LLVM API Documentation
00001 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines several CodeGen-specific LLVM IR analysis utilities. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/CodeGen/Analysis.h" 00015 #include "llvm/Analysis/ValueTracking.h" 00016 #include "llvm/CodeGen/MachineFunction.h" 00017 #include "llvm/CodeGen/SelectionDAG.h" 00018 #include "llvm/IR/DataLayout.h" 00019 #include "llvm/IR/DerivedTypes.h" 00020 #include "llvm/IR/Function.h" 00021 #include "llvm/IR/Instructions.h" 00022 #include "llvm/IR/IntrinsicInst.h" 00023 #include "llvm/IR/LLVMContext.h" 00024 #include "llvm/IR/Module.h" 00025 #include "llvm/Support/ErrorHandling.h" 00026 #include "llvm/Support/MathExtras.h" 00027 #include "llvm/Target/TargetLowering.h" 00028 #include "llvm/Target/TargetSubtargetInfo.h" 00029 #include "llvm/Transforms/Utils/GlobalStatus.h" 00030 00031 using namespace llvm; 00032 00033 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence 00034 /// of insertvalue or extractvalue indices that identify a member, return 00035 /// the linearized index of the start of the member. 00036 /// 00037 unsigned llvm::ComputeLinearIndex(Type *Ty, 00038 const unsigned *Indices, 00039 const unsigned *IndicesEnd, 00040 unsigned CurIndex) { 00041 // Base case: We're done. 00042 if (Indices && Indices == IndicesEnd) 00043 return CurIndex; 00044 00045 // Given a struct type, recursively traverse the elements. 00046 if (StructType *STy = dyn_cast<StructType>(Ty)) { 00047 for (StructType::element_iterator EB = STy->element_begin(), 00048 EI = EB, 00049 EE = STy->element_end(); 00050 EI != EE; ++EI) { 00051 if (Indices && *Indices == unsigned(EI - EB)) 00052 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 00053 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 00054 } 00055 return CurIndex; 00056 } 00057 // Given an array type, recursively traverse the elements. 00058 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 00059 Type *EltTy = ATy->getElementType(); 00060 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 00061 if (Indices && *Indices == i) 00062 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 00063 CurIndex = ComputeLinearIndex(EltTy, nullptr, nullptr, CurIndex); 00064 } 00065 return CurIndex; 00066 } 00067 // We haven't found the type we're looking for, so keep searching. 00068 return CurIndex + 1; 00069 } 00070 00071 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 00072 /// EVTs that represent all the individual underlying 00073 /// non-aggregate types that comprise it. 00074 /// 00075 /// If Offsets is non-null, it points to a vector to be filled in 00076 /// with the in-memory offsets of each of the individual values. 00077 /// 00078 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, 00079 SmallVectorImpl<EVT> &ValueVTs, 00080 SmallVectorImpl<uint64_t> *Offsets, 00081 uint64_t StartingOffset) { 00082 // Given a struct type, recursively traverse the elements. 00083 if (StructType *STy = dyn_cast<StructType>(Ty)) { 00084 const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy); 00085 for (StructType::element_iterator EB = STy->element_begin(), 00086 EI = EB, 00087 EE = STy->element_end(); 00088 EI != EE; ++EI) 00089 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, 00090 StartingOffset + SL->getElementOffset(EI - EB)); 00091 return; 00092 } 00093 // Given an array type, recursively traverse the elements. 00094 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 00095 Type *EltTy = ATy->getElementType(); 00096 uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy); 00097 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 00098 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, 00099 StartingOffset + i * EltSize); 00100 return; 00101 } 00102 // Interpret void as zero return values. 00103 if (Ty->isVoidTy()) 00104 return; 00105 // Base case: we can get an EVT for this LLVM IR type. 00106 ValueVTs.push_back(TLI.getValueType(Ty)); 00107 if (Offsets) 00108 Offsets->push_back(StartingOffset); 00109 } 00110 00111 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 00112 GlobalVariable *llvm::ExtractTypeInfo(Value *V) { 00113 V = V->stripPointerCasts(); 00114 GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 00115 00116 if (GV && GV->getName() == "llvm.eh.catch.all.value") { 00117 assert(GV->hasInitializer() && 00118 "The EH catch-all value must have an initializer"); 00119 Value *Init = GV->getInitializer(); 00120 GV = dyn_cast<GlobalVariable>(Init); 00121 if (!GV) V = cast<ConstantPointerNull>(Init); 00122 } 00123 00124 assert((GV || isa<ConstantPointerNull>(V)) && 00125 "TypeInfo must be a global variable or NULL"); 00126 return GV; 00127 } 00128 00129 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 00130 /// processed uses a memory 'm' constraint. 00131 bool 00132 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 00133 const TargetLowering &TLI) { 00134 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 00135 InlineAsm::ConstraintInfo &CI = CInfos[i]; 00136 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 00137 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 00138 if (CType == TargetLowering::C_Memory) 00139 return true; 00140 } 00141 00142 // Indirect operand accesses access memory. 