LLVM API Documentation

CodeGen/Analysis.cpp
Go to the documentation of this file.
00001 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines several CodeGen-specific LLVM IR analysis utilities.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "llvm/CodeGen/Analysis.h"
00015 #include "llvm/Analysis/ValueTracking.h"
00016 #include "llvm/CodeGen/MachineFunction.h"
00017 #include "llvm/CodeGen/SelectionDAG.h"
00018 #include "llvm/IR/DataLayout.h"
00019 #include "llvm/IR/DerivedTypes.h"
00020 #include "llvm/IR/Function.h"
00021 #include "llvm/IR/Instructions.h"
00022 #include "llvm/IR/IntrinsicInst.h"
00023 #include "llvm/IR/LLVMContext.h"
00024 #include "llvm/IR/Module.h"
00025 #include "llvm/Support/ErrorHandling.h"
00026 #include "llvm/Support/MathExtras.h"
00027 #include "llvm/Target/TargetLowering.h"
00028 #include "llvm/Target/TargetSubtargetInfo.h"
00029 #include "llvm/Transforms/Utils/GlobalStatus.h"
00030 
00031 using namespace llvm;
00032 
00033 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
00034 /// of insertvalue or extractvalue indices that identify a member, return
00035 /// the linearized index of the start of the member.
00036 ///
00037 unsigned llvm::ComputeLinearIndex(Type *Ty,
00038                                   const unsigned *Indices,
00039                                   const unsigned *IndicesEnd,
00040                                   unsigned CurIndex) {
00041   // Base case: We're done.
00042   if (Indices && Indices == IndicesEnd)
00043     return CurIndex;
00044 
00045   // Given a struct type, recursively traverse the elements.
00046   if (StructType *STy = dyn_cast<StructType>(Ty)) {
00047     for (StructType::element_iterator EB = STy->element_begin(),
00048                                       EI = EB,
00049                                       EE = STy->element_end();
00050         EI != EE; ++EI) {
00051       if (Indices && *Indices == unsigned(EI - EB))
00052         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
00053       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
00054     }
00055     return CurIndex;
00056   }
00057   // Given an array type, recursively traverse the elements.
00058   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
00059     Type *EltTy = ATy->getElementType();
00060     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
00061       if (Indices && *Indices == i)
00062         return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
00063       CurIndex = ComputeLinearIndex(EltTy, nullptr, nullptr, CurIndex);
00064     }
00065     return CurIndex;
00066   }
00067   // We haven't found the type we're looking for, so keep searching.
00068   return CurIndex + 1;
00069 }
00070 
00071 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
00072 /// EVTs that represent all the individual underlying
00073 /// non-aggregate types that comprise it.
00074 ///
00075 /// If Offsets is non-null, it points to a vector to be filled in
00076 /// with the in-memory offsets of each of the individual values.
00077 ///
00078 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
00079                            SmallVectorImpl<EVT> &ValueVTs,
00080                            SmallVectorImpl<uint64_t> *Offsets,
00081                            uint64_t StartingOffset) {
00082   // Given a struct type, recursively traverse the elements.
00083   if (StructType *STy = dyn_cast<StructType>(Ty)) {
00084     const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
00085     for (StructType::element_iterator EB = STy->element_begin(),
00086                                       EI = EB,
00087                                       EE = STy->element_end();
00088          EI != EE; ++EI)
00089       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
00090                       StartingOffset + SL->getElementOffset(EI - EB));
00091     return;
00092   }
00093   // Given an array type, recursively traverse the elements.
00094   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
00095     Type *EltTy = ATy->getElementType();
00096     uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
00097     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
00098       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
00099                       StartingOffset + i * EltSize);
00100     return;
00101   }
00102   // Interpret void as zero return values.
00103   if (Ty->isVoidTy())
00104     return;
00105   // Base case: we can get an EVT for this LLVM IR type.
00106   ValueVTs.push_back(TLI.getValueType(Ty));
00107   if (Offsets)
00108     Offsets->push_back(StartingOffset);
00109 }
00110 
00111 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
00112 GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
00113   V = V->stripPointerCasts();
00114   GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
00115 
00116   if (GV && GV->getName() == "llvm.eh.catch.all.value") {
00117     assert(GV->hasInitializer() &&
00118            "The EH catch-all value must have an initializer");
00119     Value *Init = GV->getInitializer();
00120     GV = dyn_cast<GlobalVariable>(Init);
00121     if (!GV) V = cast<ConstantPointerNull>(Init);
00122   }
00123 
00124   assert((GV || isa<ConstantPointerNull>(V)) &&
00125          "TypeInfo must be a global variable or NULL");
00126   return GV;
00127 }
00128 
00129 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
00130 /// processed uses a memory 'm' constraint.
