LLVM API Documentation
00001 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 00011 // and generates target-independent LLVM-IR. 00012 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 00013 // of instructions in order to estimate the profitability of vectorization. 00014 // 00015 // The loop vectorizer combines consecutive loop iterations into a single 00016 // 'wide' iteration. After this transformation the index is incremented 00017 // by the SIMD vector width, and not by one. 00018 // 00019 // This pass has three parts: 00020 // 1. The main loop pass that drives the different parts. 00021 // 2. LoopVectorizationLegality - A unit that checks for the legality 00022 // of the vectorization. 00023 // 3. InnerLoopVectorizer - A unit that performs the actual 00024 // widening of instructions. 00025 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 00026 // of vectorization. It decides on the optimal vector width, which 00027 // can be one, if vectorization is not profitable. 00028 // 00029 //===----------------------------------------------------------------------===// 00030 // 00031 // The reduction-variable vectorization is based on the paper: 00032 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 00033 // 00034 // Variable uniformity checks are inspired by: 00035 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 00036 // 00037 // Other ideas/concepts are from: 00038 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 00039 // 00040 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 00041 // Vectorizing Compilers. 00042 // 00043 //===----------------------------------------------------------------------===// 00044 00045 #include "llvm/Transforms/Vectorize.h" 00046 #include "llvm/ADT/DenseMap.h" 00047 #include "llvm/ADT/EquivalenceClasses.h" 00048 #include "llvm/ADT/Hashing.h" 00049 #include "llvm/ADT/MapVector.h" 00050 #include "llvm/ADT/SetVector.h" 00051 #include "llvm/ADT/SmallPtrSet.h" 00052 #include "llvm/ADT/SmallSet.h" 00053 #include "llvm/ADT/SmallVector.h" 00054 #include "llvm/ADT/Statistic.h" 00055 #include "llvm/ADT/StringExtras.h" 00056 #include "llvm/Analysis/AliasAnalysis.h" 00057 #include "llvm/Analysis/AliasSetTracker.h" 00058 #include "llvm/Analysis/BlockFrequencyInfo.h" 00059 #include "llvm/Analysis/LoopInfo.h" 00060 #include "llvm/Analysis/LoopIterator.h" 00061 #include "llvm/Analysis/LoopPass.h" 00062 #include "llvm/Analysis/ScalarEvolution.h" 00063 #include "llvm/Analysis/ScalarEvolutionExpander.h" 00064 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 00065 #include "llvm/Analysis/TargetTransformInfo.h" 00066 #include "llvm/Analysis/ValueTracking.h" 00067 #include "llvm/IR/Constants.h" 00068 #include "llvm/IR/DataLayout.h" 00069 #include "llvm/IR/DebugInfo.h" 00070 #include "llvm/IR/DerivedTypes.h" 00071 #include "llvm/IR/DiagnosticInfo.h" 00072 #include "llvm/IR/Dominators.h" 00073 #include "llvm/IR/Function.h" 00074 #include "llvm/IR/IRBuilder.h" 00075 #include "llvm/IR/Instructions.h" 00076 #include "llvm/IR/IntrinsicInst.h" 00077 #include "llvm/IR/LLVMContext.h" 00078 #include "llvm/IR/Module.h" 00079 #include "llvm/IR/PatternMatch.h" 00080 #include "llvm/IR/Type.h" 00081 #include "llvm/IR/Value.h" 00082 #include "llvm/IR/ValueHandle.h" 00083 #include "llvm/IR/Verifier.h" 00084 #include "llvm/Pass.h" 00085 #include "llvm/Support/BranchProbability.h" 00086 #include "llvm/Support/CommandLine.h" 00087 #include "llvm/Support/Debug.h" 00088 #include "llvm/Support/raw_ostream.h" 00089 #include "llvm/Transforms/Scalar.h" 00090 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 00091 #include "llvm/Transforms/Utils/Local.h" 00092 #include "llvm/Transforms/Utils/VectorUtils.h" 00093 #include <algorithm> 00094 #include <map> 00095 #include <tuple> 00096 00097 using namespace llvm; 00098 using namespace llvm::PatternMatch; 00099 00100 #define LV_NAME "loop-vectorize" 00101 #define DEBUG_TYPE LV_NAME 00102 00103 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 00104 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 00105 00106 static cl::opt<unsigned> 00107 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 00108 cl::desc("Sets the SIMD width. Zero is autoselect.")); 00109 00110 static cl::opt<unsigned> 00111 VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden, 00112 cl::desc("Sets the vectorization interleave count. " 00113 "Zero is autoselect.")); 00114 00115 static cl::opt<bool> 00116 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 00117 cl::desc("Enable if-conversion during vectorization.")); 00118 00119 /// We don't vectorize loops with a known constant trip count below this number. 00120 static cl::opt<unsigned> 00121 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 00122 cl::Hidden, 00123 cl::desc("Don't vectorize loops with a constant " 00124 "trip count that is smaller than this " 00125 "value.")); 00126 00127 /// This enables versioning on the strides of symbolically striding memory 00128 /// accesses in code like the following. 00129 /// for (i = 0; i < N; ++i) 00130 /// A[i * Stride1] += B[i * Stride2] ... 00131 /// 00132 /// Will be roughly translated to 00133 /// if (Stride1 == 1 && Stride2 == 1) { 00134 /// for (i = 0; i < N; i+=4) 00135 /// A[i:i+3] += ... 00136 /// } else 00137 /// ... 00138 static cl::opt<bool> EnableMemAccessVersioning( 00139 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 00140 cl::desc("Enable symblic stride memory access versioning")); 00141 00142 /// We don't unroll loops with a known constant trip count below this number. 00143 static const unsigned TinyTripCountUnrollThreshold = 128; 00144 00145 /// When performing memory disambiguation checks at runtime do not make more 00146 /// than this number of comparisons. 00147 static const unsigned RuntimeMemoryCheckThreshold = 8; 00148 00149 /// Maximum simd width. 00150 static const unsigned MaxVectorWidth = 64; 00151 00152 static cl::opt<unsigned> ForceTargetNumScalarRegs( 00153 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 00154 cl::desc("A flag that overrides the target's number of scalar registers.")); 00155 00156 static cl::opt<unsigned> ForceTargetNumVectorRegs( 00157 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 00158 cl::desc("A flag that overrides the target's number of vector registers.")); 00159 00160 /// Maximum vectorization interleave count. 00161 static const unsigned MaxInterleaveFactor = 16; 00162 00163 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 00164 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 00165 cl::desc("A flag that overrides the target's max interleave factor for " 00166 "scalar loops.")); 00167 00168 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 00169 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 00170 cl::desc("A flag that overrides the target's max interleave factor for " 00171 "vectorized loops.")); 00172 00173 static cl::opt<unsigned> ForceTargetInstructionCost( 00174 "force-target-instruction-cost", cl::init(0), cl::Hidden, 00175 cl::desc("A flag that overrides the target's expected cost for " 00176 "an instruction to a single constant value. Mostly " 00177 "useful for getting consistent testing.")); 00178 00179 static cl::opt<unsigned> SmallLoopCost( 00180 "small-loop-cost", cl::init(20), cl::Hidden, 00181 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 00182 00183 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 00184 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 00185 cl::desc("Enable the use of the block frequency analysis to access PGO " 00186 "heuristics minimizing code growth in cold regions and being more " 00187 "aggressive in hot regions.")); 00188 00189 // Runtime unroll loops for load/store throughput. 00190 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 00191 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 00192 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 00193 00194 /// The number of stores in a loop that are allowed to need predication. 00195 static cl::opt<unsigned> NumberOfStoresToPredicate( 00196 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 00197 cl::desc("Max number of stores to be predicated behind an if.")); 00198 00199 static cl::opt<bool> EnableIndVarRegisterHeur( 00200 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 00201 cl::desc("Count the induction variable only once when unrolling")); 00202 00203 static cl::opt<bool> EnableCondStoresVectorization( 00204 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 00205 cl::desc("Enable if predication of stores during vectorization.")); 00206 00207 static cl::opt<unsigned> MaxNestedScalarReductionUF( 00208 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 00209 cl::desc("The maximum unroll factor to use when unrolling a scalar " 00210 "reduction in a nested loop.")); 00211 00212 namespace { 00213 00214 // Forward declarations. 00215 class LoopVectorizationLegality; 00216 class LoopVectorizationCostModel; 00217 class LoopVectorizeHints; 00218 00219 /// Optimization analysis message produced during vectorization. Messages inform 00220 /// the user why vectorization did not occur. 00221 class Report { 00222 std::string Message; 00223 raw_string_ostream Out; 00224 Instruction *Instr; 00225 00226 public: 00227 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 00228 Out << "loop not vectorized: "; 00229 } 00230 00231 template <typename A> Report &operator<<(const A &Value) { 00232 Out << Value; 00233 return *this; 00234 } 00235 00236 Instruction *getInstr() { return Instr; } 00237 00238 std::string &str() { return Out.str(); } 00239 operator Twine() { return Out.str(); } 00240 }; 00241 00242 /// InnerLoopVectorizer vectorizes loops which contain only one basic 00243 /// block to a specified vectorization factor (VF). 00244 /// This class performs the widening of scalars into vectors, or multiple 00245 /// scalars. This class also implements the following features: 00246 /// * It inserts an epilogue loop for handling loops that don't have iteration 00247 /// counts that are known to be a multiple of the vectorization factor. 00248 /// * It handles the code generation for reduction variables. 00249 /// * Scalarization (implementation using scalars) of un-vectorizable 00250 /// instructions. 00251 /// InnerLoopVectorizer does not perform any vectorization-legality 00252 /// checks, and relies on the caller to check for the different legality 00253 /// aspects. The InnerLoopVectorizer relies on the 00254 /// LoopVectorizationLegality class to provide information about the induction 00255 /// and reduction variables that were found to a given vectorization factor. 00256 class InnerLoopVectorizer { 00257 public: 00258 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 00259 DominatorTree *DT, const DataLayout *DL, 00260 const TargetLibraryInfo *TLI, unsigned VecWidth, 00261 unsigned UnrollFactor) 00262 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 00263 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 00264 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 00265 Legal(nullptr) {} 00266 00267 // Perform the actual loop widening (vectorization). 00268 void vectorize(LoopVectorizationLegality *L) { 00269 Legal = L; 00270 // Create a new empty loop. Unlink the old loop and connect the new one. 00271 createEmptyLoop(); 00272 // Widen each instruction in the old loop to a new one in the new loop. 00273 // Use the Legality module to find the induction and reduction variables. 00274 vectorizeLoop(); 00275 // Register the new loop and update the analysis passes. 00276 updateAnalysis(); 00277 } 00278 00279 virtual ~InnerLoopVectorizer() {} 00280 00281 protected: 00282 /// A small list of PHINodes. 00283 typedef SmallVector<PHINode*, 4> PhiVector; 00284 /// When we unroll loops we have multiple vector values for each scalar. 00285 /// This data structure holds the unrolled and vectorized values that 00286 /// originated from one scalar instruction. 00287 typedef SmallVector<Value*, 2> VectorParts; 00288 00289 // When we if-convert we need create edge masks. We have to cache values so 00290 // that we don't end up with exponential recursion/IR. 00291 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 00292 VectorParts> EdgeMaskCache; 00293 00294 /// \brief Add code that checks at runtime if the accessed arrays overlap. 00295 /// 00296 /// Returns a pair of instructions where the first element is the first 00297 /// instruction generated in possibly a sequence of instructions and the 00298 /// second value is the final comparator value or NULL if no check is needed. 00299 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 00300 00301 /// \brief Add checks for strides that where assumed to be 1. 00302 /// 00303 /// Returns the last check instruction and the first check instruction in the 00304 /// pair as (first, last). 00305 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 00306 00307 /// Create an empty loop, based on the loop ranges of the old loop. 00308 void createEmptyLoop(); 00309 /// Copy and widen the instructions from the old loop. 00310 virtual void vectorizeLoop(); 00311 00312 /// \brief The Loop exit block may have single value PHI nodes where the 00313 /// incoming value is 'Undef'. While vectorizing we only handled real values 00314 /// that were defined inside the loop. Here we fix the 'undef case'. 00315 /// See PR14725. 00316 void fixLCSSAPHIs(); 00317 00318 /// A helper function that computes the predicate of the block BB, assuming 00319 /// that the header block of the loop is set to True. It returns the *entry* 00320 /// mask for the block BB. 00321 VectorParts createBlockInMask(BasicBlock *BB); 00322 /// A helper function that computes the predicate of the edge between SRC 00323 /// and DST. 00324 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 00325 00326 /// A helper function to vectorize a single BB within the innermost loop. 00327 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 00328 00329 /// Vectorize a single PHINode in a block. This method handles the induction 00330 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 00331 /// arbitrary length vectors. 00332 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 00333 unsigned UF, unsigned VF, PhiVector *PV); 00334 00335 /// Insert the new loop to the loop hierarchy and pass manager 00336 /// and update the analysis passes. 00337 void updateAnalysis(); 00338 00339 /// This instruction is un-vectorizable. Implement it as a sequence 00340 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 00341 /// scalarized instruction behind an if block predicated on the control 00342 /// dependence of the instruction. 00343 virtual void scalarizeInstruction(Instruction *Instr, 00344 bool IfPredicateStore=false); 00345 00346 /// Vectorize Load and Store instructions, 00347 virtual void vectorizeMemoryInstruction(Instruction *Instr); 00348 00349 /// Create a broadcast instruction. This method generates a broadcast 00350 /// instruction (shuffle) for loop invariant values and for the induction 00351 /// value. If this is the induction variable then we extend it to N, N+1, ... 00352 /// this is needed because each iteration in the loop corresponds to a SIMD 00353 /// element. 00354 virtual Value *getBroadcastInstrs(Value *V); 00355 00356 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 00357 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 00358 /// The sequence starts at StartIndex. 00359 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 00360 00361 /// When we go over instructions in the basic block we rely on previous 00362 /// values within the current basic block or on loop invariant values. 00363 /// When we widen (vectorize) values we place them in the map. If the values 00364 /// are not within the map, they have to be loop invariant, so we simply 00365 /// broadcast them into a vector. 00366 VectorParts &getVectorValue(Value *V); 00367 00368 /// Generate a shuffle sequence that will reverse the vector Vec. 00369 virtual Value *reverseVector(Value *Vec); 00370 00371 /// This is a helper class that holds the vectorizer state. It maps scalar 00372 /// instructions to vector instructions. When the code is 'unrolled' then 00373 /// then a single scalar value is mapped to multiple vector parts. The parts 00374 /// are stored in the VectorPart type. 00375 struct ValueMap { 00376 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 00377 /// are mapped. 00378 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 00379 00380 /// \return True if 'Key' is saved in the Value Map. 00381 bool has(Value *Key) const { return MapStorage.count(Key); } 00382 00383 /// Initializes a new entry in the map. Sets all of the vector parts to the 00384 /// save value in 'Val'. 00385 /// \return A reference to a vector with splat values. 00386 VectorParts &splat(Value *Key, Value *Val) { 00387 VectorParts &Entry = MapStorage[Key]; 00388 Entry.assign(UF, Val); 00389 return Entry; 00390 } 00391 00392 ///\return A reference to the value that is stored at 'Key'. 00393 VectorParts &get(Value *Key) { 00394 VectorParts &Entry = MapStorage[Key]; 00395 if (Entry.empty()) 00396 Entry.resize(UF); 00397 assert(Entry.size() == UF); 00398 return Entry; 00399 } 00400 00401 private: 00402 /// The unroll factor. Each entry in the map stores this number of vector 00403 /// elements. 00404 unsigned UF; 00405 00406 /// Map storage. We use std::map and not DenseMap because insertions to a 00407 /// dense map invalidates its iterators. 00408 std::map<Value *, VectorParts> MapStorage; 00409 }; 00410 00411 /// The original loop. 00412 Loop *OrigLoop; 00413 /// Scev analysis to use. 00414 ScalarEvolution *SE; 00415 /// Loop Info. 00416 LoopInfo *LI; 00417 /// Dominator Tree. 00418 DominatorTree *DT; 00419 /// Alias Analysis. 00420 AliasAnalysis *AA; 00421 /// Data Layout. 00422 const DataLayout *DL; 00423 /// Target Library Info. 00424 const TargetLibraryInfo *TLI; 00425 00426 /// The vectorization SIMD factor to use. Each vector will have this many 00427 /// vector elements. 00428 unsigned VF; 00429 00430 protected: 00431 /// The vectorization unroll factor to use. Each scalar is vectorized to this 00432 /// many different vector instructions. 00433 unsigned UF; 00434 00435 /// The builder that we use 00436 IRBuilder<> Builder; 00437 00438 // --- Vectorization state --- 00439 00440 /// The vector-loop preheader. 00441 BasicBlock *LoopVectorPreHeader; 00442 /// The scalar-loop preheader. 00443 BasicBlock *LoopScalarPreHeader; 00444 /// Middle Block between the vector and the scalar. 00445 BasicBlock *LoopMiddleBlock; 00446 ///The ExitBlock of the scalar loop. 00447 BasicBlock *LoopExitBlock; 00448 ///The vector loop body. 00449 SmallVector<BasicBlock *, 4> LoopVectorBody; 00450 ///The scalar loop body. 00451 BasicBlock *LoopScalarBody; 00452 /// A list of all bypass blocks. The first block is the entry of the loop. 00453 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 00454 00455 /// The new Induction variable which was added to the new block. 00456 PHINode *Induction; 00457 /// The induction variable of the old basic block. 00458 PHINode *OldInduction; 00459 /// Holds the extended (to the widest induction type) start index. 00460 Value *ExtendedIdx; 00461 /// Maps scalars to widened vectors. 00462 ValueMap WidenMap; 00463 EdgeMaskCache MaskCache; 00464 00465 LoopVectorizationLegality *Legal; 00466 }; 00467 00468 class InnerLoopUnroller : public InnerLoopVectorizer { 00469 public: 00470 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 00471 DominatorTree *DT, const DataLayout *DL, 00472 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 00473 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 00474 00475 private: 00476 void scalarizeInstruction(Instruction *Instr, 00477 bool IfPredicateStore = false) override; 00478 void vectorizeMemoryInstruction(Instruction *Instr) override; 00479 Value *getBroadcastInstrs(Value *V) override; 00480 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 00481 Value *reverseVector(Value *Vec) override; 00482 }; 00483 00484 /// \brief Look for a meaningful debug location on the instruction or it's 00485 /// operands. 00486 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 00487 if (!I) 00488 return I; 00489 00490 DebugLoc Empty; 00491 if (I->getDebugLoc() != Empty) 00492 return I; 00493 00494 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 00495 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 00496 if (OpInst->getDebugLoc() != Empty) 00497 return OpInst; 00498 } 00499 00500 return I; 00501 } 00502 00503 /// \brief Set the debug location in the builder using the debug location in the 00504 /// instruction. 00505 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 00506 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 00507 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 00508 else 00509 B.SetCurrentDebugLocation(DebugLoc()); 00510 } 00511 00512 #ifndef NDEBUG 00513 /// \return string containing a file name and a line # for the given loop. 00514 static std::string getDebugLocString(const Loop *L) { 00515 std::string Result; 00516 if (L) { 00517 raw_string_ostream OS(Result); 00518 const DebugLoc LoopDbgLoc = L->getStartLoc(); 00519 if (!LoopDbgLoc.isUnknown()) 00520 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 00521 else 00522 // Just print the module name. 00523 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 00524 OS.flush(); 00525 } 00526 return Result; 00527 } 00528 #endif 00529 00530 /// \brief Propagate known metadata from one instruction to another. 00531 static void propagateMetadata(Instruction *To, const Instruction *From) { 00532 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 00533 From->getAllMetadataOtherThanDebugLoc(Metadata); 00534 00535 for (auto M : Metadata) { 00536 unsigned Kind = M.first; 00537 00538 // These are safe to transfer (this is safe for TBAA, even when we 00539 // if-convert, because should that metadata have had a control dependency 00540 // on the condition, and thus actually aliased with some other 00541 // non-speculated memory access when the condition was false, this would be 00542 // caught by the runtime overlap checks). 00543 if (Kind != LLVMContext::MD_tbaa && 00544 Kind != LLVMContext::MD_alias_scope && 00545 Kind != LLVMContext::MD_noalias && 00546 Kind != LLVMContext::MD_fpmath) 00547 continue; 00548 00549 To->setMetadata(Kind, M.second); 00550 } 00551 } 00552 00553 /// \brief Propagate known metadata from one instruction to a vector of others. 00554 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 00555 for (Value *V : To) 00556 if (Instruction *I = dyn_cast<Instruction>(V)) 00557 propagateMetadata(I, From); 00558 } 00559 00560 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 00561 /// to what vectorization factor. 00562 /// This class does not look at the profitability of vectorization, only the 00563 /// legality. This class has two main kinds of checks: 00564 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 00565 /// will change the order of memory accesses in a way that will change the 00566 /// correctness of the program. 00567 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 00568 /// checks for a number of different conditions, such as the availability of a 00569 /// single induction variable, that all types are supported and vectorize-able, 00570 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 00571 /// This class is also used by InnerLoopVectorizer for identifying 00572 /// induction variable and the different reduction variables. 00573 class LoopVectorizationLegality { 00574 public: 00575 unsigned NumLoads; 00576 unsigned NumStores; 00577 unsigned NumPredStores; 00578 00579 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 00580 DominatorTree *DT, TargetLibraryInfo *TLI, 00581 AliasAnalysis *AA, Function *F) 00582 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 00583 DT(DT), TLI(TLI), AA(AA), TheFunction(F), Induction(nullptr), 00584 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 00585 } 00586 00587 /// This enum represents the kinds of reductions that we support. 00588 enum ReductionKind { 00589 RK_NoReduction, ///< Not a reduction. 00590 RK_IntegerAdd, ///< Sum of integers. 00591 RK_IntegerMult, ///< Product of integers. 00592 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 00593 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 00594 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 00595 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 00596 RK_FloatAdd, ///< Sum of floats. 00597 RK_FloatMult, ///< Product of floats. 00598 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 00599 }; 00600 00601 /// This enum represents the kinds of inductions that we support. 00602 enum InductionKind { 00603 IK_NoInduction, ///< Not an induction variable. 00604 IK_IntInduction, ///< Integer induction variable. Step = 1. 00605 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 00606 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 00607 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 00608 }; 00609 00610 // This enum represents the kind of minmax reduction. 00611 enum MinMaxReductionKind { 00612 MRK_Invalid, 00613 MRK_UIntMin, 00614 MRK_UIntMax, 00615 MRK_SIntMin, 00616 MRK_SIntMax, 00617 MRK_FloatMin, 00618 MRK_FloatMax 00619 }; 00620 00621 /// This struct holds information about reduction variables. 00622 struct ReductionDescriptor { 00623 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 00624 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 00625 00626 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 00627 MinMaxReductionKind MK) 00628 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 00629 00630 // The starting value of the reduction. 00631 // It does not have to be zero! 00632 TrackingVH<Value> StartValue; 00633 // The instruction who's value is used outside the loop. 00634 Instruction *LoopExitInstr; 00635 // The kind of the reduction. 00636 ReductionKind Kind; 00637 // If this a min/max reduction the kind of reduction. 00638 MinMaxReductionKind MinMaxKind; 00639 }; 00640 00641 /// This POD struct holds information about a potential reduction operation. 00642 struct ReductionInstDesc { 00643 ReductionInstDesc(bool IsRedux, Instruction *I) : 00644 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 00645 00646 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 00647 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 00648 00649 // Is this instruction a reduction candidate. 00650 bool IsReduction; 00651 // The last instruction in a min/max pattern (select of the select(icmp()) 00652 // pattern), or the current reduction instruction otherwise. 00653 Instruction *PatternLastInst; 00654 // If this is a min/max pattern the comparison predicate. 00655 MinMaxReductionKind MinMaxKind; 00656 }; 00657 00658 /// This struct holds information about the memory runtime legality 00659 /// check that a group of pointers do not overlap. 00660 struct RuntimePointerCheck { 00661 RuntimePointerCheck() : Need(false) {} 00662 00663 /// Reset the state of the pointer runtime information. 00664 void reset() { 00665 Need = false; 00666 Pointers.clear(); 00667 Starts.clear(); 00668 Ends.clear(); 00669 IsWritePtr.clear(); 00670 DependencySetId.clear(); 00671 AliasSetId.clear(); 00672 } 00673 00674 /// Insert a pointer and calculate the start and end SCEVs. 00675 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 00676 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides); 00677 00678 /// This flag indicates if we need to add the runtime check. 00679 bool Need; 00680 /// Holds the pointers that we need to check. 00681 SmallVector<TrackingVH<Value>, 2> Pointers; 00682 /// Holds the pointer value at the beginning of the loop. 00683 SmallVector<const SCEV*, 2> Starts; 00684 /// Holds the pointer value at the end of the loop. 00685 SmallVector<const SCEV*, 2> Ends; 00686 /// Holds the information if this pointer is used for writing to memory. 00687 SmallVector<bool, 2> IsWritePtr; 00688 /// Holds the id of the set of pointers that could be dependent because of a 00689 /// shared underlying object. 00690 SmallVector<unsigned, 2> DependencySetId; 00691 /// Holds the id of the disjoint alias set to which this pointer belongs. 00692 SmallVector<unsigned, 2> AliasSetId; 00693 }; 00694 00695 /// A struct for saving information about induction variables. 00696 struct InductionInfo { 00697 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 00698 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 00699 /// Start value. 00700 TrackingVH<Value> StartValue; 00701 /// Induction kind. 00702 InductionKind IK; 00703 }; 00704 00705 /// ReductionList contains the reduction descriptors for all 00706 /// of the reductions that were found in the loop. 00707 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 00708 00709 /// InductionList saves induction variables and maps them to the 00710 /// induction descriptor. 00711 typedef MapVector<PHINode*, InductionInfo> InductionList; 00712 00713 /// Returns true if it is legal to vectorize this loop. 00714 /// This does not mean that it is profitable to vectorize this 00715 /// loop, only that it is legal to do so. 00716 bool canVectorize(); 00717 00718 /// Returns the Induction variable. 00719 PHINode *getInduction() { return Induction; } 00720 00721 /// Returns the reduction variables found in the loop. 00722 ReductionList *getReductionVars() { return &Reductions; } 00723 00724 /// Returns the induction variables found in the loop. 00725 InductionList *getInductionVars() { return &Inductions; } 00726 00727 /// Returns the widest induction type. 00728 Type *getWidestInductionType() { return WidestIndTy; } 00729 00730 /// Returns True if V is an induction variable in this loop. 00731 bool isInductionVariable(const Value *V); 00732 00733 /// Return true if the block BB needs to be predicated in order for the loop 00734 /// to be vectorized. 