00143 if (CI.isIndirect) 00144 return true; 00145 } 00146 00147 return false; 00148 } 00149 00150 /// getFCmpCondCode - Return the ISD condition code corresponding to 00151 /// the given LLVM IR floating-point condition code. This includes 00152 /// consideration of global floating-point math flags. 00153 /// 00154 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 00155 switch (Pred) { 00156 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 00157 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 00158 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 00159 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 00160 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 00161 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 00162 case FCmpInst::FCMP_ONE: return ISD::SETONE; 00163 case FCmpInst::FCMP_ORD: return ISD::SETO; 00164 case FCmpInst::FCMP_UNO: return ISD::SETUO; 00165 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 00166 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 00167 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 00168 case FCmpInst::FCMP_ULT: return ISD::SETULT; 00169 case FCmpInst::FCMP_ULE: return ISD::SETULE; 00170 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 00171 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 00172 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 00173 } 00174 } 00175 00176 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 00177 switch (CC) { 00178 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 00179 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 00180 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 00181 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 00182 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 00183 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 00184 default: return CC; 00185 } 00186 } 00187 00188 /// getICmpCondCode - Return the ISD condition code corresponding to 00189 /// the given LLVM IR integer condition code. 00190 /// 00191 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 00192 switch (Pred) { 00193 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 00194 case ICmpInst::ICMP_NE: return ISD::SETNE; 00195 case ICmpInst::ICMP_SLE: return ISD::SETLE; 00196 case ICmpInst::ICMP_ULE: return ISD::SETULE; 00197 case ICmpInst::ICMP_SGE: return ISD::SETGE; 00198 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 00199 case ICmpInst::ICMP_SLT: return ISD::SETLT; 00200 case ICmpInst::ICMP_ULT: return ISD::SETULT; 00201 case ICmpInst::ICMP_SGT: return ISD::SETGT; 00202 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 00203 default: 00204 llvm_unreachable("Invalid ICmp predicate opcode!"); 00205 } 00206 } 00207 00208 static bool isNoopBitcast(Type *T1, Type *T2, 00209 const TargetLoweringBase& TLI) { 00210 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 00211 (isa<VectorType>(T1) && isa<VectorType>(T2) && 00212 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 00213 } 00214 00215 /// Look through operations that will be free to find the earliest source of 00216 /// this value. 00217 /// 00218 /// @param ValLoc If V has aggegate type, we will be interested in a particular 00219 /// scalar component. This records its address; the reverse of this list gives a 00220 /// sequence of indices appropriate for an extractvalue to locate the important 00221 /// value. This value is updated during the function and on exit will indicate 00222 /// similar information for the Value returned. 00223 /// 00224 /// @param DataBits If this function looks through truncate instructions, this 00225 /// will record the smallest size attained. 00226 static const Value *getNoopInput(const Value *V, 00227 SmallVectorImpl<unsigned> &ValLoc, 00228 unsigned &DataBits, 00229 const TargetLoweringBase &TLI) { 00230 while (true) { 00231 // Try to look through V1; if V1 is not an instruction, it can't be looked 00232 // through. 00233 const Instruction *I = dyn_cast<Instruction>(V); 00234 if (!I || I->getNumOperands() == 0) return V; 00235 const Value *NoopInput = nullptr; 00236 00237 Value *Op = I->getOperand(0); 00238 if (isa<BitCastInst>(I)) { 00239 // Look through truly no-op bitcasts. 00240 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 00241 NoopInput = Op; 00242 } else if (isa<GetElementPtrInst>(I)) { 00243 // Look through getelementptr 00244 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 00245 NoopInput = Op; 00246 } else if (isa<IntToPtrInst>(I)) { 00247 // Look through inttoptr. 00248 // Make sure this isn't a truncating or extending cast. We could 00249 // support this eventually, but don't bother for now. 00250 if (!isa<VectorType>(I->getType()) && 00251 TLI.getPointerTy().getSizeInBits() == 00252 cast<IntegerType>(Op->getType())->getBitWidth()) 00253 NoopInput = Op; 00254 } else if (isa<PtrToIntInst>(I)) { 00255 // Look through ptrtoint. 