00131 bool
00132 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
00133                                 const TargetLowering &TLI) {
00134   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
00135     InlineAsm::ConstraintInfo &CI = CInfos[i];
00136     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
00137       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
00138       if (CType == TargetLowering::C_Memory)
00139         return true;
00140     }
00141 
00142     // Indirect operand accesses access memory.
00143     if (CI.isIndirect)
00144       return true;
00145   }
00146 
00147   return false;
00148 }
00149 
00150 /// getFCmpCondCode - Return the ISD condition code corresponding to
00151 /// the given LLVM IR floating-point condition code.  This includes
00152 /// consideration of global floating-point math flags.
00153 ///
00154 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
00155   switch (Pred) {
00156   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
00157   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
00158   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
00159   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
00160   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
00161   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
00162   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
00163   case FCmpInst::FCMP_ORD:   return ISD::SETO;
00164   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
00165   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
00166   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
00167   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
00168   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
00169   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
00170   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
00171   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
00172   default: llvm_unreachable("Invalid FCmp predicate opcode!");
00173   }
00174 }
00175 
00176 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
00177   switch (CC) {
00178     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
00179     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
00180     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
00181     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
00182     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
00183     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
00184     default: return CC;
00185   }
00186 }
00187 
00188 /// getICmpCondCode - Return the ISD condition code corresponding to
00189 /// the given LLVM IR integer condition code.
00190 ///
00191 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
00192   switch (Pred) {
00193   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
00194   case ICmpInst::ICMP_NE:  return ISD::SETNE;
00195   case ICmpInst::ICMP_SLE: return ISD::SETLE;
00196   case ICmpInst::ICMP_ULE: return ISD::SETULE;
00197   case ICmpInst::ICMP_SGE: return ISD::SETGE;
00198   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
00199   case ICmpInst::ICMP_SLT: return ISD::SETLT;
00200   case ICmpInst::ICMP_ULT: return ISD::SETULT;
00201   case ICmpInst::ICMP_SGT: return ISD::SETGT;
00202   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
00203   default:
00204     llvm_unreachable("Invalid ICmp predicate opcode!");
00205   }
00206 }
00207 
00208 static bool isNoopBitcast(Type *T1, Type *T2,
00209                           const TargetLoweringBase& TLI) {
00210   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
00211          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
00212           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
00213 }
00214 
00215 /// Look through operations that will be free to find the earliest source of
00216 /// this value.
00217 ///
00218 /// @param ValLoc If V has aggegate type, we will be interested in a particular
00219 /// scalar component. This records its address; the reverse of this list gives a
00220 /// sequence of indices appropriate for an extractvalue to locate the important
00221 /// value. This value is updated during the function and on exit will indicate
00222 /// similar information for the Value returned.
00223 ///
00224 /// @param DataBits If this function looks through truncate instructions, this
00225 /// will record the smallest size attained.
00226 static const Value *getNoopInput(const Value *V,
00227                                  SmallVectorImpl<unsigned> &ValLoc,
00228                                  unsigned &DataBits,
00229                                  const TargetLoweringBase &TLI) {
00230   while (true) {
00231     // Try to look through V1; if V1 is not an instruction, it can't be looked
00232     // through.
00233     const Instruction *I = dyn_cast<Instruction>(V);
00234     if (!I || I->getNumOperands() == 0) return V;
00235     const Value *NoopInput = nullptr;
00236 
00237     Value *Op = I->getOperand(0);
00238     if (isa<BitCastInst>(I)) {
00239       // Look through truly no-op bitcasts.
00240       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
00241         NoopInput = Op;
00242     } else if (isa<GetElementPtrInst>(I)) {
00243       // Look through getelementptr
00244       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
00245         NoopInput = Op;
00246     } else if (isa<IntToPtrInst>(I)) {
00247       // Look through inttoptr.
00248       // Make sure this isn't a truncating or extending cast.  We could
00249       // support this eventually, but don't bother for now.
00250       if (!isa<VectorType>(I->getType()) &&
00251           TLI.getPointerTy().getSizeInBits() ==
00252           cast<IntegerType>(Op->getType())->getBitWidth())
00253         NoopInput = Op;
00254     } else if (isa<PtrToIntInst>(I)) {
00255       // Look through ptrtoint.
00256       // Make sure this isn't a truncating or extending cast.  We could
00257       // support this eventually, but don't bother for now.