00735 bool blockNeedsPredication(BasicBlock *BB); 00736 00737 /// Check if this pointer is consecutive when vectorizing. This happens 00738 /// when the last index of the GEP is the induction variable, or that the 00739 /// pointer itself is an induction variable. 00740 /// This check allows us to vectorize A[idx] into a wide load/store. 00741 /// Returns: 00742 /// 0 - Stride is unknown or non-consecutive. 00743 /// 1 - Address is consecutive. 00744 /// -1 - Address is consecutive, and decreasing. 00745 int isConsecutivePtr(Value *Ptr); 00746 00747 /// Returns true if the value V is uniform within the loop. 00748 bool isUniform(Value *V); 00749 00750 /// Returns true if this instruction will remain scalar after vectorization. 00751 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 00752 00753 /// Returns the information that we collected about runtime memory check. 00754 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 00755 00756 /// This function returns the identity element (or neutral element) for 00757 /// the operation K. 00758 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 00759 00760 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 00761 00762 bool hasStride(Value *V) { return StrideSet.count(V); } 00763 bool mustCheckStrides() { return !StrideSet.empty(); } 00764 SmallPtrSet<Value *, 8>::iterator strides_begin() { 00765 return StrideSet.begin(); 00766 } 00767 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 00768 00769 private: 00770 /// Check if a single basic block loop is vectorizable. 00771 /// At this point we know that this is a loop with a constant trip count 00772 /// and we only need to check individual instructions. 00773 bool canVectorizeInstrs(); 00774 00775 /// When we vectorize loops we may change the order in which 00776 /// we read and write from memory. This method checks if it is 00777 /// legal to vectorize the code, considering only memory constrains. 00778 /// Returns true if the loop is vectorizable 00779 bool canVectorizeMemory(); 00780 00781 /// Return true if we can vectorize this loop using the IF-conversion 00782 /// transformation. 00783 bool canVectorizeWithIfConvert(); 00784 00785 /// Collect the variables that need to stay uniform after vectorization. 00786 void collectLoopUniforms(); 00787 00788 /// Return true if all of the instructions in the block can be speculatively 00789 /// executed. \p SafePtrs is a list of addresses that are known to be legal 00790 /// and we know that we can read from them without segfault. 00791 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 00792 00793 /// Returns True, if 'Phi' is the kind of reduction variable for type 00794 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 00795 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 00796 /// Returns a struct describing if the instruction 'I' can be a reduction 00797 /// variable of type 'Kind'. If the reduction is a min/max pattern of 00798 /// select(icmp()) this function advances the instruction pointer 'I' from the 00799 /// compare instruction to the select instruction and stores this pointer in 00800 /// 'PatternLastInst' member of the returned struct. 00801 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 00802 ReductionInstDesc &Desc); 00803 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 00804 /// pattern corresponding to a min(X, Y) or max(X, Y). 00805 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 00806 ReductionInstDesc &Prev); 00807 /// Returns the induction kind of Phi. This function may return NoInduction 00808 /// if the PHI is not an induction variable. 00809 InductionKind isInductionVariable(PHINode *Phi); 00810 00811 /// \brief Collect memory access with loop invariant strides. 00812 /// 00813 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 00814 /// invariant. 00815 void collectStridedAcccess(Value *LoadOrStoreInst); 00816 00817 /// Report an analysis message to assist the user in diagnosing loops that are 00818 /// not vectorized. 00819 void emitAnalysis(Report &Message) { 00820 DebugLoc DL = TheLoop->getStartLoc(); 00821 if (Instruction *I = Message.getInstr()) 00822 DL = I->getDebugLoc(); 00823 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 00824 *TheFunction, DL, Message.str()); 00825 } 00826 00827 /// The loop that we evaluate. 00828 Loop *TheLoop; 00829 /// Scev analysis. 00830 ScalarEvolution *SE; 00831 /// DataLayout analysis. 00832 const DataLayout *DL; 00833 /// Dominators. 00834 DominatorTree *DT; 00835 /// Target Library Info. 00836 TargetLibraryInfo *TLI; 00837 /// Alias analysis. 00838 AliasAnalysis *AA; 00839 /// Parent function 00840 Function *TheFunction; 00841 00842 // --- vectorization state --- // 00843 00844 /// Holds the integer induction variable. This is the counter of the 00845 /// loop. 00846 PHINode *Induction; 00847 /// Holds the reduction variables. 00848 ReductionList Reductions; 00849 /// Holds all of the induction variables that we found in the loop. 00850 /// Notice that inductions don't need to start at zero and that induction 00851 /// variables can be pointers. 00852 InductionList Inductions; 00853 /// Holds the widest induction type encountered. 00854 Type *WidestIndTy; 00855 00856 /// Allowed outside users. This holds the reduction 00857 /// vars which can be accessed from outside the loop. 00858 SmallPtrSet<Value*, 4> AllowedExit; 00859 /// This set holds the variables which are known to be uniform after 00860 /// vectorization. 00861 SmallPtrSet<Instruction*, 4> Uniforms; 00862 /// We need to check that all of the pointers in this list are disjoint 00863 /// at runtime. 00864 RuntimePointerCheck PtrRtCheck; 00865 /// Can we assume the absence of NaNs. 00866 bool HasFunNoNaNAttr; 00867 00868 unsigned MaxSafeDepDistBytes; 00869 00870 ValueToValueMap Strides; 00871 SmallPtrSet<Value *, 8> StrideSet; 00872 }; 00873 00874 /// LoopVectorizationCostModel - estimates the expected speedups due to 00875 /// vectorization. 00876 /// In many cases vectorization is not profitable. This can happen because of 00877 /// a number of reasons. In this class we mainly attempt to predict the 00878 /// expected speedup/slowdowns due to the supported instruction set. We use the 00879 /// TargetTransformInfo to query the different backends for the cost of 00880 /// different operations. 00881 class LoopVectorizationCostModel { 00882 public: 00883 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 00884 LoopVectorizationLegality *Legal, 00885 const TargetTransformInfo &TTI, 00886 const DataLayout *DL, const TargetLibraryInfo *TLI, 00887 const Function *F, const LoopVectorizeHints *Hints) 00888 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), TheFunction(F), Hints(Hints) {} 00889 00890 /// Information about vectorization costs 00891 struct VectorizationFactor { 00892 unsigned Width; // Vector width with best cost 00893 unsigned Cost; // Cost of the loop with that width 00894 }; 00895 /// \return The most profitable vectorization factor and the cost of that VF. 00896 /// This method checks every power of two up to VF. If UserVF is not ZERO 00897 /// then this vectorization factor will be selected if vectorization is 00898 /// possible. 00899 VectorizationFactor selectVectorizationFactor(bool OptForSize); 00900 00901 /// \return The size (in bits) of the widest type in the code that 00902 /// needs to be vectorized. We ignore values that remain scalar such as 00903 /// 64 bit loop indices. 00904 unsigned getWidestType(); 00905 00906 /// \return The most profitable unroll factor. 00907 /// If UserUF is non-zero then this method finds the best unroll-factor 00908 /// based on register pressure and other parameters. 00909 /// VF and LoopCost are the selected vectorization factor and the cost of the 00910 /// selected VF. 00911 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 00912 00913 /// \brief A struct that represents some properties of the register usage 00914 /// of a loop. 00915 struct RegisterUsage { 00916 /// Holds the number of loop invariant values that are used in the loop. 00917 unsigned LoopInvariantRegs; 00918 /// Holds the maximum number of concurrent live intervals in the loop. 00919 unsigned MaxLocalUsers; 00920 /// Holds the number of instructions in the loop. 00921 unsigned NumInstructions; 00922 }; 00923 00924 /// \return information about the register usage of the loop. 00925 RegisterUsage calculateRegisterUsage(); 00926 00927 private: 00928 /// Returns the expected execution cost. The unit of the cost does 00929 /// not matter because we use the 'cost' units to compare different 00930 /// vector widths. The cost that is returned is *not* normalized by 00931 /// the factor width. 00932 unsigned expectedCost(unsigned VF); 00933 00934 /// Returns the execution time cost of an instruction for a given vector 00935 /// width. Vector width of one means scalar. 00936 unsigned getInstructionCost(Instruction *I, unsigned VF); 00937 00938 /// A helper function for converting Scalar types to vector types. 00939 /// If the incoming type is void, we return void. If the VF is 1, we return 00940 /// the scalar type. 00941 static Type* ToVectorTy(Type *Scalar, unsigned VF); 00942 00943 /// Returns whether the instruction is a load or store and will be a emitted 00944 /// as a vector operation. 00945 bool isConsecutiveLoadOrStore(Instruction *I); 00946 00947 /// Report an analysis message to assist the user in diagnosing loops that are 00948 /// not vectorized. 00949 void emitAnalysis(Report &Message) { 00950 DebugLoc DL = TheLoop->getStartLoc(); 00951 if (Instruction *I = Message.getInstr()) 00952 DL = I->getDebugLoc(); 00953 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 00954 *TheFunction, DL, Message.str()); 00955 } 00956 00957 /// The loop that we evaluate. 00958 Loop *TheLoop; 00959 /// Scev analysis. 00960 ScalarEvolution *SE; 00961 /// Loop Info analysis. 00962 LoopInfo *LI; 00963 /// Vectorization legality. 00964 LoopVectorizationLegality *Legal; 00965 /// Vector target information. 00966 const TargetTransformInfo &TTI; 00967 /// Target data layout information. 00968 const DataLayout *DL; 00969 /// Target Library Info. 00970 const TargetLibraryInfo *TLI; 00971 const Function *TheFunction; 00972 // Loop Vectorize Hint. 00973 const LoopVectorizeHints *Hints; 00974 }; 00975 00976 /// Utility class for getting and setting loop vectorizer hints in the form 00977 /// of loop metadata. 00978 /// This class keeps a number of loop annotations locally (as member variables) 00979 /// and can, upon request, write them back as metadata on the loop. It will 00980 /// initially scan the loop for existing metadata, and will update the local 00981 /// values based on information in the loop. 00982 /// We cannot write all values to metadata, as the mere presence of some info, 00983 /// for example 'force', means a decision has been made. So, we need to be 00984 /// careful NOT to add them if the user hasn't specifically asked so. 00985 class LoopVectorizeHints { 00986 enum HintKind { 00987 HK_WIDTH, 00988 HK_UNROLL, 00989 HK_FORCE 00990 }; 00991 00992 /// Hint - associates name and validation with the hint value. 00993 struct Hint { 00994 const char * Name; 00995 unsigned Value; // This may have to change for non-numeric values. 00996 HintKind Kind; 00997 00998 Hint(const char * Name, unsigned Value, HintKind Kind) 00999 : Name(Name), Value(Value), Kind(Kind) { } 01000 01001 bool validate(unsigned Val) { 01002 switch (Kind) { 01003 case HK_WIDTH: 01004 return isPowerOf2_32(Val) && Val <= MaxVectorWidth; 01005 case HK_UNROLL: 01006 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 01007 case HK_FORCE: 01008 return (Val <= 1); 01009 } 01010 return false; 01011 } 01012 }; 01013 01014 /// Vectorization width. 01015 Hint Width; 01016 /// Vectorization interleave factor. 01017 Hint Interleave; 01018 /// Vectorization forced 01019 Hint Force; 01020 /// Array to help iterating through all hints. 01021 Hint *Hints[3]; // avoiding initialisation due to MSVC2012 01022 01023 /// Return the loop metadata prefix. 01024 static StringRef Prefix() { return "llvm.loop."; } 01025 01026 public: 01027 enum ForceKind { 01028 FK_Undefined = -1, ///< Not selected. 01029 FK_Disabled = 0, ///< Forcing disabled. 01030 FK_Enabled = 1, ///< Forcing enabled. 01031 }; 01032 01033 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 01034 : Width("vectorize.width", VectorizationFactor, HK_WIDTH), 01035 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 01036 Force("vectorize.enable", FK_Undefined, HK_FORCE), 01037 TheLoop(L) { 01038 // FIXME: Move this up initialisation when MSVC requirement is 2013+ 01039 Hints[0] = &Width; 01040 Hints[1] = &Interleave; 01041 Hints[2] = &Force; 01042 01043 // Populate values with existing loop metadata. 01044 getHintsFromMetadata(); 01045 01046 // force-vector-interleave overrides DisableInterleaving. 01047 if (VectorizationInterleave.getNumOccurrences() > 0) 01048 Interleave.Value = VectorizationInterleave; 01049 01050 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 01051 << "LV: Interleaving disabled by the pass manager\n"); 01052 } 01053 01054 /// Mark the loop L as already vectorized by setting the width to 1. 01055 void setAlreadyVectorized() { 01056 Width.Value = Interleave.Value = 1; 01057 // FIXME: Change all lines below for this when we can use MSVC 2013+ 01058 //writeHintsToMetadata({ Width, Unroll }); 01059 std::vector<Hint> hints; 01060 hints.reserve(2); 01061 hints.emplace_back(Width); 01062 hints.emplace_back(Interleave); 01063 writeHintsToMetadata(std::move(hints)); 01064 } 01065 01066 /// Dumps all the hint information. 01067 std::string emitRemark() const { 01068 Report R; 01069 if (Force.Value == LoopVectorizeHints::FK_Disabled) 01070 R << "vectorization is explicitly disabled"; 01071 else { 01072 R << "use -Rpass-analysis=loop-vectorize for more info"; 01073 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 01074 R << " (Force=true"; 01075 if (Width.Value != 0) 01076 R << ", Vector Width=" << Width.Value; 01077 if (Interleave.Value != 0) 01078 R << ", Interleave Count=" << Interleave.Value; 01079 R << ")"; 01080 } 01081 } 01082 01083 return R.str(); 01084 } 01085 01086 unsigned getWidth() const { return Width.Value; } 01087 unsigned getInterleave() const { return Interleave.Value; } 01088 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 01089 01090 private: 01091 /// Find hints specified in the loop metadata and update local values. 01092 void getHintsFromMetadata() { 01093 MDNode *LoopID = TheLoop->getLoopID(); 01094 if (!LoopID) 01095 return; 01096 01097 // First operand should refer to the loop id itself. 01098 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 01099 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 01100 01101 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 01102 const MDString *S = nullptr; 01103 SmallVector<Value*, 4> Args; 01104 01105 // The expected hint is either a MDString or a MDNode with the first 01106 // operand a MDString. 01107 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 01108 if (!MD || MD->getNumOperands() == 0) 01109 continue; 01110 S = dyn_cast<MDString>(MD->getOperand(0)); 01111 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 01112 Args.push_back(MD->getOperand(i)); 01113 } else { 01114 S = dyn_cast<MDString>(LoopID->getOperand(i)); 01115 assert(Args.size() == 0 && "too many arguments for MDString"); 01116 } 01117 01118 if (!S) 01119 continue; 01120 01121 // Check if the hint starts with the loop metadata prefix. 01122 StringRef Name = S->getString(); 01123 if (Args.size() == 1) 01124 setHint(Name, Args[0]); 01125 } 01126 } 01127 01128 /// Checks string hint with one operand and set value if valid. 01129 void setHint(StringRef Name, Value *Arg) { 01130 if (!Name.startswith(Prefix())) 01131 return; 01132 Name = Name.substr(Prefix().size(), StringRef::npos); 01133 01134 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 01135 if (!C) return; 01136 unsigned Val = C->getZExtValue(); 01137 01138 for (auto H : Hints) { 01139 if (Name == H->Name) { 01140 if (H->validate(Val)) 01141 H->Value = Val; 01142 else 01143 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 01144 break; 01145 } 01146 } 01147 } 01148 01149 /// Create a new hint from name / value pair. 01150 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 01151 LLVMContext &Context = TheLoop->getHeader()->getContext(); 01152 SmallVector<Value*, 2> Vals; 01153 Vals.push_back(MDString::get(Context, Name)); 01154 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 01155 return MDNode::get(Context, Vals); 01156 } 01157 01158 /// Matches metadata with hint name. 01159 bool matchesHintMetadataName(MDNode *Node, std::vector<Hint> &HintTypes) { 01160 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 01161 if (!Name) 01162 return false; 01163 01164 for (auto H : HintTypes) 01165 if (Name->getName().endswith(H.Name)) 01166 return true; 01167 return false; 01168 } 01169 01170 /// Sets current hints into loop metadata, keeping other values intact. 01171 void writeHintsToMetadata(std::vector<Hint> HintTypes) { 01172 if (HintTypes.size() == 0) 01173 return; 01174 01175 // Reserve the first element to LoopID (see below). 01176 SmallVector<Value*, 4> Vals(1); 01177 // If the loop already has metadata, then ignore the existing operands. 01178 MDNode *LoopID = TheLoop->getLoopID(); 01179 if (LoopID) { 01180 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 01181 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 01182 // If node in update list, ignore old value. 01183 if (!matchesHintMetadataName(Node, HintTypes)) 01184 Vals.push_back(Node); 01185 } 01186 } 01187 01188 // Now, add the missing hints. 01189 for (auto H : HintTypes) 01190 Vals.push_back( 01191 createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 01192 01193 // Replace current metadata node with new one. 01194 LLVMContext &Context = TheLoop->getHeader()->getContext(); 01195 MDNode *NewLoopID = MDNode::get(Context, Vals); 01196 // Set operand 0 to refer to the loop id itself. 01197 NewLoopID->replaceOperandWith(0, NewLoopID); 01198 01199 TheLoop->setLoopID(NewLoopID); 01200 if (LoopID) 01201 LoopID->replaceAllUsesWith(NewLoopID); 01202 LoopID = NewLoopID; 01203 } 01204 01205 /// The loop these hints belong to. 01206 const Loop *TheLoop; 01207 }; 01208 01209 static void emitMissedWarning(Function *F, Loop *L, 01210 const LoopVectorizeHints &LH) { 01211 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 01212 L->getStartLoc(), LH.emitRemark()); 01213 01214 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 01215 if (LH.getWidth() != 1) 01216 emitLoopVectorizeWarning( 01217 F->getContext(), *F, L->getStartLoc(), 01218 "failed explicitly specified loop vectorization"); 01219 else if (LH.getInterleave() != 1) 01220 emitLoopInterleaveWarning( 01221 F->getContext(), *F, L->getStartLoc(), 01222 "failed explicitly specified loop interleaving"); 01223 } 01224 } 01225 01226 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 01227 if (L.empty()) 01228 return V.push_back(&L); 01229 01230 for (Loop *InnerL : L) 01231 addInnerLoop(*InnerL, V); 01232 } 01233 01234 /// The LoopVectorize Pass. 01235 struct LoopVectorize : public FunctionPass { 01236 /// Pass identification, replacement for typeid 01237 static char ID; 01238 01239 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 01240 : FunctionPass(ID), 01241 DisableUnrolling(NoUnrolling), 01242 AlwaysVectorize(AlwaysVectorize) { 01243 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 01244 } 01245 01246 ScalarEvolution *SE; 01247 const DataLayout *DL; 01248 LoopInfo *LI; 01249 TargetTransformInfo *TTI; 01250 DominatorTree *DT; 01251 BlockFrequencyInfo *BFI; 01252 TargetLibraryInfo *TLI; 01253 AliasAnalysis *AA; 01254 bool DisableUnrolling; 01255 bool AlwaysVectorize; 01256 01257 BlockFrequency ColdEntryFreq; 01258 01259 bool runOnFunction(Function &F) override { 01260 SE = &getAnalysis<ScalarEvolution>(); 01261 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 01262 DL = DLP ? &DLP->getDataLayout() : nullptr; 01263 LI = &getAnalysis<LoopInfo>(); 01264 TTI = &getAnalysis<TargetTransformInfo>(); 01265 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 01266 BFI = &getAnalysis<BlockFrequencyInfo>(); 01267 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 01268 AA = &getAnalysis<AliasAnalysis>(); 01269 01270 // Compute some weights outside of the loop over the loops. Compute this 01271 // using a BranchProbability to re-use its scaling math. 01272 const BranchProbability ColdProb(1, 5); // 20% 01273 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 01274 01275 // If the target claims to have no vector registers don't attempt 01276 // vectorization. 01277 if (!TTI->getNumberOfRegisters(true)) 01278 return false; 01279 01280 if (!DL) { 01281 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 01282 << ": Missing data layout\n"); 01283 return false; 01284 } 01285 01286 // Build up a worklist of inner-loops to vectorize. This is necessary as 01287 // the act of vectorizing or partially unrolling a loop creates new loops 01288 // and can invalidate iterators across the loops. 01289 SmallVector<Loop *, 8> Worklist; 01290 01291 for (Loop *L : *LI) 01292 addInnerLoop(*L, Worklist); 01293 01294 LoopsAnalyzed += Worklist.size(); 01295 01296 // Now walk the identified inner loops. 01297 bool Changed = false; 01298 while (!Worklist.empty()) 01299 Changed |= processLoop(Worklist.pop_back_val()); 01300 01301 // Process each loop nest in the function. 01302 return Changed; 01303 } 01304 01305 bool processLoop(Loop *L) { 01306 assert(L->empty() && "Only process inner loops."); 01307 01308 #ifndef NDEBUG 01309 const std::string DebugLocStr = getDebugLocString(L); 01310 #endif /* NDEBUG */ 01311 01312 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 01313 << L->getHeader()->getParent()->getName() << "\" from " 01314 << DebugLocStr << "\n"); 01315 01316 LoopVectorizeHints Hints(L, DisableUnrolling); 01317 01318 DEBUG(dbgs() << "LV: Loop hints:" 01319 << " force=" 01320 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 01321 ? "disabled" 01322 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 01323 ? "enabled" 01324 : "?")) << " width=" << Hints.getWidth() 01325 << " unroll=" << Hints.getInterleave() << "\n"); 01326 01327 // Function containing loop 01328 Function *F = L->getHeader()->getParent(); 01329 01330 // Looking at the diagnostic output is the only way to determine if a loop 01331 // was vectorized (other than looking at the IR or machine code), so it 01332 // is important to generate an optimization remark for each loop. Most of 01333 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 01334 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 01335 // less verbose reporting vectorized loops and unvectorized loops that may 01336 // benefit from vectorization, respectively. 01337 01338 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 01339 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 01340 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 01341 L->getStartLoc(), Hints.emitRemark()); 01342 return false; 01343 } 01344 01345 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 01346 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 01347 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 01348 L->getStartLoc(), Hints.emitRemark()); 01349 return false; 01350 } 01351 01352 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 01353 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 01354 emitOptimizationRemarkAnalysis( 01355 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 01356 "loop not vectorized: vector width and interleave count are " 01357 "explicitly set to 1"); 01358 return false; 01359 } 01360 01361 // Check the loop for a trip count threshold: 01362 // do not vectorize loops with a tiny trip count. 01363 BasicBlock *Latch = L->getLoopLatch(); 01364 const unsigned TC = SE->getSmallConstantTripCount(L, Latch); 01365 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 01366 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 01367 << "This loop is not worth vectorizing."); 01368 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 01369 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 01370 else { 01371 DEBUG(dbgs() << "\n"); 01372 emitOptimizationRemarkAnalysis( 01373 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 01374 "vectorization is not beneficial and is not explicitly forced"); 01375 return false; 01376 } 01377 } 01378 01379 // Check if it is legal to vectorize the loop. 01380 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F); 01381 if (!LVL.canVectorize()) { 01382 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 01383 emitMissedWarning(F, L, Hints); 01384 return false; 01385 } 01386 01387 // Use the cost model. 01388 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, F, &Hints); 01389 01390 // Check the function attributes to find out if this function should be 01391 // optimized for size. 01392 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 01393 F->hasFnAttribute(Attribute::OptimizeForSize); 01394 01395 // Compute the weighted frequency of this loop being executed and see if it 01396 // is less than 20% of the function entry baseline frequency. Note that we 01397 // always have a canonical loop here because we think we *can* vectoriez. 01398 // FIXME: This is hidden behind a flag due to pervasive problems with 01399 // exactly what block frequency models. 01400 if (LoopVectorizeWithBlockFrequency) { 01401 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 01402 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 01403 LoopEntryFreq < ColdEntryFreq) 01404 OptForSize = true; 01405 } 01406 01407 // Check the function attributes to see if implicit floats are allowed.a 01408 // FIXME: This check doesn't seem possibly correct -- what if the loop is 01409 // an integer loop and the vector instructions selected are purely integer 01410 // vector instructions? 01411 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 01412 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 01413 "attribute is used.\n"); 01414 emitOptimizationRemarkAnalysis( 01415 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 01416 "loop not vectorized due to NoImplicitFloat attribute"); 01417 emitMissedWarning(F, L, Hints); 01418 return false; 01419 } 01420 01421 // Select the optimal vectorization factor. 01422 const LoopVectorizationCostModel::VectorizationFactor VF = 01423 CM.selectVectorizationFactor(OptForSize); 01424 01425 // Select the unroll factor. 01426 const unsigned UF = 01427 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 01428 01429 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 01430 << DebugLocStr << '\n'); 01431 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 01432 01433 if (VF.Width == 1) { 01434 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 01435 01436 if (UF == 1) { 01437 emitOptimizationRemarkAnalysis( 01438 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 01439 "not beneficial to vectorize and user disabled interleaving"); 01440 return false; 01441 } 01442 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 01443 01444 // Report the unrolling decision. 01445 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 01446 Twine("unrolled with interleaving factor " + 01447 Twine(UF) + 01448 " (vectorization not beneficial)")); 01449 01450 // We decided not to vectorize, but we may want to unroll. 01451 01452 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 01453 Unroller.vectorize(&LVL); 01454 } else { 01455 // If we decided that it is *legal* to vectorize the loop then do it. 01456 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 01457 LB.vectorize(&LVL); 01458 ++LoopsVectorized; 01459 01460 // Report the vectorization decision. 01461 emitOptimizationRemark( 01462 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 01463 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 01464 ", unrolling interleave factor: " + Twine(UF) + ")"); 01465 } 01466 01467 // Mark the loop as already vectorized to avoid vectorizing again. 01468 Hints.setAlreadyVectorized(); 01469 01470 DEBUG(verifyFunction(*L->getHeader()->getParent())); 01471 return true; 01472 } 01473 01474 void getAnalysisUsage(AnalysisUsage &AU) const override { 01475 AU.addRequiredID(LoopSimplifyID); 01476 AU.addRequiredID(LCSSAID); 01477 AU.addRequired<BlockFrequencyInfo>(); 01478 AU.addRequired<DominatorTreeWrapperPass>(); 01479 AU.addRequired<LoopInfo>(); 01480 AU.addRequired<ScalarEvolution>(); 01481 AU.addRequired<TargetTransformInfo>(); 01482 AU.addRequired<AliasAnalysis>(); 01483 AU.addPreserved<LoopInfo>(); 01484 AU.addPreserved<DominatorTreeWrapperPass>(); 01485 AU.addPreserved<AliasAnalysis>(); 01486 } 01487 01488 }; 01489 01490 } // end anonymous namespace 01491 01492 //===----------------------------------------------------------------------===// 01493 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 01494 // LoopVectorizationCostModel. 01495 //===----------------------------------------------------------------------===// 01496 01497 static Value *stripIntegerCast(Value *V) { 01498 if (CastInst *CI = dyn_cast<CastInst>(V)) 01499 if (CI->getOperand(0)->getType()->isIntegerTy()) 01500 return CI->getOperand(0); 01501 return V; 01502 } 01503 01504 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 01505 /// 01506 /// If \p OrigPtr is not null, use it to look up the stride value instead of 01507 /// \p Ptr. 01508 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 01509 ValueToValueMap &PtrToStride, 01510 Value *Ptr, Value *OrigPtr = nullptr) { 01511 01512 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 01513 01514 // If there is an entry in the map return the SCEV of the pointer with the 01515 // symbolic stride replaced by one. 01516 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 01517 if (SI != PtrToStride.end()) { 01518 Value *StrideVal = SI->second; 01519 01520 // Strip casts. 