LLVM API Documentation
00001 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains the implementation of the scalar evolution analysis 00011 // engine, which is used primarily to analyze expressions involving induction 00012 // variables in loops. 00013 // 00014 // There are several aspects to this library. First is the representation of 00015 // scalar expressions, which are represented as subclasses of the SCEV class. 00016 // These classes are used to represent certain types of subexpressions that we 00017 // can handle. We only create one SCEV of a particular shape, so 00018 // pointer-comparisons for equality are legal. 00019 // 00020 // One important aspect of the SCEV objects is that they are never cyclic, even 00021 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 00022 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 00023 // recurrence) then we represent it directly as a recurrence node, otherwise we 00024 // represent it as a SCEVUnknown node. 00025 // 00026 // In addition to being able to represent expressions of various types, we also 00027 // have folders that are used to build the *canonical* representation for a 00028 // particular expression. These folders are capable of using a variety of 00029 // rewrite rules to simplify the expressions. 00030 // 00031 // Once the folders are defined, we can implement the more interesting 00032 // higher-level code, such as the code that recognizes PHI nodes of various 00033 // types, computes the execution count of a loop, etc. 00034 // 00035 // TODO: We should use these routines and value representations to implement 00036 // dependence analysis! 00037 // 00038 //===----------------------------------------------------------------------===// 00039 // 00040 // There are several good references for the techniques used in this analysis. 00041 // 00042 // Chains of recurrences -- a method to expedite the evaluation 00043 // of closed-form functions 00044 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 00045 // 00046 // On computational properties of chains of recurrences 00047 // Eugene V. Zima 00048 // 00049 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 00050 // Robert A. van Engelen 00051 // 00052 // Efficient Symbolic Analysis for Optimizing Compilers 00053 // Robert A. van Engelen 00054 // 00055 // Using the chains of recurrences algebra for data dependence testing and 00056 // induction variable substitution 00057 // MS Thesis, Johnie Birch 00058 // 00059 //===----------------------------------------------------------------------===// 00060 00061 #include "llvm/Analysis/ScalarEvolution.h" 00062 #include "llvm/ADT/STLExtras.h" 00063 #include "llvm/ADT/SmallPtrSet.h" 00064 #include "llvm/ADT/Statistic.h" 00065 #include "llvm/Analysis/AssumptionTracker.h" 00066 #include "llvm/Analysis/ConstantFolding.h" 00067 #include "llvm/Analysis/InstructionSimplify.h" 00068 #include "llvm/Analysis/LoopInfo.h" 00069 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 00070 #include "llvm/Analysis/ValueTracking.h" 00071 #include "llvm/IR/ConstantRange.h" 00072 #include "llvm/IR/Constants.h" 00073 #include "llvm/IR/DataLayout.h" 00074 #include "llvm/IR/DerivedTypes.h" 00075 #include "llvm/IR/Dominators.h" 00076 #include "llvm/IR/GetElementPtrTypeIterator.h" 00077 #include "llvm/IR/GlobalAlias.h" 00078 #include "llvm/IR/GlobalVariable.h" 00079 #include "llvm/IR/InstIterator.h" 00080 #include "llvm/IR/Instructions.h" 00081 #include "llvm/IR/LLVMContext.h" 00082 #include "llvm/IR/Operator.h" 00083 #include "llvm/Support/CommandLine.h" 00084 #include "llvm/Support/Debug.h" 00085 #include "llvm/Support/ErrorHandling.h" 00086 #include "llvm/Support/MathExtras.h" 00087 #include "llvm/Support/raw_ostream.h" 00088 #include "llvm/Target/TargetLibraryInfo.h" 00089 #include <algorithm> 00090 using namespace llvm; 00091 00092 #define DEBUG_TYPE "scalar-evolution" 00093 00094 STATISTIC(NumArrayLenItCounts, 00095 "Number of trip counts computed with array length"); 00096 STATISTIC(NumTripCountsComputed, 00097 "Number of loops with predictable loop counts"); 00098 STATISTIC(NumTripCountsNotComputed, 00099 "Number of loops without predictable loop counts"); 00100 STATISTIC(NumBruteForceTripCountsComputed, 00101 "Number of loops with trip counts computed by force"); 00102 00103 static cl::opt<unsigned> 00104 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 00105 cl::desc("Maximum number of iterations SCEV will " 00106 "symbolically execute a constant " 00107 "derived loop"), 00108 cl::init(100)); 00109 00110 // FIXME: Enable this with XDEBUG when the test suite is clean. 00111 static cl::opt<bool> 00112 VerifySCEV("verify-scev", 00113 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 00114 00115 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 00116 "Scalar Evolution Analysis", false, true) 00117 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 00118 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 00119 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 00120 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 00121 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 00122 "Scalar Evolution Analysis", false, true) 00123 char ScalarEvolution::ID = 0; 00124 00125 //===----------------------------------------------------------------------===// 00126 // SCEV class definitions 00127 //===----------------------------------------------------------------------===// 00128 00129 //===----------------------------------------------------------------------===// 00130 // Implementation of the SCEV class. 00131 // 00132 00133 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 00134 void SCEV::dump() const { 00135 print(dbgs()); 00136 dbgs() << '\n'; 00137 } 00138 #endif 00139 00140 void SCEV::print(raw_ostream &OS) const { 00141 switch (static_cast<SCEVTypes>(getSCEVType())) { 00142 case scConstant: 00143 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 00144 return; 00145 case scTruncate: { 00146 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 00147 const SCEV *Op = Trunc->getOperand(); 00148 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 00149 << *Trunc->getType() << ")"; 00150 return; 00151 } 00152 case scZeroExtend: { 00153 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 00154 const SCEV *Op = ZExt->getOperand(); 00155 OS << "(zext " << *Op->getType() << " " << *Op << " to " 00156 << *ZExt->getType() << ")"; 00157 return; 00158 } 00159 case scSignExtend: { 00160 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 00161 const SCEV *Op = SExt->getOperand(); 00162 OS << "(sext " << *Op->getType() << " " << *Op << " to " 00163 << *SExt->getType() << ")"; 00164 return; 00165 } 00166 case scAddRecExpr: { 00167 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 00168 OS << "{" << *AR->getOperand(0); 00169 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 00170 OS << ",+," << *AR->getOperand(i); 00171 OS << "}<"; 00172 if (AR->getNoWrapFlags(FlagNUW)) 00173 OS << "nuw><"; 00174 if (AR->getNoWrapFlags(FlagNSW)) 00175 OS << "nsw><"; 00176 if (AR->getNoWrapFlags(FlagNW) && 00177 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 00178 OS << "nw><"; 00179 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 00180 OS << ">"; 00181 return; 00182 } 00183 case scAddExpr: 00184 case scMulExpr: 00185 case scUMaxExpr: 00186 case scSMaxExpr: { 00187 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 00188 const char *OpStr = nullptr; 00189 switch (NAry->getSCEVType()) { 00190 case scAddExpr: OpStr = " + "; break; 00191 case scMulExpr: OpStr = " * "; break; 00192 case scUMaxExpr: OpStr = " umax "; break; 00193 case scSMaxExpr: OpStr = " smax "; break; 00194 } 00195 OS << "("; 00196 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 00197 I != E; ++I) { 00198 OS << **I; 00199 if (std::next(I) != E) 00200 OS << OpStr; 00201 } 00202 OS << ")"; 00203 switch (NAry->getSCEVType()) { 00204 case scAddExpr: 00205 case scMulExpr: 00206 if (NAry->getNoWrapFlags(FlagNUW)) 00207 OS << "<nuw>"; 00208 if (NAry->getNoWrapFlags(FlagNSW)) 00209 OS << "<nsw>"; 00210 } 00211 return; 00212 } 00213 case scUDivExpr: { 00214 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 00215 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 00216 return; 00217 } 00218 case scUnknown: { 00219 const SCEVUnknown *U = cast<SCEVUnknown>(this); 00220 Type *AllocTy; 00221 if (U->isSizeOf(AllocTy)) { 00222 OS << "sizeof(" << *AllocTy << ")"; 00223 return; 00224 } 00225 if (U->isAlignOf(AllocTy)) { 00226 OS << "alignof(" << *AllocTy << ")"; 00227 return; 00228 } 00229 00230 Type *CTy; 00231 Constant *FieldNo; 00232 if (U->isOffsetOf(CTy, FieldNo)) { 00233 OS << "offsetof(" << *CTy << ", "; 00234 FieldNo->printAsOperand(OS, false); 00235 OS << ")"; 00236 return; 00237 } 00238 00239 // Otherwise just print it normally. 00240 U->getValue()->printAsOperand(OS, false); 00241 return; 00242 } 00243 case scCouldNotCompute: 00244 OS << "***COULDNOTCOMPUTE***"; 00245 return; 00246 } 00247 llvm_unreachable("Unknown SCEV kind!"); 00248 } 00249 00250 Type *SCEV::getType() const { 00251 switch (static_cast<SCEVTypes>(getSCEVType())) { 00252 case scConstant: 00253 return cast<SCEVConstant>(this)->getType(); 00254 case scTruncate: 00255 case scZeroExtend: 00256 case scSignExtend: 00257 return cast<SCEVCastExpr>(this)->getType(); 00258 case scAddRecExpr: 00259 case scMulExpr: 00260 case scUMaxExpr: 00261 case scSMaxExpr: 00262 return cast<SCEVNAryExpr>(this)->getType(); 00263 case scAddExpr: 00264 return cast<SCEVAddExpr>(this)->getType(); 00265 case scUDivExpr: 00266 return cast<SCEVUDivExpr>(this)->getType(); 00267 case scUnknown: 00268 return cast<SCEVUnknown>(this)->getType(); 00269 case scCouldNotCompute: 00270 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 00271 } 00272 llvm_unreachable("Unknown SCEV kind!"); 00273 } 00274 00275 bool SCEV::isZero() const { 00276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 00277 return SC->getValue()->isZero(); 00278 return false; 00279 } 00280 00281 bool SCEV::isOne() const { 00282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 00283 return SC->getValue()->isOne(); 00284 return false; 00285 } 00286 00287 bool SCEV::isAllOnesValue() const { 00288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 00289 return SC->getValue()->isAllOnesValue(); 00290 return false; 00291 } 00292 00293 /// isNonConstantNegative - Return true if the specified scev is negated, but 00294 /// not a constant. 00295 bool SCEV::isNonConstantNegative() const { 00296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 00297 if (!Mul) return false; 00298 00299 // If there is a constant factor, it will be first. 00300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 00301 if (!SC) return false; 00302 00303 // Return true if the value is negative, this matches things like (-42 * V). 00304 return SC->getValue()->getValue().isNegative(); 00305 } 00306 00307 SCEVCouldNotCompute::SCEVCouldNotCompute() : 00308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 00309 00310 bool SCEVCouldNotCompute::classof(const SCEV *S) { 00311 return S->getSCEVType() == scCouldNotCompute; 00312 } 00313 00314 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 00315 FoldingSetNodeID ID; 00316 ID.AddInteger(scConstant); 00317 ID.AddPointer(V); 00318 void *IP = nullptr; 00319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 00320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 00321 UniqueSCEVs.InsertNode(S, IP); 00322 return S; 00323 } 00324 00325 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 00326 return getConstant(ConstantInt::get(getContext(), Val)); 00327 } 00328 00329 const SCEV * 00330 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 00331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 00332 return getConstant(ConstantInt::get(ITy, V, isSigned)); 00333 } 00334 00335 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 00336 unsigned SCEVTy, const SCEV *op, Type *ty) 00337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 00338 00339 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 00340 const SCEV *op, Type *ty) 00341 : SCEVCastExpr(ID, scTruncate, op, ty) { 00342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 00343 (Ty->isIntegerTy() || Ty->isPointerTy()) && 00344 "Cannot truncate non-integer value!"); 00345 } 00346 00347 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 00348 const SCEV *op, Type *ty) 00349 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 00350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 00351 (Ty->isIntegerTy() || Ty->isPointerTy()) && 00352 "Cannot zero extend non-integer value!"); 00353 } 00354 00355 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 00356 const SCEV *op, Type *ty) 00357 : SCEVCastExpr(ID, scSignExtend, op, ty) { 00358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 00359 (Ty->isIntegerTy() || Ty->isPointerTy()) && 00360 "Cannot sign extend non-integer value!"); 00361 } 00362 00363 void SCEVUnknown::deleted() { 00364 // Clear this SCEVUnknown from various maps. 00365 SE->forgetMemoizedResults(this); 00366 00367 // Remove this SCEVUnknown from the uniquing map. 00368 SE->UniqueSCEVs.RemoveNode(this); 00369 00370 // Release the value. 00371 setValPtr(nullptr); 00372 } 00373 00374 void SCEVUnknown::allUsesReplacedWith(Value *New) { 00375 // Clear this SCEVUnknown from various maps. 00376 SE->forgetMemoizedResults(this); 00377 00378 // Remove this SCEVUnknown from the uniquing map. 00379 SE->UniqueSCEVs.RemoveNode(this); 00380 00381 // Update this SCEVUnknown to point to the new value. This is needed 00382 // because there may still be outstanding SCEVs which still point to 00383 // this SCEVUnknown. 00384 setValPtr(New); 00385 } 00386 00387 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 00388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 00389 if (VCE->getOpcode() == Instruction::PtrToInt) 00390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 00391 if (CE->getOpcode() == Instruction::GetElementPtr && 00392 CE->getOperand(0)->isNullValue() && 00393 CE->getNumOperands() == 2) 00394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 00395 if (CI->isOne()) { 00396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 00397 ->getElementType(); 00398 return true; 00399 } 00400 00401 return false; 00402 } 00403 00404 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 00405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 00406 if (VCE->getOpcode() == Instruction::PtrToInt) 00407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 00408 if (CE->getOpcode() == Instruction::GetElementPtr && 00409 CE->getOperand(0)->isNullValue()) { 00410 Type *Ty = 00411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 00412 if (StructType *STy = dyn_cast<StructType>(Ty)) 00413 if (!STy->isPacked() && 00414 CE->getNumOperands() == 3 && 00415 CE->getOperand(1)->isNullValue()) { 00416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 00417 if (CI->isOne() && 00418 STy->getNumElements() == 2 && 00419 STy->getElementType(0)->isIntegerTy(1)) { 00420 AllocTy = STy->getElementType(1); 00421 return true; 00422 } 00423 } 00424 } 00425 00426 return false; 00427 } 00428 00429 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 00430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 00431 if (VCE->getOpcode() == Instruction::PtrToInt) 00432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 00433 if (CE->getOpcode() == Instruction::GetElementPtr && 00434 CE->getNumOperands() == 3 && 00435 CE->getOperand(0)->isNullValue() && 00436 CE->getOperand(1)->isNullValue()) { 00437 Type *Ty = 00438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 00439 // Ignore vector types here so that ScalarEvolutionExpander doesn't 00440 // emit getelementptrs that index into vectors. 00441 if (Ty->isStructTy() || Ty->isArrayTy()) { 00442 CTy = Ty; 00443 FieldNo = CE->getOperand(2); 00444 return true; 00445 } 00446 } 00447 00448 return false; 00449 } 00450 00451 //===----------------------------------------------------------------------===// 00452 // SCEV Utilities 00453 //===----------------------------------------------------------------------===// 00454 00455 namespace { 00456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 00457 /// than the complexity of the RHS. This comparator is used to canonicalize 00458 /// expressions. 00459 class SCEVComplexityCompare { 00460 const LoopInfo *const LI; 00461 public: 00462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 00463 00464 // Return true or false if LHS is less than, or at least RHS, respectively. 00465 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 00466 return compare(LHS, RHS) < 0; 00467 } 00468 00469 // Return negative, zero, or positive, if LHS is less than, equal to, or 00470 // greater than RHS, respectively. A three-way result allows recursive 00471 // comparisons to be more efficient. 00472 int compare(const SCEV *LHS, const SCEV *RHS) const { 00473 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 00474 if (LHS == RHS) 00475 return 0; 00476 00477 // Primarily, sort the SCEVs by their getSCEVType(). 00478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 00479 if (LType != RType) 00480 return (int)LType - (int)RType; 00481 00482 // Aside from the getSCEVType() ordering, the particular ordering 00483 // isn't very important except that it's beneficial to be consistent, 00484 // so that (a + b) and (b + a) don't end up as different expressions. 00485 switch (static_cast<SCEVTypes>(LType)) { 00486 case scUnknown: { 00487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 00488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 00489 00490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 00491 // not as complete as it could be. 00492 const Value *LV = LU->getValue(), *RV = RU->getValue(); 00493 00494 // Order pointer values after integer values. This helps SCEVExpander 00495 // form GEPs. 00496 bool LIsPointer = LV->getType()->isPointerTy(), 00497 RIsPointer = RV->getType()->isPointerTy(); 00498 if (LIsPointer != RIsPointer) 00499 return (int)LIsPointer - (int)RIsPointer; 00500 00501 // Compare getValueID values. 00502 unsigned LID = LV->getValueID(), 00503 RID = RV->getValueID(); 00504 if (LID != RID) 00505 return (int)LID - (int)RID; 00506 00507 // Sort arguments by their position. 00508 if (const Argument *LA = dyn_cast<Argument>(LV)) { 00509 const Argument *RA = cast<Argument>(RV); 00510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 00511 return (int)LArgNo - (int)RArgNo; 00512 } 00513 00514 // For instructions, compare their loop depth, and their operand 00515 // count. This is pretty loose. 00516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 00517 const Instruction *RInst = cast<Instruction>(RV); 00518 00519 // Compare loop depths. 00520 const BasicBlock *LParent = LInst->getParent(), 00521 *RParent = RInst->getParent(); 00522 if (LParent != RParent) { 00523 unsigned LDepth = LI->getLoopDepth(LParent), 00524 RDepth = LI->getLoopDepth(RParent); 00525 if (LDepth != RDepth) 00526 return (int)LDepth - (int)RDepth; 00527 } 00528 00529 // Compare the number of operands. 00530 unsigned LNumOps = LInst->getNumOperands(), 00531 RNumOps = RInst->getNumOperands(); 00532 return (int)LNumOps - (int)RNumOps; 00533 } 00534 00535 return 0; 00536 } 00537 00538 case scConstant: { 00539 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 00540 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 00541 00542 // Compare constant values. 00543 const APInt &LA = LC->getValue()->getValue(); 00544 const APInt &RA = RC->getValue()->getValue(); 00545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 00546 if (LBitWidth != RBitWidth) 00547 return (int)LBitWidth - (int)RBitWidth; 00548 return LA.ult(RA) ? -1 : 1; 00549 } 00550 00551 case scAddRecExpr: { 00552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 00553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 00554 00555 // Compare addrec loop depths. 