LLVM API Documentation

PPCCTRLoops.cpp
Go to the documentation of this file.
00001 //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This pass identifies loops where we can generate the PPC branch instructions
00011 // that decrement and test the count register (CTR) (bdnz and friends).
00012 //
00013 // The pattern that defines the induction variable can changed depending on
00014 // prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
00015 // normalizes induction variables, and the Loop Strength Reduction pass
00016 // run by 'llc' may also make changes to the induction variable.
00017 //
00018 // Criteria for CTR loops:
00019 //  - Countable loops (w/ ind. var for a trip count)
00020 //  - Try inner-most loops first
00021 //  - No nested CTR loops.
00022 //  - No function calls in loops.
00023 //
00024 //===----------------------------------------------------------------------===//
00025 
00026 #include "llvm/Transforms/Scalar.h"
00027 #include "PPC.h"
00028 #include "PPCTargetMachine.h"
00029 #include "llvm/ADT/STLExtras.h"
00030 #include "llvm/ADT/Statistic.h"
00031 #include "llvm/Analysis/LoopInfo.h"
00032 #include "llvm/Analysis/ScalarEvolutionExpander.h"
00033 #include "llvm/IR/Constants.h"
00034 #include "llvm/IR/DerivedTypes.h"
00035 #include "llvm/IR/Dominators.h"
00036 #include "llvm/IR/InlineAsm.h"
00037 #include "llvm/IR/Instructions.h"
00038 #include "llvm/IR/IntrinsicInst.h"
00039 #include "llvm/IR/Module.h"
00040 #include "llvm/IR/ValueHandle.h"
00041 #include "llvm/PassSupport.h"
00042 #include "llvm/Support/CommandLine.h"
00043 #include "llvm/Support/Debug.h"
00044 #include "llvm/Support/raw_ostream.h"
00045 #include "llvm/Target/TargetLibraryInfo.h"
00046 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
00047 #include "llvm/Transforms/Utils/Local.h"
00048 #include "llvm/Transforms/Utils/LoopUtils.h"
00049 
00050 #ifndef NDEBUG
00051 #include "llvm/CodeGen/MachineDominators.h"
00052 #include "llvm/CodeGen/MachineFunction.h"
00053 #include "llvm/CodeGen/MachineFunctionPass.h"
00054 #include "llvm/CodeGen/MachineRegisterInfo.h"
00055 #endif
00056 
00057 #include <algorithm>
00058 #include <vector>
00059 
00060 using namespace llvm;
00061 
00062 #define DEBUG_TYPE "ctrloops"
00063 
00064 #ifndef NDEBUG
00065 static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1));
00066 #endif
00067 
00068 STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
00069 
00070 namespace llvm {
00071   void initializePPCCTRLoopsPass(PassRegistry&);
00072 #ifndef NDEBUG
00073   void initializePPCCTRLoopsVerifyPass(PassRegistry&);
00074 #endif
00075 }
00076 
00077 namespace {
00078   struct PPCCTRLoops : public FunctionPass {
00079 
00080 #ifndef NDEBUG
00081     static int Counter;
00082 #endif
00083 
00084   public:
00085     static char ID;
00086 
00087     PPCCTRLoops() : FunctionPass(ID), TM(nullptr) {
00088       initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
00089     }
00090     PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
00091       initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
00092     }
00093 
00094     bool runOnFunction(Function &F) override;
00095 
00096     void getAnalysisUsage(AnalysisUsage &AU) const override {
00097       AU.addRequired<LoopInfo>();
00098       AU.addPreserved<LoopInfo>();
00099       AU.addRequired<DominatorTreeWrapperPass>();
00100       AU.addPreserved<DominatorTreeWrapperPass>();
00101       AU.addRequired<ScalarEvolution>();
00102     }
00103 
00104   private:
00105     bool mightUseCTR(const Triple &TT, BasicBlock *BB);
00106     bool convertToCTRLoop(Loop *L);
00107 
00108   private:
00109     PPCTargetMachine *TM;
00110     LoopInfo *LI;
00111     ScalarEvolution *SE;
00112     const DataLayout *DL;
00113     DominatorTree *DT;
00114     const TargetLibraryInfo *LibInfo;
00115   };
00116 
00117   char PPCCTRLoops::ID = 0;
00118 #ifndef NDEBUG
00119   int PPCCTRLoops::Counter = 0;
00120 #endif
00121 
00122 #ifndef NDEBUG
00123   struct PPCCTRLoopsVerify : public MachineFunctionPass {
00124   public:
00125     static char ID;
00126 
00127     PPCCTRLoopsVerify() : MachineFunctionPass(ID) {
00128       initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry());
00129     }
00130 
00131     void getAnalysisUsage(AnalysisUsage &AU) const override {
00132       AU.addRequired<MachineDominatorTree>();
00133       MachineFunctionPass::getAnalysisUsage(AU);
00134     }
00135 
00136     bool runOnMachineFunction(MachineFunction &MF) override;
00137 
00138   private:
00139     MachineDominatorTree *MDT;
00140   };
00141 
00142   char PPCCTRLoopsVerify::ID = 0;
00143 #endif // NDEBUG
00144 } // end anonymous namespace
00145 
00146 INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
00147                       false, false)