00256 // Make sure this isn't a truncating or extending cast. We could 00257 // support this eventually, but don't bother for now. 00258 if (!isa<VectorType>(I->getType()) && 00259 TLI.getPointerTy().getSizeInBits() == 00260 cast<IntegerType>(I->getType())->getBitWidth()) 00261 NoopInput = Op; 00262 } else if (isa<TruncInst>(I) && 00263 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 00264 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 00265 NoopInput = Op; 00266 } else if (isa<CallInst>(I)) { 00267 // Look through call (skipping callee) 00268 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1; 00269 i != e; ++i) { 00270 unsigned attrInd = i - I->op_begin() + 1; 00271 if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 00272 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 00273 NoopInput = *i; 00274 break; 00275 } 00276 } 00277 } else if (isa<InvokeInst>(I)) { 00278 // Look through invoke (skipping BB, BB, Callee) 00279 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3; 00280 i != e; ++i) { 00281 unsigned attrInd = i - I->op_begin() + 1; 00282 if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 00283 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 00284 NoopInput = *i; 00285 break; 00286 } 00287 } 00288 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 00289 // Value may come from either the aggregate or the scalar 00290 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 00291 if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(), 00292 ValLoc.rbegin())) { 00293 // The type being inserted is a nested sub-type of the aggregate; we 00294 // have to remove those initial indices to get the location we're 00295 // interested in for the operand. 00296 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 00297 NoopInput = IVI->getInsertedValueOperand(); 00298 } else { 00299 // The struct we're inserting into has the value we're interested in, no 00300 // change of address. 00301 NoopInput = Op; 00302 } 00303 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 00304 // The part we're interested in will inevitably be some sub-section of the 00305 // previous aggregate. Combine the two paths to obtain the true address of 00306 // our element. 00307 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 00308 std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(), 00309 std::back_inserter(ValLoc)); 00310 NoopInput = Op; 00311 } 00312 // Terminate if we couldn't find anything to look through. 00313 if (!NoopInput) 00314 return V; 00315 00316 V = NoopInput; 00317 } 00318 } 00319 00320 /// Return true if this scalar return value only has bits discarded on its path 00321 /// from the "tail call" to the "ret". This includes the obvious noop 00322 /// instructions handled by getNoopInput above as well as free truncations (or 00323 /// extensions prior to the call). 00324 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 00325 SmallVectorImpl<unsigned> &RetIndices, 00326 SmallVectorImpl<unsigned> &CallIndices, 00327 bool AllowDifferingSizes, 00328 const TargetLoweringBase &TLI) { 00329 00330 // Trace the sub-value needed by the return value as far back up the graph as 00331 // possible, in the hope that it will intersect with the value produced by the 00332 // call. In the simple case with no "returned" attribute, the hope is actually 00333 // that we end up back at the tail call instruction itself. 00334 unsigned BitsRequired = UINT_MAX; 00335 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI); 00336 00337 // If this slot in the value returned is undef, it doesn't matter what the 00338 // call puts there, it'll be fine. 00339 if (isa<UndefValue>(RetVal)) 00340 return true; 00341 00342 // Now do a similar search up through the graph to find where the value 00343 // actually returned by the "tail call" comes from. In the simple case without 00344 // a "returned" attribute, the search will be blocked immediately and the loop 00345 // a Noop. 00346 unsigned BitsProvided = UINT_MAX; 00347 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI); 00348 00349 // There's no hope if we can't actually trace them to (the same part of!) the 00350 // same value. 00351 if (CallVal != RetVal || CallIndices != RetIndices) 00352 return false; 00353 00354 // However, intervening truncates may have made the call non-tail. Make sure 00355 // all the bits that are needed by the "ret" have been provided by the "tail 00356 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 00357 // extensions too. 00358 if (BitsProvided < BitsRequired || 00359 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 00360 return false; 00361 00362 return true; 00363 } 00364 00365 /// For an aggregate type, determine whether a given index is within bounds or 00366 /// not. 00367 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 00368 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 00369 return Idx < AT->getNumElements(); 00370 00371 return Idx < cast<StructType>(T)->getNumElements(); 00372 } 00373 00374 /// Move the given iterators to the next leaf type in depth first traversal. 00375 /// 00376 /// Performs a depth-first traversal of the type as specified by its arguments, 00377 /// stopping at the next leaf node (which may be a legitimate scalar type or an 00378 /// empty struct or array). 