00556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 00557 if (LLoop != RLoop) { 00558 unsigned LDepth = LLoop->getLoopDepth(), 00559 RDepth = RLoop->getLoopDepth(); 00560 if (LDepth != RDepth) 00561 return (int)LDepth - (int)RDepth; 00562 } 00563 00564 // Addrec complexity grows with operand count. 00565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 00566 if (LNumOps != RNumOps) 00567 return (int)LNumOps - (int)RNumOps; 00568 00569 // Lexicographically compare. 00570 for (unsigned i = 0; i != LNumOps; ++i) { 00571 long X = compare(LA->getOperand(i), RA->getOperand(i)); 00572 if (X != 0) 00573 return X; 00574 } 00575 00576 return 0; 00577 } 00578 00579 case scAddExpr: 00580 case scMulExpr: 00581 case scSMaxExpr: 00582 case scUMaxExpr: { 00583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 00584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 00585 00586 // Lexicographically compare n-ary expressions. 00587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 00588 if (LNumOps != RNumOps) 00589 return (int)LNumOps - (int)RNumOps; 00590 00591 for (unsigned i = 0; i != LNumOps; ++i) { 00592 if (i >= RNumOps) 00593 return 1; 00594 long X = compare(LC->getOperand(i), RC->getOperand(i)); 00595 if (X != 0) 00596 return X; 00597 } 00598 return (int)LNumOps - (int)RNumOps; 00599 } 00600 00601 case scUDivExpr: { 00602 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 00603 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 00604 00605 // Lexicographically compare udiv expressions. 00606 long X = compare(LC->getLHS(), RC->getLHS()); 00607 if (X != 0) 00608 return X; 00609 return compare(LC->getRHS(), RC->getRHS()); 00610 } 00611 00612 case scTruncate: 00613 case scZeroExtend: 00614 case scSignExtend: { 00615 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 00616 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 00617 00618 // Compare cast expressions by operand. 00619 return compare(LC->getOperand(), RC->getOperand()); 00620 } 00621 00622 case scCouldNotCompute: 00623 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 00624 } 00625 llvm_unreachable("Unknown SCEV kind!"); 00626 } 00627 }; 00628 } 00629 00630 /// GroupByComplexity - Given a list of SCEV objects, order them by their 00631 /// complexity, and group objects of the same complexity together by value. 00632 /// When this routine is finished, we know that any duplicates in the vector are 00633 /// consecutive and that complexity is monotonically increasing. 00634 /// 00635 /// Note that we go take special precautions to ensure that we get deterministic 00636 /// results from this routine. In other words, we don't want the results of 00637 /// this to depend on where the addresses of various SCEV objects happened to 00638 /// land in memory. 00639 /// 00640 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 00641 LoopInfo *LI) { 00642 if (Ops.size() < 2) return; // Noop 00643 if (Ops.size() == 2) { 00644 // This is the common case, which also happens to be trivially simple. 00645 // Special case it. 00646 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 00647 if (SCEVComplexityCompare(LI)(RHS, LHS)) 00648 std::swap(LHS, RHS); 00649 return; 00650 } 00651 00652 // Do the rough sort by complexity. 00653 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 00654 00655 // Now that we are sorted by complexity, group elements of the same 00656 // complexity. Note that this is, at worst, N^2, but the vector is likely to 00657 // be extremely short in practice. Note that we take this approach because we 00658 // do not want to depend on the addresses of the objects we are grouping. 00659 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 00660 const SCEV *S = Ops[i]; 00661 unsigned Complexity = S->getSCEVType(); 00662 00663 // If there are any objects of the same complexity and same value as this 00664 // one, group them. 00665 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 00666 if (Ops[j] == S) { // Found a duplicate. 00667 // Move it to immediately after i'th element. 00668 std::swap(Ops[i+1], Ops[j]); 00669 ++i; // no need to rescan it. 00670 if (i == e-2) return; // Done! 00671 } 00672 } 00673 } 00674 } 00675 00676 00677 00678 //===----------------------------------------------------------------------===// 00679 // Simple SCEV method implementations 00680 //===----------------------------------------------------------------------===// 00681 00682 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 00683 /// Assume, K > 0. 00684 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 00685 ScalarEvolution &SE, 00686 Type *ResultTy) { 00687 // Handle the simplest case efficiently. 00688 if (K == 1) 00689 return SE.getTruncateOrZeroExtend(It, ResultTy); 00690 00691 // We are using the following formula for BC(It, K): 00692 // 00693 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 00694 // 00695 // Suppose, W is the bitwidth of the return value. We must be prepared for 00696 // overflow. Hence, we must assure that the result of our computation is 00697 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 00698 // safe in modular arithmetic. 00699 // 00700 // However, this code doesn't use exactly that formula; the formula it uses 00701 // is something like the following, where T is the number of factors of 2 in 00702 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 00703 // exponentiation: 00704 // 00705 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 00706 // 00707 // This formula is trivially equivalent to the previous formula. However, 00708 // this formula can be implemented much more efficiently. The trick is that 00709 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 00710 // arithmetic. To do exact division in modular arithmetic, all we have 00711 // to do is multiply by the inverse. Therefore, this step can be done at 00712 // width W. 00713 // 00714 // The next issue is how to safely do the division by 2^T. The way this 00715 // is done is by doing the multiplication step at a width of at least W + T 00716 // bits. This way, the bottom W+T bits of the product are accurate. Then, 00717 // when we perform the division by 2^T (which is equivalent to a right shift 00718 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 00719 // truncated out after the division by 2^T. 00720 // 00721 // In comparison to just directly using the first formula, this technique 00722 // is much more efficient; using the first formula requires W * K bits, 00723 // but this formula less than W + K bits. Also, the first formula requires 00724 // a division step, whereas this formula only requires multiplies and shifts. 00725 // 00726 // It doesn't matter whether the subtraction step is done in the calculation 00727 // width or the input iteration count's width; if the subtraction overflows, 00728 // the result must be zero anyway. We prefer here to do it in the width of 00729 // the induction variable because it helps a lot for certain cases; CodeGen 00730 // isn't smart enough to ignore the overflow, which leads to much less 00731 // efficient code if the width of the subtraction is wider than the native 00732 // register width. 00733 // 00734 // (It's possible to not widen at all by pulling out factors of 2 before 00735 // the multiplication; for example, K=2 can be calculated as 00736 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 00737 // extra arithmetic, so it's not an obvious win, and it gets 00738 // much more complicated for K > 3.) 00739 00740 // Protection from insane SCEVs; this bound is conservative, 00741 // but it probably doesn't matter. 00742 if (K > 1000) 00743 return SE.getCouldNotCompute(); 00744 00745 unsigned W = SE.getTypeSizeInBits(ResultTy); 00746 00747 // Calculate K! / 2^T and T; we divide out the factors of two before 00748 // multiplying for calculating K! / 2^T to avoid overflow. 00749 // Other overflow doesn't matter because we only care about the bottom 00750 // W bits of the result. 00751 APInt OddFactorial(W, 1); 00752 unsigned T = 1; 00753 for (unsigned i = 3; i <= K; ++i) { 00754 APInt Mult(W, i); 00755 unsigned TwoFactors = Mult.countTrailingZeros(); 00756 T += TwoFactors; 00757 Mult = Mult.lshr(TwoFactors); 00758 OddFactorial *= Mult; 00759 } 00760 00761 // We need at least W + T bits for the multiplication step 00762 unsigned CalculationBits = W + T; 00763 00764 // Calculate 2^T, at width T+W. 00765 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 00766 00767 // Calculate the multiplicative inverse of K! / 2^T; 00768 // this multiplication factor will perform the exact division by 00769 // K! / 2^T. 00770 APInt Mod = APInt::getSignedMinValue(W+1); 00771 APInt MultiplyFactor = OddFactorial.zext(W+1); 00772 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 00773 MultiplyFactor = MultiplyFactor.trunc(W); 00774 00775 // Calculate the product, at width T+W 00776 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 00777 CalculationBits); 00778 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 00779 for (unsigned i = 1; i != K; ++i) { 00780 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 00781 Dividend = SE.getMulExpr(Dividend, 00782 SE.getTruncateOrZeroExtend(S, CalculationTy)); 00783 } 00784 00785 // Divide by 2^T 00786 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 00787 00788 // Truncate the result, and divide by K! / 2^T. 00789 00790 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 00791 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 00792 } 00793 00794 /// evaluateAtIteration - Return the value of this chain of recurrences at 00795 /// the specified iteration number. We can evaluate this recurrence by 00796 /// multiplying each element in the chain by the binomial coefficient 00797 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 00798 /// 00799 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 00800 /// 00801 /// where BC(It, k) stands for binomial coefficient. 00802 /// 00803 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 00804 ScalarEvolution &SE) const { 00805 const SCEV *Result = getStart(); 00806 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 00807 // The computation is correct in the face of overflow provided that the 00808 // multiplication is performed _after_ the evaluation of the binomial 00809 // coefficient. 00810 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 00811 if (isa<SCEVCouldNotCompute>(Coeff)) 00812 return Coeff; 00813 00814 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 00815 } 00816 return Result; 00817 } 00818 00819 //===----------------------------------------------------------------------===// 00820 // SCEV Expression folder implementations 00821 //===----------------------------------------------------------------------===// 00822 00823 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 00824 Type *Ty) { 00825 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 00826 "This is not a truncating conversion!"); 00827 assert(isSCEVable(Ty) && 00828 "This is not a conversion to a SCEVable type!"); 00829 Ty = getEffectiveSCEVType(Ty); 00830 00831 FoldingSetNodeID ID; 00832 ID.AddInteger(scTruncate); 00833 ID.AddPointer(Op); 00834 ID.AddPointer(Ty); 00835 void *IP = nullptr; 00836 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 00837 00838 // Fold if the operand is constant. 00839 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 00840 return getConstant( 00841 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 00842 00843 // trunc(trunc(x)) --> trunc(x) 00844 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 00845 return getTruncateExpr(ST->getOperand(), Ty); 00846 00847 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 00848 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 00849 return getTruncateOrSignExtend(SS->getOperand(), Ty); 00850 00851 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 00852 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 00853 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 00854 00855 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 00856 // eliminate all the truncates. 00857 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 00858 SmallVector<const SCEV *, 4> Operands; 00859 bool hasTrunc = false; 00860 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 00861 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 00862 hasTrunc = isa<SCEVTruncateExpr>(S); 00863 Operands.push_back(S); 00864 } 00865 if (!hasTrunc) 00866 return getAddExpr(Operands); 00867 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 00868 } 00869 00870 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 00871 // eliminate all the truncates. 00872 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 00873 SmallVector<const SCEV *, 4> Operands; 00874 bool hasTrunc = false; 00875 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 00876 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 00877 hasTrunc = isa<SCEVTruncateExpr>(S); 00878 Operands.push_back(S); 00879 } 00880 if (!hasTrunc) 00881 return getMulExpr(Operands); 00882 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 00883 } 00884 00885 // If the input value is a chrec scev, truncate the chrec's operands. 00886 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 00887 SmallVector<const SCEV *, 4> Operands; 00888 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 00889 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 00890 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 00891 } 00892 00893 // The cast wasn't folded; create an explicit cast node. We can reuse 00894 // the existing insert position since if we get here, we won't have 00895 // made any changes which would invalidate it. 00896 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 00897 Op, Ty); 00898 UniqueSCEVs.InsertNode(S, IP); 00899 return S; 00900 } 00901 00902 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 00903 Type *Ty) { 00904 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 00905 "This is not an extending conversion!"); 00906 assert(isSCEVable(Ty) && 00907 "This is not a conversion to a SCEVable type!"); 00908 Ty = getEffectiveSCEVType(Ty); 00909 00910 // Fold if the operand is constant. 00911 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 00912 return getConstant( 00913 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 00914 00915 // zext(zext(x)) --> zext(x) 00916 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 00917 return getZeroExtendExpr(SZ->getOperand(), Ty); 00918 00919 // Before doing any expensive analysis, check to see if we've already 00920 // computed a SCEV for this Op and Ty. 00921 FoldingSetNodeID ID; 00922 ID.AddInteger(scZeroExtend); 00923 ID.AddPointer(Op); 00924 ID.AddPointer(Ty); 00925 void *IP = nullptr; 00926 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 00927 00928 // zext(trunc(x)) --> zext(x) or x or trunc(x) 00929 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 00930 // It's possible the bits taken off by the truncate were all zero bits. If 00931 // so, we should be able to simplify this further. 00932 const SCEV *X = ST->getOperand(); 00933 ConstantRange CR = getUnsignedRange(X); 00934 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 00935 unsigned NewBits = getTypeSizeInBits(Ty); 00936 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 00937 CR.zextOrTrunc(NewBits))) 00938 return getTruncateOrZeroExtend(X, Ty); 00939 } 00940 00941 // If the input value is a chrec scev, and we can prove that the value 00942 // did not overflow the old, smaller, value, we can zero extend all of the 00943 // operands (often constants). This allows analysis of something like 00944 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 00945 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 00946 if (AR->isAffine()) { 00947 const SCEV *Start = AR->getStart(); 00948 const SCEV *Step = AR->getStepRecurrence(*this); 00949 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 00950 const Loop *L = AR->getLoop(); 00951 00952 // If we have special knowledge that this addrec won't overflow, 00953 // we don't need to do any further analysis. 00954 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 00955 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 00956 getZeroExtendExpr(Step, Ty), 00957 L, AR->getNoWrapFlags()); 00958 00959 // Check whether the backedge-taken count is SCEVCouldNotCompute. 00960 // Note that this serves two purposes: It filters out loops that are 00961 // simply not analyzable, and it covers the case where this code is 00962 // being called from within backedge-taken count analysis, such that 00963 // attempting to ask for the backedge-taken count would likely result 00964 // in infinite recursion. In the later case, the analysis code will 00965 // cope with a conservative value, and it will take care to purge 00966 // that value once it has finished. 00967 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 00968 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 00969 // Manually compute the final value for AR, checking for 00970 // overflow. 00971 00972 // Check whether the backedge-taken count can be losslessly casted to 00973 // the addrec's type. The count is always unsigned. 00974 const SCEV *CastedMaxBECount = 00975 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 00976 const SCEV *RecastedMaxBECount = 00977 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 00978 if (MaxBECount == RecastedMaxBECount) { 00979 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 00980 // Check whether Start+Step*MaxBECount has no unsigned overflow. 00981 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 00982 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 00983 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 00984 const SCEV *WideMaxBECount = 00985 getZeroExtendExpr(CastedMaxBECount, WideTy); 00986 const SCEV *OperandExtendedAdd = 00987 getAddExpr(WideStart, 00988 getMulExpr(WideMaxBECount, 00989 getZeroExtendExpr(Step, WideTy))); 00990 if (ZAdd == OperandExtendedAdd) { 00991 // Cache knowledge of AR NUW, which is propagated to this AddRec. 00992 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 00993 // Return the expression with the addrec on the outside. 00994 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 00995 getZeroExtendExpr(Step, Ty), 00996 L, AR->getNoWrapFlags()); 00997 } 00998 // Similar to above, only this time treat the step value as signed. 00999 // This covers loops that count down. 01000 OperandExtendedAdd = 01001 getAddExpr(WideStart, 01002 getMulExpr(WideMaxBECount, 01003 getSignExtendExpr(Step, WideTy))); 01004 if (ZAdd == OperandExtendedAdd) { 01005 // Cache knowledge of AR NW, which is propagated to this AddRec. 01006 // Negative step causes unsigned wrap, but it still can't self-wrap. 01007 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 01008 // Return the expression with the addrec on the outside. 01009 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 01010 getSignExtendExpr(Step, Ty), 01011 L, AR->getNoWrapFlags()); 01012 } 01013 } 01014 01015 // If the backedge is guarded by a comparison with the pre-inc value 01016 // the addrec is safe. Also, if the entry is guarded by a comparison 01017 // with the start value and the backedge is guarded by a comparison 01018 // with the post-inc value, the addrec is safe. 01019 if (isKnownPositive(Step)) { 01020 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 01021 getUnsignedRange(Step).getUnsignedMax()); 01022 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 01023 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 01024 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 01025 AR->getPostIncExpr(*this), N))) { 01026 // Cache knowledge of AR NUW, which is propagated to this AddRec. 01027 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 01028 // Return the expression with the addrec on the outside. 