00148 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
00149 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
00150 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
00151 INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
00152                     false, false)
00153 
00154 FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) {
00155   return new PPCCTRLoops(TM);
00156 }
00157 
00158 #ifndef NDEBUG
00159 INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
00160                       "PowerPC CTR Loops Verify", false, false)
00161 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
00162 INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
00163                     "PowerPC CTR Loops Verify", false, false)
00164 
00165 FunctionPass *llvm::createPPCCTRLoopsVerify() {
00166   return new PPCCTRLoopsVerify();
00167 }
00168 #endif // NDEBUG
00169 
00170 bool PPCCTRLoops::runOnFunction(Function &F) {
00171   LI = &getAnalysis<LoopInfo>();
00172   SE = &getAnalysis<ScalarEvolution>();
00173   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
00174   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
00175   DL = DLP ? &DLP->getDataLayout() : nullptr;
00176   LibInfo = getAnalysisIfAvailable<TargetLibraryInfo>();
00177 
00178   bool MadeChange = false;
00179 
00180   for (LoopInfo::iterator I = LI->begin(), E = LI->end();
00181        I != E; ++I) {
00182     Loop *L = *I;
00183     if (!L->getParentLoop())
00184       MadeChange |= convertToCTRLoop(L);
00185   }
00186 
00187   return MadeChange;
00188 }
00189 
00190 static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) {
00191   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
00192     return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
00193 
00194   return false;
00195 }
00196 
00197 bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
00198   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
00199        J != JE; ++J) {
00200     if (CallInst *CI = dyn_cast<CallInst>(J)) {
00201       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
00202         // Inline ASM is okay, unless it clobbers the ctr register.
00203         InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
00204         for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
00205           InlineAsm::ConstraintInfo &C = CIV[i];
00206           if (C.Type != InlineAsm::isInput)
00207             for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
00208               if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
00209                 return true;
00210         }
00211 
00212         continue;
00213       }
00214 
00215       if (!TM)
00216         return true;
00217       const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
00218 
00219       if (Function *F = CI->getCalledFunction()) {
00220         // Most intrinsics don't become function calls, but some might.
00221         // sin, cos, exp and log are always calls.
00222         unsigned Opcode;
00223         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
00224           switch (F->getIntrinsicID()) {
00225           default: continue;
00226 
00227 // VisualStudio defines setjmp as _setjmp
00228 #if defined(_MSC_VER) && defined(setjmp) && \
00229                        !defined(setjmp_undefined_for_msvc)
00230 #  pragma push_macro("setjmp")
00231 #  undef setjmp
00232 #  define setjmp_undefined_for_msvc
00233 #endif
00234 
00235           case Intrinsic::setjmp:
00236 
00237 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
00238  // let's return it to _setjmp state
00239 #  pragma pop_macro("setjmp")
00240 #  undef setjmp_undefined_for_msvc
00241 #endif
00242 
00243           case Intrinsic::longjmp:
00244 
00245           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
00246           // because, although it does clobber the counter register, the
00247           // control can't then return to inside the loop unless there is also
00248           // an eh_sjlj_setjmp.
00249           case Intrinsic::eh_sjlj_setjmp:
00250 
00251           case Intrinsic::memcpy:
00252           case Intrinsic::memmove:
00253           case Intrinsic::memset:
00254           case Intrinsic::powi:
00255           case Intrinsic::log:
00256           case Intrinsic::log2:
00257           case Intrinsic::log10:
00258           case Intrinsic::exp:
00259           case Intrinsic::exp2:
00260           case Intrinsic::pow:
00261           case Intrinsic::sin:
00262           case Intrinsic::cos:
00263             return true;
00264           case Intrinsic::copysign:
00265             if (CI->getArgOperand(0)->getType()->getScalarType()->
00266                 isPPC_FP128Ty())
00267               return true;
00268             else
00269               continue; // ISD::FCOPYSIGN is never a library call.