01521 StrideVal = stripIntegerCast(StrideVal); 01522 01523 // Replace symbolic stride by one. 01524 Value *One = ConstantInt::get(StrideVal->getType(), 1); 01525 ValueToValueMap RewriteMap; 01526 RewriteMap[StrideVal] = One; 01527 01528 const SCEV *ByOne = 01529 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 01530 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 01531 << "\n"); 01532 return ByOne; 01533 } 01534 01535 // Otherwise, just return the SCEV of the original pointer. 01536 return SE->getSCEV(Ptr); 01537 } 01538 01539 void LoopVectorizationLegality::RuntimePointerCheck::insert( 01540 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 01541 unsigned ASId, ValueToValueMap &Strides) { 01542 // Get the stride replaced scev. 01543 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 01544 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 01545 assert(AR && "Invalid addrec expression"); 01546 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 01547 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 01548 Pointers.push_back(Ptr); 01549 Starts.push_back(AR->getStart()); 01550 Ends.push_back(ScEnd); 01551 IsWritePtr.push_back(WritePtr); 01552 DependencySetId.push_back(DepSetId); 01553 AliasSetId.push_back(ASId); 01554 } 01555 01556 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 01557 // We need to place the broadcast of invariant variables outside the loop. 01558 Instruction *Instr = dyn_cast<Instruction>(V); 01559 bool NewInstr = 01560 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 01561 Instr->getParent()) != LoopVectorBody.end()); 01562 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 01563 01564 // Place the code for broadcasting invariant variables in the new preheader. 01565 IRBuilder<>::InsertPointGuard Guard(Builder); 01566 if (Invariant) 01567 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 01568 01569 // Broadcast the scalar into all locations in the vector. 01570 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 01571 01572 return Shuf; 01573 } 01574 01575 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 01576 bool Negate) { 01577 assert(Val->getType()->isVectorTy() && "Must be a vector"); 01578 assert(Val->getType()->getScalarType()->isIntegerTy() && 01579 "Elem must be an integer"); 01580 // Create the types. 01581 Type *ITy = Val->getType()->getScalarType(); 01582 VectorType *Ty = cast<VectorType>(Val->getType()); 01583 int VLen = Ty->getNumElements(); 01584 SmallVector<Constant*, 8> Indices; 01585 01586 // Create a vector of consecutive numbers from zero to VF. 01587 for (int i = 0; i < VLen; ++i) { 01588 int64_t Idx = Negate ? (-i) : i; 01589 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 01590 } 01591 01592 // Add the consecutive indices to the vector value. 01593 Constant *Cv = ConstantVector::get(Indices); 01594 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 01595 return Builder.CreateAdd(Val, Cv, "induction"); 01596 } 01597 01598 /// \brief Find the operand of the GEP that should be checked for consecutive 01599 /// stores. This ignores trailing indices that have no effect on the final 01600 /// pointer. 01601 static unsigned getGEPInductionOperand(const DataLayout *DL, 01602 const GetElementPtrInst *Gep) { 01603 unsigned LastOperand = Gep->getNumOperands() - 1; 01604 unsigned GEPAllocSize = DL->getTypeAllocSize( 01605 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 01606 01607 // Walk backwards and try to peel off zeros. 01608 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 01609 // Find the type we're currently indexing into. 01610 gep_type_iterator GEPTI = gep_type_begin(Gep); 01611 std::advance(GEPTI, LastOperand - 1); 01612 01613 // If it's a type with the same allocation size as the result of the GEP we 01614 // can peel off the zero index. 01615 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 01616 break; 01617 --LastOperand; 01618 } 01619 01620 return LastOperand; 01621 } 01622 01623 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 01624 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 01625 // Make sure that the pointer does not point to structs. 01626 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 01627 return 0; 01628 01629 // If this value is a pointer induction variable we know it is consecutive. 01630 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 01631 if (Phi && Inductions.count(Phi)) { 01632 InductionInfo II = Inductions[Phi]; 01633 if (IK_PtrInduction == II.IK) 01634 return 1; 01635 else if (IK_ReversePtrInduction == II.IK) 01636 return -1; 01637 } 01638 01639 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 01640 if (!Gep) 01641 return 0; 01642 01643 unsigned NumOperands = Gep->getNumOperands(); 01644 Value *GpPtr = Gep->getPointerOperand(); 01645 // If this GEP value is a consecutive pointer induction variable and all of 01646 // the indices are constant then we know it is consecutive. We can 01647 Phi = dyn_cast<PHINode>(GpPtr); 01648 if (Phi && Inductions.count(Phi)) { 01649 01650 // Make sure that the pointer does not point to structs. 01651 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 01652 if (GepPtrType->getElementType()->isAggregateType()) 01653 return 0; 01654 01655 // Make sure that all of the index operands are loop invariant. 01656 for (unsigned i = 1; i < NumOperands; ++i) 01657 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 01658 return 0; 01659 01660 InductionInfo II = Inductions[Phi]; 01661 if (IK_PtrInduction == II.IK) 01662 return 1; 01663 else if (IK_ReversePtrInduction == II.IK) 01664 return -1; 01665 } 01666 01667 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 01668 01669 // Check that all of the gep indices are uniform except for our induction 01670 // operand. 01671 for (unsigned i = 0; i != NumOperands; ++i) 01672 if (i != InductionOperand && 01673 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 01674 return 0; 01675 01676 // We can emit wide load/stores only if the last non-zero index is the 01677 // induction variable. 01678 const SCEV *Last = nullptr; 01679 if (!Strides.count(Gep)) 01680 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 01681 else { 01682 // Because of the multiplication by a stride we can have a s/zext cast. 01683 // We are going to replace this stride by 1 so the cast is safe to ignore. 01684 // 01685 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 01686 // %0 = trunc i64 %indvars.iv to i32 01687 // %mul = mul i32 %0, %Stride1 01688 // %idxprom = zext i32 %mul to i64 << Safe cast. 01689 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 01690 // 01691 Last = replaceSymbolicStrideSCEV(SE, Strides, 01692 Gep->getOperand(InductionOperand), Gep); 01693 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 01694 Last = 01695 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 01696 ? C->getOperand() 01697 : Last; 01698 } 01699 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 01700 const SCEV *Step = AR->getStepRecurrence(*SE); 01701 01702 // The memory is consecutive because the last index is consecutive 01703 // and all other indices are loop invariant. 01704 if (Step->isOne()) 01705 return 1; 01706 if (Step->isAllOnesValue()) 01707 return -1; 01708 } 01709 01710 return 0; 01711 } 01712 01713 bool LoopVectorizationLegality::isUniform(Value *V) { 01714 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 01715 } 01716 01717 InnerLoopVectorizer::VectorParts& 01718 InnerLoopVectorizer::getVectorValue(Value *V) { 01719 assert(V != Induction && "The new induction variable should not be used."); 01720 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 01721 01722 // If we have a stride that is replaced by one, do it here. 01723 if (Legal->hasStride(V)) 01724 V = ConstantInt::get(V->getType(), 1); 01725 01726 // If we have this scalar in the map, return it. 01727 if (WidenMap.has(V)) 01728 return WidenMap.get(V); 01729 01730 // If this scalar is unknown, assume that it is a constant or that it is 01731 // loop invariant. Broadcast V and save the value for future uses. 01732 Value *B = getBroadcastInstrs(V); 01733 return WidenMap.splat(V, B); 01734 } 01735 01736 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 01737 assert(Vec->getType()->isVectorTy() && "Invalid type"); 01738 SmallVector<Constant*, 8> ShuffleMask; 01739 for (unsigned i = 0; i < VF; ++i) 01740 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 01741 01742 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 01743 ConstantVector::get(ShuffleMask), 01744 "reverse"); 01745 } 01746 01747 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 01748 // Attempt to issue a wide load. 01749 LoadInst *LI = dyn_cast<LoadInst>(Instr); 01750 StoreInst *SI = dyn_cast<StoreInst>(Instr); 01751 01752 assert((LI || SI) && "Invalid Load/Store instruction"); 01753 01754 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 01755 Type *DataTy = VectorType::get(ScalarDataTy, VF); 01756 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 01757 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 01758 // An alignment of 0 means target abi alignment. We need to use the scalar's 01759 // target abi alignment in such a case. 01760 if (!Alignment) 01761 Alignment = DL->getABITypeAlignment(ScalarDataTy); 01762 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 01763 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 01764 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 01765 01766 if (SI && Legal->blockNeedsPredication(SI->getParent())) 01767 return scalarizeInstruction(Instr, true); 01768 01769 if (ScalarAllocatedSize != VectorElementSize) 01770 return scalarizeInstruction(Instr); 01771 01772 // If the pointer is loop invariant or if it is non-consecutive, 01773 // scalarize the load. 01774 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 01775 bool Reverse = ConsecutiveStride < 0; 01776 bool UniformLoad = LI && Legal->isUniform(Ptr); 01777 if (!ConsecutiveStride || UniformLoad) 01778 return scalarizeInstruction(Instr); 01779 01780 Constant *Zero = Builder.getInt32(0); 01781 VectorParts &Entry = WidenMap.get(Instr); 01782 01783 // Handle consecutive loads/stores. 01784 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 01785 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 01786 setDebugLocFromInst(Builder, Gep); 01787 Value *PtrOperand = Gep->getPointerOperand(); 01788 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 01789 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 01790 01791 // Create the new GEP with the new induction variable. 01792 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 01793 Gep2->setOperand(0, FirstBasePtr); 01794 Gep2->setName("gep.indvar.base"); 01795 Ptr = Builder.Insert(Gep2); 01796 } else if (Gep) { 01797 setDebugLocFromInst(Builder, Gep); 01798 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 01799 OrigLoop) && "Base ptr must be invariant"); 01800 01801 // The last index does not have to be the induction. It can be 01802 // consecutive and be a function of the index. For example A[I+1]; 01803 unsigned NumOperands = Gep->getNumOperands(); 01804 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 01805 // Create the new GEP with the new induction variable. 01806 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 01807 01808 for (unsigned i = 0; i < NumOperands; ++i) { 01809 Value *GepOperand = Gep->getOperand(i); 01810 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 01811 01812 // Update last index or loop invariant instruction anchored in loop. 01813 if (i == InductionOperand || 01814 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 01815 assert((i == InductionOperand || 01816 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 01817 "Must be last index or loop invariant"); 01818 01819 VectorParts &GEPParts = getVectorValue(GepOperand); 01820 Value *Index = GEPParts[0]; 01821 Index = Builder.CreateExtractElement(Index, Zero); 01822 Gep2->setOperand(i, Index); 01823 Gep2->setName("gep.indvar.idx"); 01824 } 01825 } 01826 Ptr = Builder.Insert(Gep2); 01827 } else { 01828 // Use the induction element ptr. 01829 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 01830 setDebugLocFromInst(Builder, Ptr); 01831 VectorParts &PtrVal = getVectorValue(Ptr); 01832 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 01833 } 01834 01835 // Handle Stores: 01836 if (SI) { 01837 assert(!Legal->isUniform(SI->getPointerOperand()) && 01838 "We do not allow storing to uniform addresses"); 01839 setDebugLocFromInst(Builder, SI); 01840 // We don't want to update the value in the map as it might be used in 01841 // another expression. So don't use a reference type for "StoredVal". 01842 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 01843 01844 for (unsigned Part = 0; Part < UF; ++Part) { 01845 // Calculate the pointer for the specific unroll-part. 01846 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 01847 01848 if (Reverse) { 01849 // If we store to reverse consecutive memory locations then we need 01850 // to reverse the order of elements in the stored value. 01851 StoredVal[Part] = reverseVector(StoredVal[Part]); 01852 // If the address is consecutive but reversed, then the 01853 // wide store needs to start at the last vector element. 01854 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 01855 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 01856 } 01857 01858 Value *VecPtr = Builder.CreateBitCast(PartPtr, 01859 DataTy->getPointerTo(AddressSpace)); 01860 StoreInst *NewSI = 01861 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 01862 propagateMetadata(NewSI, SI); 01863 } 01864 return; 01865 } 01866 01867 // Handle loads. 01868 assert(LI && "Must have a load instruction"); 01869 setDebugLocFromInst(Builder, LI); 01870 for (unsigned Part = 0; Part < UF; ++Part) { 01871 // Calculate the pointer for the specific unroll-part. 01872 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 01873 01874 if (Reverse) { 01875 // If the address is consecutive but reversed, then the 01876 // wide store needs to start at the last vector element. 01877 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 01878 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 01879 } 01880 01881 Value *VecPtr = Builder.CreateBitCast(PartPtr, 01882 DataTy->getPointerTo(AddressSpace)); 01883 LoadInst *NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 01884 propagateMetadata(NewLI, LI); 01885 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 01886 } 01887 } 01888 01889 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 01890 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 01891 // Holds vector parameters or scalars, in case of uniform vals. 01892 SmallVector<VectorParts, 4> Params; 01893 01894 setDebugLocFromInst(Builder, Instr); 01895 01896 // Find all of the vectorized parameters. 01897 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 01898 Value *SrcOp = Instr->getOperand(op); 01899 01900 // If we are accessing the old induction variable, use the new one. 01901 if (SrcOp == OldInduction) { 01902 Params.push_back(getVectorValue(SrcOp)); 01903 continue; 01904 } 01905 01906 // Try using previously calculated values. 01907 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 01908 01909 // If the src is an instruction that appeared earlier in the basic block 01910 // then it should already be vectorized. 01911 if (SrcInst && OrigLoop->contains(SrcInst)) { 01912 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 01913 // The parameter is a vector value from earlier. 01914 Params.push_back(WidenMap.get(SrcInst)); 01915 } else { 01916 // The parameter is a scalar from outside the loop. Maybe even a constant. 01917 VectorParts Scalars; 01918 Scalars.append(UF, SrcOp); 01919 Params.push_back(Scalars); 01920 } 01921 } 01922 01923 assert(Params.size() == Instr->getNumOperands() && 01924 "Invalid number of operands"); 01925 01926 // Does this instruction return a value ? 01927 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 01928 01929 Value *UndefVec = IsVoidRetTy ? nullptr : 01930 UndefValue::get(VectorType::get(Instr->getType(), VF)); 01931 // Create a new entry in the WidenMap and initialize it to Undef or Null. 01932 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 01933 01934 Instruction *InsertPt = Builder.GetInsertPoint(); 01935 BasicBlock *IfBlock = Builder.GetInsertBlock(); 01936 BasicBlock *CondBlock = nullptr; 01937 01938 VectorParts Cond; 01939 Loop *VectorLp = nullptr; 01940 if (IfPredicateStore) { 01941 assert(Instr->getParent()->getSinglePredecessor() && 01942 "Only support single predecessor blocks"); 01943 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 01944 Instr->getParent()); 01945 VectorLp = LI->getLoopFor(IfBlock); 01946 assert(VectorLp && "Must have a loop for this block"); 01947 } 01948 01949 // For each vector unroll 'part': 01950 for (unsigned Part = 0; Part < UF; ++Part) { 01951 // For each scalar that we create: 01952 for (unsigned Width = 0; Width < VF; ++Width) { 01953 01954 // Start if-block. 01955 Value *Cmp = nullptr; 01956 if (IfPredicateStore) { 01957 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 01958 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 01959 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 01960 LoopVectorBody.push_back(CondBlock); 01961 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 01962 // Update Builder with newly created basic block. 01963 Builder.SetInsertPoint(InsertPt); 01964 } 01965 01966 Instruction *Cloned = Instr->clone(); 01967 if (!IsVoidRetTy) 01968 Cloned->setName(Instr->getName() + ".cloned"); 01969 // Replace the operands of the cloned instructions with extracted scalars. 01970 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 01971 Value *Op = Params[op][Part]; 01972 // Param is a vector. Need to extract the right lane. 01973 if (Op->getType()->isVectorTy()) 01974 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 01975 Cloned->setOperand(op, Op); 01976 } 01977 01978 // Place the cloned scalar in the new loop. 01979 Builder.Insert(Cloned); 01980 01981 // If the original scalar returns a value we need to place it in a vector 01982 // so that future users will be able to use it. 01983 if (!IsVoidRetTy) 01984 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 01985 Builder.getInt32(Width)); 01986 // End if-block. 01987 if (IfPredicateStore) { 01988 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 01989 LoopVectorBody.push_back(NewIfBlock); 01990 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 01991 Builder.SetInsertPoint(InsertPt); 01992 Instruction *OldBr = IfBlock->getTerminator(); 01993 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 01994 OldBr->eraseFromParent(); 01995 IfBlock = NewIfBlock; 01996 } 01997 } 01998 } 01999 } 02000 02001 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 02002 Instruction *Loc) { 02003 if (FirstInst) 02004 return FirstInst; 02005 if (Instruction *I = dyn_cast<Instruction>(V)) 02006 return I->getParent() == Loc->getParent() ? I : nullptr; 02007 return nullptr; 02008 } 02009 02010 std::pair<Instruction *, Instruction *> 02011 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 02012 Instruction *tnullptr = nullptr; 02013 if (!Legal->mustCheckStrides()) 02014 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 02015 02016 IRBuilder<> ChkBuilder(Loc); 02017 02018 // Emit checks. 02019 Value *Check = nullptr; 02020 Instruction *FirstInst = nullptr; 02021 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 02022 SE = Legal->strides_end(); 02023 SI != SE; ++SI) { 02024 Value *Ptr = stripIntegerCast(*SI); 02025 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 02026 "stride.chk"); 02027 // Store the first instruction we create. 02028 FirstInst = getFirstInst(FirstInst, C, Loc); 02029 if (Check) 02030 Check = ChkBuilder.CreateOr(Check, C); 02031 else 02032 Check = C; 02033 } 02034 02035 // We have to do this trickery because the IRBuilder might fold the check to a 02036 // constant expression in which case there is no Instruction anchored in a 02037 // the block. 02038 LLVMContext &Ctx = Loc->getContext(); 02039 Instruction *TheCheck = 02040 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 02041 ChkBuilder.Insert(TheCheck, "stride.not.one"); 02042 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 02043 02044 return std::make_pair(FirstInst, TheCheck); 02045 } 02046 02047 std::pair<Instruction *, Instruction *> 02048 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 02049 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 02050 Legal->getRuntimePointerCheck(); 02051 02052 Instruction *tnullptr = nullptr; 02053 if (!PtrRtCheck->Need) 02054 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 02055 02056 unsigned NumPointers = PtrRtCheck->Pointers.size(); 02057 SmallVector<TrackingVH<Value> , 2> Starts; 02058 SmallVector<TrackingVH<Value> , 2> Ends; 02059 02060 LLVMContext &Ctx = Loc->getContext(); 02061 SCEVExpander Exp(*SE, "induction"); 02062 Instruction *FirstInst = nullptr; 02063 02064 for (unsigned i = 0; i < NumPointers; ++i) { 02065 Value *Ptr = PtrRtCheck->Pointers[i]; 02066 const SCEV *Sc = SE->getSCEV(Ptr); 02067 02068 if (SE->isLoopInvariant(Sc, OrigLoop)) { 02069 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 02070 *Ptr <<"\n"); 02071 Starts.push_back(Ptr); 02072 Ends.push_back(Ptr); 02073 } else { 02074 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 02075 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 02076 02077 // Use this type for pointer arithmetic. 02078 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 02079 02080 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 02081 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 02082 Starts.push_back(Start); 02083 Ends.push_back(End); 02084 } 02085 } 02086 02087 IRBuilder<> ChkBuilder(Loc); 02088 // Our instructions might fold to a constant. 02089 Value *MemoryRuntimeCheck = nullptr; 02090 for (unsigned i = 0; i < NumPointers; ++i) { 02091 for (unsigned j = i+1; j < NumPointers; ++j) { 02092 // No need to check if two readonly pointers intersect. 02093 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 02094 continue; 02095 02096 // Only need to check pointers between two different dependency sets. 02097 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 02098 continue; 02099 // Only need to check pointers in the same alias set. 02100 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) 02101 continue; 02102 02103 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 02104 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 02105 02106 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 02107 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 02108 "Trying to bounds check pointers with different address spaces"); 02109 02110 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 02111 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 02112 02113 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 02114 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 02115 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 02116 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 02117 02118 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 02119 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 02120 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 02121 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 02122 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 02123 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 02124 if (MemoryRuntimeCheck) { 02125 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 02126 "conflict.rdx"); 02127 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 02128 } 02129 MemoryRuntimeCheck = IsConflict; 02130 } 02131 } 02132 02133 // We have to do this trickery because the IRBuilder might fold the check to a 02134 // constant expression in which case there is no Instruction anchored in a 02135 // the block. 02136 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 02137 ConstantInt::getTrue(Ctx)); 02138 ChkBuilder.Insert(Check, "memcheck.conflict"); 02139 FirstInst = getFirstInst(FirstInst, Check, Loc); 02140 return std::make_pair(FirstInst, Check); 02141 } 02142 02143 void InnerLoopVectorizer::createEmptyLoop() { 02144 /* 02145 In this function we generate a new loop. The new loop will contain 02146 the vectorized instructions while the old loop will continue to run the 02147 scalar remainder. 02148 02149 [ ] <-- Back-edge taken count overflow check. 02150 / | 02151 / v 02152 | [ ] <-- vector loop bypass (may consist of multiple blocks). 02153 | / | 02154 | / v 02155 || [ ] <-- vector pre header. 02156 || | 02157 || v 02158 || [ ] \ 02159 || [ ]_| <-- vector loop. 02160 || | 02161 | \ v 02162 | >[ ] <--- middle-block. 02163 | / | 02164 | / v 02165 -|- >[ ] <--- new preheader. 02166 | | 02167 | v 02168 | [ ] \ 02169 | [ ]_| <-- old scalar loop to handle remainder. 02170 \ | 02171 \ v 02172 >[ ] <-- exit block. 02173 ... 02174 */ 02175 02176 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 02177 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 02178 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 02179 assert(BypassBlock && "Invalid loop structure"); 02180 assert(ExitBlock && "Must have an exit block"); 02181 02182 // Some loops have a single integer induction variable, while other loops 02183 // don't. One example is c++ iterators that often have multiple pointer 02184 // induction variables. In the code below we also support a case where we 02185 // don't have a single induction variable. 02186 OldInduction = Legal->getInduction(); 02187 Type *IdxTy = Legal->getWidestInductionType(); 02188 02189 // Find the loop boundaries. 02190 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 02191 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 02192 02193 // The exit count might have the type of i64 while the phi is i32. This can 02194 // happen if we have an induction variable that is sign extended before the 02195 // compare. The only way that we get a backedge taken count is that the 02196 // induction variable was signed and as such will not overflow. In such a case 02197 // truncation is legal. 02198 if (ExitCount->getType()->getPrimitiveSizeInBits() > 02199 IdxTy->getPrimitiveSizeInBits()) 02200 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 02201 02202 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 02203 // Get the total trip count from the count by adding 1. 02204 ExitCount = SE->getAddExpr(BackedgeTakeCount, 02205 SE->getConstant(BackedgeTakeCount->getType(), 1)); 02206 02207 // Expand the trip count and place the new instructions in the preheader. 02208 // Notice that the pre-header does not change, only the loop body. 02209 SCEVExpander Exp(*SE, "induction"); 02210 02211 // We need to test whether the backedge-taken count is uint##_max. Adding one 02212 // to it will cause overflow and an incorrect loop trip count in the vector 02213 // body. In case of overflow we want to directly jump to the scalar remainder 02214 // loop. 02215 Value *BackedgeCount = 02216 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 02217 BypassBlock->getTerminator()); 02218 if (BackedgeCount->getType()->isPointerTy()) 02219 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 02220 "backedge.ptrcnt.to.int", 02221 BypassBlock->getTerminator()); 02222 Instruction *CheckBCOverflow = 02223 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 02224 Constant::getAllOnesValue(BackedgeCount->getType()), 02225 "backedge.overflow", BypassBlock->getTerminator()); 02226 02227 // The loop index does not have to start at Zero. Find the original start 02228 // value from the induction PHI node. If we don't have an induction variable 02229 // then we know that it starts at zero. 02230 Builder.SetInsertPoint(BypassBlock->getTerminator()); 02231 Value *StartIdx = ExtendedIdx = OldInduction ? 02232 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 02233 IdxTy): 02234 ConstantInt::get(IdxTy, 0); 02235 02236 // We need an instruction to anchor the overflow check on. StartIdx needs to 02237 // be defined before the overflow check branch. Because the scalar preheader 02238 // is going to merge the start index and so the overflow branch block needs to 02239 // contain a definition of the start index. 02240 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 02241 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 02242 BypassBlock->getTerminator()); 02243 02244 // Count holds the overall loop count (N). 02245 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 02246 BypassBlock->getTerminator()); 02247 02248 LoopBypassBlocks.push_back(BypassBlock); 02249 02250 // Split the single block loop into the two loop structure described above. 02251 BasicBlock *VectorPH = 02252 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 02253 BasicBlock *VecBody = 02254 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 02255 BasicBlock *MiddleBlock = 02256 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 02257 BasicBlock *ScalarPH = 02258 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 02259 02260 // Create and register the new vector loop. 02261 Loop* Lp = new Loop(); 02262 Loop *ParentLoop = OrigLoop->getParentLoop(); 02263 02264 // Insert the new loop into the loop nest and register the new basic blocks 02265 // before calling any utilities such as SCEV that require valid LoopInfo. 02266 if (ParentLoop) { 02267 ParentLoop->addChildLoop(Lp); 02268 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 02269 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 02270 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 02271 } else { 02272 LI->addTopLevelLoop(Lp); 02273 } 02274 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 02275 02276 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 02277 // inside the loop. 02278 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 02279 02280 // Generate the induction variable. 