01029 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 01030 getZeroExtendExpr(Step, Ty), 01031 L, AR->getNoWrapFlags()); 01032 } 01033 } else if (isKnownNegative(Step)) { 01034 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 01035 getSignedRange(Step).getSignedMin()); 01036 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 01037 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 01038 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 01039 AR->getPostIncExpr(*this), N))) { 01040 // Cache knowledge of AR NW, which is propagated to this AddRec. 01041 // Negative step causes unsigned wrap, but it still can't self-wrap. 01042 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 01043 // Return the expression with the addrec on the outside. 01044 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 01045 getSignExtendExpr(Step, Ty), 01046 L, AR->getNoWrapFlags()); 01047 } 01048 } 01049 } 01050 } 01051 01052 // The cast wasn't folded; create an explicit cast node. 01053 // Recompute the insert position, as it may have been invalidated. 01054 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 01055 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 01056 Op, Ty); 01057 UniqueSCEVs.InsertNode(S, IP); 01058 return S; 01059 } 01060 01061 // Get the limit of a recurrence such that incrementing by Step cannot cause 01062 // signed overflow as long as the value of the recurrence within the loop does 01063 // not exceed this limit before incrementing. 01064 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 01065 ICmpInst::Predicate *Pred, 01066 ScalarEvolution *SE) { 01067 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 01068 if (SE->isKnownPositive(Step)) { 01069 *Pred = ICmpInst::ICMP_SLT; 01070 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 01071 SE->getSignedRange(Step).getSignedMax()); 01072 } 01073 if (SE->isKnownNegative(Step)) { 01074 *Pred = ICmpInst::ICMP_SGT; 01075 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 01076 SE->getSignedRange(Step).getSignedMin()); 01077 } 01078 return nullptr; 01079 } 01080 01081 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 01082 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 01083 // or postincrement sibling. This allows normalizing a sign extended AddRec as 01084 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 01085 // result, the expression "Step + sext(PreIncAR)" is congruent with 01086 // "sext(PostIncAR)" 01087 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 01088 Type *Ty, 01089 ScalarEvolution *SE) { 01090 const Loop *L = AR->getLoop(); 01091 const SCEV *Start = AR->getStart(); 01092 const SCEV *Step = AR->getStepRecurrence(*SE); 01093 01094 // Check for a simple looking step prior to loop entry. 01095 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 01096 if (!SA) 01097 return nullptr; 01098 01099 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 01100 // subtraction is expensive. For this purpose, perform a quick and dirty 01101 // difference, by checking for Step in the operand list. 01102 SmallVector<const SCEV *, 4> DiffOps; 01103 for (const SCEV *Op : SA->operands()) 01104 if (Op != Step) 01105 DiffOps.push_back(Op); 01106 01107 if (DiffOps.size() == SA->getNumOperands()) 01108 return nullptr; 01109 01110 // This is a postinc AR. Check for overflow on the preinc recurrence using the 01111 // same three conditions that getSignExtendedExpr checks. 01112 01113 // 1. NSW flags on the step increment. 01114 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 01115 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 01116 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 01117 01118 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 01119 return PreStart; 01120 01121 // 2. Direct overflow check on the step operation's expression. 01122 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 01123 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 01124 const SCEV *OperandExtendedStart = 01125 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 01126 SE->getSignExtendExpr(Step, WideTy)); 01127 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 01128 // Cache knowledge of PreAR NSW. 01129 if (PreAR) 01130 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 01131 // FIXME: this optimization needs a unit test 01132 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 01133 return PreStart; 01134 } 01135 01136 // 3. Loop precondition. 01137 ICmpInst::Predicate Pred; 01138 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 01139 01140 if (OverflowLimit && 01141 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 01142 return PreStart; 01143 } 01144 return nullptr; 01145 } 01146 01147 // Get the normalized sign-extended expression for this AddRec's Start. 01148 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 01149 Type *Ty, 01150 ScalarEvolution *SE) { 01151 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 01152 if (!PreStart) 01153 return SE->getSignExtendExpr(AR->getStart(), Ty); 01154 01155 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 01156 SE->getSignExtendExpr(PreStart, Ty)); 01157 } 01158 01159 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 01160 Type *Ty) { 01161 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 01162 "This is not an extending conversion!"); 01163 assert(isSCEVable(Ty) && 01164 "This is not a conversion to a SCEVable type!"); 01165 Ty = getEffectiveSCEVType(Ty); 01166 01167 // Fold if the operand is constant. 01168 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 01169 return getConstant( 01170 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 01171 01172 // sext(sext(x)) --> sext(x) 01173 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 01174 return getSignExtendExpr(SS->getOperand(), Ty); 01175 01176 // sext(zext(x)) --> zext(x) 01177 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 01178 return getZeroExtendExpr(SZ->getOperand(), Ty); 01179 01180 // Before doing any expensive analysis, check to see if we've already 01181 // computed a SCEV for this Op and Ty. 01182 FoldingSetNodeID ID; 01183 ID.AddInteger(scSignExtend); 01184 ID.AddPointer(Op); 01185 ID.AddPointer(Ty); 01186 void *IP = nullptr; 01187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 01188 01189 // If the input value is provably positive, build a zext instead. 01190 if (isKnownNonNegative(Op)) 01191 return getZeroExtendExpr(Op, Ty); 01192 01193 // sext(trunc(x)) --> sext(x) or x or trunc(x) 01194 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 01195 // It's possible the bits taken off by the truncate were all sign bits. If 01196 // so, we should be able to simplify this further. 01197 const SCEV *X = ST->getOperand(); 01198 ConstantRange CR = getSignedRange(X); 01199 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 01200 unsigned NewBits = getTypeSizeInBits(Ty); 01201 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 01202 CR.sextOrTrunc(NewBits))) 01203 return getTruncateOrSignExtend(X, Ty); 01204 } 01205 01206 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 01207 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 01208 if (SA->getNumOperands() == 2) { 01209 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 01210 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 01211 if (SMul && SC1) { 01212 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 01213 const APInt &C1 = SC1->getValue()->getValue(); 01214 const APInt &C2 = SC2->getValue()->getValue(); 01215 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 01216 C2.ugt(C1) && C2.isPowerOf2()) 01217 return getAddExpr(getSignExtendExpr(SC1, Ty), 01218 getSignExtendExpr(SMul, Ty)); 01219 } 01220 } 01221 } 01222 } 01223 // If the input value is a chrec scev, and we can prove that the value 01224 // did not overflow the old, smaller, value, we can sign extend all of the 01225 // operands (often constants). This allows analysis of something like 01226 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 01227 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 01228 if (AR->isAffine()) { 01229 const SCEV *Start = AR->getStart(); 01230 const SCEV *Step = AR->getStepRecurrence(*this); 01231 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 01232 const Loop *L = AR->getLoop(); 01233 01234 // If we have special knowledge that this addrec won't overflow, 01235 // we don't need to do any further analysis. 01236 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 01237 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 01238 getSignExtendExpr(Step, Ty), 01239 L, SCEV::FlagNSW); 01240 01241 // Check whether the backedge-taken count is SCEVCouldNotCompute. 01242 // Note that this serves two purposes: It filters out loops that are 01243 // simply not analyzable, and it covers the case where this code is 01244 // being called from within backedge-taken count analysis, such that 01245 // attempting to ask for the backedge-taken count would likely result 01246 // in infinite recursion. In the later case, the analysis code will 01247 // cope with a conservative value, and it will take care to purge 01248 // that value once it has finished. 01249 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 01250 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 01251 // Manually compute the final value for AR, checking for 01252 // overflow. 01253 01254 // Check whether the backedge-taken count can be losslessly casted to 01255 // the addrec's type. The count is always unsigned. 01256 const SCEV *CastedMaxBECount = 01257 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 01258 const SCEV *RecastedMaxBECount = 01259 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 01260 if (MaxBECount == RecastedMaxBECount) { 01261 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 01262 // Check whether Start+Step*MaxBECount has no signed overflow. 01263 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 01264 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 01265 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 01266 const SCEV *WideMaxBECount = 01267 getZeroExtendExpr(CastedMaxBECount, WideTy); 01268 const SCEV *OperandExtendedAdd = 01269 getAddExpr(WideStart, 01270 getMulExpr(WideMaxBECount, 01271 getSignExtendExpr(Step, WideTy))); 01272 if (SAdd == OperandExtendedAdd) { 01273 // Cache knowledge of AR NSW, which is propagated to this AddRec. 01274 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 01275 // Return the expression with the addrec on the outside. 01276 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 01277 getSignExtendExpr(Step, Ty), 01278 L, AR->getNoWrapFlags()); 01279 } 01280 // Similar to above, only this time treat the step value as unsigned. 01281 // This covers loops that count up with an unsigned step. 01282 OperandExtendedAdd = 01283 getAddExpr(WideStart, 01284 getMulExpr(WideMaxBECount, 01285 getZeroExtendExpr(Step, WideTy))); 01286 if (SAdd == OperandExtendedAdd) { 01287 // Cache knowledge of AR NSW, which is propagated to this AddRec. 01288 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 01289 // Return the expression with the addrec on the outside. 01290 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 01291 getZeroExtendExpr(Step, Ty), 01292 L, AR->getNoWrapFlags()); 01293 } 01294 } 01295 01296 // If the backedge is guarded by a comparison with the pre-inc value 01297 // the addrec is safe. Also, if the entry is guarded by a comparison 01298 // with the start value and the backedge is guarded by a comparison 01299 // with the post-inc value, the addrec is safe. 01300 ICmpInst::Predicate Pred; 01301 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 01302 if (OverflowLimit && 01303 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 01304 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 01305 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 01306 OverflowLimit)))) { 01307 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 01308 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 01309 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 01310 getSignExtendExpr(Step, Ty), 01311 L, AR->getNoWrapFlags()); 01312 } 01313 } 01314 // If Start and Step are constants, check if we can apply this 01315 // transformation: 01316 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 01317 auto SC1 = dyn_cast<SCEVConstant>(Start); 01318 auto SC2 = dyn_cast<SCEVConstant>(Step); 01319 if (SC1 && SC2) { 01320 const APInt &C1 = SC1->getValue()->getValue(); 01321 const APInt &C2 = SC2->getValue()->getValue(); 01322 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 01323 C2.isPowerOf2()) { 01324 Start = getSignExtendExpr(Start, Ty); 01325 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, 01326 L, AR->getNoWrapFlags()); 01327 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 01328 } 01329 } 01330 } 01331 01332 // The cast wasn't folded; create an explicit cast node. 01333 // Recompute the insert position, as it may have been invalidated. 01334 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 01335 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 01336 Op, Ty); 01337 UniqueSCEVs.InsertNode(S, IP); 01338 return S; 01339 } 01340 01341 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 01342 /// unspecified bits out to the given type. 01343 /// 01344 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 01345 Type *Ty) { 01346 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 01347 "This is not an extending conversion!"); 01348 assert(isSCEVable(Ty) && 01349 "This is not a conversion to a SCEVable type!"); 01350 Ty = getEffectiveSCEVType(Ty); 01351 01352 // Sign-extend negative constants. 01353 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 01354 if (SC->getValue()->getValue().isNegative()) 01355 return getSignExtendExpr(Op, Ty); 01356 01357 // Peel off a truncate cast. 01358 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 01359 const SCEV *NewOp = T->getOperand(); 01360 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 01361 return getAnyExtendExpr(NewOp, Ty); 01362 return getTruncateOrNoop(NewOp, Ty); 01363 } 01364 01365 // Next try a zext cast. If the cast is folded, use it. 01366 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 01367 if (!isa<SCEVZeroExtendExpr>(ZExt)) 01368 return ZExt; 01369 01370 // Next try a sext cast. If the cast is folded, use it. 01371 const SCEV *SExt = getSignExtendExpr(Op, Ty); 01372 if (!isa<SCEVSignExtendExpr>(SExt)) 01373 return SExt; 01374 01375 // Force the cast to be folded into the operands of an addrec. 01376 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 01377 SmallVector<const SCEV *, 4> Ops; 01378 for (const SCEV *Op : AR->operands()) 01379 Ops.push_back(getAnyExtendExpr(Op, Ty)); 01380 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 01381 } 01382 01383 // If the expression is obviously signed, use the sext cast value. 01384 if (isa<SCEVSMaxExpr>(Op)) 01385 return SExt; 01386 01387 // Absent any other information, use the zext cast value. 01388 return ZExt; 01389 } 01390 01391 /// CollectAddOperandsWithScales - Process the given Ops list, which is 01392 /// a list of operands to be added under the given scale, update the given 01393 /// map. This is a helper function for getAddRecExpr. As an example of 01394 /// what it does, given a sequence of operands that would form an add 01395 /// expression like this: 01396 /// 01397 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 01398 /// 01399 /// where A and B are constants, update the map with these values: 01400 /// 01401 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 01402 /// 01403 /// and add 13 + A*B*29 to AccumulatedConstant. 01404 /// This will allow getAddRecExpr to produce this: 01405 /// 01406 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 01407 /// 01408 /// This form often exposes folding opportunities that are hidden in 01409 /// the original operand list. 01410 /// 01411 /// Return true iff it appears that any interesting folding opportunities 01412 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 01413 /// the common case where no interesting opportunities are present, and 01414 /// is also used as a check to avoid infinite recursion. 01415 /// 01416 static bool 01417 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 01418 SmallVectorImpl<const SCEV *> &NewOps, 01419 APInt &AccumulatedConstant, 01420 const SCEV *const *Ops, size_t NumOperands, 01421 const APInt &Scale, 01422 ScalarEvolution &SE) { 01423 bool Interesting = false; 01424 01425 // Iterate over the add operands. They are sorted, with constants first. 01426 unsigned i = 0; 01427 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 01428 ++i; 01429 // Pull a buried constant out to the outside. 01430 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 01431 Interesting = true; 01432 AccumulatedConstant += Scale * C->getValue()->getValue(); 01433 } 01434 01435 // Next comes everything else. We're especially interested in multiplies 01436 // here, but they're in the middle, so just visit the rest with one loop. 01437 for (; i != NumOperands; ++i) { 01438 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 01439 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 01440 APInt NewScale = 01441 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 01442 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 01443 // A multiplication of a constant with another add; recurse. 01444 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 01445 Interesting |= 01446 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 01447 Add->op_begin(), Add->getNumOperands(), 01448 NewScale, SE); 01449 } else { 01450 // A multiplication of a constant with some other value. Update 01451 // the map. 01452 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 01453 const SCEV *Key = SE.getMulExpr(MulOps); 01454 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 01455 M.insert(std::make_pair(Key, NewScale)); 01456 if (Pair.second) { 01457 NewOps.push_back(Pair.first->first); 01458 } else { 01459 Pair.first->second += NewScale; 01460 // The map already had an entry for this value, which may indicate 01461 // a folding opportunity. 01462 Interesting = true; 01463 } 01464 } 01465 } else { 01466 // An ordinary operand. Update the map. 01467 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 01468 M.insert(std::make_pair(Ops[i], Scale)); 01469 if (Pair.second) { 01470 NewOps.push_back(Pair.first->first); 01471 } else { 01472 Pair.first->second += Scale; 01473 // The map already had an entry for this value, which may indicate 01474 // a folding opportunity. 01475 Interesting = true; 01476 } 01477 } 01478 } 01479 01480 return Interesting; 01481 } 01482 01483 namespace { 01484 struct APIntCompare { 01485 bool operator()(const APInt &LHS, const APInt &RHS) const { 01486 return LHS.ult(RHS); 01487 } 01488 }; 01489 } 01490 01491 /// getAddExpr - Get a canonical add expression, or something simpler if 01492 /// possible. 01493 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 01494 SCEV::NoWrapFlags Flags) { 01495 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 01496 "only nuw or nsw allowed"); 01497 assert(!Ops.empty() && "Cannot get empty add!"); 01498 if (Ops.size() == 1) return Ops[0]; 01499 #ifndef NDEBUG 01500 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 01501 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 01502 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 01503 "SCEVAddExpr operand types don't match!"); 01504 #endif 01505 01506 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 01507 // And vice-versa. 01508 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 01509 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 01510 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 01511 bool All = true; 01512 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 01513 E = Ops.end(); I != E; ++I) 01514 if (!isKnownNonNegative(*I)) { 01515 All = false; 01516 break; 01517 } 01518 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 01519 } 01520 01521 // Sort by complexity, this groups all similar expression types together. 01522 GroupByComplexity(Ops, LI); 01523 01524 // If there are any constants, fold them together. 