LLVM API Documentation
00001 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // Implementation of the MC-JIT runtime dynamic linker. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/ExecutionEngine/RuntimeDyld.h" 00015 #include "JITRegistrar.h" 00016 #include "ObjectImageCommon.h" 00017 #include "RuntimeDyldCheckerImpl.h" 00018 #include "RuntimeDyldELF.h" 00019 #include "RuntimeDyldImpl.h" 00020 #include "RuntimeDyldMachO.h" 00021 #include "llvm/Object/ELF.h" 00022 #include "llvm/Support/MathExtras.h" 00023 #include "llvm/Support/MutexGuard.h" 00024 00025 using namespace llvm; 00026 using namespace llvm::object; 00027 00028 #define DEBUG_TYPE "dyld" 00029 00030 // Empty out-of-line virtual destructor as the key function. 00031 RuntimeDyldImpl::~RuntimeDyldImpl() {} 00032 00033 // Pin the JITRegistrar's and ObjectImage*'s vtables to this file. 00034 void JITRegistrar::anchor() {} 00035 void ObjectImage::anchor() {} 00036 void ObjectImageCommon::anchor() {} 00037 00038 namespace llvm { 00039 00040 void RuntimeDyldImpl::registerEHFrames() {} 00041 00042 void RuntimeDyldImpl::deregisterEHFrames() {} 00043 00044 #ifndef NDEBUG 00045 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 00046 dbgs() << "----- Contents of section " << S.Name << " " << State << " -----"; 00047 00048 const unsigned ColsPerRow = 16; 00049 00050 uint8_t *DataAddr = S.Address; 00051 uint64_t LoadAddr = S.LoadAddress; 00052 00053 unsigned StartPadding = LoadAddr & 7; 00054 unsigned BytesRemaining = S.Size; 00055 00056 if (StartPadding) { 00057 dbgs() << "\n" << format("0x%08x", LoadAddr & ~(ColsPerRow - 1)) << ":"; 00058 while (StartPadding--) 00059 dbgs() << " "; 00060 } 00061 00062 while (BytesRemaining > 0) { 00063 if ((LoadAddr & (ColsPerRow - 1)) == 0) 00064 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 00065 00066 dbgs() << " " << format("%02x", *DataAddr); 00067 00068 ++DataAddr; 00069 ++LoadAddr; 00070 --BytesRemaining; 00071 } 00072 00073 dbgs() << "\n"; 00074 } 00075 #endif 00076 00077 // Resolve the relocations for all symbols we currently know about. 00078 void RuntimeDyldImpl::resolveRelocations() { 00079 MutexGuard locked(lock); 00080 00081 // First, resolve relocations associated with external symbols. 00082 resolveExternalSymbols(); 00083 00084 // Just iterate over the sections we have and resolve all the relocations 00085 // in them. Gross overkill, but it gets the job done. 00086 for (int i = 0, e = Sections.size(); i != e; ++i) { 00087 // The Section here (Sections[i]) refers to the section in which the 00088 // symbol for the relocation is located. The SectionID in the relocation 00089 // entry provides the section to which the relocation will be applied. 00090 uint64_t Addr = Sections[i].LoadAddress; 00091 DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t" 00092 << format("0x%x", Addr) << "\n"); 00093 DEBUG(dumpSectionMemory(Sections[i], "before relocations")); 00094 resolveRelocationList(Relocations[i], Addr); 00095 DEBUG(dumpSectionMemory(Sections[i], "after relocations")); 00096 Relocations.erase(i); 00097 } 00098 } 00099 00100 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 00101 uint64_t TargetAddress) { 00102 MutexGuard locked(lock); 00103 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 00104 if (Sections[i].Address == LocalAddress) { 00105 reassignSectionAddress(i, TargetAddress); 00106 return; 00107 } 00108 } 00109 llvm_unreachable("Attempting to remap address of unknown section!"); 00110 } 00111 00112 static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) { 00113 uint64_t Address; 00114 if (std::error_code EC = Sym.getAddress(Address)) 00115 return EC; 00116 00117 if (Address == UnknownAddressOrSize) { 00118 Result = UnknownAddressOrSize; 00119 return object_error::success; 00120 } 00121 00122 const ObjectFile *Obj = Sym.getObject(); 00123 section_iterator SecI(Obj->section_begin()); 00124 if (std::error_code EC = Sym.getSection(SecI)) 00125 return EC; 00126 00127 if (SecI == Obj->section_end()) { 00128 Result = UnknownAddressOrSize; 00129 return object_error::success; 00130 } 00131 00132 uint64_t SectionAddress; 00133 if (std::error_code EC = SecI->getAddress(SectionAddress)) 00134 return EC; 00135 00136 Result = Address - SectionAddress; 00137 return object_error::success; 00138 } 00139 00140 std::unique_ptr<ObjectImage> 00141 RuntimeDyldImpl::loadObject(std::unique_ptr<ObjectImage> Obj) { 00142 MutexGuard locked(lock); 00143 00144 if (!Obj) 00145 return nullptr; 00146 00147 // Save information about our target 00148 Arch = (Triple::ArchType)Obj->getArch(); 00149 IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian(); 00150 00151 // Compute the memory size required to load all sections to be loaded 00152 // and pass this information to the memory manager 00153 if (MemMgr->needsToReserveAllocationSpace()) { 00154 uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0; 00155 computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW); 00156 MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW); 00157 } 00158 00159 // Symbols found in this object 00160 StringMap<SymbolLoc> LocalSymbols; 00161 // Used sections from the object file 00162 ObjSectionToIDMap LocalSections; 00163 00164 // Common symbols requiring allocation, with their sizes and alignments 00165 CommonSymbolMap CommonSymbols; 00166 // Maximum required total memory to allocate all common symbols 00167 uint64_t CommonSize = 0; 00168 00169 // Parse symbols 00170 DEBUG(dbgs() << "Parse symbols:\n"); 00171 for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E; 00172 ++I) { 00173 object::SymbolRef::Type SymType; 00174 StringRef Name; 00175 Check(I->getType(SymType)); 00176 Check(I->getName(Name)); 00177 00178 uint32_t Flags = I->getFlags(); 00179 00180 bool IsCommon = Flags & SymbolRef::SF_Common; 00181 if (IsCommon) { 00182 // Add the common symbols to a list. We'll allocate them all below. 00183 if (!GlobalSymbolTable.count(Name)) { 00184 uint32_t Align; 00185 Check(I->getAlignment(Align)); 00186 uint64_t Size = 0; 00187 Check(I->getSize(Size)); 00188 CommonSize += Size + Align; 00189 CommonSymbols[*I] = CommonSymbolInfo(Size, Align); 00190 } 00191 } else { 00192 if (SymType == object::SymbolRef::ST_Function || 00193 SymType == object::SymbolRef::ST_Data || 00194 SymType == object::SymbolRef::ST_Unknown) { 00195 uint64_t SectOffset; 00196 StringRef SectionData; 00197 bool IsCode; 00198 section_iterator SI = Obj->end_sections(); 00199 Check(getOffset(*I, SectOffset)); 00200 Check(I->getSection(SI)); 00201 if (SI == Obj->end_sections()) 00202 continue; 00203 Check(SI->getContents(SectionData)); 00204 Check(SI->isText(IsCode)); 00205 unsigned SectionID = 00206 findOrEmitSection(*Obj, *SI, IsCode, LocalSections); 00207 LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset); 00208 DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset) 00209 << " flags: " << Flags << " SID: " << SectionID); 00210 GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset); 00211 } 00212 } 00213 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n"); 00214 } 00215 00216 // Allocate common symbols 00217 if (CommonSize != 0) 00218 emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable); 00219 00220 // Parse and process relocations 00221 DEBUG(dbgs() << "Parse relocations:\n"); 00222 for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections(); 00223 SI != SE; ++SI) { 00224 unsigned SectionID = 0; 00225 StubMap Stubs; 00226 section_iterator RelocatedSection = SI->getRelocatedSection(); 00227 00228 relocation_iterator I = SI->relocation_begin(); 00229 relocation_iterator E = SI->relocation_end(); 00230 00231 if (I == E && !ProcessAllSections) 00232 continue; 00233 00234 bool IsCode = false; 00235 Check(RelocatedSection->isText(IsCode)); 00236 SectionID = 00237 findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections); 00238 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 00239 00240 for (; I != E;) 00241 I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols, 00242 Stubs); 00243 00244 // If there is an attached checker, notify it about the stubs for this 00245 // section so that they can be verified. 00246 if (Checker) 00247 Checker->registerStubMap(Obj->getImageName(), SectionID, Stubs); 00248 } 00249 00250 // Give the subclasses a chance to tie-up any loose ends. 00251 finalizeLoad(*Obj, LocalSections); 00252 00253 return Obj; 00254 } 00255 00256 // A helper method for computeTotalAllocSize. 