LLVM API Documentation

LegalizeTypes.h
Go to the documentation of this file.
00001 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines the DAGTypeLegalizer class.  This is a private interface
00011 // shared between the code that implements the SelectionDAG::LegalizeTypes
00012 // method.
00013 //
00014 //===----------------------------------------------------------------------===//
00015 
00016 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
00017 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
00018 
00019 #include "llvm/ADT/DenseMap.h"
00020 #include "llvm/ADT/DenseSet.h"
00021 #include "llvm/CodeGen/SelectionDAG.h"
00022 #include "llvm/Support/Compiler.h"
00023 #include "llvm/Support/Debug.h"
00024 #include "llvm/Target/TargetLowering.h"
00025 
00026 namespace llvm {
00027 
00028 //===----------------------------------------------------------------------===//
00029 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
00030 /// on it until only value types the target machine can handle are left.  This
00031 /// involves promoting small sizes to large sizes or splitting up large values
00032 /// into small values.
00033 ///
00034 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
00035   const TargetLowering &TLI;
00036   SelectionDAG &DAG;
00037 public:
00038   // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
00039   // about the state of the node.  The enum has all the values.
00040   enum NodeIdFlags {
00041     /// ReadyToProcess - All operands have been processed, so this node is ready
00042     /// to be handled.
00043     ReadyToProcess = 0,
00044 
00045     /// NewNode - This is a new node, not before seen, that was created in the
00046     /// process of legalizing some other node.
00047     NewNode = -1,
00048 
00049     /// Unanalyzed - This node's ID needs to be set to the number of its
00050     /// unprocessed operands.
00051     Unanalyzed = -2,
00052 
00053     /// Processed - This is a node that has already been processed.
00054     Processed = -3
00055 
00056     // 1+ - This is a node which has this many unprocessed operands.
00057   };
00058 private:
00059 
00060   /// ValueTypeActions - This is a bitvector that contains two bits for each
00061   /// simple value type, where the two bits correspond to the LegalizeAction
00062   /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
00063   TargetLowering::ValueTypeActionImpl ValueTypeActions;
00064 
00065   /// getTypeAction - Return how we should legalize values of this type.
00066   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
00067     return TLI.getTypeAction(*DAG.getContext(), VT);
00068   }
00069 
00070   /// isTypeLegal - Return true if this type is legal on this target.
00071   bool isTypeLegal(EVT VT) const {
00072     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
00073   }
00074 
00075   EVT getSetCCResultType(EVT VT) const {
00076     return TLI.getSetCCResultType(*DAG.getContext(), VT);
00077   }
00078 
00079   /// IgnoreNodeResults - Pretend all of this node's results are legal.
00080   bool IgnoreNodeResults(SDNode *N) const {
00081     return N->getOpcode() == ISD::TargetConstant;
00082   }
00083 
00084   /// PromotedIntegers - For integer nodes that are below legal width, this map
00085   /// indicates what promoted value to use.
00086   SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers;
00087 
00088   /// ExpandedIntegers - For integer nodes that need to be expanded this map
00089   /// indicates which operands are the expanded version of the input.
00090   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers;
00091 
00092   /// SoftenedFloats - For floating point nodes converted to integers of
00093   /// the same size, this map indicates the converted value to use.
00094   SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats;
00095 
00096   /// ExpandedFloats - For float nodes that need to be expanded this map
00097   /// indicates which operands are the expanded version of the input.
00098   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats;
00099 
00100   /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
00101   /// scalar value of type 'ty' to use.
00102   SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors;
00103 
00104   /// SplitVectors - For nodes that need to be split this map indicates
00105   /// which operands are the expanded version of the input.
00106   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors;
00107 
00108   /// WidenedVectors - For vector nodes that need to be widened, indicates
00109   /// the widened value to use.
00110   SmallDenseMap<SDValue, SDValue, 8> WidenedVectors;
00111 
00112   /// ReplacedValues - For values that have been replaced with another,
00113   /// indicates the replacement value to use.
00114   SmallDenseMap<SDValue, SDValue, 8> ReplacedValues;
00115 
00116   /// Worklist - This defines a worklist of nodes to process.  In order to be
00117   /// pushed onto this worklist, all operands of a node must have already been
00118   /// processed.