01525 unsigned Idx = 0; 01526 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 01527 ++Idx; 01528 assert(Idx < Ops.size()); 01529 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 01530 // We found two constants, fold them together! 01531 Ops[0] = getConstant(LHSC->getValue()->getValue() + 01532 RHSC->getValue()->getValue()); 01533 if (Ops.size() == 2) return Ops[0]; 01534 Ops.erase(Ops.begin()+1); // Erase the folded element 01535 LHSC = cast<SCEVConstant>(Ops[0]); 01536 } 01537 01538 // If we are left with a constant zero being added, strip it off. 01539 if (LHSC->getValue()->isZero()) { 01540 Ops.erase(Ops.begin()); 01541 --Idx; 01542 } 01543 01544 if (Ops.size() == 1) return Ops[0]; 01545 } 01546 01547 // Okay, check to see if the same value occurs in the operand list more than 01548 // once. If so, merge them together into an multiply expression. Since we 01549 // sorted the list, these values are required to be adjacent. 01550 Type *Ty = Ops[0]->getType(); 01551 bool FoundMatch = false; 01552 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 01553 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 01554 // Scan ahead to count how many equal operands there are. 01555 unsigned Count = 2; 01556 while (i+Count != e && Ops[i+Count] == Ops[i]) 01557 ++Count; 01558 // Merge the values into a multiply. 01559 const SCEV *Scale = getConstant(Ty, Count); 01560 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 01561 if (Ops.size() == Count) 01562 return Mul; 01563 Ops[i] = Mul; 01564 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 01565 --i; e -= Count - 1; 01566 FoundMatch = true; 01567 } 01568 if (FoundMatch) 01569 return getAddExpr(Ops, Flags); 01570 01571 // Check for truncates. If all the operands are truncated from the same 01572 // type, see if factoring out the truncate would permit the result to be 01573 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 01574 // if the contents of the resulting outer trunc fold to something simple. 01575 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 01576 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 01577 Type *DstType = Trunc->getType(); 01578 Type *SrcType = Trunc->getOperand()->getType(); 01579 SmallVector<const SCEV *, 8> LargeOps; 01580 bool Ok = true; 01581 // Check all the operands to see if they can be represented in the 01582 // source type of the truncate. 01583 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 01584 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 01585 if (T->getOperand()->getType() != SrcType) { 01586 Ok = false; 01587 break; 01588 } 01589 LargeOps.push_back(T->getOperand()); 01590 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 01591 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 01592 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 01593 SmallVector<const SCEV *, 8> LargeMulOps; 01594 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 01595 if (const SCEVTruncateExpr *T = 01596 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 01597 if (T->getOperand()->getType() != SrcType) { 01598 Ok = false; 01599 break; 01600 } 01601 LargeMulOps.push_back(T->getOperand()); 01602 } else if (const SCEVConstant *C = 01603 dyn_cast<SCEVConstant>(M->getOperand(j))) { 01604 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 01605 } else { 01606 Ok = false; 01607 break; 01608 } 01609 } 01610 if (Ok) 01611 LargeOps.push_back(getMulExpr(LargeMulOps)); 01612 } else { 01613 Ok = false; 01614 break; 01615 } 01616 } 01617 if (Ok) { 01618 // Evaluate the expression in the larger type. 01619 const SCEV *Fold = getAddExpr(LargeOps, Flags); 01620 // If it folds to something simple, use it. Otherwise, don't. 01621 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 01622 return getTruncateExpr(Fold, DstType); 01623 } 01624 } 01625 01626 // Skip past any other cast SCEVs. 01627 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 01628 ++Idx; 01629 01630 // If there are add operands they would be next. 01631 if (Idx < Ops.size()) { 01632 bool DeletedAdd = false; 01633 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 01634 // If we have an add, expand the add operands onto the end of the operands 01635 // list. 01636 Ops.erase(Ops.begin()+Idx); 01637 Ops.append(Add->op_begin(), Add->op_end()); 01638 DeletedAdd = true; 01639 } 01640 01641 // If we deleted at least one add, we added operands to the end of the list, 01642 // and they are not necessarily sorted. Recurse to resort and resimplify 01643 // any operands we just acquired. 01644 if (DeletedAdd) 01645 return getAddExpr(Ops); 01646 } 01647 01648 // Skip over the add expression until we get to a multiply. 01649 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 01650 ++Idx; 01651 01652 // Check to see if there are any folding opportunities present with 01653 // operands multiplied by constant values. 01654 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 01655 uint64_t BitWidth = getTypeSizeInBits(Ty); 01656 DenseMap<const SCEV *, APInt> M; 01657 SmallVector<const SCEV *, 8> NewOps; 01658 APInt AccumulatedConstant(BitWidth, 0); 01659 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 01660 Ops.data(), Ops.size(), 01661 APInt(BitWidth, 1), *this)) { 01662 // Some interesting folding opportunity is present, so its worthwhile to 01663 // re-generate the operands list. Group the operands by constant scale, 01664 // to avoid multiplying by the same constant scale multiple times. 01665 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 01666 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 01667 E = NewOps.end(); I != E; ++I) 01668 MulOpLists[M.find(*I)->second].push_back(*I); 01669 // Re-generate the operands list. 01670 Ops.clear(); 01671 if (AccumulatedConstant != 0) 01672 Ops.push_back(getConstant(AccumulatedConstant)); 01673 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 01674 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 01675 if (I->first != 0) 01676 Ops.push_back(getMulExpr(getConstant(I->first), 01677 getAddExpr(I->second))); 01678 if (Ops.empty()) 01679 return getConstant(Ty, 0); 01680 if (Ops.size() == 1) 01681 return Ops[0]; 01682 return getAddExpr(Ops); 01683 } 01684 } 01685 01686 // If we are adding something to a multiply expression, make sure the 01687 // something is not already an operand of the multiply. If so, merge it into 01688 // the multiply. 01689 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 01690 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 01691 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 01692 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 01693 if (isa<SCEVConstant>(MulOpSCEV)) 01694 continue; 01695 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 01696 if (MulOpSCEV == Ops[AddOp]) { 01697 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 01698 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 01699 if (Mul->getNumOperands() != 2) { 01700 // If the multiply has more than two operands, we must get the 01701 // Y*Z term. 01702 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 01703 Mul->op_begin()+MulOp); 01704 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 01705 InnerMul = getMulExpr(MulOps); 01706 } 01707 const SCEV *One = getConstant(Ty, 1); 01708 const SCEV *AddOne = getAddExpr(One, InnerMul); 01709 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 01710 if (Ops.size() == 2) return OuterMul; 01711 if (AddOp < Idx) { 01712 Ops.erase(Ops.begin()+AddOp); 01713 Ops.erase(Ops.begin()+Idx-1); 01714 } else { 01715 Ops.erase(Ops.begin()+Idx); 01716 Ops.erase(Ops.begin()+AddOp-1); 01717 } 01718 Ops.push_back(OuterMul); 01719 return getAddExpr(Ops); 01720 } 01721 01722 // Check this multiply against other multiplies being added together. 01723 for (unsigned OtherMulIdx = Idx+1; 01724 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 01725 ++OtherMulIdx) { 01726 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 01727 // If MulOp occurs in OtherMul, we can fold the two multiplies 01728 // together. 01729 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 01730 OMulOp != e; ++OMulOp) 01731 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 01732 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 01733 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 01734 if (Mul->getNumOperands() != 2) { 01735 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 01736 Mul->op_begin()+MulOp); 01737 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 01738 InnerMul1 = getMulExpr(MulOps); 01739 } 01740 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 01741 if (OtherMul->getNumOperands() != 2) { 01742 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 01743 OtherMul->op_begin()+OMulOp); 01744 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 01745 InnerMul2 = getMulExpr(MulOps); 01746 } 01747 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 01748 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 01749 if (Ops.size() == 2) return OuterMul; 01750 Ops.erase(Ops.begin()+Idx); 01751 Ops.erase(Ops.begin()+OtherMulIdx-1); 01752 Ops.push_back(OuterMul); 01753 return getAddExpr(Ops); 01754 } 01755 } 01756 } 01757 } 01758 01759 // If there are any add recurrences in the operands list, see if any other 01760 // added values are loop invariant. If so, we can fold them into the 01761 // recurrence. 01762 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 01763 ++Idx; 01764 01765 // Scan over all recurrences, trying to fold loop invariants into them. 01766 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 01767 // Scan all of the other operands to this add and add them to the vector if 01768 // they are loop invariant w.r.t. the recurrence. 01769 SmallVector<const SCEV *, 8> LIOps; 01770 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 01771 const Loop *AddRecLoop = AddRec->getLoop(); 01772 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 01773 if (isLoopInvariant(Ops[i], AddRecLoop)) { 01774 LIOps.push_back(Ops[i]); 01775 Ops.erase(Ops.begin()+i); 01776 --i; --e; 01777 } 01778 01779 // If we found some loop invariants, fold them into the recurrence. 01780 if (!LIOps.empty()) { 01781 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 01782 LIOps.push_back(AddRec->getStart()); 01783 01784 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 01785 AddRec->op_end()); 01786 AddRecOps[0] = getAddExpr(LIOps); 01787 01788 // Build the new addrec. Propagate the NUW and NSW flags if both the 01789 // outer add and the inner addrec are guaranteed to have no overflow. 01790 // Always propagate NW. 01791 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 01792 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 01793 01794 // If all of the other operands were loop invariant, we are done. 01795 if (Ops.size() == 1) return NewRec; 01796 01797 // Otherwise, add the folded AddRec by the non-invariant parts. 01798 for (unsigned i = 0;; ++i) 01799 if (Ops[i] == AddRec) { 01800 Ops[i] = NewRec; 01801 break; 01802 } 01803 return getAddExpr(Ops); 01804 } 01805 01806 // Okay, if there weren't any loop invariants to be folded, check to see if 01807 // there are multiple AddRec's with the same loop induction variable being 01808 // added together. If so, we can fold them. 01809 for (unsigned OtherIdx = Idx+1; 01810 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 01811 ++OtherIdx) 01812 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 01813 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 01814 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 01815 AddRec->op_end()); 01816 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 01817 ++OtherIdx) 01818 if (const SCEVAddRecExpr *OtherAddRec = 01819 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 01820 if (OtherAddRec->getLoop() == AddRecLoop) { 01821 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 01822 i != e; ++i) { 01823 if (i >= AddRecOps.size()) { 01824 AddRecOps.append(OtherAddRec->op_begin()+i, 01825 OtherAddRec->op_end()); 01826 break; 01827 } 01828 AddRecOps[i] = getAddExpr(AddRecOps[i], 01829 OtherAddRec->getOperand(i)); 01830 } 01831 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 01832 } 01833 // Step size has changed, so we cannot guarantee no self-wraparound. 01834 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 01835 return getAddExpr(Ops); 01836 } 01837 01838 // Otherwise couldn't fold anything into this recurrence. Move onto the 01839 // next one. 01840 } 01841 01842 // Okay, it looks like we really DO need an add expr. Check to see if we 01843 // already have one, otherwise create a new one. 01844 FoldingSetNodeID ID; 01845 ID.AddInteger(scAddExpr); 01846 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 01847 ID.AddPointer(Ops[i]); 01848 void *IP = nullptr; 01849 SCEVAddExpr *S = 01850 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 01851 if (!S) { 01852 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 01853 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 01854 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 01855 O, Ops.size()); 01856 UniqueSCEVs.InsertNode(S, IP); 01857 } 01858 S->setNoWrapFlags(Flags); 01859 return S; 01860 } 01861 01862 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 01863 uint64_t k = i*j; 01864 if (j > 1 && k / j != i) Overflow = true; 01865 return k; 01866 } 01867 01868 /// Compute the result of "n choose k", the binomial coefficient. If an 01869 /// intermediate computation overflows, Overflow will be set and the return will 01870 /// be garbage. Overflow is not cleared on absence of overflow. 01871 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 01872 // We use the multiplicative formula: 01873 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 01874 // At each iteration, we take the n-th term of the numeral and divide by the 01875 // (k-n)th term of the denominator. This division will always produce an 01876 // integral result, and helps reduce the chance of overflow in the 01877 // intermediate computations. However, we can still overflow even when the 01878 // final result would fit. 01879 01880 if (n == 0 || n == k) return 1; 01881 if (k > n) return 0; 01882 01883 if (k > n/2) 01884 k = n-k; 01885 01886 uint64_t r = 1; 01887 for (uint64_t i = 1; i <= k; ++i) { 01888 r = umul_ov(r, n-(i-1), Overflow); 01889 r /= i; 01890 } 01891 return r; 01892 } 01893 01894 /// getMulExpr - Get a canonical multiply expression, or something simpler if 01895 /// possible. 01896 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 01897 SCEV::NoWrapFlags Flags) { 01898 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 01899 "only nuw or nsw allowed"); 01900 assert(!Ops.empty() && "Cannot get empty mul!"); 01901 if (Ops.size() == 1) return Ops[0]; 01902 #ifndef NDEBUG 01903 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 01904 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 01905 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 01906 "SCEVMulExpr operand types don't match!"); 01907 #endif 01908 01909 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 01910 // And vice-versa. 01911 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 01912 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 01913 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 01914 bool All = true; 01915 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 01916 E = Ops.end(); I != E; ++I) 01917 if (!isKnownNonNegative(*I)) { 01918 All = false; 01919 break; 01920 } 01921 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 01922 } 01923 01924 // Sort by complexity, this groups all similar expression types together. 01925 GroupByComplexity(Ops, LI); 01926 01927 // If there are any constants, fold them together. 01928 unsigned Idx = 0; 01929 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 01930 01931 // C1*(C2+V) -> C1*C2 + C1*V 01932 if (Ops.size() == 2) 01933 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 01934 if (Add->getNumOperands() == 2 && 01935 isa<SCEVConstant>(Add->getOperand(0))) 01936 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 01937 getMulExpr(LHSC, Add->getOperand(1))); 01938 01939 ++Idx; 01940 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 01941 // We found two constants, fold them together! 01942 ConstantInt *Fold = ConstantInt::get(getContext(), 01943 LHSC->getValue()->getValue() * 01944 RHSC->getValue()->getValue()); 01945 Ops[0] = getConstant(Fold); 01946 Ops.erase(Ops.begin()+1); // Erase the folded element 01947 if (Ops.size() == 1) return Ops[0]; 01948 LHSC = cast<SCEVConstant>(Ops[0]); 01949 } 01950 01951 // If we are left with a constant one being multiplied, strip it off. 01952 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 01953 Ops.erase(Ops.begin()); 01954 --Idx; 01955 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 01956 // If we have a multiply of zero, it will always be zero. 01957 return Ops[0]; 01958 } else if (Ops[0]->isAllOnesValue()) { 01959 // If we have a mul by -1 of an add, try distributing the -1 among the 01960 // add operands. 01961 if (Ops.size() == 2) { 01962 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 01963 SmallVector<const SCEV *, 4> NewOps; 01964 bool AnyFolded = false; 01965 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 01966 E = Add->op_end(); I != E; ++I) { 01967 const SCEV *Mul = getMulExpr(Ops[0], *I); 01968 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 01969 NewOps.push_back(Mul); 01970 } 01971 if (AnyFolded) 01972 return getAddExpr(NewOps); 01973 } 01974 else if (const SCEVAddRecExpr * 01975 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 01976 // Negation preserves a recurrence's no self-wrap property. 01977 SmallVector<const SCEV *, 4> Operands; 01978 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 01979 E = AddRec->op_end(); I != E; ++I) { 01980 Operands.push_back(getMulExpr(Ops[0], *I)); 01981 } 01982 return getAddRecExpr(Operands, AddRec->getLoop(), 01983 AddRec->getNoWrapFlags(SCEV::FlagNW)); 01984 } 01985 } 01986 } 01987 01988 if (Ops.size() == 1) 01989 return Ops[0]; 01990 } 01991 01992 // Skip over the add expression until we get to a multiply. 01993 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 01994 ++Idx; 01995 01996 // If there are mul operands inline them all into this expression. 01997 if (Idx < Ops.size()) { 01998 bool DeletedMul = false; 01999 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 02000 // If we have an mul, expand the mul operands onto the end of the operands 02001 // list. 02002 Ops.erase(Ops.begin()+Idx); 02003 Ops.append(Mul->op_begin(), Mul->op_end()); 02004 DeletedMul = true; 02005 } 02006 02007 // If we deleted at least one mul, we added operands to the end of the list, 02008 // and they are not necessarily sorted. Recurse to resort and resimplify 02009 // any operands we just acquired. 02010 if (DeletedMul) 02011 return getMulExpr(Ops); 02012 } 02013 02014 // If there are any add recurrences in the operands list, see if any other 02015 // added values are loop invariant. If so, we can fold them into the 02016 // recurrence. 02017 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 02018 ++Idx; 02019 02020 // Scan over all recurrences, trying to fold loop invariants into them. 02021 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 02022 // Scan all of the other operands to this mul and add them to the vector if 02023 // they are loop invariant w.r.t. the recurrence. 02024 SmallVector<const SCEV *, 8> LIOps; 02025 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 02026 const Loop *AddRecLoop = AddRec->getLoop(); 02027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 02028 if (isLoopInvariant(Ops[i], AddRecLoop)) { 02029 LIOps.push_back(Ops[i]); 02030 Ops.erase(Ops.begin()+i); 02031 --i; --e; 02032 } 02033 02034 // If we found some loop invariants, fold them into the recurrence. 02035 if (!LIOps.empty()) { 02036 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 02037 SmallVector<const SCEV *, 4> NewOps; 02038 NewOps.reserve(AddRec->getNumOperands()); 02039 const SCEV *Scale = getMulExpr(LIOps); 02040 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 02041 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 02042 02043 // Build the new addrec. Propagate the NUW and NSW flags if both the 02044 // outer mul and the inner addrec are guaranteed to have no overflow. 