00257 // Computes the memory size required to allocate sections with the given sizes, 00258 // assuming that all sections are allocated with the given alignment 00259 static uint64_t 00260 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 00261 uint64_t Alignment) { 00262 uint64_t TotalSize = 0; 00263 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 00264 uint64_t AlignedSize = 00265 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 00266 TotalSize += AlignedSize; 00267 } 00268 return TotalSize; 00269 } 00270 00271 // Compute an upper bound of the memory size that is required to load all 00272 // sections 00273 void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj, 00274 uint64_t &CodeSize, 00275 uint64_t &DataSizeRO, 00276 uint64_t &DataSizeRW) { 00277 // Compute the size of all sections required for execution 00278 std::vector<uint64_t> CodeSectionSizes; 00279 std::vector<uint64_t> ROSectionSizes; 00280 std::vector<uint64_t> RWSectionSizes; 00281 uint64_t MaxAlignment = sizeof(void *); 00282 00283 // Collect sizes of all sections to be loaded; 00284 // also determine the max alignment of all sections 00285 for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); 00286 SI != SE; ++SI) { 00287 const SectionRef &Section = *SI; 00288 00289 bool IsRequired; 00290 Check(Section.isRequiredForExecution(IsRequired)); 00291 00292 // Consider only the sections that are required to be loaded for execution 00293 if (IsRequired) { 00294 uint64_t DataSize = 0; 00295 uint64_t Alignment64 = 0; 00296 bool IsCode = false; 00297 bool IsReadOnly = false; 00298 StringRef Name; 00299 Check(Section.getSize(DataSize)); 00300 Check(Section.getAlignment(Alignment64)); 00301 Check(Section.isText(IsCode)); 00302 Check(Section.isReadOnlyData(IsReadOnly)); 00303 Check(Section.getName(Name)); 00304 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 00305 00306 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 00307 uint64_t SectionSize = DataSize + StubBufSize; 00308 00309 // The .eh_frame section (at least on Linux) needs an extra four bytes 00310 // padded 00311 // with zeroes added at the end. For MachO objects, this section has a 00312 // slightly different name, so this won't have any effect for MachO 00313 // objects. 00314 if (Name == ".eh_frame") 00315 SectionSize += 4; 00316 00317 if (SectionSize > 0) { 00318 // save the total size of the section 00319 if (IsCode) { 00320 CodeSectionSizes.push_back(SectionSize); 00321 } else if (IsReadOnly) { 00322 ROSectionSizes.push_back(SectionSize); 00323 } else { 00324 RWSectionSizes.push_back(SectionSize); 00325 } 00326 // update the max alignment 00327 if (Alignment > MaxAlignment) { 00328 MaxAlignment = Alignment; 00329 } 00330 } 00331 } 00332 } 00333 00334 // Compute the size of all common symbols 00335 uint64_t CommonSize = 0; 00336 for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E; 00337 ++I) { 00338 uint32_t Flags = I->getFlags(); 00339 if (Flags & SymbolRef::SF_Common) { 00340 // Add the common symbols to a list. We'll allocate them all below. 00341 uint64_t Size = 0; 00342 Check(I->getSize(Size)); 00343 CommonSize += Size; 00344 } 00345 } 00346 if (CommonSize != 0) { 00347 RWSectionSizes.push_back(CommonSize); 00348 } 00349 00350 // Compute the required allocation space for each different type of sections 00351 // (code, read-only data, read-write data) assuming that all sections are 00352 // allocated with the max alignment. Note that we cannot compute with the 00353 // individual alignments of the sections, because then the required size 00354 // depends on the order, in which the sections are allocated. 