00379 /// 00380 /// @param SubTypes List of the partial components making up the type from 00381 /// outermost to innermost non-empty aggregate. The element currently 00382 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 00383 /// 00384 /// @param Path Set of extractvalue indices leading from the outermost type 00385 /// (SubTypes[0]) to the leaf node currently represented. 00386 /// 00387 /// @returns true if a new type was found, false otherwise. Calling this 00388 /// function again on a finished iterator will repeatedly return 00389 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 00390 /// aggregate or a non-aggregate 00391 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 00392 SmallVectorImpl<unsigned> &Path) { 00393 // First march back up the tree until we can successfully increment one of the 00394 // coordinates in Path. 00395 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 00396 Path.pop_back(); 00397 SubTypes.pop_back(); 00398 } 00399 00400 // If we reached the top, then the iterator is done. 00401 if (Path.empty()) 00402 return false; 00403 00404 // We know there's *some* valid leaf now, so march back down the tree picking 00405 // out the left-most element at each node. 00406 ++Path.back(); 00407 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 00408 while (DeeperType->isAggregateType()) { 00409 CompositeType *CT = cast<CompositeType>(DeeperType); 00410 if (!indexReallyValid(CT, 0)) 00411 return true; 00412 00413 SubTypes.push_back(CT); 00414 Path.push_back(0); 00415 00416 DeeperType = CT->getTypeAtIndex(0U); 00417 } 00418 00419 return true; 00420 } 00421 00422 /// Find the first non-empty, scalar-like type in Next and setup the iterator 00423 /// components. 00424 /// 00425 /// Assuming Next is an aggregate of some kind, this function will traverse the 00426 /// tree from left to right (i.e. depth-first) looking for the first 00427 /// non-aggregate type which will play a role in function return. 00428 /// 00429 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 00430 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 00431 /// i32 in that type. 00432 static bool firstRealType(Type *Next, 00433 SmallVectorImpl<CompositeType *> &SubTypes, 00434 SmallVectorImpl<unsigned> &Path) { 00435 // First initialise the iterator components to the first "leaf" node 00436 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 00437 // despite nominally being an aggregate). 00438 while (Next->isAggregateType() && 00439 indexReallyValid(cast<CompositeType>(Next), 0)) { 00440 SubTypes.push_back(cast<CompositeType>(Next)); 00441 Path.push_back(0); 00442 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 00443 } 00444 00445 // If there's no Path now, Next was originally scalar already (or empty 00446 // leaf). We're done. 00447 if (Path.empty()) 00448 return true; 00449 00450 // Otherwise, use normal iteration to keep looking through the tree until we 00451 // find a non-aggregate type. 00452 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 00453 if (!advanceToNextLeafType(SubTypes, Path)) 00454 return false; 00455 } 00456 00457 return true; 00458 } 00459 00460 /// Set the iterator data-structures to the next non-empty, non-aggregate 00461 /// subtype. 00462 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 00463 SmallVectorImpl<unsigned> &Path) { 00464 do { 00465 if (!advanceToNextLeafType(SubTypes, Path)) 00466 return false; 00467 00468 assert(!Path.empty() && "found a leaf but didn't set the path?"); 00469 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 00470 00471 return true; 00472 } 00473 00474 00475 /// Test if the given instruction is in a position to be optimized 00476 /// with a tail-call. This roughly means that it's in a block with 00477 /// a return and there's nothing that needs to be scheduled 00478 /// between it and the return. 00479 /// 00480 /// This function only tests target-independent requirements. 00481 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 00482 const Instruction *I = CS.getInstruction(); 00483 const BasicBlock *ExitBB = I->getParent(); 00484 const TerminatorInst *Term = ExitBB->getTerminator(); 00485 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 00486 00487 // The block must end in a return statement or unreachable. 00488 // 00489 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 00490 // an unreachable, for now. The way tailcall optimization is currently 00491 // implemented means it will add an epilogue followed by a jump. That is 00492 // not profitable. Also, if the callee is a special function (e.g. 00493 // longjmp on x86), it can end up causing miscompilation that has not 00494 // been fully understood. 00495 if (!Ret && 00496 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 00497 return false; 00498 00499 // If I will have a chain, make sure no other instruction that will have a 00500 // chain interposes between I and the return. 00501 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 00502 !isSafeToSpeculativelyExecute(I)) 00503 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 00504 if (&*BBI == I) 00505 break; 00506 // Debug info intrinsics do not get in the way of tail call optimization. 