02281 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 02282 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 02283 // The loop step is equal to the vectorization factor (num of SIMD elements) 02284 // times the unroll factor (num of SIMD instructions). 02285 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 02286 02287 // This is the IR builder that we use to add all of the logic for bypassing 02288 // the new vector loop. 02289 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 02290 setDebugLocFromInst(BypassBuilder, 02291 getDebugLocFromInstOrOperands(OldInduction)); 02292 02293 // We may need to extend the index in case there is a type mismatch. 02294 // We know that the count starts at zero and does not overflow. 02295 if (Count->getType() != IdxTy) { 02296 // The exit count can be of pointer type. Convert it to the correct 02297 // integer type. 02298 if (ExitCount->getType()->isPointerTy()) 02299 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 02300 else 02301 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 02302 } 02303 02304 // Add the start index to the loop count to get the new end index. 02305 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 02306 02307 // Now we need to generate the expression for N - (N % VF), which is 02308 // the part that the vectorized body will execute. 02309 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 02310 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 02311 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 02312 "end.idx.rnd.down"); 02313 02314 // Now, compare the new count to zero. If it is zero skip the vector loop and 02315 // jump to the scalar loop. 02316 Value *Cmp = 02317 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 02318 02319 BasicBlock *LastBypassBlock = BypassBlock; 02320 02321 // Generate code to check that the loops trip count that we computed by adding 02322 // one to the backedge-taken count will not overflow. 02323 { 02324 auto PastOverflowCheck = 02325 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 02326 BasicBlock *CheckBlock = 02327 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 02328 if (ParentLoop) 02329 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 02330 LoopBypassBlocks.push_back(CheckBlock); 02331 Instruction *OldTerm = LastBypassBlock->getTerminator(); 02332 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 02333 OldTerm->eraseFromParent(); 02334 LastBypassBlock = CheckBlock; 02335 } 02336 02337 // Generate the code to check that the strides we assumed to be one are really 02338 // one. We want the new basic block to start at the first instruction in a 02339 // sequence of instructions that form a check. 02340 Instruction *StrideCheck; 02341 Instruction *FirstCheckInst; 02342 std::tie(FirstCheckInst, StrideCheck) = 02343 addStrideCheck(LastBypassBlock->getTerminator()); 02344 if (StrideCheck) { 02345 // Create a new block containing the stride check. 02346 BasicBlock *CheckBlock = 02347 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 02348 if (ParentLoop) 02349 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 02350 LoopBypassBlocks.push_back(CheckBlock); 02351 02352 // Replace the branch into the memory check block with a conditional branch 02353 // for the "few elements case". 02354 Instruction *OldTerm = LastBypassBlock->getTerminator(); 02355 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 02356 OldTerm->eraseFromParent(); 02357 02358 Cmp = StrideCheck; 02359 LastBypassBlock = CheckBlock; 02360 } 02361 02362 // Generate the code that checks in runtime if arrays overlap. We put the 02363 // checks into a separate block to make the more common case of few elements 02364 // faster. 02365 Instruction *MemRuntimeCheck; 02366 std::tie(FirstCheckInst, MemRuntimeCheck) = 02367 addRuntimeCheck(LastBypassBlock->getTerminator()); 02368 if (MemRuntimeCheck) { 02369 // Create a new block containing the memory check. 02370 BasicBlock *CheckBlock = 02371 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 02372 if (ParentLoop) 02373 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 02374 LoopBypassBlocks.push_back(CheckBlock); 02375 02376 // Replace the branch into the memory check block with a conditional branch 02377 // for the "few elements case". 02378 Instruction *OldTerm = LastBypassBlock->getTerminator(); 02379 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 02380 OldTerm->eraseFromParent(); 02381 02382 Cmp = MemRuntimeCheck; 02383 LastBypassBlock = CheckBlock; 02384 } 02385 02386 LastBypassBlock->getTerminator()->eraseFromParent(); 02387 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 02388 LastBypassBlock); 02389 02390 // We are going to resume the execution of the scalar loop. 02391 // Go over all of the induction variables that we found and fix the 02392 // PHIs that are left in the scalar version of the loop. 02393 // The starting values of PHI nodes depend on the counter of the last 02394 // iteration in the vectorized loop. 02395 // If we come from a bypass edge then we need to start from the original 02396 // start value. 02397 02398 // This variable saves the new starting index for the scalar loop. 02399 PHINode *ResumeIndex = nullptr; 02400 LoopVectorizationLegality::InductionList::iterator I, E; 02401 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 02402 // Set builder to point to last bypass block. 02403 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 02404 for (I = List->begin(), E = List->end(); I != E; ++I) { 02405 PHINode *OrigPhi = I->first; 02406 LoopVectorizationLegality::InductionInfo II = I->second; 02407 02408 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 02409 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 02410 MiddleBlock->getTerminator()); 02411 // We might have extended the type of the induction variable but we need a 02412 // truncated version for the scalar loop. 02413 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 02414 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 02415 MiddleBlock->getTerminator()) : nullptr; 02416 02417 // Create phi nodes to merge from the backedge-taken check block. 02418 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 02419 ScalarPH->getTerminator()); 02420 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 02421 02422 PHINode *BCTruncResumeVal = nullptr; 02423 if (OrigPhi == OldInduction) { 02424 BCTruncResumeVal = 02425 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 02426 ScalarPH->getTerminator()); 02427 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 02428 } 02429 02430 Value *EndValue = nullptr; 02431 switch (II.IK) { 02432 case LoopVectorizationLegality::IK_NoInduction: 02433 llvm_unreachable("Unknown induction"); 02434 case LoopVectorizationLegality::IK_IntInduction: { 02435 // Handle the integer induction counter. 02436 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 02437 02438 // We have the canonical induction variable. 02439 if (OrigPhi == OldInduction) { 02440 // Create a truncated version of the resume value for the scalar loop, 02441 // we might have promoted the type to a larger width. 02442 EndValue = 02443 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 02444 // The new PHI merges the original incoming value, in case of a bypass, 02445 // or the value at the end of the vectorized loop. 02446 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 02447 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 02448 TruncResumeVal->addIncoming(EndValue, VecBody); 02449 02450 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 02451 02452 // We know what the end value is. 02453 EndValue = IdxEndRoundDown; 02454 // We also know which PHI node holds it. 02455 ResumeIndex = ResumeVal; 02456 break; 02457 } 02458 02459 // Not the canonical induction variable - add the vector loop count to the 02460 // start value. 02461 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 02462 II.StartValue->getType(), 02463 "cast.crd"); 02464 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 02465 break; 02466 } 02467 case LoopVectorizationLegality::IK_ReverseIntInduction: { 02468 // Convert the CountRoundDown variable to the PHI size. 02469 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 02470 II.StartValue->getType(), 02471 "cast.crd"); 02472 // Handle reverse integer induction counter. 02473 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 02474 break; 02475 } 02476 case LoopVectorizationLegality::IK_PtrInduction: { 02477 // For pointer induction variables, calculate the offset using 02478 // the end index. 02479 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 02480 "ptr.ind.end"); 02481 break; 02482 } 02483 case LoopVectorizationLegality::IK_ReversePtrInduction: { 02484 // The value at the end of the loop for the reverse pointer is calculated 02485 // by creating a GEP with a negative index starting from the start value. 02486 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 02487 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 02488 "rev.ind.end"); 02489 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 02490 "rev.ptr.ind.end"); 02491 break; 02492 } 02493 }// end of case 02494 02495 // The new PHI merges the original incoming value, in case of a bypass, 02496 // or the value at the end of the vectorized loop. 02497 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 02498 if (OrigPhi == OldInduction) 02499 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 02500 else 02501 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 02502 } 02503 ResumeVal->addIncoming(EndValue, VecBody); 02504 02505 // Fix the scalar body counter (PHI node). 02506 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 02507 02508 // The old induction's phi node in the scalar body needs the truncated 02509 // value. 02510 if (OrigPhi == OldInduction) { 02511 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 02512 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 02513 } else { 02514 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 02515 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 02516 } 02517 } 02518 02519 // If we are generating a new induction variable then we also need to 02520 // generate the code that calculates the exit value. This value is not 02521 // simply the end of the counter because we may skip the vectorized body 02522 // in case of a runtime check. 02523 if (!OldInduction){ 02524 assert(!ResumeIndex && "Unexpected resume value found"); 02525 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 02526 MiddleBlock->getTerminator()); 02527 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 02528 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 02529 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 02530 } 02531 02532 // Make sure that we found the index where scalar loop needs to continue. 02533 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 02534 "Invalid resume Index"); 02535 02536 // Add a check in the middle block to see if we have completed 02537 // all of the iterations in the first vector loop. 02538 // If (N - N%VF) == N, then we *don't* need to run the remainder. 02539 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 02540 ResumeIndex, "cmp.n", 02541 MiddleBlock->getTerminator()); 02542 02543 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 02544 // Remove the old terminator. 02545 MiddleBlock->getTerminator()->eraseFromParent(); 02546 02547 // Create i+1 and fill the PHINode. 02548 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 02549 Induction->addIncoming(StartIdx, VectorPH); 02550 Induction->addIncoming(NextIdx, VecBody); 02551 // Create the compare. 02552 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 02553 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 02554 02555 // Now we have two terminators. Remove the old one from the block. 02556 VecBody->getTerminator()->eraseFromParent(); 02557 02558 // Get ready to start creating new instructions into the vectorized body. 02559 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 02560 02561 // Save the state. 02562 LoopVectorPreHeader = VectorPH; 02563 LoopScalarPreHeader = ScalarPH; 02564 LoopMiddleBlock = MiddleBlock; 02565 LoopExitBlock = ExitBlock; 02566 LoopVectorBody.push_back(VecBody); 02567 LoopScalarBody = OldBasicBlock; 02568 02569 LoopVectorizeHints Hints(Lp, true); 02570 Hints.setAlreadyVectorized(); 02571 } 02572 02573 /// This function returns the identity element (or neutral element) for 02574 /// the operation K. 02575 Constant* 02576 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 02577 switch (K) { 02578 case RK_IntegerXor: 02579 case RK_IntegerAdd: 02580 case RK_IntegerOr: 02581 // Adding, Xoring, Oring zero to a number does not change it. 02582 return ConstantInt::get(Tp, 0); 02583 case RK_IntegerMult: 02584 // Multiplying a number by 1 does not change it. 02585 return ConstantInt::get(Tp, 1); 02586 case RK_IntegerAnd: 02587 // AND-ing a number with an all-1 value does not change it. 02588 return ConstantInt::get(Tp, -1, true); 02589 case RK_FloatMult: 02590 // Multiplying a number by 1 does not change it. 02591 return ConstantFP::get(Tp, 1.0L); 02592 case RK_FloatAdd: 02593 // Adding zero to a number does not change it. 02594 return ConstantFP::get(Tp, 0.0L); 02595 default: 02596 llvm_unreachable("Unknown reduction kind"); 02597 } 02598 } 02599 02600 /// This function translates the reduction kind to an LLVM binary operator. 02601 static unsigned 02602 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 02603 switch (Kind) { 02604 case LoopVectorizationLegality::RK_IntegerAdd: 02605 return Instruction::Add; 02606 case LoopVectorizationLegality::RK_IntegerMult: 02607 return Instruction::Mul; 02608 case LoopVectorizationLegality::RK_IntegerOr: 02609 return Instruction::Or; 02610 case LoopVectorizationLegality::RK_IntegerAnd: 02611 return Instruction::And; 02612 case LoopVectorizationLegality::RK_IntegerXor: 02613 return Instruction::Xor; 02614 case LoopVectorizationLegality::RK_FloatMult: 02615 return Instruction::FMul; 02616 case LoopVectorizationLegality::RK_FloatAdd: 02617 return Instruction::FAdd; 02618 case LoopVectorizationLegality::RK_IntegerMinMax: 02619 return Instruction::ICmp; 02620 case LoopVectorizationLegality::RK_FloatMinMax: 02621 return Instruction::FCmp; 02622 default: 02623 llvm_unreachable("Unknown reduction operation"); 02624 } 02625 } 02626 02627 Value *createMinMaxOp(IRBuilder<> &Builder, 02628 LoopVectorizationLegality::MinMaxReductionKind RK, 02629 Value *Left, 02630 Value *Right) { 02631 CmpInst::Predicate P = CmpInst::ICMP_NE; 02632 switch (RK) { 02633 default: 02634 llvm_unreachable("Unknown min/max reduction kind"); 02635 case LoopVectorizationLegality::MRK_UIntMin: 02636 P = CmpInst::ICMP_ULT; 02637 break; 02638 case LoopVectorizationLegality::MRK_UIntMax: 02639 P = CmpInst::ICMP_UGT; 02640 break; 02641 case LoopVectorizationLegality::MRK_SIntMin: 02642 P = CmpInst::ICMP_SLT; 02643 break; 02644 case LoopVectorizationLegality::MRK_SIntMax: 02645 P = CmpInst::ICMP_SGT; 02646 break; 02647 case LoopVectorizationLegality::MRK_FloatMin: 02648 P = CmpInst::FCMP_OLT; 02649 break; 02650 case LoopVectorizationLegality::MRK_FloatMax: 02651 P = CmpInst::FCMP_OGT; 02652 break; 02653 } 02654 02655 Value *Cmp; 02656 if (RK == LoopVectorizationLegality::MRK_FloatMin || 02657 RK == LoopVectorizationLegality::MRK_FloatMax) 02658 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 02659 else 02660 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 02661 02662 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 02663 return Select; 02664 } 02665 02666 namespace { 02667 struct CSEDenseMapInfo { 02668 static bool canHandle(Instruction *I) { 02669 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 02670 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 02671 } 02672 static inline Instruction *getEmptyKey() { 02673 return DenseMapInfo<Instruction *>::getEmptyKey(); 02674 } 02675 static inline Instruction *getTombstoneKey() { 02676 return DenseMapInfo<Instruction *>::getTombstoneKey(); 02677 } 02678 static unsigned getHashValue(Instruction *I) { 02679 assert(canHandle(I) && "Unknown instruction!"); 02680 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 02681 I->value_op_end())); 02682 } 02683 static bool isEqual(Instruction *LHS, Instruction *RHS) { 02684 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 02685 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 02686 return LHS == RHS; 02687 return LHS->isIdenticalTo(RHS); 02688 } 02689 }; 02690 } 02691 02692 /// \brief Check whether this block is a predicated block. 02693 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 02694 /// = ...; " blocks. We start with one vectorized basic block. For every 02695 /// conditional block we split this vectorized block. Therefore, every second 02696 /// block will be a predicated one. 02697 static bool isPredicatedBlock(unsigned BlockNum) { 02698 return BlockNum % 2; 02699 } 02700 02701 ///\brief Perform cse of induction variable instructions. 02702 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 02703 // Perform simple cse. 02704 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 02705 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 02706 BasicBlock *BB = BBs[i]; 02707 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 02708 Instruction *In = I++; 02709 02710 if (!CSEDenseMapInfo::canHandle(In)) 02711 continue; 02712 02713 // Check if we can replace this instruction with any of the 02714 // visited instructions. 02715 if (Instruction *V = CSEMap.lookup(In)) { 02716 In->replaceAllUsesWith(V); 02717 In->eraseFromParent(); 02718 continue; 02719 } 02720 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 02721 // ...;" blocks for predicated stores. Every second block is a predicated 02722 // block. 02723 if (isPredicatedBlock(i)) 02724 continue; 02725 02726 CSEMap[In] = In; 02727 } 02728 } 02729 } 02730 02731 /// \brief Adds a 'fast' flag to floating point operations. 02732 static Value *addFastMathFlag(Value *V) { 02733 if (isa<FPMathOperator>(V)){ 02734 FastMathFlags Flags; 02735 Flags.setUnsafeAlgebra(); 02736 cast<Instruction>(V)->setFastMathFlags(Flags); 02737 } 02738 return V; 02739 } 02740 02741 void InnerLoopVectorizer::vectorizeLoop() { 02742 //===------------------------------------------------===// 02743 // 02744 // Notice: any optimization or new instruction that go 02745 // into the code below should be also be implemented in 02746 // the cost-model. 02747 // 02748 //===------------------------------------------------===// 02749 Constant *Zero = Builder.getInt32(0); 02750 02751 // In order to support reduction variables we need to be able to vectorize 02752 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 02753 // stages. First, we create a new vector PHI node with no incoming edges. 02754 // We use this value when we vectorize all of the instructions that use the 02755 // PHI. Next, after all of the instructions in the block are complete we 02756 // add the new incoming edges to the PHI. At this point all of the 02757 // instructions in the basic block are vectorized, so we can use them to 02758 // construct the PHI. 02759 PhiVector RdxPHIsToFix; 02760 02761 // Scan the loop in a topological order to ensure that defs are vectorized 02762 // before users. 02763 LoopBlocksDFS DFS(OrigLoop); 02764 DFS.perform(LI); 02765 02766 // Vectorize all of the blocks in the original loop. 02767 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 02768 be = DFS.endRPO(); bb != be; ++bb) 02769 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 02770 02771 // At this point every instruction in the original loop is widened to 02772 // a vector form. We are almost done. Now, we need to fix the PHI nodes 02773 // that we vectorized. The PHI nodes are currently empty because we did 02774 // not want to introduce cycles. Notice that the remaining PHI nodes 02775 // that we need to fix are reduction variables. 02776 02777 // Create the 'reduced' values for each of the induction vars. 02778 // The reduced values are the vector values that we scalarize and combine 02779 // after the loop is finished. 02780 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 02781 it != e; ++it) { 02782 PHINode *RdxPhi = *it; 02783 assert(RdxPhi && "Unable to recover vectorized PHI"); 02784 02785 // Find the reduction variable descriptor. 02786 assert(Legal->getReductionVars()->count(RdxPhi) && 02787 "Unable to find the reduction variable"); 02788 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 02789 (*Legal->getReductionVars())[RdxPhi]; 02790 02791 setDebugLocFromInst(Builder, RdxDesc.StartValue); 02792 02793 // We need to generate a reduction vector from the incoming scalar. 02794 // To do so, we need to generate the 'identity' vector and override 02795 // one of the elements with the incoming scalar reduction. We need 02796 // to do it in the vector-loop preheader. 02797 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 02798 02799 // This is the vector-clone of the value that leaves the loop. 02800 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 02801 Type *VecTy = VectorExit[0]->getType(); 02802 02803 // Find the reduction identity variable. Zero for addition, or, xor, 02804 // one for multiplication, -1 for And. 02805 Value *Identity; 02806 Value *VectorStart; 02807 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 02808 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 02809 // MinMax reduction have the start value as their identify. 02810 if (VF == 1) { 02811 VectorStart = Identity = RdxDesc.StartValue; 02812 } else { 02813 VectorStart = Identity = Builder.CreateVectorSplat(VF, 02814 RdxDesc.StartValue, 02815 "minmax.ident"); 02816 } 02817 } else { 02818 // Handle other reduction kinds: 02819 Constant *Iden = 02820 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 02821 VecTy->getScalarType()); 02822 if (VF == 1) { 02823 Identity = Iden; 02824 // This vector is the Identity vector where the first element is the 02825 // incoming scalar reduction. 02826 VectorStart = RdxDesc.StartValue; 02827 } else { 02828 Identity = ConstantVector::getSplat(VF, Iden); 02829 02830 // This vector is the Identity vector where the first element is the 02831 // incoming scalar reduction. 02832 VectorStart = Builder.CreateInsertElement(Identity, 02833 RdxDesc.StartValue, Zero); 02834 } 02835 } 02836 02837 // Fix the vector-loop phi. 02838 // We created the induction variable so we know that the 02839 // preheader is the first entry. 02840 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 02841 02842 // Reductions do not have to start at zero. They can start with 02843 // any loop invariant values. 02844 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 02845 BasicBlock *Latch = OrigLoop->getLoopLatch(); 02846 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 02847 VectorParts &Val = getVectorValue(LoopVal); 02848 for (unsigned part = 0; part < UF; ++part) { 02849 // Make sure to add the reduction stat value only to the 02850 // first unroll part. 02851 Value *StartVal = (part == 0) ? VectorStart : Identity; 02852 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 02853 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 02854 LoopVectorBody.back()); 02855 } 02856 02857 // Before each round, move the insertion point right between 02858 // the PHIs and the values we are going to write. 02859 // This allows us to write both PHINodes and the extractelement 02860 // instructions. 02861 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 02862 02863 VectorParts RdxParts; 02864 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 02865 for (unsigned part = 0; part < UF; ++part) { 02866 // This PHINode contains the vectorized reduction variable, or 02867 // the initial value vector, if we bypass the vector loop. 02868 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 02869 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 02870 Value *StartVal = (part == 0) ? VectorStart : Identity; 02871 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 02872 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 02873 NewPhi->addIncoming(RdxExitVal[part], 02874 LoopVectorBody.back()); 02875 RdxParts.push_back(NewPhi); 02876 } 02877 02878 // Reduce all of the unrolled parts into a single vector. 02879 Value *ReducedPartRdx = RdxParts[0]; 02880 unsigned Op = getReductionBinOp(RdxDesc.Kind); 02881 setDebugLocFromInst(Builder, ReducedPartRdx); 02882 for (unsigned part = 1; part < UF; ++part) { 02883 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 02884 // Floating point operations had to be 'fast' to enable the reduction. 02885 ReducedPartRdx = addFastMathFlag( 02886 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 02887 ReducedPartRdx, "bin.rdx")); 02888 else 02889 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 02890 ReducedPartRdx, RdxParts[part]); 02891 } 02892 02893 if (VF > 1) { 02894 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 02895 // and vector ops, reducing the set of values being computed by half each 02896 // round. 02897 assert(isPowerOf2_32(VF) && 02898 "Reduction emission only supported for pow2 vectors!"); 02899 Value *TmpVec = ReducedPartRdx; 02900 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 02901 for (unsigned i = VF; i != 1; i >>= 1) { 02902 // Move the upper half of the vector to the lower half. 02903 for (unsigned j = 0; j != i/2; ++j) 02904 ShuffleMask[j] = Builder.getInt32(i/2 + j); 02905 02906 // Fill the rest of the mask with undef. 02907 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 02908 UndefValue::get(Builder.getInt32Ty())); 02909 02910 Value *Shuf = 02911 Builder.CreateShuffleVector(TmpVec, 02912 UndefValue::get(TmpVec->getType()), 02913 ConstantVector::get(ShuffleMask), 02914 "rdx.shuf"); 02915 02916 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 02917 // Floating point operations had to be 'fast' to enable the reduction. 02918 TmpVec = addFastMathFlag(Builder.CreateBinOp( 02919 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 02920 else 02921 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 02922 } 02923 02924 // The result is in the first element of the vector. 02925 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 02926 Builder.getInt32(0)); 02927 } 02928 02929 // Create a phi node that merges control-flow from the backedge-taken check 02930 // block and the middle block. 02931 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 02932 LoopScalarPreHeader->getTerminator()); 02933 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 02934 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 02935 02936 // Now, we need to fix the users of the reduction variable 02937 // inside and outside of the scalar remainder loop. 02938 // We know that the loop is in LCSSA form. We need to update the 02939 // PHI nodes in the exit blocks. 02940 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 02941 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 02942 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 02943 if (!LCSSAPhi) break; 02944 02945 // All PHINodes need to have a single entry edge, or two if 02946 // we already fixed them. 02947 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 02948 02949 // We found our reduction value exit-PHI. Update it with the 02950 // incoming bypass edge. 02951 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 02952 // Add an edge coming from the bypass. 02953 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 02954 break; 02955 } 02956 }// end of the LCSSA phi scan. 02957 02958 // Fix the scalar loop reduction variable with the incoming reduction sum 02959 // from the vector body and from the backedge value. 02960 int IncomingEdgeBlockIdx = 02961 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 02962 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 02963 // Pick the other block. 02964 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 02965 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 02966 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 02967 }// end of for each redux variable. 02968 02969 fixLCSSAPHIs(); 02970 02971 // Remove redundant induction instructions. 02972 cse(LoopVectorBody); 02973 } 02974 02975 void InnerLoopVectorizer::fixLCSSAPHIs() { 02976 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 02977 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 02978 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 02979 if (!LCSSAPhi) break; 02980 if (LCSSAPhi->getNumIncomingValues() == 1) 02981 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 02982 LoopMiddleBlock); 02983 } 02984 } 02985 02986 InnerLoopVectorizer::VectorParts 02987 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 02988 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 02989 "Invalid edge"); 02990 02991 // Look for cached value. 