00355 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment); 00356 DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment); 00357 DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment); 00358 } 00359 00360 // compute stub buffer size for the given section 00361 unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj, 00362 const SectionRef &Section) { 00363 unsigned StubSize = getMaxStubSize(); 00364 if (StubSize == 0) { 00365 return 0; 00366 } 00367 // FIXME: this is an inefficient way to handle this. We should computed the 00368 // necessary section allocation size in loadObject by walking all the sections 00369 // once. 00370 unsigned StubBufSize = 0; 00371 for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); 00372 SI != SE; ++SI) { 00373 section_iterator RelSecI = SI->getRelocatedSection(); 00374 if (!(RelSecI == Section)) 00375 continue; 00376 00377 for (const RelocationRef &Reloc : SI->relocations()) { 00378 (void)Reloc; 00379 StubBufSize += StubSize; 00380 } 00381 } 00382 00383 // Get section data size and alignment 00384 uint64_t Alignment64; 00385 uint64_t DataSize; 00386 Check(Section.getSize(DataSize)); 00387 Check(Section.getAlignment(Alignment64)); 00388 00389 // Add stubbuf size alignment 00390 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 00391 unsigned StubAlignment = getStubAlignment(); 00392 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 00393 if (StubAlignment > EndAlignment) 00394 StubBufSize += StubAlignment - EndAlignment; 00395 return StubBufSize; 00396 } 00397 00398 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 00399 unsigned Size) const { 00400 uint64_t Result = 0; 00401 if (IsTargetLittleEndian) { 00402 Src += Size - 1; 00403 while (Size--) 00404 Result = (Result << 8) | *Src--; 00405 } else 00406 while (Size--) 00407 Result = (Result << 8) | *Src++; 00408 00409 return Result; 00410 } 00411 00412 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 00413 unsigned Size) const { 00414 if (IsTargetLittleEndian) { 00415 while (Size--) { 00416 *Dst++ = Value & 0xFF; 00417 Value >>= 8; 00418 } 00419 } else { 00420 Dst += Size - 1; 00421 while (Size--) { 00422 *Dst-- = Value & 0xFF; 00423 Value >>= 8; 00424 } 00425 } 00426 } 00427 00428 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj, 00429 const CommonSymbolMap &CommonSymbols, 00430 uint64_t TotalSize, 00431 SymbolTableMap &SymbolTable) { 00432 // Allocate memory for the section 00433 unsigned SectionID = Sections.size(); 00434 uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *), 00435 SectionID, StringRef(), false); 00436 if (!Addr) 00437 report_fatal_error("Unable to allocate memory for common symbols!"); 00438 uint64_t Offset = 0; 00439 Sections.push_back(SectionEntry("<common symbols>", Addr, TotalSize, 0)); 00440 memset(Addr, 0, TotalSize); 00441 00442 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " 00443 << format("%p", Addr) << " DataSize: " << TotalSize << "\n"); 00444 00445 // Assign the address of each symbol 00446 for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(), 00447 itEnd = CommonSymbols.end(); it != itEnd; ++it) { 00448 uint64_t Size = it->second.first; 00449 uint64_t Align = it->second.second; 00450 StringRef Name; 00451 it->first.getName(Name); 00452 if (Align) { 00453 // This symbol has an alignment requirement. 00454 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); 00455 Addr += AlignOffset; 00456 Offset += AlignOffset; 00457 DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 00458 << format("%p\n", Addr)); 00459 } 00460 Obj.updateSymbolAddress(it->first, (uint64_t)Addr); 00461 SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset); 00462 Offset += Size; 00463 Addr += Size; 00464 } 00465 } 00466 00467 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj, 00468 const SectionRef &Section, bool IsCode) { 00469 00470 StringRef data; 00471 uint64_t Alignment64; 00472 Check(Section.getContents(data)); 00473 Check(Section.getAlignment(Alignment64)); 00474 00475 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 00476 bool IsRequired; 00477 bool IsVirtual; 00478 bool IsZeroInit; 00479 bool IsReadOnly; 00480 uint64_t DataSize; 00481 unsigned PaddingSize = 0; 00482 unsigned StubBufSize = 0; 00483 StringRef Name; 00484 Check(Section.isRequiredForExecution(IsRequired)); 00485 Check(Section.isVirtual(IsVirtual)); 00486 Check(Section.isZeroInit(IsZeroInit)); 00487 Check(Section.isReadOnlyData(IsReadOnly)); 00488 Check(Section.getSize(DataSize)); 00489 Check(Section.getName(Name)); 00490 00491 StubBufSize = computeSectionStubBufSize(Obj, Section); 00492 00493 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 00494 // with zeroes added at the end. For MachO objects, this section has a 00495 // slightly different name, so this won't have any effect for MachO objects. 