00507 if (isa<DbgInfoIntrinsic>(BBI)) 00508 continue; 00509 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 00510 !isSafeToSpeculativelyExecute(BBI)) 00511 return false; 00512 } 00513 00514 return returnTypeIsEligibleForTailCall( 00515 ExitBB->getParent(), I, Ret, *TM.getSubtargetImpl()->getTargetLowering()); 00516 } 00517 00518 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 00519 const Instruction *I, 00520 const ReturnInst *Ret, 00521 const TargetLoweringBase &TLI) { 00522 // If the block ends with a void return or unreachable, it doesn't matter 00523 // what the call's return type is. 00524 if (!Ret || Ret->getNumOperands() == 0) return true; 00525 00526 // If the return value is undef, it doesn't matter what the call's 00527 // return type is. 00528 if (isa<UndefValue>(Ret->getOperand(0))) return true; 00529 00530 // Make sure the attributes attached to each return are compatible. 00531 AttrBuilder CallerAttrs(F->getAttributes(), 00532 AttributeSet::ReturnIndex); 00533 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 00534 AttributeSet::ReturnIndex); 00535 00536 // Noalias is completely benign as far as calling convention goes, it 00537 // shouldn't affect whether the call is a tail call. 00538 CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias); 00539 CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias); 00540 00541 bool AllowDifferingSizes = true; 00542 if (CallerAttrs.contains(Attribute::ZExt)) { 00543 if (!CalleeAttrs.contains(Attribute::ZExt)) 00544 return false; 00545 00546 AllowDifferingSizes = false; 00547 CallerAttrs.removeAttribute(Attribute::ZExt); 00548 CalleeAttrs.removeAttribute(Attribute::ZExt); 00549 } else if (CallerAttrs.contains(Attribute::SExt)) { 00550 if (!CalleeAttrs.contains(Attribute::SExt)) 00551 return false; 00552 00553 AllowDifferingSizes = false; 00554 CallerAttrs.removeAttribute(Attribute::SExt); 00555 CalleeAttrs.removeAttribute(Attribute::SExt); 00556 } 00557 00558 // If they're still different, there's some facet we don't understand 00559 // (currently only "inreg", but in future who knows). It may be OK but the 00560 // only safe option is to reject the tail call. 00561 if (CallerAttrs != CalleeAttrs) 00562 return false; 00563 00564 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 00565 SmallVector<unsigned, 4> RetPath, CallPath; 00566 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 00567 00568 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 00569 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 00570 00571 // Nothing's actually returned, it doesn't matter what the callee put there 00572 // it's a valid tail call. 00573 if (RetEmpty) 00574 return true; 00575 00576 // Iterate pairwise through each of the value types making up the tail call 00577 // and the corresponding return. For each one we want to know whether it's 00578 // essentially going directly from the tail call to the ret, via operations 00579 // that end up not generating any code. 00580 // 00581 // We allow a certain amount of covariance here. For example it's permitted 00582 // for the tail call to define more bits than the ret actually cares about 00583 // (e.g. via a truncate). 00584 do { 00585 if (CallEmpty) { 00586 // We've exhausted the values produced by the tail call instruction, the 00587 // rest are essentially undef. The type doesn't really matter, but we need 00588 // *something*. 00589 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 00590 CallVal = UndefValue::get(SlotType); 00591 } 00592 00593 // The manipulations performed when we're looking through an insertvalue or 00594 // an extractvalue would happen at the front of the RetPath list, so since 00595 // we have to copy it anyway it's more efficient to create a reversed copy. 00596 using std::copy; 00597 SmallVector<unsigned, 4> TmpRetPath, TmpCallPath; 00598 copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath)); 00599 copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath)); 00600 00601 // Finally, we can check whether the value produced by the tail call at this 00602 // index is compatible with the value we return. 00603 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 00604 AllowDifferingSizes, TLI)) 00605 return false; 00606 00607 CallEmpty = !nextRealType(CallSubTypes, CallPath); 00608 } while(nextRealType(RetSubTypes, RetPath)); 00609 00610 return true; 00611 } 00612 00613 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) { 00614 if (!GV->hasLinkOnceODRLinkage()) 00615 return false; 00616 00617 if (GV->hasUnnamedAddr()) 00618 return true; 00619 00620 // If it is a non constant variable, it needs to be uniqued across shared 00621 // objects. 00622 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { 00623 if (!Var->isConstant()) 00624 return false; 00625 } 00626 00627 // An alias can point to a variable. We could try to resolve the alias to 00628 // decide, but for now just don't hide them. 00629 if (isa<GlobalAlias>(GV)) 00630 return false; 00631 00632 GlobalStatus GS; 00633 if (GlobalStatus::analyzeGlobal(GV, GS)) 00634 return false; 00635 00636 return !GS.IsCompared; 00637 }