02045 // 02046 // No self-wrap cannot be guaranteed after changing the step size, but 02047 // will be inferred if either NUW or NSW is true. 02048 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 02049 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 02050 02051 // If all of the other operands were loop invariant, we are done. 02052 if (Ops.size() == 1) return NewRec; 02053 02054 // Otherwise, multiply the folded AddRec by the non-invariant parts. 02055 for (unsigned i = 0;; ++i) 02056 if (Ops[i] == AddRec) { 02057 Ops[i] = NewRec; 02058 break; 02059 } 02060 return getMulExpr(Ops); 02061 } 02062 02063 // Okay, if there weren't any loop invariants to be folded, check to see if 02064 // there are multiple AddRec's with the same loop induction variable being 02065 // multiplied together. If so, we can fold them. 02066 02067 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 02068 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 02069 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 02070 // ]]],+,...up to x=2n}. 02071 // Note that the arguments to choose() are always integers with values 02072 // known at compile time, never SCEV objects. 02073 // 02074 // The implementation avoids pointless extra computations when the two 02075 // addrec's are of different length (mathematically, it's equivalent to 02076 // an infinite stream of zeros on the right). 02077 bool OpsModified = false; 02078 for (unsigned OtherIdx = Idx+1; 02079 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 02080 ++OtherIdx) { 02081 const SCEVAddRecExpr *OtherAddRec = 02082 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 02083 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 02084 continue; 02085 02086 bool Overflow = false; 02087 Type *Ty = AddRec->getType(); 02088 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 02089 SmallVector<const SCEV*, 7> AddRecOps; 02090 for (int x = 0, xe = AddRec->getNumOperands() + 02091 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 02092 const SCEV *Term = getConstant(Ty, 0); 02093 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 02094 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 02095 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 02096 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 02097 z < ze && !Overflow; ++z) { 02098 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 02099 uint64_t Coeff; 02100 if (LargerThan64Bits) 02101 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 02102 else 02103 Coeff = Coeff1*Coeff2; 02104 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 02105 const SCEV *Term1 = AddRec->getOperand(y-z); 02106 const SCEV *Term2 = OtherAddRec->getOperand(z); 02107 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 02108 } 02109 } 02110 AddRecOps.push_back(Term); 02111 } 02112 if (!Overflow) { 02113 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 02114 SCEV::FlagAnyWrap); 02115 if (Ops.size() == 2) return NewAddRec; 02116 Ops[Idx] = NewAddRec; 02117 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 02118 OpsModified = true; 02119 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 02120 if (!AddRec) 02121 break; 02122 } 02123 } 02124 if (OpsModified) 02125 return getMulExpr(Ops); 02126 02127 // Otherwise couldn't fold anything into this recurrence. Move onto the 02128 // next one. 02129 } 02130 02131 // Okay, it looks like we really DO need an mul expr. Check to see if we 02132 // already have one, otherwise create a new one. 02133 FoldingSetNodeID ID; 02134 ID.AddInteger(scMulExpr); 02135 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 02136 ID.AddPointer(Ops[i]); 02137 void *IP = nullptr; 02138 SCEVMulExpr *S = 02139 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 02140 if (!S) { 02141 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 02142 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 02143 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 02144 O, Ops.size()); 02145 UniqueSCEVs.InsertNode(S, IP); 02146 } 02147 S->setNoWrapFlags(Flags); 02148 return S; 02149 } 02150 02151 /// getUDivExpr - Get a canonical unsigned division expression, or something 02152 /// simpler if possible. 02153 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 02154 const SCEV *RHS) { 02155 assert(getEffectiveSCEVType(LHS->getType()) == 02156 getEffectiveSCEVType(RHS->getType()) && 02157 "SCEVUDivExpr operand types don't match!"); 02158 02159 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 02160 if (RHSC->getValue()->equalsInt(1)) 02161 return LHS; // X udiv 1 --> x 02162 // If the denominator is zero, the result of the udiv is undefined. Don't 02163 // try to analyze it, because the resolution chosen here may differ from 02164 // the resolution chosen in other parts of the compiler. 02165 if (!RHSC->getValue()->isZero()) { 02166 // Determine if the division can be folded into the operands of 02167 // its operands. 02168 // TODO: Generalize this to non-constants by using known-bits information. 02169 Type *Ty = LHS->getType(); 02170 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 02171 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 02172 // For non-power-of-two values, effectively round the value up to the 02173 // nearest power of two. 02174 if (!RHSC->getValue()->getValue().isPowerOf2()) 02175 ++MaxShiftAmt; 02176 IntegerType *ExtTy = 02177 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 02178 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 02179 if (const SCEVConstant *Step = 02180 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 02181 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 02182 const APInt &StepInt = Step->getValue()->getValue(); 02183 const APInt &DivInt = RHSC->getValue()->getValue(); 02184 if (!StepInt.urem(DivInt) && 02185 getZeroExtendExpr(AR, ExtTy) == 02186 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 02187 getZeroExtendExpr(Step, ExtTy), 02188 AR->getLoop(), SCEV::FlagAnyWrap)) { 02189 SmallVector<const SCEV *, 4> Operands; 02190 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 02191 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 02192 return getAddRecExpr(Operands, AR->getLoop(), 02193 SCEV::FlagNW); 02194 } 02195 /// Get a canonical UDivExpr for a recurrence. 02196 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 02197 // We can currently only fold X%N if X is constant. 02198 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 02199 if (StartC && !DivInt.urem(StepInt) && 02200 getZeroExtendExpr(AR, ExtTy) == 02201 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 02202 getZeroExtendExpr(Step, ExtTy), 02203 AR->getLoop(), SCEV::FlagAnyWrap)) { 02204 const APInt &StartInt = StartC->getValue()->getValue(); 02205 const APInt &StartRem = StartInt.urem(StepInt); 02206 if (StartRem != 0) 02207 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 02208 AR->getLoop(), SCEV::FlagNW); 02209 } 02210 } 02211 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 02212 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 02213 SmallVector<const SCEV *, 4> Operands; 02214 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 02215 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 02216 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 02217 // Find an operand that's safely divisible. 02218 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 02219 const SCEV *Op = M->getOperand(i); 02220 const SCEV *Div = getUDivExpr(Op, RHSC); 02221 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 02222 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 02223 M->op_end()); 02224 Operands[i] = Div; 02225 return getMulExpr(Operands); 02226 } 02227 } 02228 } 02229 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 02230 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 02231 SmallVector<const SCEV *, 4> Operands; 02232 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 02233 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 02234 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 02235 Operands.clear(); 02236 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 02237 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 02238 if (isa<SCEVUDivExpr>(Op) || 02239 getMulExpr(Op, RHS) != A->getOperand(i)) 02240 break; 02241 Operands.push_back(Op); 02242 } 02243 if (Operands.size() == A->getNumOperands()) 02244 return getAddExpr(Operands); 02245 } 02246 } 02247 02248 // Fold if both operands are constant. 02249 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 02250 Constant *LHSCV = LHSC->getValue(); 02251 Constant *RHSCV = RHSC->getValue(); 02252 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 02253 RHSCV))); 02254 } 02255 } 02256 } 02257 02258 FoldingSetNodeID ID; 02259 ID.AddInteger(scUDivExpr); 02260 ID.AddPointer(LHS); 02261 ID.AddPointer(RHS); 02262 void *IP = nullptr; 02263 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 02264 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 02265 LHS, RHS); 02266 UniqueSCEVs.InsertNode(S, IP); 02267 return S; 02268 } 02269 02270 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 02271 APInt A = C1->getValue()->getValue().abs(); 02272 APInt B = C2->getValue()->getValue().abs(); 02273 uint32_t ABW = A.getBitWidth(); 02274 uint32_t BBW = B.getBitWidth(); 02275 02276 if (ABW > BBW) 02277 B = B.zext(ABW); 02278 else if (ABW < BBW) 02279 A = A.zext(BBW); 02280 02281 return APIntOps::GreatestCommonDivisor(A, B); 02282 } 02283 02284 /// getUDivExactExpr - Get a canonical unsigned division expression, or 02285 /// something simpler if possible. There is no representation for an exact udiv 02286 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 02287 /// We can't do this when it's not exact because the udiv may be clearing bits. 02288 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 02289 const SCEV *RHS) { 02290 // TODO: we could try to find factors in all sorts of things, but for now we 02291 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 02292 // end of this file for inspiration. 02293 02294 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 02295 if (!Mul) 02296 return getUDivExpr(LHS, RHS); 02297 02298 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 02299 // If the mulexpr multiplies by a constant, then that constant must be the 02300 // first element of the mulexpr. 02301 if (const SCEVConstant *LHSCst = 02302 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 02303 if (LHSCst == RHSCst) { 02304 SmallVector<const SCEV *, 2> Operands; 02305 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 02306 return getMulExpr(Operands); 02307 } 02308 02309 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 02310 // that there's a factor provided by one of the other terms. We need to 02311 // check. 02312 APInt Factor = gcd(LHSCst, RHSCst); 02313 if (!Factor.isIntN(1)) { 02314 LHSCst = cast<SCEVConstant>( 02315 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 02316 RHSCst = cast<SCEVConstant>( 02317 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 02318 SmallVector<const SCEV *, 2> Operands; 02319 Operands.push_back(LHSCst); 02320 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 02321 LHS = getMulExpr(Operands); 02322 RHS = RHSCst; 02323 Mul = dyn_cast<SCEVMulExpr>(LHS); 02324 if (!Mul) 02325 return getUDivExactExpr(LHS, RHS); 02326 } 02327 } 02328 } 02329 02330 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 02331 if (Mul->getOperand(i) == RHS) { 02332 SmallVector<const SCEV *, 2> Operands; 02333 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 02334 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 02335 return getMulExpr(Operands); 02336 } 02337 } 02338 02339 return getUDivExpr(LHS, RHS); 02340 } 02341 02342 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 02343 /// Simplify the expression as much as possible. 02344 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 02345 const Loop *L, 02346 SCEV::NoWrapFlags Flags) { 02347 SmallVector<const SCEV *, 4> Operands; 02348 Operands.push_back(Start); 02349 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 02350 if (StepChrec->getLoop() == L) { 02351 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 02352 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 02353 } 02354 02355 Operands.push_back(Step); 02356 return getAddRecExpr(Operands, L, Flags); 02357 } 02358 02359 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 02360 /// Simplify the expression as much as possible. 02361 const SCEV * 02362 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 02363 const Loop *L, SCEV::NoWrapFlags Flags) { 02364 if (Operands.size() == 1) return Operands[0]; 02365 #ifndef NDEBUG 02366 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 02367 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 02368 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 02369 "SCEVAddRecExpr operand types don't match!"); 02370 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 02371 assert(isLoopInvariant(Operands[i], L) && 02372 "SCEVAddRecExpr operand is not loop-invariant!"); 02373 #endif 02374 02375 if (Operands.back()->isZero()) { 02376 Operands.pop_back(); 02377 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 02378 } 02379 02380 // It's tempting to want to call getMaxBackedgeTakenCount count here and 02381 // use that information to infer NUW and NSW flags. However, computing a 02382 // BE count requires calling getAddRecExpr, so we may not yet have a 02383 // meaningful BE count at this point (and if we don't, we'd be stuck 02384 // with a SCEVCouldNotCompute as the cached BE count). 02385 02386 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 02387 // And vice-versa. 02388 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 02389 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 02390 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 02391 bool All = true; 02392 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 02393 E = Operands.end(); I != E; ++I) 02394 if (!isKnownNonNegative(*I)) { 02395 All = false; 02396 break; 02397 } 02398 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 02399 } 02400 02401 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 02402 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 02403 const Loop *NestedLoop = NestedAR->getLoop(); 02404 if (L->contains(NestedLoop) ? 02405 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 02406 (!NestedLoop->contains(L) && 02407 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 02408 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 02409 NestedAR->op_end()); 02410 Operands[0] = NestedAR->getStart(); 02411 // AddRecs require their operands be loop-invariant with respect to their 02412 // loops. Don't perform this transformation if it would break this 02413 // requirement. 02414 bool AllInvariant = true; 02415 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 02416 if (!isLoopInvariant(Operands[i], L)) { 02417 AllInvariant = false; 02418 break; 02419 } 02420 if (AllInvariant) { 02421 // Create a recurrence for the outer loop with the same step size. 02422 // 02423 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 02424 // inner recurrence has the same property. 02425 SCEV::NoWrapFlags OuterFlags = 02426 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 02427 02428 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 02429 AllInvariant = true; 02430 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 02431 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 02432 AllInvariant = false; 02433 break; 02434 } 02435 if (AllInvariant) { 02436 // Ok, both add recurrences are valid after the transformation. 02437 // 02438 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 02439 // the outer recurrence has the same property. 02440 SCEV::NoWrapFlags InnerFlags = 02441 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 02442 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 02443 } 02444 } 02445 // Reset Operands to its original state. 02446 Operands[0] = NestedAR; 02447 } 02448 } 02449 02450 // Okay, it looks like we really DO need an addrec expr. Check to see if we 02451 // already have one, otherwise create a new one. 02452 FoldingSetNodeID ID; 02453 ID.AddInteger(scAddRecExpr); 02454 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 02455 ID.AddPointer(Operands[i]); 02456 ID.AddPointer(L); 02457 void *IP = nullptr; 02458 SCEVAddRecExpr *S = 02459 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 02460 if (!S) { 02461 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 02462 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 02463 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 02464 O, Operands.size(), L); 02465 UniqueSCEVs.InsertNode(S, IP); 02466 } 02467 S->setNoWrapFlags(Flags); 02468 return S; 02469 } 02470 02471 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 02472 const SCEV *RHS) { 02473 SmallVector<const SCEV *, 2> Ops; 02474 Ops.push_back(LHS); 02475 Ops.push_back(RHS); 02476 return getSMaxExpr(Ops); 02477 } 02478 02479 const SCEV * 02480 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 02481 assert(!Ops.empty() && "Cannot get empty smax!"); 02482 if (Ops.size() == 1) return Ops[0]; 02483 #ifndef NDEBUG 02484 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 02485 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 02486 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 02487 "SCEVSMaxExpr operand types don't match!"); 02488 #endif 02489 02490 // Sort by complexity, this groups all similar expression types together. 02491 GroupByComplexity(Ops, LI); 02492 02493 // If there are any constants, fold them together. 02494 unsigned Idx = 0; 02495 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 02496 ++Idx; 02497 assert(Idx < Ops.size()); 02498 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 02499 // We found two constants, fold them together! 02500 ConstantInt *Fold = ConstantInt::get(getContext(), 02501 APIntOps::smax(LHSC->getValue()->getValue(), 02502 RHSC->getValue()->getValue())); 02503 Ops[0] = getConstant(Fold); 02504 Ops.erase(Ops.begin()+1); // Erase the folded element 02505 if (Ops.size() == 1) return Ops[0]; 02506 LHSC = cast<SCEVConstant>(Ops[0]); 02507 } 02508 02509 // If we are left with a constant minimum-int, strip it off. 02510 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 02511 Ops.erase(Ops.begin()); 02512 --Idx; 02513 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 02514 // If we have an smax with a constant maximum-int, it will always be 02515 // maximum-int. 02516 return Ops[0]; 02517 } 02518 02519 if (Ops.size() == 1) return Ops[0]; 02520 } 02521 02522 // Find the first SMax 02523 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 02524 ++Idx; 02525 02526 // Check to see if one of the operands is an SMax. If so, expand its operands 02527 // onto our operand list, and recurse to simplify. 02528 if (Idx < Ops.size()) { 02529 bool DeletedSMax = false; 02530 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 02531 Ops.erase(Ops.begin()+Idx); 02532 Ops.append(SMax->op_begin(), SMax->op_end()); 02533 DeletedSMax = true; 02534 } 02535 02536 if (DeletedSMax) 02537 return getSMaxExpr(Ops); 02538 } 02539 02540 // Okay, check to see if the same value occurs in the operand list twice. If 02541 // so, delete one. Since we sorted the list, these values are required to 02542 // be adjacent. 