00270           case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
00271           case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
00272           case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
00273           case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
00274           case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
00275           case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
00276           case Intrinsic::round:     Opcode = ISD::FROUND;     break;
00277           }
00278         }
00279 
00280         // PowerPC does not use [US]DIVREM or other library calls for
00281         // operations on regular types which are not otherwise library calls
00282         // (i.e. soft float or atomics). If adapting for targets that do,
00283         // additional care is required here.
00284 
00285         LibFunc::Func Func;
00286         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
00287             LibInfo->getLibFunc(F->getName(), Func) &&
00288             LibInfo->hasOptimizedCodeGen(Func)) {
00289           // Non-read-only functions are never treated as intrinsics.
00290           if (!CI->onlyReadsMemory())
00291             return true;
00292 
00293           // Conversion happens only for FP calls.
00294           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
00295             return true;
00296 
00297           switch (Func) {
00298           default: return true;
00299           case LibFunc::copysign:
00300           case LibFunc::copysignf:
00301             continue; // ISD::FCOPYSIGN is never a library call.
00302           case LibFunc::copysignl:
00303             return true;
00304           case LibFunc::fabs:
00305           case LibFunc::fabsf:
00306           case LibFunc::fabsl:
00307             continue; // ISD::FABS is never a library call.
00308           case LibFunc::sqrt:
00309           case LibFunc::sqrtf:
00310           case LibFunc::sqrtl:
00311             Opcode = ISD::FSQRT; break;
00312           case LibFunc::floor:
00313           case LibFunc::floorf:
00314           case LibFunc::floorl:
00315             Opcode = ISD::FFLOOR; break;
00316           case LibFunc::nearbyint:
00317           case LibFunc::nearbyintf:
00318           case LibFunc::nearbyintl:
00319             Opcode = ISD::FNEARBYINT; break;
00320           case LibFunc::ceil:
00321           case LibFunc::ceilf:
00322           case LibFunc::ceill:
00323             Opcode = ISD::FCEIL; break;
00324           case LibFunc::rint:
00325           case LibFunc::rintf:
00326           case LibFunc::rintl:
00327             Opcode = ISD::FRINT; break;
00328           case LibFunc::round:
00329           case LibFunc::roundf:
00330           case LibFunc::roundl:
00331             Opcode = ISD::FROUND; break;
00332           case LibFunc::trunc:
00333           case LibFunc::truncf:
00334           case LibFunc::truncl:
00335             Opcode = ISD::FTRUNC; break;
00336           }
00337 
00338           MVT VTy =
00339             TLI->getSimpleValueType(CI->getArgOperand(0)->getType(), true);
00340           if (VTy == MVT::Other)
00341             return true;
00342           
00343           if (TLI->isOperationLegalOrCustom(Opcode, VTy))
00344             continue;
00345           else if (VTy.isVector() &&
00346                    TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType()))
00347             continue;
00348 
00349           return true;
00350         }
00351       }
00352 
00353       return true;
00354     } else if (isa<BinaryOperator>(J) &&
00355                J->getType()->getScalarType()->isPPC_FP128Ty()) {
00356       // Most operations on ppc_f128 values become calls.
00357       return true;
00358     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
00359                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
00360       CastInst *CI = cast<CastInst>(J);
00361       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
00362           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
00363           isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) ||
00364           isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType()))
00365         return true;
00366     } else if (isLargeIntegerTy(TT.isArch32Bit(),
00367                                 J->getType()->getScalarType()) &&
00368                (J->getOpcode() == Instruction::UDiv ||
00369                 J->getOpcode() == Instruction::SDiv ||
00370                 J->getOpcode() == Instruction::URem ||
00371                 J->getOpcode() == Instruction::SRem)) {
00372       return true;
00373     } else if (TT.isArch32Bit() &&
00374                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
00375                (J->getOpcode() == Instruction::Shl ||
00376                 J->getOpcode() == Instruction::AShr ||
00377                 J->getOpcode() == Instruction::LShr)) {
00378       // Only on PPC32, for 128-bit integers (specifically not 64-bit
00379       // integers), these might be runtime calls.
00380       return true;
00381     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
00382       // On PowerPC, indirect jumps use the counter register.
00383       return true;
00384     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
00385       if (!TM)
00386         return true;
00387       const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
00388 
00389       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
00390         return true;
00391     }
00392   }
00393 
00394   return false;
00395 }
00396 
00397 bool PPCCTRLoops::convertToCTRLoop(Loop *L) {
00398   bool MadeChange = false;
00399 
00400   Triple TT = Triple(L->getHeader()->getParent()->getParent()->
00401                      getTargetTriple());
00402   if (!TT.isArch32Bit() && !TT.isArch64Bit())
00403     return MadeChange; // Unknown arch. type.