00119   SmallVector<SDNode*, 128> Worklist;
00120 
00121 public:
00122   explicit DAGTypeLegalizer(SelectionDAG &dag)
00123     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
00124     ValueTypeActions(TLI.getValueTypeActions()) {
00125     assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
00126            "Too many value types for ValueTypeActions to hold!");
00127   }
00128 
00129   /// run - This is the main entry point for the type legalizer.  This does a
00130   /// top-down traversal of the dag, legalizing types as it goes.  Returns
00131   /// "true" if it made any changes.
00132   bool run();
00133 
00134   void NoteDeletion(SDNode *Old, SDNode *New) {
00135     ExpungeNode(Old);
00136     ExpungeNode(New);
00137     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
00138       ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
00139   }
00140 
00141   SelectionDAG &getDAG() const { return DAG; }
00142 
00143 private:
00144   SDNode *AnalyzeNewNode(SDNode *N);
00145   void AnalyzeNewValue(SDValue &Val);
00146   void ExpungeNode(SDNode *N);
00147   void PerformExpensiveChecks();
00148   void RemapValue(SDValue &N);
00149 
00150   // Common routines.
00151   SDValue BitConvertToInteger(SDValue Op);
00152   SDValue BitConvertVectorToIntegerVector(SDValue Op);
00153   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
00154   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
00155   bool CustomWidenLowerNode(SDNode *N, EVT VT);
00156 
00157   /// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES
00158   /// node with the corresponding input operand, except for the result 'ResNo',
00159   /// for which the corresponding input operand is returned.
00160   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
00161 
00162   SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
00163   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
00164   SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
00165   
00166   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
00167                                                  SDNode *Node, bool isSigned);
00168   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
00169 
00170   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
00171   void ReplaceValueWith(SDValue From, SDValue To);
00172   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
00173   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
00174                     SDValue &Lo, SDValue &Hi);
00175 
00176   //===--------------------------------------------------------------------===//
00177   // Integer Promotion Support: LegalizeIntegerTypes.cpp
00178   //===--------------------------------------------------------------------===//
00179 
00180   /// GetPromotedInteger - Given a processed operand Op which was promoted to a
00181   /// larger integer type, this returns the promoted value.  The low bits of the
00182   /// promoted value corresponding to the original type are exactly equal to Op.
00183   /// The extra bits contain rubbish, so the promoted value may need to be zero-
00184   /// or sign-extended from the original type before it is usable (the helpers
00185   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
00186   /// For example, if Op is an i16 and was promoted to an i32, then this method
00187   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
00188   /// 16 bits of which contain rubbish.
00189   SDValue GetPromotedInteger(SDValue Op) {
00190     SDValue &PromotedOp = PromotedIntegers[Op];
00191     RemapValue(PromotedOp);
00192     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
00193     return PromotedOp;
00194   }
00195   void SetPromotedInteger(SDValue Op, SDValue Result);
00196 
00197   /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
00198   /// final size.
00199   SDValue SExtPromotedInteger(SDValue Op) {
00200     EVT OldVT = Op.getValueType();
00201     SDLoc dl(Op);
00202     Op = GetPromotedInteger(Op);
00203     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
00204                        DAG.getValueType(OldVT));
00205   }
00206 
00207   /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
00208   /// final size.
00209   SDValue ZExtPromotedInteger(SDValue Op) {
00210     EVT OldVT = Op.getValueType();
00211     SDLoc dl(Op);
00212     Op = GetPromotedInteger(Op);
00213     return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
00214   }
00215 
00216   // Integer Result Promotion.
00217   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
00218   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
00219   SDValue PromoteIntRes_AssertSext(SDNode *N);
00220   SDValue PromoteIntRes_AssertZext(SDNode *N);
00221   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
00222   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
00223   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
00224   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
00225   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
00226   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
00227   SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
00228   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
00229   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
00230   SDValue PromoteIntRes_BITCAST(SDNode *N);
00231   SDValue PromoteIntRes_BSWAP(SDNode *N);
00232   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
00233   SDValue PromoteIntRes_Constant(SDNode *N);
00234   SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
00235   SDValue PromoteIntRes_CTLZ(SDNode *N);
00236   SDValue PromoteIntRes_CTPOP(SDNode *N);
00237   SDValue PromoteIntRes_CTTZ(SDNode *N);
00238   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
00239   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
00240   SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
00241   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
00242   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
00243   SDValue PromoteIntRes_Overflow(SDNode *N);
00244   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
00245   SDValue PromoteIntRes_SDIV(SDNode *N);
00246   SDValue PromoteIntRes_SELECT(SDNode *N);
00247   SDValue PromoteIntRes_VSELECT(SDNode *N);
00248   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
00249   SDValue PromoteIntRes_SETCC(SDNode *N);
00250   SDValue PromoteIntRes_SHL(SDNode *N);
00251   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
00252   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
00253   SDValue PromoteIntRes_SRA(SDNode *N);
00254   SDValue PromoteIntRes_SRL(SDNode *N);
00255   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
00256   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
00257   SDValue PromoteIntRes_UDIV(SDNode *N);
00258   SDValue PromoteIntRes_UNDEF(SDNode *N);
00259   SDValue PromoteIntRes_VAARG(SDNode *N);
00260   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
00261 
00262   // Integer Operand Promotion.