00496 if (Name == ".eh_frame") 00497 PaddingSize = 4; 00498 00499 uintptr_t Allocate; 00500 unsigned SectionID = Sections.size(); 00501 uint8_t *Addr; 00502 const char *pData = nullptr; 00503 00504 // Some sections, such as debug info, don't need to be loaded for execution. 00505 // Leave those where they are. 00506 if (IsRequired) { 00507 Allocate = DataSize + PaddingSize + StubBufSize; 00508 Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, 00509 Name) 00510 : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, 00511 Name, IsReadOnly); 00512 if (!Addr) 00513 report_fatal_error("Unable to allocate section memory!"); 00514 00515 // Virtual sections have no data in the object image, so leave pData = 0 00516 if (!IsVirtual) 00517 pData = data.data(); 00518 00519 // Zero-initialize or copy the data from the image 00520 if (IsZeroInit || IsVirtual) 00521 memset(Addr, 0, DataSize); 00522 else 00523 memcpy(Addr, pData, DataSize); 00524 00525 // Fill in any extra bytes we allocated for padding 00526 if (PaddingSize != 0) { 00527 memset(Addr + DataSize, 0, PaddingSize); 00528 // Update the DataSize variable so that the stub offset is set correctly. 00529 DataSize += PaddingSize; 00530 } 00531 00532 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 00533 << " obj addr: " << format("%p", pData) 00534 << " new addr: " << format("%p", Addr) 00535 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 00536 << " Allocate: " << Allocate << "\n"); 00537 Obj.updateSectionAddress(Section, (uint64_t)Addr); 00538 } else { 00539 // Even if we didn't load the section, we need to record an entry for it 00540 // to handle later processing (and by 'handle' I mean don't do anything 00541 // with these sections). 00542 Allocate = 0; 00543 Addr = nullptr; 00544 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 00545 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 00546 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 00547 << " Allocate: " << Allocate << "\n"); 00548 } 00549 00550 Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData)); 00551 00552 if (Checker) 00553 Checker->registerSection(Obj.getImageName(), SectionID); 00554 00555 return SectionID; 00556 } 00557 00558 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj, 00559 const SectionRef &Section, 00560 bool IsCode, 00561 ObjSectionToIDMap &LocalSections) { 00562 00563 unsigned SectionID = 0; 00564 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 00565 if (i != LocalSections.end()) 00566 SectionID = i->second; 00567 else { 00568 SectionID = emitSection(Obj, Section, IsCode); 00569 LocalSections[Section] = SectionID; 00570 } 00571 return SectionID; 00572 } 00573 00574 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 00575 unsigned SectionID) { 00576 Relocations[SectionID].push_back(RE); 00577 } 00578 00579 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 00580 StringRef SymbolName) { 00581 // Relocation by symbol. If the symbol is found in the global symbol table, 00582 // create an appropriate section relocation. Otherwise, add it to 00583 // ExternalSymbolRelocations. 00584 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 00585 if (Loc == GlobalSymbolTable.end()) { 00586 ExternalSymbolRelocations[SymbolName].push_back(RE); 00587 } else { 00588 // Copy the RE since we want to modify its addend. 00589 RelocationEntry RECopy = RE; 00590 RECopy.Addend += Loc->second.second; 00591 Relocations[Loc->second.first].push_back(RECopy); 00592 } 00593 } 00594 00595 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 00596 unsigned AbiVariant) { 00597 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { 00598 // This stub has to be able to access the full address space, 00599 // since symbol lookup won't necessarily find a handy, in-range, 00600 // PLT stub for functions which could be anywhere. 