02992 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 02993 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 02994 if (ECEntryIt != MaskCache.end()) 02995 return ECEntryIt->second; 02996 02997 VectorParts SrcMask = createBlockInMask(Src); 02998 02999 // The terminator has to be a branch inst! 03000 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 03001 assert(BI && "Unexpected terminator found"); 03002 03003 if (BI->isConditional()) { 03004 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 03005 03006 if (BI->getSuccessor(0) != Dst) 03007 for (unsigned part = 0; part < UF; ++part) 03008 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 03009 03010 for (unsigned part = 0; part < UF; ++part) 03011 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 03012 03013 MaskCache[Edge] = EdgeMask; 03014 return EdgeMask; 03015 } 03016 03017 MaskCache[Edge] = SrcMask; 03018 return SrcMask; 03019 } 03020 03021 InnerLoopVectorizer::VectorParts 03022 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 03023 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 03024 03025 // Loop incoming mask is all-one. 03026 if (OrigLoop->getHeader() == BB) { 03027 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 03028 return getVectorValue(C); 03029 } 03030 03031 // This is the block mask. We OR all incoming edges, and with zero. 03032 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 03033 VectorParts BlockMask = getVectorValue(Zero); 03034 03035 // For each pred: 03036 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 03037 VectorParts EM = createEdgeMask(*it, BB); 03038 for (unsigned part = 0; part < UF; ++part) 03039 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 03040 } 03041 03042 return BlockMask; 03043 } 03044 03045 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 03046 InnerLoopVectorizer::VectorParts &Entry, 03047 unsigned UF, unsigned VF, PhiVector *PV) { 03048 PHINode* P = cast<PHINode>(PN); 03049 // Handle reduction variables: 03050 if (Legal->getReductionVars()->count(P)) { 03051 for (unsigned part = 0; part < UF; ++part) { 03052 // This is phase one of vectorizing PHIs. 03053 Type *VecTy = (VF == 1) ? PN->getType() : 03054 VectorType::get(PN->getType(), VF); 03055 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 03056 LoopVectorBody.back()-> getFirstInsertionPt()); 03057 } 03058 PV->push_back(P); 03059 return; 03060 } 03061 03062 setDebugLocFromInst(Builder, P); 03063 // Check for PHI nodes that are lowered to vector selects. 03064 if (P->getParent() != OrigLoop->getHeader()) { 03065 // We know that all PHIs in non-header blocks are converted into 03066 // selects, so we don't have to worry about the insertion order and we 03067 // can just use the builder. 03068 // At this point we generate the predication tree. There may be 03069 // duplications since this is a simple recursive scan, but future 03070 // optimizations will clean it up. 03071 03072 unsigned NumIncoming = P->getNumIncomingValues(); 03073 03074 // Generate a sequence of selects of the form: 03075 // SELECT(Mask3, In3, 03076 // SELECT(Mask2, In2, 03077 // ( ...))) 03078 for (unsigned In = 0; In < NumIncoming; In++) { 03079 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 03080 P->getParent()); 03081 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 03082 03083 for (unsigned part = 0; part < UF; ++part) { 03084 // We might have single edge PHIs (blocks) - use an identity 03085 // 'select' for the first PHI operand. 03086 if (In == 0) 03087 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 03088 In0[part]); 03089 else 03090 // Select between the current value and the previous incoming edge 03091 // based on the incoming mask. 03092 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 03093 Entry[part], "predphi"); 03094 } 03095 } 03096 return; 03097 } 03098 03099 // This PHINode must be an induction variable. 03100 // Make sure that we know about it. 03101 assert(Legal->getInductionVars()->count(P) && 03102 "Not an induction variable"); 03103 03104 LoopVectorizationLegality::InductionInfo II = 03105 Legal->getInductionVars()->lookup(P); 03106 03107 switch (II.IK) { 03108 case LoopVectorizationLegality::IK_NoInduction: 03109 llvm_unreachable("Unknown induction"); 03110 case LoopVectorizationLegality::IK_IntInduction: { 03111 assert(P->getType() == II.StartValue->getType() && "Types must match"); 03112 Type *PhiTy = P->getType(); 03113 Value *Broadcasted; 03114 if (P == OldInduction) { 03115 // Handle the canonical induction variable. We might have had to 03116 // extend the type. 03117 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 03118 } else { 03119 // Handle other induction variables that are now based on the 03120 // canonical one. 03121 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 03122 "normalized.idx"); 03123 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 03124 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 03125 "offset.idx"); 03126 } 03127 Broadcasted = getBroadcastInstrs(Broadcasted); 03128 // After broadcasting the induction variable we need to make the vector 03129 // consecutive by adding 0, 1, 2, etc. 03130 for (unsigned part = 0; part < UF; ++part) 03131 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 03132 return; 03133 } 03134 case LoopVectorizationLegality::IK_ReverseIntInduction: 03135 case LoopVectorizationLegality::IK_PtrInduction: 03136 case LoopVectorizationLegality::IK_ReversePtrInduction: 03137 // Handle reverse integer and pointer inductions. 03138 Value *StartIdx = ExtendedIdx; 03139 // This is the normalized GEP that starts counting at zero. 03140 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 03141 "normalized.idx"); 03142 03143 // Handle the reverse integer induction variable case. 03144 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 03145 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 03146 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 03147 "resize.norm.idx"); 03148 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 03149 "reverse.idx"); 03150 03151 // This is a new value so do not hoist it out. 03152 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 03153 // After broadcasting the induction variable we need to make the 03154 // vector consecutive by adding ... -3, -2, -1, 0. 03155 for (unsigned part = 0; part < UF; ++part) 03156 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 03157 true); 03158 return; 03159 } 03160 03161 // Handle the pointer induction variable case. 03162 assert(P->getType()->isPointerTy() && "Unexpected type."); 03163 03164 // Is this a reverse induction ptr or a consecutive induction ptr. 03165 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 03166 II.IK); 03167 03168 // This is the vector of results. Notice that we don't generate 03169 // vector geps because scalar geps result in better code. 03170 for (unsigned part = 0; part < UF; ++part) { 03171 if (VF == 1) { 03172 int EltIndex = (part) * (Reverse ? -1 : 1); 03173 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 03174 Value *GlobalIdx; 03175 if (Reverse) 03176 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 03177 else 03178 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 03179 03180 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 03181 "next.gep"); 03182 Entry[part] = SclrGep; 03183 continue; 03184 } 03185 03186 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 03187 for (unsigned int i = 0; i < VF; ++i) { 03188 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 03189 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 03190 Value *GlobalIdx; 03191 if (!Reverse) 03192 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 03193 else 03194 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 03195 03196 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 03197 "next.gep"); 03198 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 03199 Builder.getInt32(i), 03200 "insert.gep"); 03201 } 03202 Entry[part] = VecVal; 03203 } 03204 return; 03205 } 03206 } 03207 03208 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 03209 // For each instruction in the old loop. 03210 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 03211 VectorParts &Entry = WidenMap.get(it); 03212 switch (it->getOpcode()) { 03213 case Instruction::Br: 03214 // Nothing to do for PHIs and BR, since we already took care of the 03215 // loop control flow instructions. 03216 continue; 03217 case Instruction::PHI:{ 03218 // Vectorize PHINodes. 03219 widenPHIInstruction(it, Entry, UF, VF, PV); 03220 continue; 03221 }// End of PHI. 03222 03223 case Instruction::Add: 03224 case Instruction::FAdd: 03225 case Instruction::Sub: 03226 case Instruction::FSub: 03227 case Instruction::Mul: 03228 case Instruction::FMul: 03229 case Instruction::UDiv: 03230 case Instruction::SDiv: 03231 case Instruction::FDiv: 03232 case Instruction::URem: 03233 case Instruction::SRem: 03234 case Instruction::FRem: 03235 case Instruction::Shl: 03236 case Instruction::LShr: 03237 case Instruction::AShr: 03238 case Instruction::And: 03239 case Instruction::Or: 03240 case Instruction::Xor: { 03241 // Just widen binops. 03242 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 03243 setDebugLocFromInst(Builder, BinOp); 03244 VectorParts &A = getVectorValue(it->getOperand(0)); 03245 VectorParts &B = getVectorValue(it->getOperand(1)); 03246 03247 // Use this vector value for all users of the original instruction. 03248 for (unsigned Part = 0; Part < UF; ++Part) { 03249 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 03250 03251 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 03252 VecOp->copyIRFlags(BinOp); 03253 03254 Entry[Part] = V; 03255 } 03256 03257 propagateMetadata(Entry, it); 03258 break; 03259 } 03260 case Instruction::Select: { 03261 // Widen selects. 03262 // If the selector is loop invariant we can create a select 03263 // instruction with a scalar condition. Otherwise, use vector-select. 03264 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 03265 OrigLoop); 03266 setDebugLocFromInst(Builder, it); 03267 03268 // The condition can be loop invariant but still defined inside the 03269 // loop. This means that we can't just use the original 'cond' value. 03270 // We have to take the 'vectorized' value and pick the first lane. 03271 // Instcombine will make this a no-op. 03272 VectorParts &Cond = getVectorValue(it->getOperand(0)); 03273 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 03274 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 03275 03276 Value *ScalarCond = (VF == 1) ? Cond[0] : 03277 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 03278 03279 for (unsigned Part = 0; Part < UF; ++Part) { 03280 Entry[Part] = Builder.CreateSelect( 03281 InvariantCond ? ScalarCond : Cond[Part], 03282 Op0[Part], 03283 Op1[Part]); 03284 } 03285 03286 propagateMetadata(Entry, it); 03287 break; 03288 } 03289 03290 case Instruction::ICmp: 03291 case Instruction::FCmp: { 03292 // Widen compares. Generate vector compares. 03293 bool FCmp = (it->getOpcode() == Instruction::FCmp); 03294 CmpInst *Cmp = dyn_cast<CmpInst>(it); 03295 setDebugLocFromInst(Builder, it); 03296 VectorParts &A = getVectorValue(it->getOperand(0)); 03297 VectorParts &B = getVectorValue(it->getOperand(1)); 03298 for (unsigned Part = 0; Part < UF; ++Part) { 03299 Value *C = nullptr; 03300 if (FCmp) 03301 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 03302 else 03303 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 03304 Entry[Part] = C; 03305 } 03306 03307 propagateMetadata(Entry, it); 03308 break; 03309 } 03310 03311 case Instruction::Store: 03312 case Instruction::Load: 03313 vectorizeMemoryInstruction(it); 03314 break; 03315 case Instruction::ZExt: 03316 case Instruction::SExt: 03317 case Instruction::FPToUI: 03318 case Instruction::FPToSI: 03319 case Instruction::FPExt: 03320 case Instruction::PtrToInt: 03321 case Instruction::IntToPtr: 03322 case Instruction::SIToFP: 03323 case Instruction::UIToFP: 03324 case Instruction::Trunc: 03325 case Instruction::FPTrunc: 03326 case Instruction::BitCast: { 03327 CastInst *CI = dyn_cast<CastInst>(it); 03328 setDebugLocFromInst(Builder, it); 03329 /// Optimize the special case where the source is the induction 03330 /// variable. Notice that we can only optimize the 'trunc' case 03331 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 03332 /// c. other casts depend on pointer size. 03333 if (CI->getOperand(0) == OldInduction && 03334 it->getOpcode() == Instruction::Trunc) { 03335 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 03336 CI->getType()); 03337 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 03338 for (unsigned Part = 0; Part < UF; ++Part) 03339 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 03340 propagateMetadata(Entry, it); 03341 break; 03342 } 03343 /// Vectorize casts. 03344 Type *DestTy = (VF == 1) ? CI->getType() : 03345 VectorType::get(CI->getType(), VF); 03346 03347 VectorParts &A = getVectorValue(it->getOperand(0)); 03348 for (unsigned Part = 0; Part < UF; ++Part) 03349 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 03350 propagateMetadata(Entry, it); 03351 break; 03352 } 03353 03354 case Instruction::Call: { 03355 // Ignore dbg intrinsics. 03356 if (isa<DbgInfoIntrinsic>(it)) 03357 break; 03358 setDebugLocFromInst(Builder, it); 03359 03360 Module *M = BB->getParent()->getParent(); 03361 CallInst *CI = cast<CallInst>(it); 03362 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 03363 assert(ID && "Not an intrinsic call!"); 03364 switch (ID) { 03365 case Intrinsic::lifetime_end: 03366 case Intrinsic::lifetime_start: 03367 scalarizeInstruction(it); 03368 break; 03369 default: 03370 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 03371 for (unsigned Part = 0; Part < UF; ++Part) { 03372 SmallVector<Value *, 4> Args; 03373 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 03374 if (HasScalarOpd && i == 1) { 03375 Args.push_back(CI->getArgOperand(i)); 03376 continue; 03377 } 03378 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 03379 Args.push_back(Arg[Part]); 03380 } 03381 Type *Tys[] = {CI->getType()}; 03382 if (VF > 1) 03383 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 03384 03385 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 03386 Entry[Part] = Builder.CreateCall(F, Args); 03387 } 03388 03389 propagateMetadata(Entry, it); 03390 break; 03391 } 03392 break; 03393 } 03394 03395 default: 03396 // All other instructions are unsupported. Scalarize them. 03397 scalarizeInstruction(it); 03398 break; 03399 }// end of switch. 03400 }// end of for_each instr. 03401 } 03402 03403 void InnerLoopVectorizer::updateAnalysis() { 03404 // Forget the original basic block. 03405 SE->forgetLoop(OrigLoop); 03406 03407 // Update the dominator tree information. 03408 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 03409 "Entry does not dominate exit."); 03410 03411 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 03412 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 03413 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 03414 03415 // Due to if predication of stores we might create a sequence of "if(pred) 03416 // a[i] = ...; " blocks. 03417 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 03418 if (i == 0) 03419 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 03420 else if (isPredicatedBlock(i)) { 03421 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 03422 } else { 03423 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 03424 } 03425 } 03426 03427 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 03428 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 03429 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 03430 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 03431 03432 DEBUG(DT->verifyDomTree()); 03433 } 03434 03435 /// \brief Check whether it is safe to if-convert this phi node. 03436 /// 03437 /// Phi nodes with constant expressions that can trap are not safe to if 03438 /// convert. 03439 static bool canIfConvertPHINodes(BasicBlock *BB) { 03440 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 03441 PHINode *Phi = dyn_cast<PHINode>(I); 03442 if (!Phi) 03443 return true; 03444 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 03445 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 03446 if (C->canTrap()) 03447 return false; 03448 } 03449 return true; 03450 } 03451 03452 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 03453 if (!EnableIfConversion) { 03454 emitAnalysis(Report() << "if-conversion is disabled"); 03455 return false; 03456 } 03457 03458 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 03459 03460 // A list of pointers that we can safely read and write to. 03461 SmallPtrSet<Value *, 8> SafePointes; 03462 03463 // Collect safe addresses. 03464 for (Loop::block_iterator BI = TheLoop->block_begin(), 03465 BE = TheLoop->block_end(); BI != BE; ++BI) { 03466 BasicBlock *BB = *BI; 03467 03468 if (blockNeedsPredication(BB)) 03469 continue; 03470 03471 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 03472 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 03473 SafePointes.insert(LI->getPointerOperand()); 03474 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 03475 SafePointes.insert(SI->getPointerOperand()); 03476 } 03477 } 03478 03479 // Collect the blocks that need predication. 03480 BasicBlock *Header = TheLoop->getHeader(); 03481 for (Loop::block_iterator BI = TheLoop->block_begin(), 03482 BE = TheLoop->block_end(); BI != BE; ++BI) { 03483 BasicBlock *BB = *BI; 03484 03485 // We don't support switch statements inside loops. 03486 if (!isa<BranchInst>(BB->getTerminator())) { 03487 emitAnalysis(Report(BB->getTerminator()) 03488 << "loop contains a switch statement"); 03489 return false; 03490 } 03491 03492 // We must be able to predicate all blocks that need to be predicated. 03493 if (blockNeedsPredication(BB)) { 03494 if (!blockCanBePredicated(BB, SafePointes)) { 03495 emitAnalysis(Report(BB->getTerminator()) 03496 << "control flow cannot be substituted for a select"); 03497 return false; 03498 } 03499 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 03500 emitAnalysis(Report(BB->getTerminator()) 03501 << "control flow cannot be substituted for a select"); 03502 return false; 03503 } 03504 } 03505 03506 // We can if-convert this loop. 03507 return true; 03508 } 03509 03510 bool LoopVectorizationLegality::canVectorize() { 03511 // We must have a loop in canonical form. Loops with indirectbr in them cannot 03512 // be canonicalized. 03513 if (!TheLoop->getLoopPreheader()) { 03514 emitAnalysis( 03515 Report() << "loop control flow is not understood by vectorizer"); 03516 return false; 03517 } 03518 03519 // We can only vectorize innermost loops. 03520 if (TheLoop->getSubLoopsVector().size()) { 03521 emitAnalysis(Report() << "loop is not the innermost loop"); 03522 return false; 03523 } 03524 03525 // We must have a single backedge. 03526 if (TheLoop->getNumBackEdges() != 1) { 03527 emitAnalysis( 03528 Report() << "loop control flow is not understood by vectorizer"); 03529 return false; 03530 } 03531 03532 // We must have a single exiting block. 03533 if (!TheLoop->getExitingBlock()) { 03534 emitAnalysis( 03535 Report() << "loop control flow is not understood by vectorizer"); 03536 return false; 03537 } 03538 03539 // We need to have a loop header. 03540 DEBUG(dbgs() << "LV: Found a loop: " << 03541 TheLoop->getHeader()->getName() << '\n'); 03542 03543 // Check if we can if-convert non-single-bb loops. 03544 unsigned NumBlocks = TheLoop->getNumBlocks(); 03545 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 03546 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 03547 return false; 03548 } 03549 03550 // ScalarEvolution needs to be able to find the exit count. 03551 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 03552 if (ExitCount == SE->getCouldNotCompute()) { 03553 emitAnalysis(Report() << "could not determine number of loop iterations"); 03554 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 03555 return false; 03556 } 03557 03558 // Check if we can vectorize the instructions and CFG in this loop. 03559 if (!canVectorizeInstrs()) { 03560 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 03561 return false; 03562 } 03563 03564 // Go over each instruction and look at memory deps. 03565 if (!canVectorizeMemory()) { 03566 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 03567 return false; 03568 } 03569 03570 // Collect all of the variables that remain uniform after vectorization. 03571 collectLoopUniforms(); 03572 03573 DEBUG(dbgs() << "LV: We can vectorize this loop" << 03574 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 03575 <<"!\n"); 03576 03577 // Okay! We can vectorize. At this point we don't have any other mem analysis 03578 // which may limit our maximum vectorization factor, so just return true with 03579 // no restrictions. 03580 return true; 03581 } 03582 03583 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 03584 if (Ty->isPointerTy()) 03585 return DL.getIntPtrType(Ty); 03586 03587 // It is possible that char's or short's overflow when we ask for the loop's 03588 // trip count, work around this by changing the type size. 03589 if (Ty->getScalarSizeInBits() < 32) 03590 return Type::getInt32Ty(Ty->getContext()); 03591 03592 return Ty; 03593 } 03594 03595 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 03596 Ty0 = convertPointerToIntegerType(DL, Ty0); 03597 Ty1 = convertPointerToIntegerType(DL, Ty1); 03598 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 03599 return Ty0; 03600 return Ty1; 03601 } 03602 03603 /// \brief Check that the instruction has outside loop users and is not an 03604 /// identified reduction variable. 03605 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 03606 SmallPtrSetImpl<Value *> &Reductions) { 03607 // Reduction instructions are allowed to have exit users. All other 03608 // instructions must not have external users. 03609 if (!Reductions.count(Inst)) 03610 //Check that all of the users of the loop are inside the BB. 03611 for (User *U : Inst->users()) { 03612 Instruction *UI = cast<Instruction>(U); 03613 // This user may be a reduction exit value. 03614 if (!TheLoop->contains(UI)) { 03615 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 03616 return true; 03617 } 03618 } 03619 return false; 03620 } 03621 03622 bool LoopVectorizationLegality::canVectorizeInstrs() { 03623 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 03624 BasicBlock *Header = TheLoop->getHeader(); 03625 03626 // Look for the attribute signaling the absence of NaNs. 03627 Function &F = *Header->getParent(); 03628 if (F.hasFnAttribute("no-nans-fp-math")) 03629 HasFunNoNaNAttr = F.getAttributes().getAttribute( 03630 AttributeSet::FunctionIndex, 03631 "no-nans-fp-math").getValueAsString() == "true"; 03632 03633 // For each block in the loop. 03634 for (Loop::block_iterator bb = TheLoop->block_begin(), 03635 be = TheLoop->block_end(); bb != be; ++bb) { 03636 03637 // Scan the instructions in the block and look for hazards. 03638 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 03639 ++it) { 03640 03641 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 03642 Type *PhiTy = Phi->getType(); 03643 // Check that this PHI type is allowed. 03644 if (!PhiTy->isIntegerTy() && 03645 !PhiTy->isFloatingPointTy() && 03646 !PhiTy->isPointerTy()) { 03647 emitAnalysis(Report(it) 03648 << "loop control flow is not understood by vectorizer"); 03649 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 03650 return false; 03651 } 03652 03653 // If this PHINode is not in the header block, then we know that we 03654 // can convert it to select during if-conversion. No need to check if 03655 // the PHIs in this block are induction or reduction variables. 03656 if (*bb != Header) { 03657 // Check that this instruction has no outside users or is an 03658 // identified reduction value with an outside user. 03659 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 03660 continue; 03661 emitAnalysis(Report(it) << "value could not be identified as " 03662 "an induction or reduction variable"); 03663 return false; 03664 } 03665 03666 // We only allow if-converted PHIs with more than two incoming values. 03667 if (Phi->getNumIncomingValues() != 2) { 03668 emitAnalysis(Report(it) 03669 << "control flow not understood by vectorizer"); 03670 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 03671 return false; 03672 } 03673 03674 // This is the value coming from the preheader. 03675 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 03676 // Check if this is an induction variable. 03677 InductionKind IK = isInductionVariable(Phi); 03678 03679 if (IK_NoInduction != IK) { 03680 // Get the widest type. 03681 if (!WidestIndTy) 03682 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 03683 else 03684 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 03685 03686 // Int inductions are special because we only allow one IV. 03687 if (IK == IK_IntInduction) { 03688 // Use the phi node with the widest type as induction. Use the last 03689 // one if there are multiple (no good reason for doing this other 03690 // than it is expedient). 03691 if (!Induction || PhiTy == WidestIndTy) 03692 Induction = Phi; 03693 } 03694 03695 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 03696 Inductions[Phi] = InductionInfo(StartValue, IK); 03697 03698 // Until we explicitly handle the case of an induction variable with 03699 // an outside loop user we have to give up vectorizing this loop. 03700 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 03701 emitAnalysis(Report(it) << "use of induction value outside of the " 03702 "loop is not handled by vectorizer"); 03703 return false; 03704 } 03705 03706 continue; 03707 } 03708 03709 if (AddReductionVar(Phi, RK_IntegerAdd)) { 03710 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 03711 continue; 03712 } 03713 if (AddReductionVar(Phi, RK_IntegerMult)) { 03714 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 03715 continue; 03716 } 03717 if (AddReductionVar(Phi, RK_IntegerOr)) { 03718 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 03719 continue; 03720 } 03721 if (AddReductionVar(Phi, RK_IntegerAnd)) { 03722 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 03723 continue; 03724 } 03725 if (AddReductionVar(Phi, RK_IntegerXor)) { 03726 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 03727 continue; 03728 } 03729 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 03730 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 03731 continue; 03732 } 03733 if (AddReductionVar(Phi, RK_FloatMult)) { 03734 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 03735 continue; 03736 } 03737 if (AddReductionVar(Phi, RK_FloatAdd)) { 03738 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 03739 continue; 03740 } 03741 if (AddReductionVar(Phi, RK_FloatMinMax)) { 03742 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 03743 "\n"); 03744 continue; 03745 } 03746 03747 emitAnalysis(Report(it) << "value that could not be identified as " 03748 "reduction is used outside the loop"); 03749 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 03750 return false; 03751 }// end of PHI handling 03752 03753 // We still don't handle functions. However, we can ignore dbg intrinsic 03754 // calls and we do handle certain intrinsic and libm functions. 03755 CallInst *CI = dyn_cast<CallInst>(it); 03756 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 03757 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 03758 DEBUG(dbgs() << "LV: Found a call site.\n"); 03759 return false; 03760 } 03761 03762 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 03763 // second argument is the same (i.e. loop invariant) 03764 if (CI && 03765 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 03766 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 03767 emitAnalysis(Report(it) 03768 << "intrinsic instruction cannot be vectorized"); 03769 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 03770 return false; 03771 } 03772 } 03773 03774 // Check that the instruction return type is vectorizable. 03775 // Also, we can't vectorize extractelement instructions. 03776 if ((!VectorType::isValidElementType(it->getType()) && 03777 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 03778 emitAnalysis(Report(it) 03779 << "instruction return type cannot be vectorized"); 03780 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 03781 return false; 03782 } 03783 03784 // Check that the stored type is vectorizable. 03785 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 03786 Type *T = ST->getValueOperand()->getType(); 03787 if (!VectorType::isValidElementType(T)) { 03788 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 03789 return false; 03790 } 03791 if (EnableMemAccessVersioning) 03792 collectStridedAcccess(ST); 03793 } 03794 03795 if (EnableMemAccessVersioning) 03796 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 03797 collectStridedAcccess(LI); 03798 03799 // Reduction instructions are allowed to have exit users. 03800 // All other instructions must not have external users. 03801 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 03802 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 03803 return false; 03804 } 03805 03806 } // next instr. 03807 03808 } 03809 03810 if (!Induction) { 03811 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 03812 if (Inductions.empty()) { 03813 emitAnalysis(Report() 03814 << "loop induction variable could not be identified"); 03815 return false; 03816 } 03817 } 03818 03819 return true; 03820 } 03821 03822 ///\brief Remove GEPs whose indices but the last one are loop invariant and 03823 /// return the induction operand of the gep pointer. 03824 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 03825 const DataLayout *DL, Loop *Lp) { 03826 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 03827 if (!GEP) 03828 return Ptr; 03829 03830 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 03831 03832 // Check that all of the gep indices are uniform except for our induction 03833 // operand. 03834 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 03835 if (i != InductionOperand && 03836 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 03837 return Ptr; 03838 return GEP->getOperand(InductionOperand); 03839 } 03840 03841 ///\brief Look for a cast use of the passed value. 03842 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 03843 Value *UniqueCast = nullptr; 03844 for (User *U : Ptr->users()) { 03845 CastInst *CI = dyn_cast<CastInst>(U); 03846 if (CI && CI->getType() == Ty) { 03847 if (!UniqueCast) 03848 UniqueCast = CI; 03849 else 03850 return nullptr; 03851 } 03852 } 03853 return UniqueCast; 03854 } 03855 03856 ///\brief Get the stride of a pointer access in a loop. 03857 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 03858 /// pointer to the Value, or null otherwise. 