00258       if (!isa<VectorType>(I->getType()) &&
00259           TLI.getPointerTy().getSizeInBits() ==
00260           cast<IntegerType>(I->getType())->getBitWidth())
00261         NoopInput = Op;
00262     } else if (isa<TruncInst>(I) &&
00263                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
00264       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
00265       NoopInput = Op;
00266     } else if (isa<CallInst>(I)) {
00267       // Look through call (skipping callee)
00268       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
00269            i != e; ++i) {
00270         unsigned attrInd = i - I->op_begin() + 1;
00271         if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
00272             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
00273           NoopInput = *i;
00274           break;
00275         }
00276       }
00277     } else if (isa<InvokeInst>(I)) {
00278       // Look through invoke (skipping BB, BB, Callee)
00279       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
00280            i != e; ++i) {
00281         unsigned attrInd = i - I->op_begin() + 1;
00282         if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
00283             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
00284           NoopInput = *i;
00285           break;
00286         }
00287       }
00288     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
00289       // Value may come from either the aggregate or the scalar
00290       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
00291       if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(),
00292                      ValLoc.rbegin())) {
00293         // The type being inserted is a nested sub-type of the aggregate; we
00294         // have to remove those initial indices to get the location we're
00295         // interested in for the operand.
00296         ValLoc.resize(ValLoc.size() - InsertLoc.size());
00297         NoopInput = IVI->getInsertedValueOperand();
00298       } else {
00299         // The struct we're inserting into has the value we're interested in, no
00300         // change of address.
00301         NoopInput = Op;
00302       }
00303     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
00304       // The part we're interested in will inevitably be some sub-section of the
00305       // previous aggregate. Combine the two paths to obtain the true address of
00306       // our element.
00307       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
00308       std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(),
00309                 std::back_inserter(ValLoc));
00310       NoopInput = Op;
00311     }
00312     // Terminate if we couldn't find anything to look through.
00313     if (!NoopInput)
00314       return V;
00315 
00316     V = NoopInput;
00317   }
00318 }
00319 
00320 /// Return true if this scalar return value only has bits discarded on its path
00321 /// from the "tail call" to the "ret". This includes the obvious noop
00322 /// instructions handled by getNoopInput above as well as free truncations (or
00323 /// extensions prior to the call).
00324 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
00325                                  SmallVectorImpl<unsigned> &RetIndices,
00326                                  SmallVectorImpl<unsigned> &CallIndices,
00327                                  bool AllowDifferingSizes,
00328                                  const TargetLoweringBase &TLI) {
00329 
00330   // Trace the sub-value needed by the return value as far back up the graph as
00331   // possible, in the hope that it will intersect with the value produced by the
00332   // call. In the simple case with no "returned" attribute, the hope is actually
00333   // that we end up back at the tail call instruction itself.
00334   unsigned BitsRequired = UINT_MAX;
00335   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI);
00336 
00337   // If this slot in the value returned is undef, it doesn't matter what the
00338   // call puts there, it'll be fine.
00339   if (isa<UndefValue>(RetVal))
00340     return true;
00341 
00342   // Now do a similar search up through the graph to find where the value
00343   // actually returned by the "tail call" comes from. In the simple case without
00344   // a "returned" attribute, the search will be blocked immediately and the loop
00345   // a Noop.
00346   unsigned BitsProvided = UINT_MAX;
00347   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI);
00348 
00349   // There's no hope if we can't actually trace them to (the same part of!) the
00350   // same value.
00351   if (CallVal != RetVal || CallIndices != RetIndices)
00352     return false;
00353 
00354   // However, intervening truncates may have made the call non-tail. Make sure
00355   // all the bits that are needed by the "ret" have been provided by the "tail
00356   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
00357   // extensions too.
00358   if (BitsProvided < BitsRequired ||
00359       (!AllowDifferingSizes && BitsProvided != BitsRequired))
00360     return false;
00361 
00362   return true;
00363 }
00364 
00365 /// For an aggregate type, determine whether a given index is within bounds or
00366 /// not.
00367 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
00368   if (ArrayType *AT = dyn_cast<ArrayType>(T))
00369     return Idx < AT->getNumElements();
00370 
00371   return Idx < cast<StructType>(T)->getNumElements();
00372 }
00373 
00374 /// Move the given iterators to the next leaf type in depth first traversal.
00375 ///
00376 /// Performs a depth-first traversal of the type as specified by its arguments,
00377 /// stopping at the next leaf node (which may be a legitimate scalar type or an
00378 /// empty struct or array).