00263   bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
00264   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
00265   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
00266   SDValue PromoteIntOp_BITCAST(SDNode *N);
00267   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
00268   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
00269   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
00270   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
00271   SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
00272   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
00273   SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N);
00274   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
00275   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
00276   SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
00277   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
00278   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
00279   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
00280   SDValue PromoteIntOp_VSETCC(SDNode *N, unsigned OpNo);
00281   SDValue PromoteIntOp_Shift(SDNode *N);
00282   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
00283   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
00284   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
00285   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
00286   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
00287   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
00288 
00289   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
00290 
00291   //===--------------------------------------------------------------------===//
00292   // Integer Expansion Support: LegalizeIntegerTypes.cpp
00293   //===--------------------------------------------------------------------===//
00294 
00295   /// GetExpandedInteger - Given a processed operand Op which was expanded into
00296   /// two integers of half the size, this returns the two halves.  The low bits
00297   /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
00298   /// For example, if Op is an i64 which was expanded into two i32's, then this
00299   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
00300   /// Op, and Hi being equal to the upper 32 bits.
00301   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
00302   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
00303 
00304   // Integer Result Expansion.
00305   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
00306   void ExpandIntRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
00307                                        SDValue &Lo, SDValue &Hi);
00308   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
00309   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
00310   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
00311   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
00312   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
00313   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
00314   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
00315   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
00316   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
00317   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
00318   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
00319   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
00320   void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
00321   void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
00322 
00323   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
00324   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
00325   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
00326   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
00327   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
00328   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
00329   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
00330   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
00331   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
00332   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
00333   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
00334 
00335   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
00336   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
00337   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
00338 
00339   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
00340 
00341   void ExpandShiftByConstant(SDNode *N, unsigned Amt,
00342                              SDValue &Lo, SDValue &Hi);
00343   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
00344   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
00345 
00346   // Integer Operand Expansion.
00347   bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
00348   SDValue ExpandIntOp_BITCAST(SDNode *N);
00349   SDValue ExpandIntOp_BR_CC(SDNode *N);
00350   SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
00351   SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
00352   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
00353   SDValue ExpandIntOp_SETCC(SDNode *N);
00354   SDValue ExpandIntOp_Shift(SDNode *N);
00355   SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
00356   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
00357   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
00358   SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
00359   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
00360   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
00361 
00362   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
00363                                   ISD::CondCode &CCCode, SDLoc dl);
00364 
00365   //===--------------------------------------------------------------------===//
00366   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
00367   //===--------------------------------------------------------------------===//
00368 
00369   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
00370   /// integer of the same size, this returns the integer.  The integer contains
00371   /// exactly the same bits as Op - only the type changed.  For example, if Op
00372   /// is an f32 which was softened to an i32, then this method returns an i32,
00373   /// the bits of which coincide with those of Op.
00374   SDValue GetSoftenedFloat(SDValue Op) {
00375     SDValue &SoftenedOp = SoftenedFloats[Op];
00376     RemapValue(SoftenedOp);
00377     assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
00378     return SoftenedOp;
00379   }
00380   void SetSoftenedFloat(SDValue Op, SDValue Result);
00381 
00382   // Result Float to Integer Conversion.