02543 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 02544 // X smax Y smax Y --> X smax Y 02545 // X smax Y --> X, if X is always greater than Y 02546 if (Ops[i] == Ops[i+1] || 02547 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 02548 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 02549 --i; --e; 02550 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 02551 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 02552 --i; --e; 02553 } 02554 02555 if (Ops.size() == 1) return Ops[0]; 02556 02557 assert(!Ops.empty() && "Reduced smax down to nothing!"); 02558 02559 // Okay, it looks like we really DO need an smax expr. Check to see if we 02560 // already have one, otherwise create a new one. 02561 FoldingSetNodeID ID; 02562 ID.AddInteger(scSMaxExpr); 02563 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 02564 ID.AddPointer(Ops[i]); 02565 void *IP = nullptr; 02566 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 02567 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 02568 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 02569 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 02570 O, Ops.size()); 02571 UniqueSCEVs.InsertNode(S, IP); 02572 return S; 02573 } 02574 02575 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 02576 const SCEV *RHS) { 02577 SmallVector<const SCEV *, 2> Ops; 02578 Ops.push_back(LHS); 02579 Ops.push_back(RHS); 02580 return getUMaxExpr(Ops); 02581 } 02582 02583 const SCEV * 02584 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 02585 assert(!Ops.empty() && "Cannot get empty umax!"); 02586 if (Ops.size() == 1) return Ops[0]; 02587 #ifndef NDEBUG 02588 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 02589 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 02590 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 02591 "SCEVUMaxExpr operand types don't match!"); 02592 #endif 02593 02594 // Sort by complexity, this groups all similar expression types together. 02595 GroupByComplexity(Ops, LI); 02596 02597 // If there are any constants, fold them together. 02598 unsigned Idx = 0; 02599 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 02600 ++Idx; 02601 assert(Idx < Ops.size()); 02602 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 02603 // We found two constants, fold them together! 02604 ConstantInt *Fold = ConstantInt::get(getContext(), 02605 APIntOps::umax(LHSC->getValue()->getValue(), 02606 RHSC->getValue()->getValue())); 02607 Ops[0] = getConstant(Fold); 02608 Ops.erase(Ops.begin()+1); // Erase the folded element 02609 if (Ops.size() == 1) return Ops[0]; 02610 LHSC = cast<SCEVConstant>(Ops[0]); 02611 } 02612 02613 // If we are left with a constant minimum-int, strip it off. 02614 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 02615 Ops.erase(Ops.begin()); 02616 --Idx; 02617 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 02618 // If we have an umax with a constant maximum-int, it will always be 02619 // maximum-int. 02620 return Ops[0]; 02621 } 02622 02623 if (Ops.size() == 1) return Ops[0]; 02624 } 02625 02626 // Find the first UMax 02627 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 02628 ++Idx; 02629 02630 // Check to see if one of the operands is a UMax. If so, expand its operands 02631 // onto our operand list, and recurse to simplify. 02632 if (Idx < Ops.size()) { 02633 bool DeletedUMax = false; 02634 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 02635 Ops.erase(Ops.begin()+Idx); 02636 Ops.append(UMax->op_begin(), UMax->op_end()); 02637 DeletedUMax = true; 02638 } 02639 02640 if (DeletedUMax) 02641 return getUMaxExpr(Ops); 02642 } 02643 02644 // Okay, check to see if the same value occurs in the operand list twice. If 02645 // so, delete one. Since we sorted the list, these values are required to 02646 // be adjacent. 02647 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 02648 // X umax Y umax Y --> X umax Y 02649 // X umax Y --> X, if X is always greater than Y 02650 if (Ops[i] == Ops[i+1] || 02651 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 02652 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 02653 --i; --e; 02654 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 02655 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 02656 --i; --e; 02657 } 02658 02659 if (Ops.size() == 1) return Ops[0]; 02660 02661 assert(!Ops.empty() && "Reduced umax down to nothing!"); 02662 02663 // Okay, it looks like we really DO need a umax expr. Check to see if we 02664 // already have one, otherwise create a new one. 02665 FoldingSetNodeID ID; 02666 ID.AddInteger(scUMaxExpr); 02667 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 02668 ID.AddPointer(Ops[i]); 02669 void *IP = nullptr; 02670 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 02671 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 02672 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 02673 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 02674 O, Ops.size()); 02675 UniqueSCEVs.InsertNode(S, IP); 02676 return S; 02677 } 02678 02679 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 02680 const SCEV *RHS) { 02681 // ~smax(~x, ~y) == smin(x, y). 02682 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 02683 } 02684 02685 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 02686 const SCEV *RHS) { 02687 // ~umax(~x, ~y) == umin(x, y) 02688 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 02689 } 02690 02691 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 02692 // If we have DataLayout, we can bypass creating a target-independent 02693 // constant expression and then folding it back into a ConstantInt. 02694 // This is just a compile-time optimization. 02695 if (DL) 02696 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy)); 02697 02698 Constant *C = ConstantExpr::getSizeOf(AllocTy); 02699 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 02700 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 02701 C = Folded; 02702 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 02703 assert(Ty == IntTy && "Effective SCEV type doesn't match"); 02704 return getTruncateOrZeroExtend(getSCEV(C), Ty); 02705 } 02706 02707 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 02708 StructType *STy, 02709 unsigned FieldNo) { 02710 // If we have DataLayout, we can bypass creating a target-independent 02711 // constant expression and then folding it back into a ConstantInt. 02712 // This is just a compile-time optimization. 02713 if (DL) { 02714 return getConstant(IntTy, 02715 DL->getStructLayout(STy)->getElementOffset(FieldNo)); 02716 } 02717 02718 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 02719 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 02720 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 02721 C = Folded; 02722 02723 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 02724 return getTruncateOrZeroExtend(getSCEV(C), Ty); 02725 } 02726 02727 const SCEV *ScalarEvolution::getUnknown(Value *V) { 02728 // Don't attempt to do anything other than create a SCEVUnknown object 02729 // here. createSCEV only calls getUnknown after checking for all other 02730 // interesting possibilities, and any other code that calls getUnknown 02731 // is doing so in order to hide a value from SCEV canonicalization. 02732 02733 FoldingSetNodeID ID; 02734 ID.AddInteger(scUnknown); 02735 ID.AddPointer(V); 02736 void *IP = nullptr; 02737 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 02738 assert(cast<SCEVUnknown>(S)->getValue() == V && 02739 "Stale SCEVUnknown in uniquing map!"); 02740 return S; 02741 } 02742 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 02743 FirstUnknown); 02744 FirstUnknown = cast<SCEVUnknown>(S); 02745 UniqueSCEVs.InsertNode(S, IP); 02746 return S; 02747 } 02748 02749 //===----------------------------------------------------------------------===// 02750 // Basic SCEV Analysis and PHI Idiom Recognition Code 02751 // 02752 02753 /// isSCEVable - Test if values of the given type are analyzable within 02754 /// the SCEV framework. This primarily includes integer types, and it 02755 /// can optionally include pointer types if the ScalarEvolution class 02756 /// has access to target-specific information. 02757 bool ScalarEvolution::isSCEVable(Type *Ty) const { 02758 // Integers and pointers are always SCEVable. 02759 return Ty->isIntegerTy() || Ty->isPointerTy(); 02760 } 02761 02762 /// getTypeSizeInBits - Return the size in bits of the specified type, 02763 /// for which isSCEVable must return true. 02764 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 02765 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 02766 02767 // If we have a DataLayout, use it! 02768 if (DL) 02769 return DL->getTypeSizeInBits(Ty); 02770 02771 // Integer types have fixed sizes. 02772 if (Ty->isIntegerTy()) 02773 return Ty->getPrimitiveSizeInBits(); 02774 02775 // The only other support type is pointer. Without DataLayout, conservatively 02776 // assume pointers are 64-bit. 02777 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 02778 return 64; 02779 } 02780 02781 /// getEffectiveSCEVType - Return a type with the same bitwidth as 02782 /// the given type and which represents how SCEV will treat the given 02783 /// type, for which isSCEVable must return true. For pointer types, 02784 /// this is the pointer-sized integer type. 02785 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 02786 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 02787 02788 if (Ty->isIntegerTy()) { 02789 return Ty; 02790 } 02791 02792 // The only other support type is pointer. 02793 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 02794 02795 if (DL) 02796 return DL->getIntPtrType(Ty); 02797 02798 // Without DataLayout, conservatively assume pointers are 64-bit. 02799 return Type::getInt64Ty(getContext()); 02800 } 02801 02802 const SCEV *ScalarEvolution::getCouldNotCompute() { 02803 return &CouldNotCompute; 02804 } 02805 02806 namespace { 02807 // Helper class working with SCEVTraversal to figure out if a SCEV contains 02808 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 02809 // is set iff if find such SCEVUnknown. 02810 // 02811 struct FindInvalidSCEVUnknown { 02812 bool FindOne; 02813 FindInvalidSCEVUnknown() { FindOne = false; } 02814 bool follow(const SCEV *S) { 02815 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 02816 case scConstant: 02817 return false; 02818 case scUnknown: 02819 if (!cast<SCEVUnknown>(S)->getValue()) 02820 FindOne = true; 02821 return false; 02822 default: 02823 return true; 02824 } 02825 } 02826 bool isDone() const { return FindOne; } 02827 }; 02828 } 02829 02830 bool ScalarEvolution::checkValidity(const SCEV *S) const { 02831 FindInvalidSCEVUnknown F; 02832 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 02833 ST.visitAll(S); 02834 02835 return !F.FindOne; 02836 } 02837 02838 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 02839 /// expression and create a new one. 02840 const SCEV *ScalarEvolution::getSCEV(Value *V) { 02841 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 02842 02843 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 02844 if (I != ValueExprMap.end()) { 02845 const SCEV *S = I->second; 02846 if (checkValidity(S)) 02847 return S; 02848 else 02849 ValueExprMap.erase(I); 02850 } 02851 const SCEV *S = createSCEV(V); 02852 02853 // The process of creating a SCEV for V may have caused other SCEVs 02854 // to have been created, so it's necessary to insert the new entry 02855 // from scratch, rather than trying to remember the insert position 02856 // above. 02857 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 02858 return S; 02859 } 02860 02861 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 02862 /// 02863 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 02864 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 02865 return getConstant( 02866 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 02867 02868 Type *Ty = V->getType(); 02869 Ty = getEffectiveSCEVType(Ty); 02870 return getMulExpr(V, 02871 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 02872 } 02873 02874 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 02875 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 02876 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 02877 return getConstant( 02878 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 02879 02880 Type *Ty = V->getType(); 02881 Ty = getEffectiveSCEVType(Ty); 02882 const SCEV *AllOnes = 02883 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 02884 return getMinusSCEV(AllOnes, V); 02885 } 02886 02887 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 02888 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 02889 SCEV::NoWrapFlags Flags) { 02890 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 02891 02892 // Fast path: X - X --> 0. 02893 if (LHS == RHS) 02894 return getConstant(LHS->getType(), 0); 02895 02896 // X - Y --> X + -Y 02897 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 02898 } 02899 02900 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 02901 /// input value to the specified type. If the type must be extended, it is zero 02902 /// extended. 02903 const SCEV * 02904 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 02905 Type *SrcTy = V->getType(); 02906 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 02907 (Ty->isIntegerTy() || Ty->isPointerTy()) && 02908 "Cannot truncate or zero extend with non-integer arguments!"); 02909 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 02910 return V; // No conversion 02911 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 02912 return getTruncateExpr(V, Ty); 02913 return getZeroExtendExpr(V, Ty); 02914 } 02915 02916 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 02917 /// input value to the specified type. If the type must be extended, it is sign 02918 /// extended. 02919 const SCEV * 02920 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 02921 Type *Ty) { 02922 Type *SrcTy = V->getType(); 02923 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 02924 (Ty->isIntegerTy() || Ty->isPointerTy()) && 02925 "Cannot truncate or zero extend with non-integer arguments!"); 02926 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 02927 return V; // No conversion 02928 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 02929 return getTruncateExpr(V, Ty); 02930 return getSignExtendExpr(V, Ty); 02931 } 02932 02933 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 02934 /// input value to the specified type. If the type must be extended, it is zero 02935 /// extended. The conversion must not be narrowing. 02936 const SCEV * 02937 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 02938 Type *SrcTy = V->getType(); 02939 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 02940 (Ty->isIntegerTy() || Ty->isPointerTy()) && 02941 "Cannot noop or zero extend with non-integer arguments!"); 02942 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 02943 "getNoopOrZeroExtend cannot truncate!"); 02944 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 02945 return V; // No conversion 02946 return getZeroExtendExpr(V, Ty); 02947 } 02948 02949 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 02950 /// input value to the specified type. If the type must be extended, it is sign 02951 /// extended. The conversion must not be narrowing. 02952 const SCEV * 02953 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 02954 Type *SrcTy = V->getType(); 02955 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 02956 (Ty->isIntegerTy() || Ty->isPointerTy()) && 02957 "Cannot noop or sign extend with non-integer arguments!"); 02958 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 02959 "getNoopOrSignExtend cannot truncate!"); 02960 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 02961 return V; // No conversion 02962 return getSignExtendExpr(V, Ty); 02963 } 02964 02965 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 02966 /// the input value to the specified type. If the type must be extended, 02967 /// it is extended with unspecified bits. The conversion must not be 02968 /// narrowing. 02969 const SCEV * 02970 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 02971 Type *SrcTy = V->getType(); 02972 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 02973 (Ty->isIntegerTy() || Ty->isPointerTy()) && 02974 "Cannot noop or any extend with non-integer arguments!"); 02975 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 02976 "getNoopOrAnyExtend cannot truncate!"); 02977 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 02978 return V; // No conversion 02979 return getAnyExtendExpr(V, Ty); 02980 } 02981 02982 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 02983 /// input value to the specified type. The conversion must not be widening. 02984 const SCEV * 02985 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 02986 Type *SrcTy = V->getType(); 02987 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 02988 (Ty->isIntegerTy() || Ty->isPointerTy()) && 02989 "Cannot truncate or noop with non-integer arguments!"); 02990 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 02991 "getTruncateOrNoop cannot extend!"); 02992 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 02993 return V; // No conversion 02994 return getTruncateExpr(V, Ty); 02995 } 02996 02997 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 02998 /// the types using zero-extension, and then perform a umax operation 02999 /// with them. 03000 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 03001 const SCEV *RHS) { 03002 const SCEV *PromotedLHS = LHS; 03003 const SCEV *PromotedRHS = RHS; 03004 03005 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 03006 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 03007 else 03008 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 03009 03010 return getUMaxExpr(PromotedLHS, PromotedRHS); 03011 } 03012 03013 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 03014 /// the types using zero-extension, and then perform a umin operation 03015 /// with them. 03016 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 03017 const SCEV *RHS) { 03018 const SCEV *PromotedLHS = LHS; 03019 const SCEV *PromotedRHS = RHS; 03020 03021 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 03022 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 03023 else 03024 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 03025 03026 return getUMinExpr(PromotedLHS, PromotedRHS); 03027 } 03028 03029 /// getPointerBase - Transitively follow the chain of pointer-type operands 03030 /// until reaching a SCEV that does not have a single pointer operand. This 03031 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 03032 /// but corner cases do exist. 03033 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 03034 // A pointer operand may evaluate to a nonpointer expression, such as null. 03035 if (!V->getType()->isPointerTy()) 03036 return V; 03037 03038 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 03039 return getPointerBase(Cast->getOperand()); 03040 } 03041 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 03042 const SCEV *PtrOp = nullptr; 03043 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 03044 I != E; ++I) { 03045 if ((*I)->getType()->isPointerTy()) { 03046 // Cannot find the base of an expression with multiple pointer operands. 03047 if (PtrOp) 03048 return V; 03049 PtrOp = *I; 03050 } 03051 } 03052 if (!PtrOp) 03053 return V; 03054 return getPointerBase(PtrOp); 03055 } 03056 return V; 03057 } 03058 03059 /// PushDefUseChildren - Push users of the given Instruction 03060 /// onto the given Worklist. 03061 static void 03062 PushDefUseChildren(Instruction *I, 03063 SmallVectorImpl<Instruction *> &Worklist) { 03064 // Push the def-use children onto the Worklist stack. 03065 for (User *U : I->users()) 03066 Worklist.push_back(cast<Instruction>(U)); 03067 } 03068 03069 /// ForgetSymbolicValue - This looks up computed SCEV values for all 03070 /// instructions that depend on the given instruction and removes them from 03071 /// the ValueExprMapType map if they reference SymName. This is used during PHI 03072 /// resolution. 03073 void 03074 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 03075 SmallVector<Instruction *, 16> Worklist; 03076 PushDefUseChildren(PN, Worklist); 03077 03078 SmallPtrSet<Instruction *, 8> Visited; 03079 Visited.insert(PN); 03080 while (!Worklist.empty()) { 03081 Instruction *I = Worklist.pop_back_val(); 03082 if (!Visited.insert(I)) continue; 03083 03084 ValueExprMapType::iterator It = 03085 ValueExprMap.find_as(static_cast<Value *>(I)); 03086 if (It != ValueExprMap.end()) { 03087 const SCEV *Old = It->second; 03088 03089 // Short-circuit the def-use traversal if the symbolic name 03090 // ceases to appear in expressions. 