00379 ///
00380 /// @param SubTypes List of the partial components making up the type from
00381 /// outermost to innermost non-empty aggregate. The element currently
00382 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
00383 ///
00384 /// @param Path Set of extractvalue indices leading from the outermost type
00385 /// (SubTypes[0]) to the leaf node currently represented.
00386 ///
00387 /// @returns true if a new type was found, false otherwise. Calling this
00388 /// function again on a finished iterator will repeatedly return
00389 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
00390 /// aggregate or a non-aggregate
00391 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
00392                                   SmallVectorImpl<unsigned> &Path) {
00393   // First march back up the tree until we can successfully increment one of the
00394   // coordinates in Path.
00395   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
00396     Path.pop_back();
00397     SubTypes.pop_back();
00398   }
00399 
00400   // If we reached the top, then the iterator is done.
00401   if (Path.empty())
00402     return false;
00403 
00404   // We know there's *some* valid leaf now, so march back down the tree picking
00405   // out the left-most element at each node.
00406   ++Path.back();
00407   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
00408   while (DeeperType->isAggregateType()) {
00409     CompositeType *CT = cast<CompositeType>(DeeperType);
00410     if (!indexReallyValid(CT, 0))
00411       return true;
00412 
00413     SubTypes.push_back(CT);
00414     Path.push_back(0);
00415 
00416     DeeperType = CT->getTypeAtIndex(0U);
00417   }
00418 
00419   return true;
00420 }
00421 
00422 /// Find the first non-empty, scalar-like type in Next and setup the iterator
00423 /// components.
00424 ///
00425 /// Assuming Next is an aggregate of some kind, this function will traverse the
00426 /// tree from left to right (i.e. depth-first) looking for the first
00427 /// non-aggregate type which will play a role in function return.
00428 ///
00429 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
00430 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
00431 /// i32 in that type.
00432 static bool firstRealType(Type *Next,
00433                           SmallVectorImpl<CompositeType *> &SubTypes,
00434                           SmallVectorImpl<unsigned> &Path) {
00435   // First initialise the iterator components to the first "leaf" node
00436   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
00437   // despite nominally being an aggregate).
00438   while (Next->isAggregateType() &&
00439          indexReallyValid(cast<CompositeType>(Next), 0)) {
00440     SubTypes.push_back(cast<CompositeType>(Next));
00441     Path.push_back(0);
00442     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
00443   }
00444 
00445   // If there's no Path now, Next was originally scalar already (or empty
00446   // leaf). We're done.
00447   if (Path.empty())
00448     return true;
00449 
00450   // Otherwise, use normal iteration to keep looking through the tree until we
00451   // find a non-aggregate type.
00452   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
00453     if (!advanceToNextLeafType(SubTypes, Path))
00454       return false;
00455   }
00456 
00457   return true;
00458 }
00459 
00460 /// Set the iterator data-structures to the next non-empty, non-aggregate
00461 /// subtype.
00462 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
00463                          SmallVectorImpl<unsigned> &Path) {
00464   do {
00465     if (!advanceToNextLeafType(SubTypes, Path))
00466       return false;
00467 
00468     assert(!Path.empty() && "found a leaf but didn't set the path?");
00469   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
00470 
00471   return true;
00472 }
00473 
00474 
00475 /// Test if the given instruction is in a position to be optimized
00476 /// with a tail-call. This roughly means that it's in a block with
00477 /// a return and there's nothing that needs to be scheduled
00478 /// between it and the return.
00479 ///
00480 /// This function only tests target-independent requirements.
00481 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
00482   const Instruction *I = CS.getInstruction();
00483   const BasicBlock *ExitBB = I->getParent();
00484   const TerminatorInst *Term = ExitBB->getTerminator();
00485   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
00486 
00487   // The block must end in a return statement or unreachable.
00488   //
00489   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
00490   // an unreachable, for now. The way tailcall optimization is currently
00491   // implemented means it will add an epilogue followed by a jump. That is
00492   // not profitable. Also, if the callee is a special function (e.g.
00493   // longjmp on x86), it can end up causing miscompilation that has not
00494   // been fully understood.
00495   if (!Ret &&
00496       (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
00497     return false;
00498 
00499   // If I will have a chain, make sure no other instruction that will have a
00500   // chain interposes between I and the return.
00501   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
00502       !isSafeToSpeculativelyExecute(I))
00503     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
00504       if (&*BBI == I)
00505         break;
00506       // Debug info intrinsics do not get in the way of tail call optimization.