00383   void SoftenFloatResult(SDNode *N, unsigned OpNo);
00384   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
00385   SDValue SoftenFloatRes_BITCAST(SDNode *N);
00386   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
00387   SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
00388   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
00389   SDValue SoftenFloatRes_FABS(SDNode *N);
00390   SDValue SoftenFloatRes_FADD(SDNode *N);
00391   SDValue SoftenFloatRes_FCEIL(SDNode *N);
00392   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
00393   SDValue SoftenFloatRes_FCOS(SDNode *N);
00394   SDValue SoftenFloatRes_FDIV(SDNode *N);
00395   SDValue SoftenFloatRes_FEXP(SDNode *N);
00396   SDValue SoftenFloatRes_FEXP2(SDNode *N);
00397   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
00398   SDValue SoftenFloatRes_FLOG(SDNode *N);
00399   SDValue SoftenFloatRes_FLOG2(SDNode *N);
00400   SDValue SoftenFloatRes_FLOG10(SDNode *N);
00401   SDValue SoftenFloatRes_FMA(SDNode *N);
00402   SDValue SoftenFloatRes_FMUL(SDNode *N);
00403   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
00404   SDValue SoftenFloatRes_FNEG(SDNode *N);
00405   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
00406   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
00407   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
00408   SDValue SoftenFloatRes_FPOW(SDNode *N);
00409   SDValue SoftenFloatRes_FPOWI(SDNode *N);
00410   SDValue SoftenFloatRes_FREM(SDNode *N);
00411   SDValue SoftenFloatRes_FRINT(SDNode *N);
00412   SDValue SoftenFloatRes_FROUND(SDNode *N);
00413   SDValue SoftenFloatRes_FSIN(SDNode *N);
00414   SDValue SoftenFloatRes_FSQRT(SDNode *N);
00415   SDValue SoftenFloatRes_FSUB(SDNode *N);
00416   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
00417   SDValue SoftenFloatRes_LOAD(SDNode *N);
00418   SDValue SoftenFloatRes_SELECT(SDNode *N);
00419   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
00420   SDValue SoftenFloatRes_UNDEF(SDNode *N);
00421   SDValue SoftenFloatRes_VAARG(SDNode *N);
00422   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
00423 
00424   // Operand Float to Integer Conversion.
00425   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
00426   SDValue SoftenFloatOp_BITCAST(SDNode *N);
00427   SDValue SoftenFloatOp_BR_CC(SDNode *N);
00428   SDValue SoftenFloatOp_FP_EXTEND(SDNode *N);
00429   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
00430   SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
00431   SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
00432   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
00433   SDValue SoftenFloatOp_SETCC(SDNode *N);
00434   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
00435 
00436   //===--------------------------------------------------------------------===//
00437   // Float Expansion Support: LegalizeFloatTypes.cpp
00438   //===--------------------------------------------------------------------===//
00439 
00440   /// GetExpandedFloat - Given a processed operand Op which was expanded into
00441   /// two floating point values of half the size, this returns the two halves.
00442   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
00443   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
00444   /// into two f64's, then this method returns the two f64's, with Lo being
00445   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
00446   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
00447   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
00448 
00449   // Float Result Expansion.
00450   void ExpandFloatResult(SDNode *N, unsigned ResNo);
00451   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
00452   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
00453   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
00454   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
00455   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
00456   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
00457   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
00458   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
00459   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
00460   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
00461   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
00462   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
00463   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
00464   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
00465   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
00466   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
00467   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
00468   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
00469   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
00470   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
00471   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
00472   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
00473   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
00474   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
00475   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
00476   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
00477   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
00478   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
00479   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
00480 
00481   // Float Operand Expansion.
00482   bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
00483   SDValue ExpandFloatOp_BR_CC(SDNode *N);
00484   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
00485   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
00486   SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
00487   SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
00488   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
00489   SDValue ExpandFloatOp_SETCC(SDNode *N);
00490   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
00491 
00492   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
00493                                 ISD::CondCode &CCCode, SDLoc dl);
00494 
00495   //===--------------------------------------------------------------------===//
00496   // Scalarization Support: LegalizeVectorTypes.cpp
00497   //===--------------------------------------------------------------------===//
00498 
00499   /// GetScalarizedVector - Given a processed one-element vector Op which was
00500   /// scalarized to its element type, this returns the element.  For example,
00501   /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
00502   SDValue GetScalarizedVector(SDValue Op) {
00503     SDValue &ScalarizedOp = ScalarizedVectors[Op];
00504     RemapValue(ScalarizedOp);
00505     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
00506     return ScalarizedOp;
00507   }
00508   void SetScalarizedVector(SDValue Op, SDValue Result);
00509 
00510   // Vector Result Scalarization: <1 x ty> -> ty.