00601 uint32_t *StubAddr = (uint32_t *)Addr; 00602 00603 // Stub can use ip0 (== x16) to calculate address 00604 *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr> 00605 StubAddr++; 00606 *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr> 00607 StubAddr++; 00608 *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr> 00609 StubAddr++; 00610 *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr> 00611 StubAddr++; 00612 *StubAddr = 0xd61f0200; // br ip0 00613 00614 return Addr; 00615 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 00616 // TODO: There is only ARM far stub now. We should add the Thumb stub, 00617 // and stubs for branches Thumb - ARM and ARM - Thumb. 00618 uint32_t *StubAddr = (uint32_t *)Addr; 00619 *StubAddr = 0xe51ff004; // ldr pc,<label> 00620 return (uint8_t *)++StubAddr; 00621 } else if (Arch == Triple::mipsel || Arch == Triple::mips) { 00622 uint32_t *StubAddr = (uint32_t *)Addr; 00623 // 0: 3c190000 lui t9,%hi(addr). 00624 // 4: 27390000 addiu t9,t9,%lo(addr). 00625 // 8: 03200008 jr t9. 00626 // c: 00000000 nop. 00627 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 00628 const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0; 00629 00630 *StubAddr = LuiT9Instr; 00631 StubAddr++; 00632 *StubAddr = AdduiT9Instr; 00633 StubAddr++; 00634 *StubAddr = JrT9Instr; 00635 StubAddr++; 00636 *StubAddr = NopInstr; 00637 return Addr; 00638 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 00639 // Depending on which version of the ELF ABI is in use, we need to 00640 // generate one of two variants of the stub. They both start with 00641 // the same sequence to load the target address into r12. 00642 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 00643 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 00644 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 00645 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 00646 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 00647 if (AbiVariant == 2) { 00648 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 00649 // The address is already in r12 as required by the ABI. Branch to it. 00650 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 00651 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 00652 writeInt32BE(Addr+28, 0x4E800420); // bctr 00653 } else { 00654 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 00655 // Load the function address on r11 and sets it to control register. Also 00656 // loads the function TOC in r2 and environment pointer to r11. 00657 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 00658 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 00659 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 00660 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 00661 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 00662 writeInt32BE(Addr+40, 0x4E800420); // bctr 00663 } 00664 return Addr; 00665 } else if (Arch == Triple::systemz) { 00666 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 00667 writeInt16BE(Addr+2, 0x0000); 00668 writeInt16BE(Addr+4, 0x0004); 00669 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 00670 // 8-byte address stored at Addr + 8 00671 return Addr; 00672 } else if (Arch == Triple::x86_64) { 00673 *Addr = 0xFF; // jmp 00674 *(Addr+1) = 0x25; // rip 00675 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 00676 } else if (Arch == Triple::x86) { 00677 *Addr = 0xE9; // 32-bit pc-relative jump. 00678 } 00679 return Addr; 00680 } 00681 00682 // Assign an address to a symbol name and resolve all the relocations 00683 // associated with it. 00684 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 00685 uint64_t Addr) { 00686 // The address to use for relocation resolution is not 00687 // the address of the local section buffer. We must be doing 00688 // a remote execution environment of some sort. Relocations can't 00689 // be applied until all the sections have been moved. The client must 00690 // trigger this with a call to MCJIT::finalize() or 00691 // RuntimeDyld::resolveRelocations(). 