03091 if (Old != SymName && !hasOperand(Old, SymName)) 03092 continue; 03093 03094 // SCEVUnknown for a PHI either means that it has an unrecognized 03095 // structure, it's a PHI that's in the progress of being computed 03096 // by createNodeForPHI, or it's a single-value PHI. In the first case, 03097 // additional loop trip count information isn't going to change anything. 03098 // In the second case, createNodeForPHI will perform the necessary 03099 // updates on its own when it gets to that point. In the third, we do 03100 // want to forget the SCEVUnknown. 03101 if (!isa<PHINode>(I) || 03102 !isa<SCEVUnknown>(Old) || 03103 (I != PN && Old == SymName)) { 03104 forgetMemoizedResults(Old); 03105 ValueExprMap.erase(It); 03106 } 03107 } 03108 03109 PushDefUseChildren(I, Worklist); 03110 } 03111 } 03112 03113 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 03114 /// a loop header, making it a potential recurrence, or it doesn't. 03115 /// 03116 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 03117 if (const Loop *L = LI->getLoopFor(PN->getParent())) 03118 if (L->getHeader() == PN->getParent()) { 03119 // The loop may have multiple entrances or multiple exits; we can analyze 03120 // this phi as an addrec if it has a unique entry value and a unique 03121 // backedge value. 03122 Value *BEValueV = nullptr, *StartValueV = nullptr; 03123 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 03124 Value *V = PN->getIncomingValue(i); 03125 if (L->contains(PN->getIncomingBlock(i))) { 03126 if (!BEValueV) { 03127 BEValueV = V; 03128 } else if (BEValueV != V) { 03129 BEValueV = nullptr; 03130 break; 03131 } 03132 } else if (!StartValueV) { 03133 StartValueV = V; 03134 } else if (StartValueV != V) { 03135 StartValueV = nullptr; 03136 break; 03137 } 03138 } 03139 if (BEValueV && StartValueV) { 03140 // While we are analyzing this PHI node, handle its value symbolically. 03141 const SCEV *SymbolicName = getUnknown(PN); 03142 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 03143 "PHI node already processed?"); 03144 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 03145 03146 // Using this symbolic name for the PHI, analyze the value coming around 03147 // the back-edge. 03148 const SCEV *BEValue = getSCEV(BEValueV); 03149 03150 // NOTE: If BEValue is loop invariant, we know that the PHI node just 03151 // has a special value for the first iteration of the loop. 03152 03153 // If the value coming around the backedge is an add with the symbolic 03154 // value we just inserted, then we found a simple induction variable! 03155 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 03156 // If there is a single occurrence of the symbolic value, replace it 03157 // with a recurrence. 03158 unsigned FoundIndex = Add->getNumOperands(); 03159 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 03160 if (Add->getOperand(i) == SymbolicName) 03161 if (FoundIndex == e) { 03162 FoundIndex = i; 03163 break; 03164 } 03165 03166 if (FoundIndex != Add->getNumOperands()) { 03167 // Create an add with everything but the specified operand. 03168 SmallVector<const SCEV *, 8> Ops; 03169 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 03170 if (i != FoundIndex) 03171 Ops.push_back(Add->getOperand(i)); 03172 const SCEV *Accum = getAddExpr(Ops); 03173 03174 // This is not a valid addrec if the step amount is varying each 03175 // loop iteration, but is not itself an addrec in this loop. 03176 if (isLoopInvariant(Accum, L) || 03177 (isa<SCEVAddRecExpr>(Accum) && 03178 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 03179 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 03180 03181 // If the increment doesn't overflow, then neither the addrec nor 03182 // the post-increment will overflow. 03183 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 03184 if (OBO->hasNoUnsignedWrap()) 03185 Flags = setFlags(Flags, SCEV::FlagNUW); 03186 if (OBO->hasNoSignedWrap()) 03187 Flags = setFlags(Flags, SCEV::FlagNSW); 03188 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 03189 // If the increment is an inbounds GEP, then we know the address 03190 // space cannot be wrapped around. We cannot make any guarantee 03191 // about signed or unsigned overflow because pointers are 03192 // unsigned but we may have a negative index from the base 03193 // pointer. We can guarantee that no unsigned wrap occurs if the 03194 // indices form a positive value. 03195 if (GEP->isInBounds()) { 03196 Flags = setFlags(Flags, SCEV::FlagNW); 03197 03198 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 03199 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 03200 Flags = setFlags(Flags, SCEV::FlagNUW); 03201 } 03202 } else if (const SubOperator *OBO = 03203 dyn_cast<SubOperator>(BEValueV)) { 03204 if (OBO->hasNoUnsignedWrap()) 03205 Flags = setFlags(Flags, SCEV::FlagNUW); 03206 if (OBO->hasNoSignedWrap()) 03207 Flags = setFlags(Flags, SCEV::FlagNSW); 03208 } 03209 03210 const SCEV *StartVal = getSCEV(StartValueV); 03211 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 03212 03213 // Since the no-wrap flags are on the increment, they apply to the 03214 // post-incremented value as well. 03215 if (isLoopInvariant(Accum, L)) 03216 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 03217 Accum, L, Flags); 03218 03219 // Okay, for the entire analysis of this edge we assumed the PHI 03220 // to be symbolic. We now need to go back and purge all of the 03221 // entries for the scalars that use the symbolic expression. 03222 ForgetSymbolicName(PN, SymbolicName); 03223 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 03224 return PHISCEV; 03225 } 03226 } 03227 } else if (const SCEVAddRecExpr *AddRec = 03228 dyn_cast<SCEVAddRecExpr>(BEValue)) { 03229 // Otherwise, this could be a loop like this: 03230 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 03231 // In this case, j = {1,+,1} and BEValue is j. 03232 // Because the other in-value of i (0) fits the evolution of BEValue 03233 // i really is an addrec evolution. 03234 if (AddRec->getLoop() == L && AddRec->isAffine()) { 03235 const SCEV *StartVal = getSCEV(StartValueV); 03236 03237 // If StartVal = j.start - j.stride, we can use StartVal as the 03238 // initial step of the addrec evolution. 03239 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 03240 AddRec->getOperand(1))) { 03241 // FIXME: For constant StartVal, we should be able to infer 03242 // no-wrap flags. 03243 const SCEV *PHISCEV = 03244 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 03245 SCEV::FlagAnyWrap); 03246 03247 // Okay, for the entire analysis of this edge we assumed the PHI 03248 // to be symbolic. We now need to go back and purge all of the 03249 // entries for the scalars that use the symbolic expression. 03250 ForgetSymbolicName(PN, SymbolicName); 03251 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 03252 return PHISCEV; 03253 } 03254 } 03255 } 03256 } 03257 } 03258 03259 // If the PHI has a single incoming value, follow that value, unless the 03260 // PHI's incoming blocks are in a different loop, in which case doing so 03261 // risks breaking LCSSA form. Instcombine would normally zap these, but 03262 // it doesn't have DominatorTree information, so it may miss cases. 03263 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AT)) 03264 if (LI->replacementPreservesLCSSAForm(PN, V)) 03265 return getSCEV(V); 03266 03267 // If it's not a loop phi, we can't handle it yet. 03268 return getUnknown(PN); 03269 } 03270 03271 /// createNodeForGEP - Expand GEP instructions into add and multiply 03272 /// operations. This allows them to be analyzed by regular SCEV code. 03273 /// 03274 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 03275 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 03276 Value *Base = GEP->getOperand(0); 03277 // Don't attempt to analyze GEPs over unsized objects. 03278 if (!Base->getType()->getPointerElementType()->isSized()) 03279 return getUnknown(GEP); 03280 03281 // Don't blindly transfer the inbounds flag from the GEP instruction to the 03282 // Add expression, because the Instruction may be guarded by control flow 03283 // and the no-overflow bits may not be valid for the expression in any 03284 // context. 03285 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 03286 03287 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 03288 gep_type_iterator GTI = gep_type_begin(GEP); 03289 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()), 03290 E = GEP->op_end(); 03291 I != E; ++I) { 03292 Value *Index = *I; 03293 // Compute the (potentially symbolic) offset in bytes for this index. 03294 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 03295 // For a struct, add the member offset. 03296 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 03297 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 03298 03299 // Add the field offset to the running total offset. 03300 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 03301 } else { 03302 // For an array, add the element offset, explicitly scaled. 03303 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 03304 const SCEV *IndexS = getSCEV(Index); 03305 // Getelementptr indices are signed. 03306 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 03307 03308 // Multiply the index by the element size to compute the element offset. 03309 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap); 03310 03311 // Add the element offset to the running total offset. 03312 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 03313 } 03314 } 03315 03316 // Get the SCEV for the GEP base. 03317 const SCEV *BaseS = getSCEV(Base); 03318 03319 // Add the total offset from all the GEP indices to the base. 03320 return getAddExpr(BaseS, TotalOffset, Wrap); 03321 } 03322 03323 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 03324 /// guaranteed to end in (at every loop iteration). It is, at the same time, 03325 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 03326 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 03327 uint32_t 03328 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 03329 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 03330 return C->getValue()->getValue().countTrailingZeros(); 03331 03332 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 03333 return std::min(GetMinTrailingZeros(T->getOperand()), 03334 (uint32_t)getTypeSizeInBits(T->getType())); 03335 03336 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 03337 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 03338 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 03339 getTypeSizeInBits(E->getType()) : OpRes; 03340 } 03341 03342 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 03343 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 03344 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 03345 getTypeSizeInBits(E->getType()) : OpRes; 03346 } 03347 03348 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 03349 // The result is the min of all operands results. 03350 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 03351 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 03352 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 03353 return MinOpRes; 03354 } 03355 03356 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 03357 // The result is the sum of all operands results. 03358 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 03359 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 03360 for (unsigned i = 1, e = M->getNumOperands(); 03361 SumOpRes != BitWidth && i != e; ++i) 03362 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 03363 BitWidth); 03364 return SumOpRes; 03365 } 03366 03367 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 03368 // The result is the min of all operands results. 03369 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 03370 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 03371 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 03372 return MinOpRes; 03373 } 03374 03375 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 03376 // The result is the min of all operands results. 03377 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 03378 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 03379 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 03380 return MinOpRes; 03381 } 03382 03383 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 03384 // The result is the min of all operands results. 03385 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 03386 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 03387 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 03388 return MinOpRes; 03389 } 03390 03391 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 03392 // For a SCEVUnknown, ask ValueTracking. 03393 unsigned BitWidth = getTypeSizeInBits(U->getType()); 03394 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 03395 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT); 03396 return Zeros.countTrailingOnes(); 03397 } 03398 03399 // SCEVUDivExpr 03400 return 0; 03401 } 03402 03403 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 03404 /// 03405 ConstantRange 03406 ScalarEvolution::getUnsignedRange(const SCEV *S) { 03407 // See if we've computed this range already. 03408 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 03409 if (I != UnsignedRanges.end()) 03410 return I->second; 03411 03412 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 03413 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 03414 03415 unsigned BitWidth = getTypeSizeInBits(S->getType()); 03416 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 03417 03418 // If the value has known zeros, the maximum unsigned value will have those 03419 // known zeros as well. 03420 uint32_t TZ = GetMinTrailingZeros(S); 03421 if (TZ != 0) 03422 ConservativeResult = 03423 ConstantRange(APInt::getMinValue(BitWidth), 03424 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 03425 03426 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 03427 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 03428 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 03429 X = X.add(getUnsignedRange(Add->getOperand(i))); 03430 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 03431 } 03432 03433 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 03434 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 03435 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 03436 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 03437 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 03438 } 03439 03440 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 03441 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 03442 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 03443 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 03444 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 03445 } 03446 03447 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 03448 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 03449 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 03450 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 03451 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 03452 } 03453 03454 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 03455 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 03456 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 03457 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 03458 } 03459 03460 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 03461 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 03462 return setUnsignedRange(ZExt, 03463 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 03464 } 03465 03466 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 03467 ConstantRange X = getUnsignedRange(SExt->getOperand()); 03468 return setUnsignedRange(SExt, 03469 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 03470 } 03471 03472 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 03473 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 03474 return setUnsignedRange(Trunc, 03475 ConservativeResult.intersectWith(X.truncate(BitWidth))); 03476 } 03477 03478 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 03479 // If there's no unsigned wrap, the value will never be less than its 03480 // initial value. 03481 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 03482 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 03483 if (!C->getValue()->isZero()) 03484 ConservativeResult = 03485 ConservativeResult.intersectWith( 03486 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 03487 03488 // TODO: non-affine addrec 03489 if (AddRec->isAffine()) { 03490 Type *Ty = AddRec->getType(); 03491 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 03492 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 03493 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 03494 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 03495 03496 const SCEV *Start = AddRec->getStart(); 03497 const SCEV *Step = AddRec->getStepRecurrence(*this); 03498 03499 ConstantRange StartRange = getUnsignedRange(Start); 03500 ConstantRange StepRange = getSignedRange(Step); 03501 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 03502 ConstantRange EndRange = 03503 StartRange.add(MaxBECountRange.multiply(StepRange)); 03504 03505 // Check for overflow. This must be done with ConstantRange arithmetic 03506 // because we could be called from within the ScalarEvolution overflow 03507 // checking code. 03508 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 03509 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 03510 ConstantRange ExtMaxBECountRange = 03511 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 03512 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 03513 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 03514 ExtEndRange) 03515 return setUnsignedRange(AddRec, ConservativeResult); 03516 03517 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 03518 EndRange.getUnsignedMin()); 03519 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 03520 EndRange.getUnsignedMax()); 03521 if (Min.isMinValue() && Max.isMaxValue()) 03522 return setUnsignedRange(AddRec, ConservativeResult); 03523 return setUnsignedRange(AddRec, 03524 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 03525 } 03526 } 03527 03528 return setUnsignedRange(AddRec, ConservativeResult); 03529 } 03530 03531 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 03532 // For a SCEVUnknown, ask ValueTracking. 03533 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 03534 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT); 03535 if (Ones == ~Zeros + 1) 03536 return setUnsignedRange(U, ConservativeResult); 03537 return setUnsignedRange(U, 03538 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 03539 } 03540 03541 return setUnsignedRange(S, ConservativeResult); 03542 } 03543 03544 /// getSignedRange - Determine the signed range for a particular SCEV. 03545 /// 03546 ConstantRange 03547 ScalarEvolution::getSignedRange(const SCEV *S) { 03548 // See if we've computed this range already. 