00507       if (isa<DbgInfoIntrinsic>(BBI))
00508         continue;
00509       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
00510           !isSafeToSpeculativelyExecute(BBI))
00511         return false;
00512     }
00513 
00514   return returnTypeIsEligibleForTailCall(
00515       ExitBB->getParent(), I, Ret, *TM.getSubtargetImpl()->getTargetLowering());
00516 }
00517 
00518 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
00519                                            const Instruction *I,
00520                                            const ReturnInst *Ret,
00521                                            const TargetLoweringBase &TLI) {
00522   // If the block ends with a void return or unreachable, it doesn't matter
00523   // what the call's return type is.
00524   if (!Ret || Ret->getNumOperands() == 0) return true;
00525 
00526   // If the return value is undef, it doesn't matter what the call's
00527   // return type is.
00528   if (isa<UndefValue>(Ret->getOperand(0))) return true;
00529 
00530   // Make sure the attributes attached to each return are compatible.
00531   AttrBuilder CallerAttrs(F->getAttributes(),
00532                           AttributeSet::ReturnIndex);
00533   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
00534                           AttributeSet::ReturnIndex);
00535 
00536   // Noalias is completely benign as far as calling convention goes, it
00537   // shouldn't affect whether the call is a tail call.
00538   CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
00539   CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
00540 
00541   bool AllowDifferingSizes = true;
00542   if (CallerAttrs.contains(Attribute::ZExt)) {
00543     if (!CalleeAttrs.contains(Attribute::ZExt))
00544       return false;
00545 
00546     AllowDifferingSizes = false;
00547     CallerAttrs.removeAttribute(Attribute::ZExt);
00548     CalleeAttrs.removeAttribute(Attribute::ZExt);
00549   } else if (CallerAttrs.contains(Attribute::SExt)) {
00550     if (!CalleeAttrs.contains(Attribute::SExt))
00551       return false;
00552 
00553     AllowDifferingSizes = false;
00554     CallerAttrs.removeAttribute(Attribute::SExt);
00555     CalleeAttrs.removeAttribute(Attribute::SExt);
00556   }
00557 
00558   // If they're still different, there's some facet we don't understand
00559   // (currently only "inreg", but in future who knows). It may be OK but the
00560   // only safe option is to reject the tail call.
00561   if (CallerAttrs != CalleeAttrs)
00562     return false;
00563 
00564   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
00565   SmallVector<unsigned, 4> RetPath, CallPath;
00566   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
00567 
00568   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
00569   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
00570 
00571   // Nothing's actually returned, it doesn't matter what the callee put there
00572   // it's a valid tail call.
00573   if (RetEmpty)
00574     return true;
00575 
00576   // Iterate pairwise through each of the value types making up the tail call
00577   // and the corresponding return. For each one we want to know whether it's
00578   // essentially going directly from the tail call to the ret, via operations
00579   // that end up not generating any code.
00580   //
00581   // We allow a certain amount of covariance here. For example it's permitted
00582   // for the tail call to define more bits than the ret actually cares about
00583   // (e.g. via a truncate).
00584   do {
00585     if (CallEmpty) {
00586       // We've exhausted the values produced by the tail call instruction, the
00587       // rest are essentially undef. The type doesn't really matter, but we need
00588       // *something*.
00589       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
00590       CallVal = UndefValue::get(SlotType);
00591     }
00592 
00593     // The manipulations performed when we're looking through an insertvalue or
00594     // an extractvalue would happen at the front of the RetPath list, so since
00595     // we have to copy it anyway it's more efficient to create a reversed copy.
00596     using std::copy;
00597     SmallVector<unsigned, 4> TmpRetPath, TmpCallPath;
00598     copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath));
00599     copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath));
00600 
00601     // Finally, we can check whether the value produced by the tail call at this
00602     // index is compatible with the value we return.
00603     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
00604                               AllowDifferingSizes, TLI))
00605       return false;
00606 
00607     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
00608   } while(nextRealType(RetSubTypes, RetPath));
00609 
00610   return true;
00611 }
00612 
00613 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
00614   if (!GV->hasLinkOnceODRLinkage())
00615     return false;
00616 
00617   if (GV->hasUnnamedAddr())
00618     return true;
00619 
00620   // If it is a non constant variable, it needs to be uniqued across shared
00621   // objects.
00622   if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
00623     if (!Var->isConstant())
00624       return false;
00625   }
00626 
00627   // An alias can point to a variable. We could try to resolve the alias to
00628   // decide, but for now just don't hide them.
00629   if (isa<GlobalAlias>(GV))
00630     return false;
00631 
00632   GlobalStatus GS;
00633   if (GlobalStatus::analyzeGlobal(GV, GS))
00634     return false;
00635 
00636   return !GS.IsCompared;
00637 }