00511   void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
00512   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
00513   SDValue ScalarizeVecRes_BinOp(SDNode *N);
00514   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
00515   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
00516   SDValue ScalarizeVecRes_InregOp(SDNode *N);
00517 
00518   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
00519   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
00520   SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
00521   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
00522   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
00523   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
00524   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
00525   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
00526   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
00527   SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
00528   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
00529   SDValue ScalarizeVecRes_SELECT(SDNode *N);
00530   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
00531   SDValue ScalarizeVecRes_SETCC(SDNode *N);
00532   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
00533   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
00534   SDValue ScalarizeVecRes_VSETCC(SDNode *N);
00535 
00536   // Vector Operand Scalarization: <1 x ty> -> ty.
00537   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
00538   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
00539   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
00540   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
00541   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
00542   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
00543   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
00544   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
00545 
00546   //===--------------------------------------------------------------------===//
00547   // Vector Splitting Support: LegalizeVectorTypes.cpp
00548   //===--------------------------------------------------------------------===//
00549 
00550   /// GetSplitVector - Given a processed vector Op which was split into vectors
00551   /// of half the size, this method returns the halves.  The first elements of
00552   /// Op coincide with the elements of Lo; the remaining elements of Op coincide
00553   /// with the elements of Hi: Op is what you would get by concatenating Lo and
00554   /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
00555   /// this method returns the two v4i32's, with Lo corresponding to the first 4
00556   /// elements of Op, and Hi to the last 4 elements.
00557   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
00558   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
00559 
00560   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
00561   void SplitVectorResult(SDNode *N, unsigned OpNo);
00562   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
00563   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
00564   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
00565   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
00566   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
00567 
00568   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
00569   void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
00570   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
00571   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
00572   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
00573   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
00574   void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
00575   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
00576   void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
00577   void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
00578   void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
00579   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
00580   void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
00581   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
00582                                   SDValue &Hi);
00583 
00584   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
00585   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
00586   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
00587   SDValue SplitVecOp_UnaryOp(SDNode *N);
00588 
00589   SDValue SplitVecOp_BITCAST(SDNode *N);
00590   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
00591   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
00592   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
00593   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
00594   SDValue SplitVecOp_TRUNCATE(SDNode *N);
00595   SDValue SplitVecOp_VSETCC(SDNode *N);
00596   SDValue SplitVecOp_FP_ROUND(SDNode *N);
00597 
00598   //===--------------------------------------------------------------------===//
00599   // Vector Widening Support: LegalizeVectorTypes.cpp
00600   //===--------------------------------------------------------------------===//
00601 
00602   /// GetWidenedVector - Given a processed vector Op which was widened into a
00603   /// larger vector, this method returns the larger vector.  The elements of
00604   /// the returned vector consist of the elements of Op followed by elements
00605   /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
00606   /// v4i32, then this method returns a v4i32 for which the first two elements
00607   /// are the same as those of Op, while the last two elements contain rubbish.
00608   SDValue GetWidenedVector(SDValue Op) {
00609     SDValue &WidenedOp = WidenedVectors[Op];
00610     RemapValue(WidenedOp);
00611     assert(WidenedOp.getNode() && "Operand wasn't widened?");
00612     return WidenedOp;
00613   }
00614   void SetWidenedVector(SDValue Op, SDValue Result);
00615 
00616   // Widen Vector Result Promotion.
00617   void WidenVectorResult(SDNode *N, unsigned ResNo);
00618   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
00619   SDValue WidenVecRes_BITCAST(SDNode* N);
00620   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
00621   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
00622   SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
00623   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
00624   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
00625   SDValue WidenVecRes_LOAD(SDNode* N);
00626   SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
00627   SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
00628   SDValue WidenVecRes_SELECT(SDNode* N);
00629   SDValue WidenVecRes_SELECT_CC(SDNode* N);
00630   SDValue WidenVecRes_SETCC(SDNode* N);
00631   SDValue WidenVecRes_UNDEF(SDNode *N);
00632   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
00633   SDValue WidenVecRes_VSETCC(SDNode* N);
00634 
00635   SDValue WidenVecRes_Ternary(SDNode *N);
00636   SDValue WidenVecRes_Binary(SDNode *N);
00637   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
00638   SDValue WidenVecRes_Convert(SDNode *N);
00639   SDValue WidenVecRes_POWI(SDNode *N);
00640   SDValue WidenVecRes_Shift(SDNode *N);
00641   SDValue WidenVecRes_Unary(SDNode *N);
00642   SDValue WidenVecRes_InregOp(SDNode *N);
00643 
00644   // Widen Vector Operand.