00404 
00405   // Process nested loops first.
00406   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
00407     MadeChange |= convertToCTRLoop(*I);
00408   }
00409 
00410   // If a nested loop has been converted, then we can't convert this loop.
00411   if (MadeChange)
00412     return MadeChange;
00413 
00414 #ifndef NDEBUG
00415   // Stop trying after reaching the limit (if any).
00416   int Limit = CTRLoopLimit;
00417   if (Limit >= 0) {
00418     if (Counter >= CTRLoopLimit)
00419       return false;
00420     Counter++;
00421   }
00422 #endif
00423 
00424   // We don't want to spill/restore the counter register, and so we don't
00425   // want to use the counter register if the loop contains calls.
00426   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
00427        I != IE; ++I)
00428     if (mightUseCTR(TT, *I))
00429       return MadeChange;
00430 
00431   SmallVector<BasicBlock*, 4> ExitingBlocks;
00432   L->getExitingBlocks(ExitingBlocks);
00433 
00434   BasicBlock *CountedExitBlock = nullptr;
00435   const SCEV *ExitCount = nullptr;
00436   BranchInst *CountedExitBranch = nullptr;
00437   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
00438        IE = ExitingBlocks.end(); I != IE; ++I) {
00439     const SCEV *EC = SE->getExitCount(L, *I);
00440     DEBUG(dbgs() << "Exit Count for " << *L << " from block " <<
00441                     (*I)->getName() << ": " << *EC << "\n");
00442     if (isa<SCEVCouldNotCompute>(EC))
00443       continue;
00444     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
00445       if (ConstEC->getValue()->isZero())
00446         continue;
00447     } else if (!SE->isLoopInvariant(EC, L))
00448       continue;
00449 
00450     if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32))
00451       continue;
00452 
00453     // We now have a loop-invariant count of loop iterations (which is not the
00454     // constant zero) for which we know that this loop will not exit via this
00455     // exisiting block.
00456 
00457     // We need to make sure that this block will run on every loop iteration.
00458     // For this to be true, we must dominate all blocks with backedges. Such
00459     // blocks are in-loop predecessors to the header block.
00460     bool NotAlways = false;
00461     for (pred_iterator PI = pred_begin(L->getHeader()),
00462          PIE = pred_end(L->getHeader()); PI != PIE; ++PI) {
00463       if (!L->contains(*PI))
00464         continue;
00465 
00466       if (!DT->dominates(*I, *PI)) {
00467         NotAlways = true;
00468         break;
00469       }
00470     }
00471 
00472     if (NotAlways)
00473       continue;
00474 
00475     // Make sure this blocks ends with a conditional branch.
00476     Instruction *TI = (*I)->getTerminator();
00477     if (!TI)
00478       continue;
00479 
00480     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
00481       if (!BI->isConditional())
00482         continue;
00483 
00484       CountedExitBranch = BI;
00485     } else
00486       continue;
00487 
00488     // Note that this block may not be the loop latch block, even if the loop
00489     // has a latch block.
00490     CountedExitBlock = *I;
00491     ExitCount = EC;
00492     break;
00493   }
00494 
00495   if (!CountedExitBlock)
00496     return MadeChange;
00497 
00498   BasicBlock *Preheader = L->getLoopPreheader();
00499 
00500   // If we don't have a preheader, then insert one. If we already have a
00501   // preheader, then we can use it (except if the preheader contains a use of
00502   // the CTR register because some such uses might be reordered by the
00503   // selection DAG after the mtctr instruction).
00504   if (!Preheader || mightUseCTR(TT, Preheader))
00505     Preheader = InsertPreheaderForLoop(L, this);
00506   if (!Preheader)
00507     return MadeChange;
00508 
00509   DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n");
00510 
00511   // Insert the count into the preheader and replace the condition used by the
00512   // selected branch.
00513   MadeChange = true;
00514 
00515   SCEVExpander SCEVE(*SE, "loopcnt");
00516   LLVMContext &C = SE->getContext();
00517   Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) :
00518                                        Type::getInt32Ty(C);
00519   if (!ExitCount->getType()->isPointerTy() &&
00520       ExitCount->getType() != CountType)
00521     ExitCount = SE->getZeroExtendExpr(ExitCount, CountType);
00522   ExitCount = SE->getAddExpr(ExitCount,
00523                              SE->getConstant(CountType, 1)); 
00524   Value *ECValue = SCEVE.expandCodeFor(ExitCount, CountType,
00525                                        Preheader->getTerminator());
00526 
00527   IRBuilder<> CountBuilder(Preheader->getTerminator());
00528   Module *M = Preheader->getParent()->getParent();
00529   Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr,
00530                                                CountType);
00531   CountBuilder.CreateCall(MTCTRFunc, ECValue);
00532 
00533   IRBuilder<> CondBuilder(CountedExitBranch);
00534   Value *DecFunc =
00535     Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero);
00536   Value *NewCond = CondBuilder.CreateCall(DecFunc);
00537   Value *OldCond = CountedExitBranch->getCondition();
00538   CountedExitBranch->setCondition(NewCond);
00539 
00540   // The false branch must exit the loop.