03859 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 03860 const DataLayout *DL, Loop *Lp) { 03861 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 03862 if (!PtrTy || PtrTy->isAggregateType()) 03863 return nullptr; 03864 03865 // Try to remove a gep instruction to make the pointer (actually index at this 03866 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 03867 // pointer, otherwise, we are analyzing the index. 03868 Value *OrigPtr = Ptr; 03869 03870 // The size of the pointer access. 03871 int64_t PtrAccessSize = 1; 03872 03873 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 03874 const SCEV *V = SE->getSCEV(Ptr); 03875 03876 if (Ptr != OrigPtr) 03877 // Strip off casts. 03878 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 03879 V = C->getOperand(); 03880 03881 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 03882 if (!S) 03883 return nullptr; 03884 03885 V = S->getStepRecurrence(*SE); 03886 if (!V) 03887 return nullptr; 03888 03889 // Strip off the size of access multiplication if we are still analyzing the 03890 // pointer. 03891 if (OrigPtr == Ptr) { 03892 DL->getTypeAllocSize(PtrTy->getElementType()); 03893 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 03894 if (M->getOperand(0)->getSCEVType() != scConstant) 03895 return nullptr; 03896 03897 const APInt &APStepVal = 03898 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 03899 03900 // Huge step value - give up. 03901 if (APStepVal.getBitWidth() > 64) 03902 return nullptr; 03903 03904 int64_t StepVal = APStepVal.getSExtValue(); 03905 if (PtrAccessSize != StepVal) 03906 return nullptr; 03907 V = M->getOperand(1); 03908 } 03909 } 03910 03911 // Strip off casts. 03912 Type *StripedOffRecurrenceCast = nullptr; 03913 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 03914 StripedOffRecurrenceCast = C->getType(); 03915 V = C->getOperand(); 03916 } 03917 03918 // Look for the loop invariant symbolic value. 03919 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 03920 if (!U) 03921 return nullptr; 03922 03923 Value *Stride = U->getValue(); 03924 if (!Lp->isLoopInvariant(Stride)) 03925 return nullptr; 03926 03927 // If we have stripped off the recurrence cast we have to make sure that we 03928 // return the value that is used in this loop so that we can replace it later. 03929 if (StripedOffRecurrenceCast) 03930 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 03931 03932 return Stride; 03933 } 03934 03935 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 03936 Value *Ptr = nullptr; 03937 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 03938 Ptr = LI->getPointerOperand(); 03939 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 03940 Ptr = SI->getPointerOperand(); 03941 else 03942 return; 03943 03944 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 03945 if (!Stride) 03946 return; 03947 03948 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 03949 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 03950 Strides[Ptr] = Stride; 03951 StrideSet.insert(Stride); 03952 } 03953 03954 void LoopVectorizationLegality::collectLoopUniforms() { 03955 // We now know that the loop is vectorizable! 03956 // Collect variables that will remain uniform after vectorization. 03957 std::vector<Value*> Worklist; 03958 BasicBlock *Latch = TheLoop->getLoopLatch(); 03959 03960 // Start with the conditional branch and walk up the block. 03961 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 03962 03963 // Also add all consecutive pointer values; these values will be uniform 03964 // after vectorization (and subsequent cleanup) and, until revectorization is 03965 // supported, all dependencies must also be uniform. 03966 for (Loop::block_iterator B = TheLoop->block_begin(), 03967 BE = TheLoop->block_end(); B != BE; ++B) 03968 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 03969 I != IE; ++I) 03970 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 03971 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 03972 03973 while (Worklist.size()) { 03974 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 03975 Worklist.pop_back(); 03976 03977 // Look at instructions inside this loop. 03978 // Stop when reaching PHI nodes. 03979 // TODO: we need to follow values all over the loop, not only in this block. 03980 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 03981 continue; 03982 03983 // This is a known uniform. 03984 Uniforms.insert(I); 03985 03986 // Insert all operands. 03987 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 03988 } 03989 } 03990 03991 namespace { 03992 /// \brief Analyses memory accesses in a loop. 03993 /// 03994 /// Checks whether run time pointer checks are needed and builds sets for data 03995 /// dependence checking. 03996 class AccessAnalysis { 03997 public: 03998 /// \brief Read or write access location. 03999 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 04000 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 04001 04002 /// \brief Set of potential dependent memory accesses. 04003 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 04004 04005 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 04006 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 04007 04008 /// \brief Register a load and whether it is only read from. 04009 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 04010 Value *Ptr = const_cast<Value*>(Loc.Ptr); 04011 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 04012 Accesses.insert(MemAccessInfo(Ptr, false)); 04013 if (IsReadOnly) 04014 ReadOnlyPtr.insert(Ptr); 04015 } 04016 04017 /// \brief Register a store. 04018 void addStore(AliasAnalysis::Location &Loc) { 04019 Value *Ptr = const_cast<Value*>(Loc.Ptr); 04020 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 04021 Accesses.insert(MemAccessInfo(Ptr, true)); 04022 } 04023 04024 /// \brief Check whether we can check the pointers at runtime for 04025 /// non-intersection. 04026 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 04027 unsigned &NumComparisons, ScalarEvolution *SE, 04028 Loop *TheLoop, ValueToValueMap &Strides, 04029 bool ShouldCheckStride = false); 04030 04031 /// \brief Goes over all memory accesses, checks whether a RT check is needed 04032 /// and builds sets of dependent accesses. 04033 void buildDependenceSets() { 04034 processMemAccesses(); 04035 } 04036 04037 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 04038 04039 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 04040 void resetDepChecks() { CheckDeps.clear(); } 04041 04042 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 04043 04044 private: 04045 typedef SetVector<MemAccessInfo> PtrAccessSet; 04046 04047 /// \brief Go over all memory access and check whether runtime pointer checks 04048 /// are needed /// and build sets of dependency check candidates. 04049 void processMemAccesses(); 04050 04051 /// Set of all accesses. 04052 PtrAccessSet Accesses; 04053 04054 /// Set of accesses that need a further dependence check. 04055 MemAccessInfoSet CheckDeps; 04056 04057 /// Set of pointers that are read only. 04058 SmallPtrSet<Value*, 16> ReadOnlyPtr; 04059 04060 const DataLayout *DL; 04061 04062 /// An alias set tracker to partition the access set by underlying object and 04063 //intrinsic property (such as TBAA metadata). 04064 AliasSetTracker AST; 04065 04066 /// Sets of potentially dependent accesses - members of one set share an 04067 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 04068 /// dependence check. 04069 DepCandidates &DepCands; 04070 04071 bool IsRTCheckNeeded; 04072 }; 04073 04074 } // end anonymous namespace 04075 04076 /// \brief Check whether a pointer can participate in a runtime bounds check. 04077 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 04078 Value *Ptr) { 04079 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 04080 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 04081 if (!AR) 04082 return false; 04083 04084 return AR->isAffine(); 04085 } 04086 04087 /// \brief Check the stride of the pointer and ensure that it does not wrap in 04088 /// the address space. 04089 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 04090 const Loop *Lp, ValueToValueMap &StridesMap); 04091 04092 bool AccessAnalysis::canCheckPtrAtRT( 04093 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 04094 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 04095 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 04096 // Find pointers with computable bounds. We are going to use this information 04097 // to place a runtime bound check. 04098 bool CanDoRT = true; 04099 04100 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 04101 NumComparisons = 0; 04102 04103 // We assign a consecutive id to access from different alias sets. 04104 // Accesses between different groups doesn't need to be checked. 04105 unsigned ASId = 1; 04106 for (auto &AS : AST) { 04107 unsigned NumReadPtrChecks = 0; 04108 unsigned NumWritePtrChecks = 0; 04109 04110 // We assign consecutive id to access from different dependence sets. 04111 // Accesses within the same set don't need a runtime check. 04112 unsigned RunningDepId = 1; 04113 DenseMap<Value *, unsigned> DepSetId; 04114 04115 for (auto A : AS) { 04116 Value *Ptr = A.getValue(); 04117 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 04118 MemAccessInfo Access(Ptr, IsWrite); 04119 04120 if (IsWrite) 04121 ++NumWritePtrChecks; 04122 else 04123 ++NumReadPtrChecks; 04124 04125 if (hasComputableBounds(SE, StridesMap, Ptr) && 04126 // When we run after a failing dependency check we have to make sure we 04127 // don't have wrapping pointers. 04128 (!ShouldCheckStride || 04129 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 04130 // The id of the dependence set. 04131 unsigned DepId; 04132 04133 if (IsDepCheckNeeded) { 04134 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 04135 unsigned &LeaderId = DepSetId[Leader]; 04136 if (!LeaderId) 04137 LeaderId = RunningDepId++; 04138 DepId = LeaderId; 04139 } else 04140 // Each access has its own dependence set. 04141 DepId = RunningDepId++; 04142 04143 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 04144 04145 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 04146 } else { 04147 CanDoRT = false; 04148 } 04149 } 04150 04151 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 04152 NumComparisons += 0; // Only one dependence set. 04153 else { 04154 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 04155 NumWritePtrChecks - 1)); 04156 } 04157 04158 ++ASId; 04159 } 04160 04161 // If the pointers that we would use for the bounds comparison have different 04162 // address spaces, assume the values aren't directly comparable, so we can't 04163 // use them for the runtime check. We also have to assume they could 04164 // overlap. In the future there should be metadata for whether address spaces 04165 // are disjoint. 04166 unsigned NumPointers = RtCheck.Pointers.size(); 04167 for (unsigned i = 0; i < NumPointers; ++i) { 04168 for (unsigned j = i + 1; j < NumPointers; ++j) { 04169 // Only need to check pointers between two different dependency sets. 04170 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 04171 continue; 04172 // Only need to check pointers in the same alias set. 04173 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 04174 continue; 04175 04176 Value *PtrI = RtCheck.Pointers[i]; 04177 Value *PtrJ = RtCheck.Pointers[j]; 04178 04179 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 04180 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 04181 if (ASi != ASj) { 04182 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 04183 " different address spaces\n"); 04184 return false; 04185 } 04186 } 04187 } 04188 04189 return CanDoRT; 04190 } 04191 04192 void AccessAnalysis::processMemAccesses() { 04193 // We process the set twice: first we process read-write pointers, last we 04194 // process read-only pointers. This allows us to skip dependence tests for 04195 // read-only pointers. 04196 04197 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 04198 DEBUG(dbgs() << " AST: "; AST.dump()); 04199 DEBUG(dbgs() << "LV: Accesses:\n"); 04200 DEBUG({ 04201 for (auto A : Accesses) 04202 dbgs() << "\t" << *A.getPointer() << " (" << 04203 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 04204 "read-only" : "read")) << ")\n"; 04205 }); 04206 04207 // The AliasSetTracker has nicely partitioned our pointers by metadata 04208 // compatibility and potential for underlying-object overlap. As a result, we 04209 // only need to check for potential pointer dependencies within each alias 04210 // set. 04211 for (auto &AS : AST) { 04212 // Note that both the alias-set tracker and the alias sets themselves used 04213 // linked lists internally and so the iteration order here is deterministic 04214 // (matching the original instruction order within each set). 04215 04216 bool SetHasWrite = false; 04217 04218 // Map of pointers to last access encountered. 04219 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 04220 UnderlyingObjToAccessMap ObjToLastAccess; 04221 04222 // Set of access to check after all writes have been processed. 04223 PtrAccessSet DeferredAccesses; 04224 04225 // Iterate over each alias set twice, once to process read/write pointers, 04226 // and then to process read-only pointers. 04227 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 04228 bool UseDeferred = SetIteration > 0; 04229 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 04230 04231 for (auto A : AS) { 04232 Value *Ptr = A.getValue(); 04233 bool IsWrite = S.count(MemAccessInfo(Ptr, true)); 04234 04235 // If we're using the deferred access set, then it contains only reads. 04236 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 04237 if (UseDeferred && !IsReadOnlyPtr) 04238 continue; 04239 // Otherwise, the pointer must be in the PtrAccessSet, either as a read 04240 // or a write. 04241 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 04242 S.count(MemAccessInfo(Ptr, false))) && 04243 "Alias-set pointer not in the access set?"); 04244 04245 MemAccessInfo Access(Ptr, IsWrite); 04246 DepCands.insert(Access); 04247 04248 // Memorize read-only pointers for later processing and skip them in the 04249 // first round (they need to be checked after we have seen all write 04250 // pointers). Note: we also mark pointer that are not consecutive as 04251 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need 04252 // the second check for "!IsWrite". 04253 if (!UseDeferred && IsReadOnlyPtr) { 04254 DeferredAccesses.insert(Access); 04255 continue; 04256 } 04257 04258 // If this is a write - check other reads and writes for conflicts. If 04259 // this is a read only check other writes for conflicts (but only if 04260 // there is no other write to the ptr - this is an optimization to 04261 // catch "a[i] = a[i] + " without having to do a dependence check). 04262 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 04263 CheckDeps.insert(Access); 04264 IsRTCheckNeeded = true; 04265 } 04266 04267 if (IsWrite) 04268 SetHasWrite = true; 04269 04270 // Create sets of pointers connected by a shared alias set and 04271 // underlying object. 04272 typedef SmallVector<Value*, 16> ValueVector; 04273 ValueVector TempObjects; 04274 GetUnderlyingObjects(Ptr, TempObjects, DL); 04275 for (Value *UnderlyingObj : TempObjects) { 04276 UnderlyingObjToAccessMap::iterator Prev = 04277 ObjToLastAccess.find(UnderlyingObj); 04278 if (Prev != ObjToLastAccess.end()) 04279 DepCands.unionSets(Access, Prev->second); 04280 04281 ObjToLastAccess[UnderlyingObj] = Access; 04282 } 04283 } 04284 } 04285 } 04286 } 04287 04288 namespace { 04289 /// \brief Checks memory dependences among accesses to the same underlying 04290 /// object to determine whether there vectorization is legal or not (and at 04291 /// which vectorization factor). 04292 /// 04293 /// This class works under the assumption that we already checked that memory 04294 /// locations with different underlying pointers are "must-not alias". 04295 /// We use the ScalarEvolution framework to symbolically evalutate access 04296 /// functions pairs. Since we currently don't restructure the loop we can rely 04297 /// on the program order of memory accesses to determine their safety. 04298 /// At the moment we will only deem accesses as safe for: 04299 /// * A negative constant distance assuming program order. 04300 /// 04301 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 04302 /// a[i] = tmp; y = a[i]; 04303 /// 04304 /// The latter case is safe because later checks guarantuee that there can't 04305 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 04306 /// the same variable: a header phi can only be an induction or a reduction, a 04307 /// reduction can't have a memory sink, an induction can't have a memory 04308 /// source). This is important and must not be violated (or we have to 04309 /// resort to checking for cycles through memory). 04310 /// 04311 /// * A positive constant distance assuming program order that is bigger 04312 /// than the biggest memory access. 04313 /// 04314 /// tmp = a[i] OR b[i] = x 04315 /// a[i+2] = tmp y = b[i+2]; 04316 /// 04317 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 04318 /// 04319 /// * Zero distances and all accesses have the same size. 04320 /// 04321 class MemoryDepChecker { 04322 public: 04323 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 04324 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 04325 04326 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 04327 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 04328 ShouldRetryWithRuntimeCheck(false) {} 04329 04330 /// \brief Register the location (instructions are given increasing numbers) 04331 /// of a write access. 04332 void addAccess(StoreInst *SI) { 04333 Value *Ptr = SI->getPointerOperand(); 04334 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 04335 InstMap.push_back(SI); 04336 ++AccessIdx; 04337 } 04338 04339 /// \brief Register the location (instructions are given increasing numbers) 04340 /// of a write access. 04341 void addAccess(LoadInst *LI) { 04342 Value *Ptr = LI->getPointerOperand(); 04343 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 04344 InstMap.push_back(LI); 04345 ++AccessIdx; 04346 } 04347 04348 /// \brief Check whether the dependencies between the accesses are safe. 04349 /// 04350 /// Only checks sets with elements in \p CheckDeps. 04351 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 04352 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 04353 04354 /// \brief The maximum number of bytes of a vector register we can vectorize 04355 /// the accesses safely with. 04356 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 04357 04358 /// \brief In same cases when the dependency check fails we can still 04359 /// vectorize the loop with a dynamic array access check. 04360 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 04361 04362 private: 04363 ScalarEvolution *SE; 04364 const DataLayout *DL; 04365 const Loop *InnermostLoop; 04366 04367 /// \brief Maps access locations (ptr, read/write) to program order. 04368 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 04369 04370 /// \brief Memory access instructions in program order. 04371 SmallVector<Instruction *, 16> InstMap; 04372 04373 /// \brief The program order index to be used for the next instruction. 04374 unsigned AccessIdx; 04375 04376 // We can access this many bytes in parallel safely. 04377 unsigned MaxSafeDepDistBytes; 04378 04379 /// \brief If we see a non-constant dependence distance we can still try to 04380 /// vectorize this loop with runtime checks. 04381 bool ShouldRetryWithRuntimeCheck; 04382 04383 /// \brief Check whether there is a plausible dependence between the two 04384 /// accesses. 04385 /// 04386 /// Access \p A must happen before \p B in program order. The two indices 04387 /// identify the index into the program order map. 04388 /// 04389 /// This function checks whether there is a plausible dependence (or the 04390 /// absence of such can't be proved) between the two accesses. If there is a 04391 /// plausible dependence but the dependence distance is bigger than one 04392 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 04393 /// distance is smaller than any other distance encountered so far). 04394 /// Otherwise, this function returns true signaling a possible dependence. 04395 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 04396 const MemAccessInfo &B, unsigned BIdx, 04397 ValueToValueMap &Strides); 04398 04399 /// \brief Check whether the data dependence could prevent store-load 04400 /// forwarding. 04401 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 04402 }; 04403 04404 } // end anonymous namespace 04405 04406 static bool isInBoundsGep(Value *Ptr) { 04407 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 04408 return GEP->isInBounds(); 04409 return false; 04410 } 04411 04412 /// \brief Check whether the access through \p Ptr has a constant stride. 04413 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 04414 const Loop *Lp, ValueToValueMap &StridesMap) { 04415 const Type *Ty = Ptr->getType(); 04416 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 04417 04418 // Make sure that the pointer does not point to aggregate types. 04419 const PointerType *PtrTy = cast<PointerType>(Ty); 04420 if (PtrTy->getElementType()->isAggregateType()) { 04421 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 04422 "\n"); 04423 return 0; 04424 } 04425 04426 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 04427 04428 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 04429 if (!AR) { 04430 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 04431 << *Ptr << " SCEV: " << *PtrScev << "\n"); 04432 return 0; 04433 } 04434 04435 // The accesss function must stride over the innermost loop. 04436 if (Lp != AR->getLoop()) { 04437 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 04438 *Ptr << " SCEV: " << *PtrScev << "\n"); 04439 } 04440 04441 // The address calculation must not wrap. Otherwise, a dependence could be 04442 // inverted. 04443 // An inbounds getelementptr that is a AddRec with a unit stride 04444 // cannot wrap per definition. The unit stride requirement is checked later. 04445 // An getelementptr without an inbounds attribute and unit stride would have 04446 // to access the pointer value "0" which is undefined behavior in address 04447 // space 0, therefore we can also vectorize this case. 04448 bool IsInBoundsGEP = isInBoundsGep(Ptr); 04449 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 04450 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 04451 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 04452 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 04453 << *Ptr << " SCEV: " << *PtrScev << "\n"); 04454 return 0; 04455 } 04456 04457 // Check the step is constant. 04458 const SCEV *Step = AR->getStepRecurrence(*SE); 04459 04460 // Calculate the pointer stride and check if it is consecutive. 04461 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 04462 if (!C) { 04463 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 04464 " SCEV: " << *PtrScev << "\n"); 04465 return 0; 04466 } 04467 04468 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 04469 const APInt &APStepVal = C->getValue()->getValue(); 04470 04471 // Huge step value - give up. 04472 if (APStepVal.getBitWidth() > 64) 04473 return 0; 04474 04475 int64_t StepVal = APStepVal.getSExtValue(); 04476 04477 // Strided access. 04478 int64_t Stride = StepVal / Size; 04479 int64_t Rem = StepVal % Size; 04480 if (Rem) 04481 return 0; 04482 04483 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 04484 // know we can't "wrap around the address space". In case of address space 04485 // zero we know that this won't happen without triggering undefined behavior. 04486 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 04487 Stride != 1 && Stride != -1) 04488 return 0; 04489 04490 return Stride; 04491 } 04492 04493 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 04494 unsigned TypeByteSize) { 04495 // If loads occur at a distance that is not a multiple of a feasible vector 04496 // factor store-load forwarding does not take place. 04497 // Positive dependences might cause troubles because vectorizing them might 04498 // prevent store-load forwarding making vectorized code run a lot slower. 04499 // a[i] = a[i-3] ^ a[i-8]; 04500 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 04501 // hence on your typical architecture store-load forwarding does not take 04502 // place. Vectorizing in such cases does not make sense. 04503 // Store-load forwarding distance. 04504 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 04505 // Maximum vector factor. 04506 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 04507 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 04508 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 04509 04510 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 04511 vf *= 2) { 04512 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 04513 MaxVFWithoutSLForwardIssues = (vf >>=1); 04514 break; 04515 } 04516 } 04517 04518 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 04519 DEBUG(dbgs() << "LV: Distance " << Distance << 04520 " that could cause a store-load forwarding conflict\n"); 04521 return true; 04522 } 04523 04524 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 04525 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 04526 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 04527 return false; 04528 } 04529 04530 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 04531 const MemAccessInfo &B, unsigned BIdx, 04532 ValueToValueMap &Strides) { 04533 assert (AIdx < BIdx && "Must pass arguments in program order"); 04534 04535 Value *APtr = A.getPointer(); 04536 Value *BPtr = B.getPointer(); 04537 bool AIsWrite = A.getInt(); 04538 bool BIsWrite = B.getInt(); 04539 04540 // Two reads are independent. 04541 if (!AIsWrite && !BIsWrite) 04542 return false; 04543 04544 // We cannot check pointers in different address spaces. 04545 if (APtr->getType()->getPointerAddressSpace() != 04546 BPtr->getType()->getPointerAddressSpace()) 04547 return true; 04548 04549 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 04550 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 04551 04552 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 04553 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 04554 04555 const SCEV *Src = AScev; 04556 const SCEV *Sink = BScev; 04557 04558 // If the induction step is negative we have to invert source and sink of the 04559 // dependence. 04560 if (StrideAPtr < 0) { 04561 //Src = BScev; 04562 //Sink = AScev; 04563 std::swap(APtr, BPtr); 04564 std::swap(Src, Sink); 04565 std::swap(AIsWrite, BIsWrite); 04566 std::swap(AIdx, BIdx); 04567 std::swap(StrideAPtr, StrideBPtr); 04568 } 04569 04570 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 04571 04572 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 04573 << "(Induction step: " << StrideAPtr << ")\n"); 04574 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 04575 << *InstMap[BIdx] << ": " << *Dist << "\n"); 04576 04577 // Need consecutive accesses. We don't want to vectorize 04578 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 04579 // the address space. 04580 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 04581 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 04582 return true; 04583 } 04584 04585 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 04586 if (!C) { 04587 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 04588 ShouldRetryWithRuntimeCheck = true; 04589 return true; 04590 } 04591 04592 Type *ATy = APtr->getType()->getPointerElementType(); 04593 Type *BTy = BPtr->getType()->getPointerElementType(); 04594 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 04595 04596 // Negative distances are not plausible dependencies. 04597 const APInt &Val = C->getValue()->getValue(); 04598 if (Val.isNegative()) { 04599 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 04600 if (IsTrueDataDependence && 04601 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 04602 ATy != BTy)) 04603 return true; 04604 04605 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 04606 return false; 04607 } 04608 04609 // Write to the same location with the same size. 04610 // Could be improved to assert type sizes are the same (i32 == float, etc). 04611 if (Val == 0) { 04612 if (ATy == BTy) 04613 return false; 04614 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 04615 return true; 04616 } 04617 04618 assert(Val.isStrictlyPositive() && "Expect a positive value"); 04619 04620 // Positive distance bigger than max vectorization factor. 04621 if (ATy != BTy) { 04622 DEBUG(dbgs() << 04623 "LV: ReadWrite-Write positive dependency with different types\n"); 04624 return false; 04625 } 04626 04627 unsigned Distance = (unsigned) Val.getZExtValue(); 04628 04629 // Bail out early if passed-in parameters make vectorization not feasible. 