00692 // 00693 // Addr is a uint64_t because we can't assume the pointer width 00694 // of the target is the same as that of the host. Just use a generic 00695 // "big enough" type. 00696 DEBUG(dbgs() << "Reassigning address for section " 00697 << SectionID << " (" << Sections[SectionID].Name << "): " 00698 << format("0x%016x", Sections[SectionID].LoadAddress) << " -> " 00699 << format("0x%016x", Addr) << "\n"); 00700 Sections[SectionID].LoadAddress = Addr; 00701 } 00702 00703 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 00704 uint64_t Value) { 00705 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 00706 const RelocationEntry &RE = Relocs[i]; 00707 // Ignore relocations for sections that were not loaded 00708 if (Sections[RE.SectionID].Address == nullptr) 00709 continue; 00710 resolveRelocation(RE, Value); 00711 } 00712 } 00713 00714 void RuntimeDyldImpl::resolveExternalSymbols() { 00715 while (!ExternalSymbolRelocations.empty()) { 00716 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 00717 00718 StringRef Name = i->first(); 00719 if (Name.size() == 0) { 00720 // This is an absolute symbol, use an address of zero. 00721 DEBUG(dbgs() << "Resolving absolute relocations." 00722 << "\n"); 00723 RelocationList &Relocs = i->second; 00724 resolveRelocationList(Relocs, 0); 00725 } else { 00726 uint64_t Addr = 0; 00727 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name); 00728 if (Loc == GlobalSymbolTable.end()) { 00729 // This is an external symbol, try to get its address from 00730 // MemoryManager. 00731 Addr = MemMgr->getSymbolAddress(Name.data()); 00732 // The call to getSymbolAddress may have caused additional modules to 00733 // be loaded, which may have added new entries to the 00734 // ExternalSymbolRelocations map. Consquently, we need to update our 00735 // iterator. This is also why retrieval of the relocation list 00736 // associated with this symbol is deferred until below this point. 00737 // New entries may have been added to the relocation list. 00738 i = ExternalSymbolRelocations.find(Name); 00739 } else { 00740 // We found the symbol in our global table. It was probably in a 00741 // Module that we loaded previously. 00742 SymbolLoc SymLoc = Loc->second; 00743 Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second; 00744 } 00745 00746 // FIXME: Implement error handling that doesn't kill the host program! 00747 if (!Addr) 00748 report_fatal_error("Program used external function '" + Name + 00749 "' which could not be resolved!"); 00750 00751 updateGOTEntries(Name, Addr); 00752 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 00753 << format("0x%lx", Addr) << "\n"); 00754 // This list may have been updated when we called getSymbolAddress, so 00755 // don't change this code to get the list earlier. 00756 RelocationList &Relocs = i->second; 00757 resolveRelocationList(Relocs, Addr); 00758 } 00759 00760 ExternalSymbolRelocations.erase(i); 00761 } 00762 } 00763 00764 //===----------------------------------------------------------------------===// 00765 // RuntimeDyld class implementation 00766 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) { 00767 // FIXME: There's a potential issue lurking here if a single instance of 00768 // RuntimeDyld is used to load multiple objects. The current implementation 00769 // associates a single memory manager with a RuntimeDyld instance. Even 00770 // though the public class spawns a new 'impl' instance for each load, 00771 // they share a single memory manager. This can become a problem when page 00772 // permissions are applied. 00773 Dyld = nullptr; 00774 MM = mm; 00775 ProcessAllSections = false; 00776 Checker = nullptr; 00777 } 00778 00779 RuntimeDyld::~RuntimeDyld() {} 00780 00781 static std::unique_ptr<RuntimeDyldELF> 00782 createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections, 00783 RuntimeDyldCheckerImpl *Checker) { 00784 std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM)); 00785 Dyld->setProcessAllSections(ProcessAllSections); 00786 Dyld->setRuntimeDyldChecker(Checker); 00787 return Dyld; 00788 } 00789 00790 static std::unique_ptr<RuntimeDyldMachO> 00791 createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM, 00792 bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) { 00793 std::unique_ptr<RuntimeDyldMachO> Dyld(RuntimeDyldMachO::create(Arch, MM)); 00794 