00645   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
00646   SDValue WidenVecOp_BITCAST(SDNode *N);
00647   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
00648   SDValue WidenVecOp_EXTEND(SDNode *N);
00649   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
00650   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
00651   SDValue WidenVecOp_STORE(SDNode* N);
00652   SDValue WidenVecOp_SETCC(SDNode* N);
00653 
00654   SDValue WidenVecOp_Convert(SDNode *N);
00655 
00656   //===--------------------------------------------------------------------===//
00657   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
00658   //===--------------------------------------------------------------------===//
00659 
00660   /// Helper GenWidenVectorLoads - Helper function to generate a set of
00661   /// loads to load a vector with a resulting wider type. It takes
00662   ///   LdChain: list of chains for the load to be generated.
00663   ///   Ld:      load to widen
00664   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
00665                               LoadSDNode *LD);
00666 
00667   /// GenWidenVectorExtLoads - Helper function to generate a set of extension
00668   /// loads to load a ector with a resulting wider type.  It takes
00669   ///   LdChain: list of chains for the load to be generated.
00670   ///   Ld:      load to widen
00671   ///   ExtType: extension element type
00672   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
00673                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
00674 
00675   /// Helper genWidenVectorStores - Helper function to generate a set of
00676   /// stores to store a widen vector into non-widen memory
00677   ///   StChain: list of chains for the stores we have generated
00678   ///   ST:      store of a widen value
00679   void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
00680 
00681   /// Helper genWidenVectorTruncStores - Helper function to generate a set of
00682   /// stores to store a truncate widen vector into non-widen memory
00683   ///   StChain: list of chains for the stores we have generated
00684   ///   ST:      store of a widen value
00685   void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
00686                                  StoreSDNode *ST);
00687 
00688   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
00689   /// input vector must have the same element type as NVT.
00690   SDValue ModifyToType(SDValue InOp, EVT WidenVT);
00691 
00692 
00693   //===--------------------------------------------------------------------===//
00694   // Generic Splitting: LegalizeTypesGeneric.cpp
00695   //===--------------------------------------------------------------------===//
00696 
00697   // Legalization methods which only use that the illegal type is split into two
00698   // not necessarily identical types.  As such they can be used for splitting
00699   // vectors and expanding integers and floats.
00700 
00701   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
00702     if (Op.getValueType().isVector())
00703       GetSplitVector(Op, Lo, Hi);
00704     else if (Op.getValueType().isInteger())
00705       GetExpandedInteger(Op, Lo, Hi);
00706     else
00707       GetExpandedFloat(Op, Lo, Hi);
00708   }
00709 
00710   /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
00711   /// high parts of the given value.
00712   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
00713 
00714   // Generic Result Splitting.
00715   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
00716                              SDValue &Lo, SDValue &Hi);
00717   void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
00718   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
00719   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
00720 
00721   //===--------------------------------------------------------------------===//
00722   // Generic Expansion: LegalizeTypesGeneric.cpp
00723   //===--------------------------------------------------------------------===//
00724 
00725   // Legalization methods which only use that the illegal type is split into two
00726   // identical types of half the size, and that the Lo/Hi part is stored first
00727   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
00728   // such they can be used for expanding integers and floats.
00729 
00730   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
00731     if (Op.getValueType().isInteger())
00732       GetExpandedInteger(Op, Lo, Hi);
00733     else
00734       GetExpandedFloat(Op, Lo, Hi);
00735   }
00736 
00737 
00738   /// This function will split the integer \p Op into \p NumElements
00739   /// operations of type \p EltVT and store them in \p Ops.
00740   void IntegerToVector(SDValue Op, unsigned NumElements,
00741                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
00742 
00743   // Generic Result Expansion.
00744   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
00745                                     SDValue &Lo, SDValue &Hi);
00746   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
00747   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
00748   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
00749   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
00750   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
00751   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
00752 
00753   // Generic Operand Expansion.
00754   SDValue ExpandOp_BITCAST          (SDNode *N);
00755   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
00756   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
00757   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
00758   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
00759   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
00760 };
00761 
00762 } // end namespace llvm.
00763 
00764 #endif