::cos:     ISD = ISD::FCOS;   break;
00562   case Intrinsic::exp:     ISD = ISD::FEXP;   break;
00563   case Intrinsic::exp2:    ISD = ISD::FEXP2;  break;
00564   case Intrinsic::log:     ISD = ISD::FLOG;   break;
00565   case Intrinsic::log10:   ISD = ISD::FLOG10; break;
00566   case Intrinsic::log2:    ISD = ISD::FLOG2;  break;
00567   case Intrinsic::fabs:    ISD = ISD::FABS;   break;
00568   case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
00569   case Intrinsic::floor:   ISD = ISD::FFLOOR; break;
00570   case Intrinsic::ceil:    ISD = ISD::FCEIL;  break;
00571   case Intrinsic::trunc:   ISD = ISD::FTRUNC; break;
00572   case Intrinsic::nearbyint:
00573                            ISD = ISD::FNEARBYINT; break;
00574   case Intrinsic::rint:    ISD = ISD::FRINT;  break;
00575   case Intrinsic::round:   ISD = ISD::FROUND; break;
00576   case Intrinsic::pow:     ISD = ISD::FPOW;   break;
00577   case Intrinsic::fma:     ISD = ISD::FMA;    break;
00578   case Intrinsic::fmuladd: ISD = ISD::FMA;    break;
00579   // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
00580   case Intrinsic::lifetime_start:
00581   case Intrinsic::lifetime_end:
00582     return 0;
00583   }
00584 
00585   const TargetLoweringBase *TLI = getTLI();
00586   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
00587 
00588   if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
00589     // The operation is legal. Assume it costs 1.
00590     // If the type is split to multiple registers, assume that thre is some
00591     // overhead to this.
00592     // TODO: Once we have extract/insert subvector cost we need to use them.
00593     if (LT.first > 1)
00594       return LT.first * 2;
00595     return LT.first * 1;
00596   }
00597 
00598   if (!TLI->isOperationExpand(ISD, LT.second)) {
00599     // If the operation is custom lowered then assume
00600     // thare the code is twice as expensive.
00601     return LT.first * 2;
00602   }
00603 
00604   // If we can't lower fmuladd into an FMA estimate the cost as a floating
00605   // point mul followed by an add.
00606   if (IID == Intrinsic::fmuladd)
00607     return TopTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
00608            TopTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
00609 
00610   // Else, assume that we need to scalarize this intrinsic. For math builtins
00611   // this will emit a costly libcall, adding call overhead and spills. Make it
00612   // very expensive.
00613   if (RetTy->isVectorTy()) {
00614     unsigned Num = RetTy->getVectorNumElements();
00615     unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
00616                                                   Tys);
00617     return 10 * Cost * Num;
00618   }
00619 
00620   // This is going to be turned into a library call, make it expensive.
00621   return 10;
00622 }
00623 
00624 unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
00625   std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
00626   return LT.first;
00627 }
00628 
00629 unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
00630   return 0;
00631 }
00632 
00633 unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
00634                                     bool IsPairwise) const {
00635   assert(Ty->isVectorTy() && "Expect a vector type");
00636   unsigned NumVecElts = Ty->getVectorNumElements();
00637   unsigned NumReduxLevels = Log2_32(NumVecElts);
00638   unsigned ArithCost = NumReduxLevels *
00639     TopTTI->getArithmeticInstrCost(Opcode, Ty);
00640   // Assume the pairwise shuffles add a cost.
00641   unsigned ShuffleCost =
00642       NumReduxLevels * (IsPairwise + 1) *
00643       TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
00644   return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
00645 }