Dyld->setProcessAllSections(ProcessAllSections); 00795 Dyld->setRuntimeDyldChecker(Checker); 00796 return Dyld; 00797 } 00798 00799 std::unique_ptr<ObjectImage> 00800 RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) { 00801 std::unique_ptr<ObjectImage> InputImage; 00802 00803 ObjectFile &Obj = *InputObject; 00804 00805 if (InputObject->isELF()) { 00806 InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject))); 00807 if (!Dyld) 00808 Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker); 00809 } else if (InputObject->isMachO()) { 00810 InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject))); 00811 if (!Dyld) 00812 Dyld = createRuntimeDyldMachO( 00813 static_cast<Triple::ArchType>(InputImage->getArch()), MM, 00814 ProcessAllSections, Checker); 00815 } else 00816 report_fatal_error("Incompatible object format!"); 00817 00818 if (!Dyld->isCompatibleFile(&Obj)) 00819 report_fatal_error("Incompatible object format!"); 00820 00821 return Dyld->loadObject(std::move(InputImage)); 00822 } 00823 00824 std::unique_ptr<ObjectImage> 00825 RuntimeDyld::loadObject(std::unique_ptr<ObjectBuffer> InputBuffer) { 00826 std::unique_ptr<ObjectImage> InputImage; 00827 sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer()); 00828 auto *InputBufferPtr = InputBuffer.get(); 00829 00830 switch (Type) { 00831 case sys::fs::file_magic::elf_relocatable: 00832 case sys::fs::file_magic::elf_executable: 00833 case sys::fs::file_magic::elf_shared_object: 00834 case sys::fs::file_magic::elf_core: 00835 InputImage = RuntimeDyldELF::createObjectImage(std::move(InputBuffer)); 00836 if (!Dyld) 00837 Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker); 00838 break; 00839 case sys::fs::file_magic::macho_object: 00840 case sys::fs::file_magic::macho_executable: 00841 case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib: 00842 case sys::fs::file_magic::macho_core: 00843 case sys::fs::file_magic::macho_preload_executable: 00844 case sys::fs::file_magic::macho_dynamically_linked_shared_lib: 00845 case sys::fs::file_magic::macho_dynamic_linker: 00846 case sys::fs::file_magic::macho_bundle: 00847 case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub: 00848 case sys::fs::file_magic::macho_dsym_companion: 00849 InputImage = RuntimeDyldMachO::createObjectImage(std::move(InputBuffer)); 00850 if (!Dyld) 00851 Dyld = createRuntimeDyldMachO( 00852 static_cast<Triple::ArchType>(InputImage->getArch()), MM, 00853 ProcessAllSections, Checker); 00854 break; 00855 case sys::fs::file_magic::unknown: 00856 case sys::fs::file_magic::bitcode: 00857 case sys::fs::file_magic::archive: 00858 case sys::fs::file_magic::coff_object: 00859 case sys::fs::file_magic::coff_import_library: 00860 case sys::fs::file_magic::pecoff_executable: 00861 case sys::fs::file_magic::macho_universal_binary: 00862 case sys::fs::file_magic::windows_resource: 00863 report_fatal_error("Incompatible object format!"); 00864 } 00865 00866 if (!Dyld->isCompatibleFormat(InputBufferPtr)) 00867 report_fatal_error("Incompatible object format!"); 00868 00869 return Dyld->loadObject(std::move(InputImage)); 00870 } 00871 00872 void *RuntimeDyld::getSymbolAddress(StringRef Name) const { 00873 if (!Dyld) 00874 return nullptr; 00875 return Dyld->getSymbolAddress(Name); 00876 } 00877 00878 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) const { 00879 if (!Dyld) 00880 return 0; 00881 return Dyld->getSymbolLoadAddress(Name); 00882 } 00883 00884 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 00885 00886 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 00887 Dyld->reassignSectionAddress(SectionID, Addr); 00888 } 00889 00890 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 00891 uint64_t TargetAddress) { 00892 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 00893 } 00894 00895 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 00896 00897 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 00898 00899 void RuntimeDyld::registerEHFrames() { 00900 if (Dyld) 00901 Dyld->registerEHFrames(); 00902 } 00903 00904 void RuntimeDyld::deregisterEHFrames() { 00905 if (Dyld) 00906 Dyld->deregisterEHFrames(); 00907 } 00908 00909 } // end namespace llvm