04630 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 04631 unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1; 04632 04633 // The distance must be bigger than the size needed for a vectorized version 04634 // of the operation and the size of the vectorized operation must not be 04635 // bigger than the currrent maximum size. 04636 if (Distance < 2*TypeByteSize || 04637 2*TypeByteSize > MaxSafeDepDistBytes || 04638 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 04639 DEBUG(dbgs() << "LV: Failure because of Positive distance " 04640 << Val.getSExtValue() << '\n'); 04641 return true; 04642 } 04643 04644 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 04645 Distance : MaxSafeDepDistBytes; 04646 04647 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 04648 if (IsTrueDataDependence && 04649 couldPreventStoreLoadForward(Distance, TypeByteSize)) 04650 return true; 04651 04652 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 04653 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 04654 04655 return false; 04656 } 04657 04658 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 04659 MemAccessInfoSet &CheckDeps, 04660 ValueToValueMap &Strides) { 04661 04662 MaxSafeDepDistBytes = -1U; 04663 while (!CheckDeps.empty()) { 04664 MemAccessInfo CurAccess = *CheckDeps.begin(); 04665 04666 // Get the relevant memory access set. 04667 EquivalenceClasses<MemAccessInfo>::iterator I = 04668 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 04669 04670 // Check accesses within this set. 04671 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 04672 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 04673 04674 // Check every access pair. 04675 while (AI != AE) { 04676 CheckDeps.erase(*AI); 04677 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 04678 while (OI != AE) { 04679 // Check every accessing instruction pair in program order. 04680 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 04681 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 04682 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 04683 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 04684 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 04685 return false; 04686 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 04687 return false; 04688 } 04689 ++OI; 04690 } 04691 AI++; 04692 } 04693 } 04694 return true; 04695 } 04696 04697 bool LoopVectorizationLegality::canVectorizeMemory() { 04698 04699 typedef SmallVector<Value*, 16> ValueVector; 04700 typedef SmallPtrSet<Value*, 16> ValueSet; 04701 04702 // Holds the Load and Store *instructions*. 04703 ValueVector Loads; 04704 ValueVector Stores; 04705 04706 // Holds all the different accesses in the loop. 04707 unsigned NumReads = 0; 04708 unsigned NumReadWrites = 0; 04709 04710 PtrRtCheck.Pointers.clear(); 04711 PtrRtCheck.Need = false; 04712 04713 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 04714 MemoryDepChecker DepChecker(SE, DL, TheLoop); 04715 04716 // For each block. 04717 for (Loop::block_iterator bb = TheLoop->block_begin(), 04718 be = TheLoop->block_end(); bb != be; ++bb) { 04719 04720 // Scan the BB and collect legal loads and stores. 04721 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 04722 ++it) { 04723 04724 // If this is a load, save it. If this instruction can read from memory 04725 // but is not a load, then we quit. Notice that we don't handle function 04726 // calls that read or write. 04727 if (it->mayReadFromMemory()) { 04728 // Many math library functions read the rounding mode. We will only 04729 // vectorize a loop if it contains known function calls that don't set 04730 // the flag. Therefore, it is safe to ignore this read from memory. 04731 CallInst *Call = dyn_cast<CallInst>(it); 04732 if (Call && getIntrinsicIDForCall(Call, TLI)) 04733 continue; 04734 04735 LoadInst *Ld = dyn_cast<LoadInst>(it); 04736 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 04737 emitAnalysis(Report(Ld) 04738 << "read with atomic ordering or volatile read"); 04739 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 04740 return false; 04741 } 04742 NumLoads++; 04743 Loads.push_back(Ld); 04744 DepChecker.addAccess(Ld); 04745 continue; 04746 } 04747 04748 // Save 'store' instructions. Abort if other instructions write to memory. 04749 if (it->mayWriteToMemory()) { 04750 StoreInst *St = dyn_cast<StoreInst>(it); 04751 if (!St) { 04752 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 04753 return false; 04754 } 04755 if (!St->isSimple() && !IsAnnotatedParallel) { 04756 emitAnalysis(Report(St) 04757 << "write with atomic ordering or volatile write"); 04758 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 04759 return false; 04760 } 04761 NumStores++; 04762 Stores.push_back(St); 04763 DepChecker.addAccess(St); 04764 } 04765 } // Next instr. 04766 } // Next block. 04767 04768 // Now we have two lists that hold the loads and the stores. 04769 // Next, we find the pointers that they use. 04770 04771 // Check if we see any stores. If there are no stores, then we don't 04772 // care if the pointers are *restrict*. 04773 if (!Stores.size()) { 04774 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 04775 return true; 04776 } 04777 04778 AccessAnalysis::DepCandidates DependentAccesses; 04779 AccessAnalysis Accesses(DL, AA, DependentAccesses); 04780 04781 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 04782 // multiple times on the same object. If the ptr is accessed twice, once 04783 // for read and once for write, it will only appear once (on the write 04784 // list). This is okay, since we are going to check for conflicts between 04785 // writes and between reads and writes, but not between reads and reads. 04786 ValueSet Seen; 04787 04788 ValueVector::iterator I, IE; 04789 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 04790 StoreInst *ST = cast<StoreInst>(*I); 04791 Value* Ptr = ST->getPointerOperand(); 04792 04793 if (isUniform(Ptr)) { 04794 emitAnalysis( 04795 Report(ST) 04796 << "write to a loop invariant address could not be vectorized"); 04797 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 04798 return false; 04799 } 04800 04801 // If we did *not* see this pointer before, insert it to the read-write 04802 // list. At this phase it is only a 'write' list. 04803 if (Seen.insert(Ptr)) { 04804 ++NumReadWrites; 04805 04806 AliasAnalysis::Location Loc = AA->getLocation(ST); 04807 // The TBAA metadata could have a control dependency on the predication 04808 // condition, so we cannot rely on it when determining whether or not we 04809 // need runtime pointer checks. 04810 if (blockNeedsPredication(ST->getParent())) 04811 Loc.AATags.TBAA = nullptr; 04812 04813 Accesses.addStore(Loc); 04814 } 04815 } 04816 04817 if (IsAnnotatedParallel) { 04818 DEBUG(dbgs() 04819 << "LV: A loop annotated parallel, ignore memory dependency " 04820 << "checks.\n"); 04821 return true; 04822 } 04823 04824 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 04825 LoadInst *LD = cast<LoadInst>(*I); 04826 Value* Ptr = LD->getPointerOperand(); 04827 // If we did *not* see this pointer before, insert it to the 04828 // read list. If we *did* see it before, then it is already in 04829 // the read-write list. This allows us to vectorize expressions 04830 // such as A[i] += x; Because the address of A[i] is a read-write 04831 // pointer. This only works if the index of A[i] is consecutive. 04832 // If the address of i is unknown (for example A[B[i]]) then we may 04833 // read a few words, modify, and write a few words, and some of the 04834 // words may be written to the same address. 04835 bool IsReadOnlyPtr = false; 04836 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 04837 ++NumReads; 04838 IsReadOnlyPtr = true; 04839 } 04840 04841 AliasAnalysis::Location Loc = AA->getLocation(LD); 04842 // The TBAA metadata could have a control dependency on the predication 04843 // condition, so we cannot rely on it when determining whether or not we 04844 // need runtime pointer checks. 04845 if (blockNeedsPredication(LD->getParent())) 04846 Loc.AATags.TBAA = nullptr; 04847 04848 Accesses.addLoad(Loc, IsReadOnlyPtr); 04849 } 04850 04851 // If we write (or read-write) to a single destination and there are no 04852 // other reads in this loop then is it safe to vectorize. 04853 if (NumReadWrites == 1 && NumReads == 0) { 04854 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 04855 return true; 04856 } 04857 04858 // Build dependence sets and check whether we need a runtime pointer bounds 04859 // check. 04860 Accesses.buildDependenceSets(); 04861 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 04862 04863 // Find pointers with computable bounds. We are going to use this information 04864 // to place a runtime bound check. 04865 unsigned NumComparisons = 0; 04866 bool CanDoRT = false; 04867 if (NeedRTCheck) 04868 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 04869 Strides); 04870 04871 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 04872 " pointer comparisons.\n"); 04873 04874 // If we only have one set of dependences to check pointers among we don't 04875 // need a runtime check. 04876 if (NumComparisons == 0 && NeedRTCheck) 04877 NeedRTCheck = false; 04878 04879 // Check that we did not collect too many pointers or found an unsizeable 04880 // pointer. 04881 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 04882 PtrRtCheck.reset(); 04883 CanDoRT = false; 04884 } 04885 04886 if (CanDoRT) { 04887 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 04888 } 04889 04890 if (NeedRTCheck && !CanDoRT) { 04891 emitAnalysis(Report() << "cannot identify array bounds"); 04892 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 04893 "the array bounds.\n"); 04894 PtrRtCheck.reset(); 04895 return false; 04896 } 04897 04898 PtrRtCheck.Need = NeedRTCheck; 04899 04900 bool CanVecMem = true; 04901 if (Accesses.isDependencyCheckNeeded()) { 04902 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 04903 CanVecMem = DepChecker.areDepsSafe( 04904 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 04905 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 04906 04907 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 04908 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 04909 NeedRTCheck = true; 04910 04911 // Clear the dependency checks. We assume they are not needed. 04912 Accesses.resetDepChecks(); 04913 04914 PtrRtCheck.reset(); 04915 PtrRtCheck.Need = true; 04916 04917 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 04918 TheLoop, Strides, true); 04919 // Check that we did not collect too many pointers or found an unsizeable 04920 // pointer. 04921 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 04922 if (!CanDoRT && NumComparisons > 0) 04923 emitAnalysis(Report() 04924 << "cannot check memory dependencies at runtime"); 04925 else 04926 emitAnalysis(Report() 04927 << NumComparisons << " exceeds limit of " 04928 << RuntimeMemoryCheckThreshold 04929 << " dependent memory operations checked at runtime"); 04930 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 04931 PtrRtCheck.reset(); 04932 return false; 04933 } 04934 04935 CanVecMem = true; 04936 } 04937 } 04938 04939 if (!CanVecMem) 04940 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 04941 04942 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 04943 " need a runtime memory check.\n"); 04944 04945 return CanVecMem; 04946 } 04947 04948 static bool hasMultipleUsesOf(Instruction *I, 04949 SmallPtrSetImpl<Instruction *> &Insts) { 04950 unsigned NumUses = 0; 04951 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 04952 if (Insts.count(dyn_cast<Instruction>(*Use))) 04953 ++NumUses; 04954 if (NumUses > 1) 04955 return true; 04956 } 04957 04958 return false; 04959 } 04960 04961 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 04962 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 04963 if (!Set.count(dyn_cast<Instruction>(*Use))) 04964 return false; 04965 return true; 04966 } 04967 04968 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 04969 ReductionKind Kind) { 04970 if (Phi->getNumIncomingValues() != 2) 04971 return false; 04972 04973 // Reduction variables are only found in the loop header block. 04974 if (Phi->getParent() != TheLoop->getHeader()) 04975 return false; 04976 04977 // Obtain the reduction start value from the value that comes from the loop 04978 // preheader. 04979 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 04980 04981 // ExitInstruction is the single value which is used outside the loop. 04982 // We only allow for a single reduction value to be used outside the loop. 04983 // This includes users of the reduction, variables (which form a cycle 04984 // which ends in the phi node). 04985 Instruction *ExitInstruction = nullptr; 04986 // Indicates that we found a reduction operation in our scan. 04987 bool FoundReduxOp = false; 04988 04989 // We start with the PHI node and scan for all of the users of this 04990 // instruction. All users must be instructions that can be used as reduction 04991 // variables (such as ADD). We must have a single out-of-block user. The cycle 04992 // must include the original PHI. 04993 bool FoundStartPHI = false; 04994 04995 // To recognize min/max patterns formed by a icmp select sequence, we store 04996 // the number of instruction we saw from the recognized min/max pattern, 04997 // to make sure we only see exactly the two instructions. 04998 unsigned NumCmpSelectPatternInst = 0; 04999 ReductionInstDesc ReduxDesc(false, nullptr); 05000 05001 SmallPtrSet<Instruction *, 8> VisitedInsts; 05002 SmallVector<Instruction *, 8> Worklist; 05003 Worklist.push_back(Phi); 05004 VisitedInsts.insert(Phi); 05005 05006 // A value in the reduction can be used: 05007 // - By the reduction: 05008 // - Reduction operation: 05009 // - One use of reduction value (safe). 05010 // - Multiple use of reduction value (not safe). 05011 // - PHI: 05012 // - All uses of the PHI must be the reduction (safe). 05013 // - Otherwise, not safe. 05014 // - By one instruction outside of the loop (safe). 05015 // - By further instructions outside of the loop (not safe). 05016 // - By an instruction that is not part of the reduction (not safe). 05017 // This is either: 05018 // * An instruction type other than PHI or the reduction operation. 05019 // * A PHI in the header other than the initial PHI. 05020 while (!Worklist.empty()) { 05021 Instruction *Cur = Worklist.back(); 05022 Worklist.pop_back(); 05023 05024 // No Users. 05025 // If the instruction has no users then this is a broken chain and can't be 05026 // a reduction variable. 05027 if (Cur->use_empty()) 05028 return false; 05029 05030 bool IsAPhi = isa<PHINode>(Cur); 05031 05032 // A header PHI use other than the original PHI. 05033 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 05034 return false; 05035 05036 // Reductions of instructions such as Div, and Sub is only possible if the 05037 // LHS is the reduction variable. 05038 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 05039 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 05040 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 05041 return false; 05042 05043 // Any reduction instruction must be of one of the allowed kinds. 05044 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 05045 if (!ReduxDesc.IsReduction) 05046 return false; 05047 05048 // A reduction operation must only have one use of the reduction value. 05049 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 05050 hasMultipleUsesOf(Cur, VisitedInsts)) 05051 return false; 05052 05053 // All inputs to a PHI node must be a reduction value. 05054 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 05055 return false; 05056 05057 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 05058 isa<SelectInst>(Cur))) 05059 ++NumCmpSelectPatternInst; 05060 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 05061 isa<SelectInst>(Cur))) 05062 ++NumCmpSelectPatternInst; 05063 05064 // Check whether we found a reduction operator. 05065 FoundReduxOp |= !IsAPhi; 05066 05067 // Process users of current instruction. Push non-PHI nodes after PHI nodes 05068 // onto the stack. This way we are going to have seen all inputs to PHI 05069 // nodes once we get to them. 05070 SmallVector<Instruction *, 8> NonPHIs; 05071 SmallVector<Instruction *, 8> PHIs; 05072 for (User *U : Cur->users()) { 05073 Instruction *UI = cast<Instruction>(U); 05074 05075 // Check if we found the exit user. 05076 BasicBlock *Parent = UI->getParent(); 05077 if (!TheLoop->contains(Parent)) { 05078 // Exit if you find multiple outside users or if the header phi node is 05079 // being used. In this case the user uses the value of the previous 05080 // iteration, in which case we would loose "VF-1" iterations of the 05081 // reduction operation if we vectorize. 05082 if (ExitInstruction != nullptr || Cur == Phi) 05083 return false; 05084 05085 // The instruction used by an outside user must be the last instruction 05086 // before we feed back to the reduction phi. Otherwise, we loose VF-1 05087 // operations on the value. 05088 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 05089 return false; 05090 05091 ExitInstruction = Cur; 05092 continue; 05093 } 05094 05095 // Process instructions only once (termination). Each reduction cycle 05096 // value must only be used once, except by phi nodes and min/max 05097 // reductions which are represented as a cmp followed by a select. 05098 ReductionInstDesc IgnoredVal(false, nullptr); 05099 if (VisitedInsts.insert(UI)) { 05100 if (isa<PHINode>(UI)) 05101 PHIs.push_back(UI); 05102 else 05103 NonPHIs.push_back(UI); 05104 } else if (!isa<PHINode>(UI) && 05105 ((!isa<FCmpInst>(UI) && 05106 !isa<ICmpInst>(UI) && 05107 !isa<SelectInst>(UI)) || 05108 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 05109 return false; 05110 05111 // Remember that we completed the cycle. 05112 if (UI == Phi) 05113 FoundStartPHI = true; 05114 } 05115 Worklist.append(PHIs.begin(), PHIs.end()); 05116 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 05117 } 05118 05119 // This means we have seen one but not the other instruction of the 05120 // pattern or more than just a select and cmp. 05121 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 05122 NumCmpSelectPatternInst != 2) 05123 return false; 05124 05125 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 05126 return false; 05127 05128 // We found a reduction var if we have reached the original phi node and we 05129 // only have a single instruction with out-of-loop users. 05130 05131 // This instruction is allowed to have out-of-loop users. 05132 AllowedExit.insert(ExitInstruction); 05133 05134 // Save the description of this reduction variable. 05135 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 05136 ReduxDesc.MinMaxKind); 05137 Reductions[Phi] = RD; 05138 // We've ended the cycle. This is a reduction variable if we have an 05139 // outside user and it has a binary op. 05140 05141 return true; 05142 } 05143 05144 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 05145 /// pattern corresponding to a min(X, Y) or max(X, Y). 05146 LoopVectorizationLegality::ReductionInstDesc 05147 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 05148 ReductionInstDesc &Prev) { 05149 05150 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 05151 "Expect a select instruction"); 05152 Instruction *Cmp = nullptr; 05153 SelectInst *Select = nullptr; 05154 05155 // We must handle the select(cmp()) as a single instruction. Advance to the 05156 // select. 05157 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 05158 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 05159 return ReductionInstDesc(false, I); 05160 return ReductionInstDesc(Select, Prev.MinMaxKind); 05161 } 05162 05163 // Only handle single use cases for now. 05164 if (!(Select = dyn_cast<SelectInst>(I))) 05165 return ReductionInstDesc(false, I); 05166 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 05167 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 05168 return ReductionInstDesc(false, I); 05169 if (!Cmp->hasOneUse()) 05170 return ReductionInstDesc(false, I); 05171 05172 Value *CmpLeft; 05173 Value *CmpRight; 05174 05175 // Look for a min/max pattern. 05176 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 05177 return ReductionInstDesc(Select, MRK_UIntMin); 05178 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 05179 return ReductionInstDesc(Select, MRK_UIntMax); 05180 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 05181 return ReductionInstDesc(Select, MRK_SIntMax); 05182 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 05183 return ReductionInstDesc(Select, MRK_SIntMin); 05184 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 05185 return ReductionInstDesc(Select, MRK_FloatMin); 05186 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 05187 return ReductionInstDesc(Select, MRK_FloatMax); 05188 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 05189 return ReductionInstDesc(Select, MRK_FloatMin); 05190 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 05191 return ReductionInstDesc(Select, MRK_FloatMax); 05192 05193 return ReductionInstDesc(false, I); 05194 } 05195 05196 LoopVectorizationLegality::ReductionInstDesc 05197 LoopVectorizationLegality::isReductionInstr(Instruction *I, 05198 ReductionKind Kind, 05199 ReductionInstDesc &Prev) { 05200 bool FP = I->getType()->isFloatingPointTy(); 05201 bool FastMath = FP && I->hasUnsafeAlgebra(); 05202 switch (I->getOpcode()) { 05203 default: 05204 return ReductionInstDesc(false, I); 05205 case Instruction::PHI: 05206 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 05207 Kind != RK_FloatMinMax)) 05208 return ReductionInstDesc(false, I); 05209 return ReductionInstDesc(I, Prev.MinMaxKind); 05210 case Instruction::Sub: 05211 case Instruction::Add: 05212 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 05213 case Instruction::Mul: 05214 return ReductionInstDesc(Kind == RK_IntegerMult, I); 05215 case Instruction::And: 05216 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 05217 case Instruction::Or: 05218 return ReductionInstDesc(Kind == RK_IntegerOr, I); 05219 case Instruction::Xor: 05220 return ReductionInstDesc(Kind == RK_IntegerXor, I); 05221 case Instruction::FMul: 05222 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 05223 case Instruction::FSub: 05224 case Instruction::FAdd: 05225 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 05226 case Instruction::FCmp: 05227 case Instruction::ICmp: 05228 case Instruction::Select: 05229 if (Kind != RK_IntegerMinMax && 05230 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 05231 return ReductionInstDesc(false, I); 05232 return isMinMaxSelectCmpPattern(I, Prev); 05233 } 05234 } 05235 05236 LoopVectorizationLegality::InductionKind 05237 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 05238 Type *PhiTy = Phi->getType(); 05239 // We only handle integer and pointer inductions variables. 05240 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 05241 return IK_NoInduction; 05242 05243 // Check that the PHI is consecutive. 05244 const SCEV *PhiScev = SE->getSCEV(Phi); 05245 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 05246 if (!AR) { 05247 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 05248 return IK_NoInduction; 05249 } 05250 const SCEV *Step = AR->getStepRecurrence(*SE); 05251 05252 // Integer inductions need to have a stride of one. 05253 if (PhiTy->isIntegerTy()) { 05254 if (Step->isOne()) 05255 return IK_IntInduction; 05256 if (Step->isAllOnesValue()) 05257 return IK_ReverseIntInduction; 05258 return IK_NoInduction; 05259 } 05260 05261 // Calculate the pointer stride and check if it is consecutive. 05262 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 05263 if (!C) 05264 return IK_NoInduction; 05265 05266 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 05267 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 05268 if (C->getValue()->equalsInt(Size)) 05269 return IK_PtrInduction; 05270 else if (C->getValue()->equalsInt(0 - Size)) 05271 return IK_ReversePtrInduction; 05272 05273 return IK_NoInduction; 05274 } 05275 05276 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 05277 Value *In0 = const_cast<Value*>(V); 05278 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 05279 if (!PN) 05280 return false; 05281 05282 return Inductions.count(PN); 05283 } 05284 05285 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 05286 assert(TheLoop->contains(BB) && "Unknown block used"); 05287 05288 // Blocks that do not dominate the latch need predication. 05289 BasicBlock* Latch = TheLoop->getLoopLatch(); 05290 return !DT->dominates(BB, Latch); 05291 } 05292 05293 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 05294 SmallPtrSetImpl<Value *> &SafePtrs) { 05295 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 05296 // We might be able to hoist the load. 05297 if (it->mayReadFromMemory()) { 05298 LoadInst *LI = dyn_cast<LoadInst>(it); 05299 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 05300 return false; 05301 } 05302 05303 // We don't predicate stores at the moment. 05304 if (it->mayWriteToMemory()) { 05305 StoreInst *SI = dyn_cast<StoreInst>(it); 05306 // We only support predication of stores in basic blocks with one 05307 // predecessor. 05308 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 05309 !SafePtrs.count(SI->getPointerOperand()) || 05310 !SI->getParent()->getSinglePredecessor()) 05311 return false; 05312 } 05313 if (it->mayThrow()) 05314 return false; 05315 05316 // Check that we don't have a constant expression that can trap as operand. 05317 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 05318 OI != OE; ++OI) { 05319 if (Constant *C = dyn_cast<Constant>(*OI)) 05320 if (C->canTrap()) 05321 return false; 05322 } 05323 05324 // The instructions below can trap. 05325 switch (it->getOpcode()) { 05326 default: continue; 05327 case Instruction::UDiv: 05328 case Instruction::SDiv: 05329 case Instruction::URem: 05330 case Instruction::SRem: 05331 return false; 05332 } 05333 } 05334 05335 return true; 05336 } 05337 05338 LoopVectorizationCostModel::VectorizationFactor 05339 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 05340 // Width 1 means no vectorize 05341 VectorizationFactor Factor = { 1U, 0U }; 05342 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 05343 emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 05344 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 05345 return Factor; 05346 } 05347 05348 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 05349 emitAnalysis(Report() << "store that is conditionally executed prevents vectorization"); 05350 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 05351 return Factor; 05352 } 05353 05354 // Find the trip count. 05355 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 05356 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 05357 05358 unsigned WidestType = getWidestType(); 05359 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 05360 unsigned MaxSafeDepDist = -1U; 05361 if (Legal->getMaxSafeDepDistBytes() != -1U) 05362 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 05363 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 05364 WidestRegister : MaxSafeDepDist); 05365 unsigned MaxVectorSize = WidestRegister / WidestType; 05366 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 05367 DEBUG(dbgs() << "LV: The Widest register is: " 05368 << WidestRegister << " bits.\n"); 05369 05370 if (MaxVectorSize == 0) { 05371 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 05372 MaxVectorSize = 1; 05373 } 05374 05375 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 05376 " into one vector!"); 05377 05378 unsigned VF = MaxVectorSize; 05379 05380 // If we optimize the program for size, avoid creating the tail loop. 05381 if (OptForSize) { 05382 // If we are unable to calculate the trip count then don't try to vectorize. 05383 if (TC < 2) { 05384 emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow"); 05385 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 05386 return Factor; 05387 } 05388 05389 // Find the maximum SIMD width that can fit within the trip count. 05390 VF = TC % MaxVectorSize; 05391 05392 if (VF == 0) 05393 VF = MaxVectorSize; 05394 05395 // If the trip count that we found modulo the vectorization factor is not 05396 // zero then we require a tail. 05397 if (VF < 2) { 05398 emitAnalysis(Report() << "cannot optimize for size and vectorize at the same time. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 05399 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 05400 return Factor; 05401 } 05402 } 05403 05404 int UserVF = Hints->getWidth(); 05405 if (UserVF != 0) { 05406 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 05407 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 05408 05409 Factor.Width = UserVF; 05410 return Factor; 05411 } 05412 05413 float Cost = expectedCost(1); 05414 #ifndef NDEBUG 05415 const float ScalarCost = Cost; 05416 #endif /* NDEBUG */ 05417 unsigned Width = 1; 05418 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 05419 05420 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 05421 // Ignore scalar width, because the user explicitly wants vectorization. 05422 if (ForceVectorization && VF > 1) { 05423 Width = 2; 05424 Cost = expectedCost(Width) / (float)Width; 05425 } 05426 05427 for (unsigned i=2; i <= VF; i*=2) { 05428 // Notice that the vector loop needs to be executed less times, so 05429 // we need to divide the cost of the vector loops by the width of 05430 // the vector elements. 05431 float VectorCost = expectedCost(i) / (float)i; 05432 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 05433 (int)VectorCost << ".\n"); 05434 if (VectorCost < Cost) { 05435 Cost = VectorCost; 05436 Width = i; 05437 } 05438 } 05439 05440 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 05441 << "LV: Vectorization seems to be not beneficial, " 05442 << "but was forced by a user.\n"); 05443 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 05444 Factor.Width = Width; 05445 Factor.Cost = Width * Cost; 05446 return Factor; 05447 } 05448 05449 unsigned LoopVectorizationCostModel::getWidestType() { 05450 unsigned MaxWidth = 8; 05451 05452 // For each block. 05453 for (Loop::block_iterator bb = TheLoop->block_begin(), 05454 be = TheLoop->block_end(); bb != be; ++bb) { 05455 BasicBlock *BB = *bb; 05456 05457 // For each instruction in the loop. 05458 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 05459 Type *T = it->getType(); 05460 05461 // Only examine Loads, Stores and PHINodes. 