00541   if (!L->contains(CountedExitBranch->getSuccessor(0)))
00542     CountedExitBranch->swapSuccessors();
00543 
00544   // The old condition may be dead now, and may have even created a dead PHI
00545   // (the original induction variable).
00546   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
00547   DeleteDeadPHIs(CountedExitBlock);
00548 
00549   ++NumCTRLoops;
00550   return MadeChange;
00551 }
00552 
00553 #ifndef NDEBUG
00554 static bool clobbersCTR(const MachineInstr *MI) {
00555   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
00556     const MachineOperand &MO = MI->getOperand(i);
00557     if (MO.isReg()) {
00558       if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8))
00559         return true;
00560     } else if (MO.isRegMask()) {
00561       if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8))
00562         return true;
00563     }
00564   }
00565 
00566   return false;
00567 }
00568 
00569 static bool verifyCTRBranch(MachineBasicBlock *MBB,
00570                             MachineBasicBlock::iterator I) {
00571   MachineBasicBlock::iterator BI = I;
00572   SmallSet<MachineBasicBlock *, 16>   Visited;
00573   SmallVector<MachineBasicBlock *, 8> Preds;
00574   bool CheckPreds;
00575 
00576   if (I == MBB->begin()) {
00577     Visited.insert(MBB);
00578     goto queue_preds;
00579   } else
00580     --I;
00581 
00582 check_block:
00583   Visited.insert(MBB);
00584   if (I == MBB->end())
00585     goto queue_preds;
00586 
00587   CheckPreds = true;
00588   for (MachineBasicBlock::iterator IE = MBB->begin();; --I) {
00589     unsigned Opc = I->getOpcode();
00590     if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) {
00591       CheckPreds = false;
00592       break;
00593     }
00594 
00595     if (I != BI && clobbersCTR(I)) {
00596       DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" <<
00597                       MBB->getFullName() << ") instruction " << *I <<
00598                       " clobbers CTR, invalidating " << "BB#" <<
00599                       BI->getParent()->getNumber() << " (" <<
00600                       BI->getParent()->getFullName() << ") instruction " <<
00601                       *BI << "\n");
00602       return false;
00603     }
00604 
00605     if (I == IE)
00606       break;
00607   }
00608 
00609   if (!CheckPreds && Preds.empty())
00610     return true;
00611 
00612   if (CheckPreds) {
00613 queue_preds:
00614     if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) {
00615       DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" <<
00616                       BI->getParent()->getNumber() << " (" <<
00617                       BI->getParent()->getFullName() << ") instruction " <<
00618                       *BI << "\n");
00619       return false;
00620     }
00621 
00622     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
00623          PIE = MBB->pred_end(); PI != PIE; ++PI)
00624       Preds.push_back(*PI);
00625   }
00626 
00627   do {
00628     MBB = Preds.pop_back_val();
00629     if (!Visited.count(MBB)) {
00630       I = MBB->getLastNonDebugInstr();
00631       goto check_block;
00632     }
00633   } while (!Preds.empty());
00634 
00635   return true;
00636 }
00637 
00638 bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) {
00639   MDT = &getAnalysis<MachineDominatorTree>();
00640 
00641   // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before
00642   // any other instructions that might clobber the ctr register.
00643   for (MachineFunction::iterator I = MF.begin(), IE = MF.end();
00644        I != IE; ++I) {
00645     MachineBasicBlock *MBB = I;
00646     if (!MDT->isReachableFromEntry(MBB))
00647       continue;
00648 
00649     for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(),
00650       MIIE = MBB->end(); MII != MIIE; ++MII) {
00651       unsigned Opc = MII->getOpcode();
00652       if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ ||
00653           Opc == PPC::BDZ8  || Opc == PPC::BDZ)
00654         if (!verifyCTRBranch(MBB, MII))
00655           llvm_unreachable("Invalid PPC CTR loop!");
00656     }
00657   }
00658 
00659   return false;
00660 }
00661 #endif // NDEBUG
00662