05462 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 05463 continue; 05464 05465 // Examine PHI nodes that are reduction variables. 05466 if (PHINode *PN = dyn_cast<PHINode>(it)) 05467 if (!Legal->getReductionVars()->count(PN)) 05468 continue; 05469 05470 // Examine the stored values. 05471 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 05472 T = ST->getValueOperand()->getType(); 05473 05474 // Ignore loaded pointer types and stored pointer types that are not 05475 // consecutive. However, we do want to take consecutive stores/loads of 05476 // pointer vectors into account. 05477 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 05478 continue; 05479 05480 MaxWidth = std::max(MaxWidth, 05481 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 05482 } 05483 } 05484 05485 return MaxWidth; 05486 } 05487 05488 unsigned 05489 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 05490 unsigned VF, 05491 unsigned LoopCost) { 05492 05493 // -- The unroll heuristics -- 05494 // We unroll the loop in order to expose ILP and reduce the loop overhead. 05495 // There are many micro-architectural considerations that we can't predict 05496 // at this level. For example, frontend pressure (on decode or fetch) due to 05497 // code size, or the number and capabilities of the execution ports. 05498 // 05499 // We use the following heuristics to select the unroll factor: 05500 // 1. If the code has reductions, then we unroll in order to break the cross 05501 // iteration dependency. 05502 // 2. If the loop is really small, then we unroll in order to reduce the loop 05503 // overhead. 05504 // 3. We don't unroll if we think that we will spill registers to memory due 05505 // to the increased register pressure. 05506 05507 // Use the user preference, unless 'auto' is selected. 05508 int UserUF = Hints->getInterleave(); 05509 if (UserUF != 0) 05510 return UserUF; 05511 05512 // When we optimize for size, we don't unroll. 05513 if (OptForSize) 05514 return 1; 05515 05516 // We used the distance for the unroll factor. 05517 if (Legal->getMaxSafeDepDistBytes() != -1U) 05518 return 1; 05519 05520 // Do not unroll loops with a relatively small trip count. 05521 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 05522 TheLoop->getLoopLatch()); 05523 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 05524 return 1; 05525 05526 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 05527 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 05528 " registers\n"); 05529 05530 if (VF == 1) { 05531 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 05532 TargetNumRegisters = ForceTargetNumScalarRegs; 05533 } else { 05534 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 05535 TargetNumRegisters = ForceTargetNumVectorRegs; 05536 } 05537 05538 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 05539 // We divide by these constants so assume that we have at least one 05540 // instruction that uses at least one register. 05541 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 05542 R.NumInstructions = std::max(R.NumInstructions, 1U); 05543 05544 // We calculate the unroll factor using the following formula. 05545 // Subtract the number of loop invariants from the number of available 05546 // registers. These registers are used by all of the unrolled instances. 05547 // Next, divide the remaining registers by the number of registers that is 05548 // required by the loop, in order to estimate how many parallel instances 05549 // fit without causing spills. All of this is rounded down if necessary to be 05550 // a power of two. We want power of two unroll factors to simplify any 05551 // addressing operations or alignment considerations. 05552 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 05553 R.MaxLocalUsers); 05554 05555 // Don't count the induction variable as unrolled. 05556 if (EnableIndVarRegisterHeur) 05557 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 05558 std::max(1U, (R.MaxLocalUsers - 1))); 05559 05560 // Clamp the unroll factor ranges to reasonable factors. 05561 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 05562 05563 // Check if the user has overridden the unroll max. 05564 if (VF == 1) { 05565 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 05566 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 05567 } else { 05568 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 05569 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 05570 } 05571 05572 // If we did not calculate the cost for VF (because the user selected the VF) 05573 // then we calculate the cost of VF here. 05574 if (LoopCost == 0) 05575 LoopCost = expectedCost(VF); 05576 05577 // Clamp the calculated UF to be between the 1 and the max unroll factor 05578 // that the target allows. 05579 if (UF > MaxInterleaveSize) 05580 UF = MaxInterleaveSize; 05581 else if (UF < 1) 05582 UF = 1; 05583 05584 // Unroll if we vectorized this loop and there is a reduction that could 05585 // benefit from unrolling. 05586 if (VF > 1 && Legal->getReductionVars()->size()) { 05587 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 05588 return UF; 05589 } 05590 05591 // Note that if we've already vectorized the loop we will have done the 05592 // runtime check and so unrolling won't require further checks. 05593 bool UnrollingRequiresRuntimePointerCheck = 05594 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 05595 05596 // We want to unroll small loops in order to reduce the loop overhead and 05597 // potentially expose ILP opportunities. 05598 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 05599 if (!UnrollingRequiresRuntimePointerCheck && 05600 LoopCost < SmallLoopCost) { 05601 // We assume that the cost overhead is 1 and we use the cost model 05602 // to estimate the cost of the loop and unroll until the cost of the 05603 // loop overhead is about 5% of the cost of the loop. 05604 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 05605 05606 // Unroll until store/load ports (estimated by max unroll factor) are 05607 // saturated. 05608 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 05609 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 05610 05611 // If we have a scalar reduction (vector reductions are already dealt with 05612 // by this point), we can increase the critical path length if the loop 05613 // we're unrolling is inside another loop. Limit, by default to 2, so the 05614 // critical path only gets increased by one reduction operation. 05615 if (Legal->getReductionVars()->size() && 05616 TheLoop->getLoopDepth() > 1) { 05617 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 05618 SmallUF = std::min(SmallUF, F); 05619 StoresUF = std::min(StoresUF, F); 05620 LoadsUF = std::min(LoadsUF, F); 05621 } 05622 05623 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 05624 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 05625 return std::max(StoresUF, LoadsUF); 05626 } 05627 05628 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 05629 return SmallUF; 05630 } 05631 05632 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 05633 return 1; 05634 } 05635 05636 LoopVectorizationCostModel::RegisterUsage 05637 LoopVectorizationCostModel::calculateRegisterUsage() { 05638 // This function calculates the register usage by measuring the highest number 05639 // of values that are alive at a single location. Obviously, this is a very 05640 // rough estimation. We scan the loop in a topological order in order and 05641 // assign a number to each instruction. We use RPO to ensure that defs are 05642 // met before their users. We assume that each instruction that has in-loop 05643 // users starts an interval. We record every time that an in-loop value is 05644 // used, so we have a list of the first and last occurrences of each 05645 // instruction. Next, we transpose this data structure into a multi map that 05646 // holds the list of intervals that *end* at a specific location. This multi 05647 // map allows us to perform a linear search. We scan the instructions linearly 05648 // and record each time that a new interval starts, by placing it in a set. 05649 // If we find this value in the multi-map then we remove it from the set. 05650 // The max register usage is the maximum size of the set. 05651 // We also search for instructions that are defined outside the loop, but are 05652 // used inside the loop. We need this number separately from the max-interval 05653 // usage number because when we unroll, loop-invariant values do not take 05654 // more register. 05655 LoopBlocksDFS DFS(TheLoop); 05656 DFS.perform(LI); 05657 05658 RegisterUsage R; 05659 R.NumInstructions = 0; 05660 05661 // Each 'key' in the map opens a new interval. The values 05662 // of the map are the index of the 'last seen' usage of the 05663 // instruction that is the key. 05664 typedef DenseMap<Instruction*, unsigned> IntervalMap; 05665 // Maps instruction to its index. 05666 DenseMap<unsigned, Instruction*> IdxToInstr; 05667 // Marks the end of each interval. 05668 IntervalMap EndPoint; 05669 // Saves the list of instruction indices that are used in the loop. 05670 SmallSet<Instruction*, 8> Ends; 05671 // Saves the list of values that are used in the loop but are 05672 // defined outside the loop, such as arguments and constants. 05673 SmallPtrSet<Value*, 8> LoopInvariants; 05674 05675 unsigned Index = 0; 05676 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 05677 be = DFS.endRPO(); bb != be; ++bb) { 05678 R.NumInstructions += (*bb)->size(); 05679 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 05680 ++it) { 05681 Instruction *I = it; 05682 IdxToInstr[Index++] = I; 05683 05684 // Save the end location of each USE. 05685 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 05686 Value *U = I->getOperand(i); 05687 Instruction *Instr = dyn_cast<Instruction>(U); 05688 05689 // Ignore non-instruction values such as arguments, constants, etc. 05690 if (!Instr) continue; 05691 05692 // If this instruction is outside the loop then record it and continue. 05693 if (!TheLoop->contains(Instr)) { 05694 LoopInvariants.insert(Instr); 05695 continue; 05696 } 05697 05698 // Overwrite previous end points. 05699 EndPoint[Instr] = Index; 05700 Ends.insert(Instr); 05701 } 05702 } 05703 } 05704 05705 // Saves the list of intervals that end with the index in 'key'. 05706 typedef SmallVector<Instruction*, 2> InstrList; 05707 DenseMap<unsigned, InstrList> TransposeEnds; 05708 05709 // Transpose the EndPoints to a list of values that end at each index. 05710 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 05711 it != e; ++it) 05712 TransposeEnds[it->second].push_back(it->first); 05713 05714 SmallSet<Instruction*, 8> OpenIntervals; 05715 unsigned MaxUsage = 0; 05716 05717 05718 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 05719 for (unsigned int i = 0; i < Index; ++i) { 05720 Instruction *I = IdxToInstr[i]; 05721 // Ignore instructions that are never used within the loop. 05722 if (!Ends.count(I)) continue; 05723 05724 // Remove all of the instructions that end at this location. 05725 InstrList &List = TransposeEnds[i]; 05726 for (unsigned int j=0, e = List.size(); j < e; ++j) 05727 OpenIntervals.erase(List[j]); 05728 05729 // Count the number of live interals. 05730 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 05731 05732 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 05733 OpenIntervals.size() << '\n'); 05734 05735 // Add the current instruction to the list of open intervals. 05736 OpenIntervals.insert(I); 05737 } 05738 05739 unsigned Invariant = LoopInvariants.size(); 05740 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 05741 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 05742 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 05743 05744 R.LoopInvariantRegs = Invariant; 05745 R.MaxLocalUsers = MaxUsage; 05746 return R; 05747 } 05748 05749 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 05750 unsigned Cost = 0; 05751 05752 // For each block. 05753 for (Loop::block_iterator bb = TheLoop->block_begin(), 05754 be = TheLoop->block_end(); bb != be; ++bb) { 05755 unsigned BlockCost = 0; 05756 BasicBlock *BB = *bb; 05757 05758 // For each instruction in the old loop. 05759 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 05760 // Skip dbg intrinsics. 05761 if (isa<DbgInfoIntrinsic>(it)) 05762 continue; 05763 05764 unsigned C = getInstructionCost(it, VF); 05765 05766 // Check if we should override the cost. 05767 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 05768 C = ForceTargetInstructionCost; 05769 05770 BlockCost += C; 05771 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 05772 VF << " For instruction: " << *it << '\n'); 05773 } 05774 05775 // We assume that if-converted blocks have a 50% chance of being executed. 05776 // When the code is scalar then some of the blocks are avoided due to CF. 05777 // When the code is vectorized we execute all code paths. 05778 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 05779 BlockCost /= 2; 05780 05781 Cost += BlockCost; 05782 } 05783 05784 return Cost; 05785 } 05786 05787 /// \brief Check whether the address computation for a non-consecutive memory 05788 /// access looks like an unlikely candidate for being merged into the indexing 05789 /// mode. 05790 /// 05791 /// We look for a GEP which has one index that is an induction variable and all 05792 /// other indices are loop invariant. If the stride of this access is also 05793 /// within a small bound we decide that this address computation can likely be 05794 /// merged into the addressing mode. 05795 /// In all other cases, we identify the address computation as complex. 05796 static bool isLikelyComplexAddressComputation(Value *Ptr, 05797 LoopVectorizationLegality *Legal, 05798 ScalarEvolution *SE, 05799 const Loop *TheLoop) { 05800 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 05801 if (!Gep) 05802 return true; 05803 05804 // We are looking for a gep with all loop invariant indices except for one 05805 // which should be an induction variable. 05806 unsigned NumOperands = Gep->getNumOperands(); 05807 for (unsigned i = 1; i < NumOperands; ++i) { 05808 Value *Opd = Gep->getOperand(i); 05809 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 05810 !Legal->isInductionVariable(Opd)) 05811 return true; 05812 } 05813 05814 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 05815 // can likely be merged into the address computation. 05816 unsigned MaxMergeDistance = 64; 05817 05818 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 05819 if (!AddRec) 05820 return true; 05821 05822 // Check the step is constant. 05823 const SCEV *Step = AddRec->getStepRecurrence(*SE); 05824 // Calculate the pointer stride and check if it is consecutive. 05825 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 05826 if (!C) 05827 return true; 05828 05829 const APInt &APStepVal = C->getValue()->getValue(); 05830 05831 // Huge step value - give up. 05832 if (APStepVal.getBitWidth() > 64) 05833 return true; 05834 05835 int64_t StepVal = APStepVal.getSExtValue(); 05836 05837 return StepVal > MaxMergeDistance; 05838 } 05839 05840 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 05841 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 05842 return true; 05843 return false; 05844 } 05845 05846 unsigned 05847 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 05848 // If we know that this instruction will remain uniform, check the cost of 05849 // the scalar version. 05850 if (Legal->isUniformAfterVectorization(I)) 05851 VF = 1; 05852 05853 Type *RetTy = I->getType(); 05854 Type *VectorTy = ToVectorTy(RetTy, VF); 05855 05856 // TODO: We need to estimate the cost of intrinsic calls. 05857 switch (I->getOpcode()) { 05858 case Instruction::GetElementPtr: 05859 // We mark this instruction as zero-cost because the cost of GEPs in 05860 // vectorized code depends on whether the corresponding memory instruction 05861 // is scalarized or not. Therefore, we handle GEPs with the memory 05862 // instruction cost. 05863 return 0; 05864 case Instruction::Br: { 05865 return TTI.getCFInstrCost(I->getOpcode()); 05866 } 05867 case Instruction::PHI: 05868 //TODO: IF-converted IFs become selects. 05869 return 0; 05870 case Instruction::Add: 05871 case Instruction::FAdd: 05872 case Instruction::Sub: 05873 case Instruction::FSub: 05874 case Instruction::Mul: 05875 case Instruction::FMul: 05876 case Instruction::UDiv: 05877 case Instruction::SDiv: 05878 case Instruction::FDiv: 05879 case Instruction::URem: 05880 case Instruction::SRem: 05881 case Instruction::FRem: 05882 case Instruction::Shl: 05883 case Instruction::LShr: 05884 case Instruction::AShr: 05885 case Instruction::And: 05886 case Instruction::Or: 05887 case Instruction::Xor: { 05888 // Since we will replace the stride by 1 the multiplication should go away. 05889 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 05890 return 0; 05891 // Certain instructions can be cheaper to vectorize if they have a constant 05892 // second vector operand. One example of this are shifts on x86. 05893 TargetTransformInfo::OperandValueKind Op1VK = 05894 TargetTransformInfo::OK_AnyValue; 05895 TargetTransformInfo::OperandValueKind Op2VK = 05896 TargetTransformInfo::OK_AnyValue; 05897 TargetTransformInfo::OperandValueProperties Op1VP = 05898 TargetTransformInfo::OP_None; 05899 TargetTransformInfo::OperandValueProperties Op2VP = 05900 TargetTransformInfo::OP_None; 05901 Value *Op2 = I->getOperand(1); 05902 05903 // Check for a splat of a constant or for a non uniform vector of constants. 05904 if (isa<ConstantInt>(Op2)) { 05905 ConstantInt *CInt = cast<ConstantInt>(Op2); 05906 if (CInt && CInt->getValue().isPowerOf2()) 05907 Op2VP = TargetTransformInfo::OP_PowerOf2; 05908 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 05909 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 05910 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 05911 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 05912 if (SplatValue) { 05913 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 05914 if (CInt && CInt->getValue().isPowerOf2()) 05915 Op2VP = TargetTransformInfo::OP_PowerOf2; 05916 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 05917 } 05918 } 05919 05920 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 05921 Op1VP, Op2VP); 05922 } 05923 case Instruction::Select: { 05924 SelectInst *SI = cast<SelectInst>(I); 05925 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 05926 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 05927 Type *CondTy = SI->getCondition()->getType(); 05928 if (!ScalarCond) 05929 CondTy = VectorType::get(CondTy, VF); 05930 05931 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 05932 } 05933 case Instruction::ICmp: 05934 case Instruction::FCmp: { 05935 Type *ValTy = I->getOperand(0)->getType(); 05936 VectorTy = ToVectorTy(ValTy, VF); 05937 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 05938 } 05939 case Instruction::Store: 05940 case Instruction::Load: { 05941 StoreInst *SI = dyn_cast<StoreInst>(I); 05942 LoadInst *LI = dyn_cast<LoadInst>(I); 05943 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 05944 LI->getType()); 05945 VectorTy = ToVectorTy(ValTy, VF); 05946 05947 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 05948 unsigned AS = SI ? SI->getPointerAddressSpace() : 05949 LI->getPointerAddressSpace(); 05950 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 05951 // We add the cost of address computation here instead of with the gep 05952 // instruction because only here we know whether the operation is 05953 // scalarized. 05954 if (VF == 1) 05955 return TTI.getAddressComputationCost(VectorTy) + 05956 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 05957 05958 // Scalarized loads/stores. 05959 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 05960 bool Reverse = ConsecutiveStride < 0; 05961 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 05962 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 05963 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 05964 bool IsComplexComputation = 05965 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 05966 unsigned Cost = 0; 05967 // The cost of extracting from the value vector and pointer vector. 05968 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 05969 for (unsigned i = 0; i < VF; ++i) { 05970 // The cost of extracting the pointer operand. 05971 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 05972 // In case of STORE, the cost of ExtractElement from the vector. 05973 // In case of LOAD, the cost of InsertElement into the returned 05974 // vector. 05975 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 05976 Instruction::InsertElement, 05977 VectorTy, i); 05978 } 05979 05980 // The cost of the scalar loads/stores. 05981 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 05982 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 05983 Alignment, AS); 05984 return Cost; 05985 } 05986 05987 // Wide load/stores. 05988 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 05989 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 05990 05991 if (Reverse) 05992 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 05993 VectorTy, 0); 05994 return Cost; 05995 } 05996 case Instruction::ZExt: 05997 case Instruction::SExt: 05998 case Instruction::FPToUI: 05999 case Instruction::FPToSI: 06000 case Instruction::FPExt: 06001 case Instruction::PtrToInt: 06002 case Instruction::IntToPtr: 06003 case Instruction::SIToFP: 06004 case Instruction::UIToFP: 06005 case Instruction::Trunc: 06006 case Instruction::FPTrunc: 06007 case Instruction::BitCast: { 06008 // We optimize the truncation of induction variable. 06009 // The cost of these is the same as the scalar operation. 06010 if (I->getOpcode() == Instruction::Trunc && 06011 Legal->isInductionVariable(I->getOperand(0))) 06012 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 06013 I->getOperand(0)->getType()); 06014 06015 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 06016 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 06017 } 06018 case Instruction::Call: { 06019 CallInst *CI = cast<CallInst>(I); 06020 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 06021 assert(ID && "Not an intrinsic call!"); 06022 Type *RetTy = ToVectorTy(CI->getType(), VF); 06023 SmallVector<Type*, 4> Tys; 06024 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 06025 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 06026 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 06027 } 06028 default: { 06029 // We are scalarizing the instruction. Return the cost of the scalar 06030 // instruction, plus the cost of insert and extract into vector 06031 // elements, times the vector width. 06032 unsigned Cost = 0; 06033 06034 if (!RetTy->isVoidTy() && VF != 1) { 06035 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 06036 VectorTy); 06037 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 06038 VectorTy); 06039 06040 // The cost of inserting the results plus extracting each one of the 06041 // operands. 06042 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 06043 } 06044 06045 // The cost of executing VF copies of the scalar instruction. This opcode 06046 // is unknown. Assume that it is the same as 'mul'. 06047 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 06048 return Cost; 06049 } 06050 }// end of switch. 06051 } 06052 06053 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 06054 if (Scalar->isVoidTy() || VF == 1) 06055 return Scalar; 06056 return VectorType::get(Scalar, VF); 06057 } 06058 06059 char LoopVectorize::ID = 0; 06060 static const char lv_name[] = "Loop Vectorization"; 06061 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 06062 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 06063 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 06064 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 06065 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 06066 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 06067 INITIALIZE_PASS_DEPENDENCY(LCSSA) 06068 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 06069 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 06070 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 06071 06072 namespace llvm { 06073 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 06074 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 06075 } 06076 } 06077 06078 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 06079 // Check for a store. 06080 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 06081 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 06082 06083 // Check for a load. 06084 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 06085 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 06086 06087 return false; 06088 } 06089 06090 06091 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 06092 bool IfPredicateStore) { 06093 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 06094 // Holds vector parameters or scalars, in case of uniform vals. 06095 SmallVector<VectorParts, 4> Params; 06096 06097 setDebugLocFromInst(Builder, Instr); 06098 06099 // Find all of the vectorized parameters. 06100 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 06101 Value *SrcOp = Instr->getOperand(op); 06102 06103 // If we are accessing the old induction variable, use the new one. 06104 if (SrcOp == OldInduction) { 06105 Params.push_back(getVectorValue(SrcOp)); 06106 continue; 06107 } 06108 06109 // Try using previously calculated values. 06110 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 06111 06112 // If the src is an instruction that appeared earlier in the basic block 06113 // then it should already be vectorized. 06114 if (SrcInst && OrigLoop->contains(SrcInst)) { 06115 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 06116 // The parameter is a vector value from earlier. 06117 Params.push_back(WidenMap.get(SrcInst)); 06118 } else { 06119 // The parameter is a scalar from outside the loop. Maybe even a constant. 06120 VectorParts Scalars; 06121 Scalars.append(UF, SrcOp); 06122 Params.push_back(Scalars); 06123 } 06124 } 06125 06126 assert(Params.size() == Instr->getNumOperands() && 06127 "Invalid number of operands"); 06128 06129 // Does this instruction return a value ? 06130 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 06131 06132 Value *UndefVec = IsVoidRetTy ? nullptr : 06133 UndefValue::get(Instr->getType()); 06134 // Create a new entry in the WidenMap and initialize it to Undef or Null. 06135 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 06136 06137 Instruction *InsertPt = Builder.GetInsertPoint(); 06138 BasicBlock *IfBlock = Builder.GetInsertBlock(); 06139 BasicBlock *CondBlock = nullptr; 06140 06141 VectorParts Cond; 06142 Loop *VectorLp = nullptr; 06143 if (IfPredicateStore) { 06144 assert(Instr->getParent()->getSinglePredecessor() && 06145 "Only support single predecessor blocks"); 06146 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 06147 Instr->getParent()); 06148 VectorLp = LI->getLoopFor(IfBlock); 06149 assert(VectorLp && "Must have a loop for this block"); 06150 } 06151 06152 // For each vector unroll 'part': 06153 for (unsigned Part = 0; Part < UF; ++Part) { 06154 // For each scalar that we create: 06155 06156 // Start an "if (pred) a[i] = ..." block. 06157 Value *Cmp = nullptr; 06158 if (IfPredicateStore) { 06159 if (Cond[Part]->getType()->isVectorTy()) 06160 Cond[Part] = 06161 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 06162 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 06163 ConstantInt::get(Cond[Part]->getType(), 1)); 06164 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 06165 LoopVectorBody.push_back(CondBlock); 06166 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 06167 // Update Builder with newly created basic block. 06168 Builder.SetInsertPoint(InsertPt); 06169 } 06170 06171 Instruction *Cloned = Instr->clone(); 06172 if (!IsVoidRetTy) 06173 Cloned->setName(Instr->getName() + ".cloned"); 06174 // Replace the operands of the cloned instructions with extracted scalars. 06175 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 06176 Value *Op = Params[op][Part]; 06177 Cloned->setOperand(op, Op); 06178 } 06179 06180 // Place the cloned scalar in the new loop. 06181 Builder.Insert(Cloned); 06182 06183 // If the original scalar returns a value we need to place it in a vector 06184 // so that future users will be able to use it. 06185 if (!IsVoidRetTy) 06186 VecResults[Part] = Cloned; 06187 06188 // End if-block. 06189 if (IfPredicateStore) { 06190 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 06191 LoopVectorBody.push_back(NewIfBlock); 06192 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 06193 Builder.SetInsertPoint(InsertPt); 06194 Instruction *OldBr = IfBlock->getTerminator(); 06195 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 06196 OldBr->eraseFromParent(); 06197 IfBlock = NewIfBlock; 06198 } 06199 } 06200 } 06201 06202 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 06203 StoreInst *SI = dyn_cast<StoreInst>(Instr); 06204 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 06205 06206 return scalarizeInstruction(Instr, IfPredicateStore); 06207 } 06208 06209 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 06210 return Vec; 06211 } 06212 06213 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 06214 return V; 06215 } 06216 06217 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 06218 bool Negate) { 06219 // When unrolling and the VF is 1, we only need to add a simple scalar. 06220 Type *ITy = Val->getType(); 06221 assert(!ITy->isVectorTy() && "Val must be a scalar"); 06222 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 06223 return Builder.CreateAdd(Val, C, "induction"); 06224 }