03549 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 03550 if (I != SignedRanges.end()) 03551 return I->second; 03552 03553 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 03554 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 03555 03556 unsigned BitWidth = getTypeSizeInBits(S->getType()); 03557 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 03558 03559 // If the value has known zeros, the maximum signed value will have those 03560 // known zeros as well. 03561 uint32_t TZ = GetMinTrailingZeros(S); 03562 if (TZ != 0) 03563 ConservativeResult = 03564 ConstantRange(APInt::getSignedMinValue(BitWidth), 03565 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 03566 03567 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 03568 ConstantRange X = getSignedRange(Add->getOperand(0)); 03569 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 03570 X = X.add(getSignedRange(Add->getOperand(i))); 03571 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 03572 } 03573 03574 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 03575 ConstantRange X = getSignedRange(Mul->getOperand(0)); 03576 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 03577 X = X.multiply(getSignedRange(Mul->getOperand(i))); 03578 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 03579 } 03580 03581 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 03582 ConstantRange X = getSignedRange(SMax->getOperand(0)); 03583 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 03584 X = X.smax(getSignedRange(SMax->getOperand(i))); 03585 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 03586 } 03587 03588 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 03589 ConstantRange X = getSignedRange(UMax->getOperand(0)); 03590 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 03591 X = X.umax(getSignedRange(UMax->getOperand(i))); 03592 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 03593 } 03594 03595 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 03596 ConstantRange X = getSignedRange(UDiv->getLHS()); 03597 ConstantRange Y = getSignedRange(UDiv->getRHS()); 03598 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 03599 } 03600 03601 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 03602 ConstantRange X = getSignedRange(ZExt->getOperand()); 03603 return setSignedRange(ZExt, 03604 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 03605 } 03606 03607 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 03608 ConstantRange X = getSignedRange(SExt->getOperand()); 03609 return setSignedRange(SExt, 03610 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 03611 } 03612 03613 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 03614 ConstantRange X = getSignedRange(Trunc->getOperand()); 03615 return setSignedRange(Trunc, 03616 ConservativeResult.intersectWith(X.truncate(BitWidth))); 03617 } 03618 03619 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 03620 // If there's no signed wrap, and all the operands have the same sign or 03621 // zero, the value won't ever change sign. 03622 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 03623 bool AllNonNeg = true; 03624 bool AllNonPos = true; 03625 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 03626 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 03627 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 03628 } 03629 if (AllNonNeg) 03630 ConservativeResult = ConservativeResult.intersectWith( 03631 ConstantRange(APInt(BitWidth, 0), 03632 APInt::getSignedMinValue(BitWidth))); 03633 else if (AllNonPos) 03634 ConservativeResult = ConservativeResult.intersectWith( 03635 ConstantRange(APInt::getSignedMinValue(BitWidth), 03636 APInt(BitWidth, 1))); 03637 } 03638 03639 // TODO: non-affine addrec 03640 if (AddRec->isAffine()) { 03641 Type *Ty = AddRec->getType(); 03642 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 03643 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 03644 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 03645 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 03646 03647 const SCEV *Start = AddRec->getStart(); 03648 const SCEV *Step = AddRec->getStepRecurrence(*this); 03649 03650 ConstantRange StartRange = getSignedRange(Start); 03651 ConstantRange StepRange = getSignedRange(Step); 03652 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 03653 ConstantRange EndRange = 03654 StartRange.add(MaxBECountRange.multiply(StepRange)); 03655 03656 // Check for overflow. This must be done with ConstantRange arithmetic 03657 // because we could be called from within the ScalarEvolution overflow 03658 // checking code. 03659 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 03660 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 03661 ConstantRange ExtMaxBECountRange = 03662 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 03663 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 03664 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 03665 ExtEndRange) 03666 return setSignedRange(AddRec, ConservativeResult); 03667 03668 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 03669 EndRange.getSignedMin()); 03670 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 03671 EndRange.getSignedMax()); 03672 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 03673 return setSignedRange(AddRec, ConservativeResult); 03674 return setSignedRange(AddRec, 03675 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 03676 } 03677 } 03678 03679 return setSignedRange(AddRec, ConservativeResult); 03680 } 03681 03682 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 03683 // For a SCEVUnknown, ask ValueTracking. 03684 if (!U->getValue()->getType()->isIntegerTy() && !DL) 03685 return setSignedRange(U, ConservativeResult); 03686 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AT, nullptr, DT); 03687 if (NS <= 1) 03688 return setSignedRange(U, ConservativeResult); 03689 return setSignedRange(U, ConservativeResult.intersectWith( 03690 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 03691 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 03692 } 03693 03694 return setSignedRange(S, ConservativeResult); 03695 } 03696 03697 /// createSCEV - We know that there is no SCEV for the specified value. 03698 /// Analyze the expression. 03699 /// 03700 const SCEV *ScalarEvolution::createSCEV(Value *V) { 03701 if (!isSCEVable(V->getType())) 03702 return getUnknown(V); 03703 03704 unsigned Opcode = Instruction::UserOp1; 03705 if (Instruction *I = dyn_cast<Instruction>(V)) { 03706 Opcode = I->getOpcode(); 03707 03708 // Don't attempt to analyze instructions in blocks that aren't 03709 // reachable. Such instructions don't matter, and they aren't required 03710 // to obey basic rules for definitions dominating uses which this 03711 // analysis depends on. 03712 if (!DT->isReachableFromEntry(I->getParent())) 03713 return getUnknown(V); 03714 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 03715 Opcode = CE->getOpcode(); 03716 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 03717 return getConstant(CI); 03718 else if (isa<ConstantPointerNull>(V)) 03719 return getConstant(V->getType(), 0); 03720 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 03721 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 03722 else 03723 return getUnknown(V); 03724 03725 Operator *U = cast<Operator>(V); 03726 switch (Opcode) { 03727 case Instruction::Add: { 03728 // The simple thing to do would be to just call getSCEV on both operands 03729 // and call getAddExpr with the result. However if we're looking at a 03730 // bunch of things all added together, this can be quite inefficient, 03731 // because it leads to N-1 getAddExpr calls for N ultimate operands. 03732 // Instead, gather up all the operands and make a single getAddExpr call. 03733 // LLVM IR canonical form means we need only traverse the left operands. 03734 // 03735 // Don't apply this instruction's NSW or NUW flags to the new 03736 // expression. The instruction may be guarded by control flow that the 03737 // no-wrap behavior depends on. Non-control-equivalent instructions can be 03738 // mapped to the same SCEV expression, and it would be incorrect to transfer 03739 // NSW/NUW semantics to those operations. 03740 SmallVector<const SCEV *, 4> AddOps; 03741 AddOps.push_back(getSCEV(U->getOperand(1))); 03742 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 03743 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 03744 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 03745 break; 03746 U = cast<Operator>(Op); 03747 const SCEV *Op1 = getSCEV(U->getOperand(1)); 03748 if (Opcode == Instruction::Sub) 03749 AddOps.push_back(getNegativeSCEV(Op1)); 03750 else 03751 AddOps.push_back(Op1); 03752 } 03753 AddOps.push_back(getSCEV(U->getOperand(0))); 03754 return getAddExpr(AddOps); 03755 } 03756 case Instruction::Mul: { 03757 // Don't transfer NSW/NUW for the same reason as AddExpr. 03758 SmallVector<const SCEV *, 4> MulOps; 03759 MulOps.push_back(getSCEV(U->getOperand(1))); 03760 for (Value *Op = U->getOperand(0); 03761 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 03762 Op = U->getOperand(0)) { 03763 U = cast<Operator>(Op); 03764 MulOps.push_back(getSCEV(U->getOperand(1))); 03765 } 03766 MulOps.push_back(getSCEV(U->getOperand(0))); 03767 return getMulExpr(MulOps); 03768 } 03769 case Instruction::UDiv: 03770 return getUDivExpr(getSCEV(U->getOperand(0)), 03771 getSCEV(U->getOperand(1))); 03772 case Instruction::Sub: 03773 return getMinusSCEV(getSCEV(U->getOperand(0)), 03774 getSCEV(U->getOperand(1))); 03775 case Instruction::And: 03776 // For an expression like x&255 that merely masks off the high bits, 03777 // use zext(trunc(x)) as the SCEV expression. 03778 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 03779 if (CI->isNullValue()) 03780 return getSCEV(U->getOperand(1)); 03781 if (CI->isAllOnesValue()) 03782 return getSCEV(U->getOperand(0)); 03783 const APInt &A = CI->getValue(); 03784 03785 // Instcombine's ShrinkDemandedConstant may strip bits out of 03786 // constants, obscuring what would otherwise be a low-bits mask. 03787 // Use computeKnownBits to compute what ShrinkDemandedConstant 03788 // knew about to reconstruct a low-bits mask value. 03789 unsigned LZ = A.countLeadingZeros(); 03790 unsigned TZ = A.countTrailingZeros(); 03791 unsigned BitWidth = A.getBitWidth(); 03792 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 03793 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 03794 0, AT, nullptr, DT); 03795 03796 APInt EffectiveMask = 03797 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 03798 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 03799 const SCEV *MulCount = getConstant( 03800 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 03801 return getMulExpr( 03802 getZeroExtendExpr( 03803 getTruncateExpr( 03804 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 03805 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 03806 U->getType()), 03807 MulCount); 03808 } 03809 } 03810 break; 03811 03812 case Instruction::Or: 03813 // If the RHS of the Or is a constant, we may have something like: 03814 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 03815 // optimizations will transparently handle this case. 03816 // 03817 // In order for this transformation to be safe, the LHS must be of the 03818 // form X*(2^n) and the Or constant must be less than 2^n. 03819 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 03820 const SCEV *LHS = getSCEV(U->getOperand(0)); 03821 const APInt &CIVal = CI->getValue(); 03822 if (GetMinTrailingZeros(LHS) >= 03823 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 03824 // Build a plain add SCEV. 03825 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 03826 // If the LHS of the add was an addrec and it has no-wrap flags, 03827 // transfer the no-wrap flags, since an or won't introduce a wrap. 03828 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 03829 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 03830 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 03831 OldAR->getNoWrapFlags()); 03832 } 03833 return S; 03834 } 03835 } 03836 break; 03837 case Instruction::Xor: 03838 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 03839 // If the RHS of the xor is a signbit, then this is just an add. 03840 // Instcombine turns add of signbit into xor as a strength reduction step. 03841 if (CI->getValue().isSignBit()) 03842 return getAddExpr(getSCEV(U->getOperand(0)), 03843 getSCEV(U->getOperand(1))); 03844 03845 // If the RHS of xor is -1, then this is a not operation. 03846 if (CI->isAllOnesValue()) 03847 return getNotSCEV(getSCEV(U->getOperand(0))); 03848 03849 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 03850 // This is a variant of the check for xor with -1, and it handles 03851 // the case where instcombine has trimmed non-demanded bits out 03852 // of an xor with -1. 03853 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 03854 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 03855 if (BO->getOpcode() == Instruction::And && 03856 LCI->getValue() == CI->getValue()) 03857 if (const SCEVZeroExtendExpr *Z = 03858 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 03859 Type *UTy = U->getType(); 03860 const SCEV *Z0 = Z->getOperand(); 03861 Type *Z0Ty = Z0->getType(); 03862 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 03863 03864 // If C is a low-bits mask, the zero extend is serving to 03865 // mask off the high bits. Complement the operand and 03866 // re-apply the zext. 03867 if (APIntOps::isMask(Z0TySize, CI->getValue())) 03868 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 03869 03870 // If C is a single bit, it may be in the sign-bit position 03871 // before the zero-extend. In this case, represent the xor 03872 // using an add, which is equivalent, and re-apply the zext. 03873 APInt Trunc = CI->getValue().trunc(Z0TySize); 03874 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 03875 Trunc.isSignBit()) 03876 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 03877 UTy); 03878 } 03879 } 03880 break; 03881 03882 case Instruction::Shl: 03883 // Turn shift left of a constant amount into a multiply. 03884 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 03885 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 03886 03887 // If the shift count is not less than the bitwidth, the result of 03888 // the shift is undefined. Don't try to analyze it, because the 03889 // resolution chosen here may differ from the resolution chosen in 03890 // other parts of the compiler. 03891 if (SA->getValue().uge(BitWidth)) 03892 break; 03893 03894 Constant *X = ConstantInt::get(getContext(), 03895 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 03896 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 03897 } 03898 break; 03899 03900 case Instruction::LShr: 03901 // Turn logical shift right of a constant into a unsigned divide. 03902 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 03903 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 03904 03905 // If the shift count is not less than the bitwidth, the result of 03906 // the shift is undefined. Don't try to analyze it, because the 03907 // resolution chosen here may differ from the resolution chosen in 03908 // other parts of the compiler. 03909 if (SA->getValue().uge(BitWidth)) 03910 break; 03911 03912 Constant *X = ConstantInt::get(getContext(), 03913 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 03914 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 03915 } 03916 break; 03917 03918 case Instruction::AShr: 03919 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 03920 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 03921 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 03922 if (L->getOpcode() == Instruction::Shl && 03923 L->getOperand(1) == U->getOperand(1)) { 03924 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 03925 03926 // If the shift count is not less than the bitwidth, the result of 03927 // the shift is undefined. Don't try to analyze it, because the 03928 // resolution chosen here may differ from the resolution chosen in 03929 // other parts of the compiler. 03930 if (CI->getValue().uge(BitWidth)) 03931 break; 03932 03933 uint64_t Amt = BitWidth - CI->getZExtValue(); 03934 if (Amt == BitWidth) 03935 return getSCEV(L->getOperand(0)); // shift by zero --> noop 03936 return 03937 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 03938 IntegerType::get(getContext(), 03939 Amt)), 03940 U->getType()); 03941 } 03942 break; 03943 03944 case Instruction::Trunc: 03945 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 03946 03947 case Instruction::ZExt: 03948 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 03949 03950 case Instruction::SExt: 03951 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 03952 03953 case Instruction::BitCast: 03954 // BitCasts are no-op casts so we just eliminate the cast. 03955 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 03956 return getSCEV(U->getOperand(0)); 03957 break; 03958 03959 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 03960 // lead to pointer expressions which cannot safely be expanded to GEPs, 03961 // because ScalarEvolution doesn't respect the GEP aliasing rules when 03962 // simplifying integer expressions. 03963 03964 case Instruction::GetElementPtr: 03965 return createNodeForGEP(cast<GEPOperator>(U)); 03966 03967 case Instruction::PHI: 03968 return createNodeForPHI(cast<PHINode>(U)); 03969 03970 case Instruction::Select: 03971 // This could be a smax or umax that was lowered earlier. 03972 // Try to recover it. 03973 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 03974 Value *LHS = ICI->getOperand(0); 03975 Value *RHS = ICI->getOperand(1); 03976 switch (ICI->getPredicate()) { 03977 case ICmpInst::ICMP_SLT: 03978 case ICmpInst::ICMP_SLE: 03979 std::swap(LHS, RHS); 03980 // fall through 03981 case ICmpInst::ICMP_SGT: 03982 case ICmpInst::ICMP_SGE: 03983 // a >s b ? a+x : b+x -> smax(a, b)+x 03984 // a >s b ? b+x : a+x -> smin(a, b)+x 03985 if (LHS->getType() == U->getType()) { 03986 const SCEV *LS = getSCEV(LHS); 03987 const SCEV *RS = getSCEV(RHS); 03988 const SCEV *LA = getSCEV(U->getOperand(1)); 03989 const SCEV *RA = getSCEV(U->getOperand(2)); 03990 const SCEV *LDiff = getMinusSCEV(LA, LS); 03991 const SCEV *RDiff = getMinusSCEV(RA, RS); 03992 if (LDiff == RDiff) 03993 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 03994 LDiff = getMinusSCEV(LA, RS); 03995 RDiff = getMinusSCEV(RA, LS); 03996 if (LDiff == RDiff) 03997 return getAddExpr(getSMinExpr(LS, RS), LDiff); 03998 } 03999 break; 04000 case ICmpInst::ICMP_ULT: 04001 case ICmpInst::ICMP_ULE: 04002 std::swap(LHS, RHS); 04003 // fall through 04004 case ICmpInst::ICMP_UGT: 04005 case ICmpInst::ICMP_UGE: 04006 // a >u b ? a+x : b+x -> umax(a, b)+x 04007 // a >u b ? b+x : a+x -> umin(a, b)+x 04008 if (LHS->getType() == U->getType()) { 04009 const SCEV *LS = getSCEV(LHS); 04010 const SCEV *RS = getSCEV(RHS); 04011 const SCEV *LA = getSCEV(U->getOperand(1)); 04012 const SCEV *RA = getSCEV(U->getOperand(2)); 04013 const SCEV *LDiff = getMinusSCEV(LA, LS); 04014 const SCEV *RDiff = getMinusSCEV(RA, RS); 04015 if (LDiff == RDiff) 04016 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 04017 LDiff = getMinusSCEV(LA, RS); 04018 RDiff = getMinusSCEV(RA, LS); 04019 if (LDiff == RDiff) 04020 return getAddExpr(getUMinExpr(LS, RS), LDiff); 04021 } 04022 break; 04023 case ICmpInst::ICMP_NE: 04024 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 04025 if (LHS->getType() == U->getType() && 04026 isa<ConstantInt>(RHS) && 04027 cast<ConstantInt>(RHS)->isZero()) { 04028 const SCEV *One = getConstant(LHS->getType(), 1); 04029 const SCEV *LS = getSCEV(LHS); 04030 const SCEV *LA = getSCEV(U->getOperand(1)); 04031 const SCEV *RA = getSCEV(U->getOperand(2)); 04032 const SCEV *LDiff = getMinusSCEV(LA, LS); 04033 const SCEV *RDiff = getMinusSCEV(RA, One); 04034 if (LDiff == RDiff) 04035 return getAddExpr(getUMaxExpr(One, LS), LDiff); 04036 } 04037 break; 04038 case ICmpInst::ICMP_EQ: 04039 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 04040 if (LHS->getType() == U->getType() && 04041 isa<ConstantInt>(RHS) && 04042 cast<ConstantInt>(RHS)->isZero()) { 04043 const SCEV *One = getConstant(LHS->getType(), 1); 04044 const SCEV *LS = getSCEV(LHS); 04045 const SCEV *LA = getSCEV(U->getOperand(1)); 04046 const SCEV *RA = getSCEV(U->getOperand(2)); 04047 const SCEV *LDiff = getMinusSCEV(LA, One); 04048 const SCEV *RDiff = getMinusSCEV(RA, LS); 04049 if (LDiff == RDiff) 04050 return getAddExpr(getUMaxExpr(One, LS), LDiff); 04051 } 04052 break; 04053 default: 04054 break; 04055 } 04056 } 04057 04058 default: // We cannot analyze this expression. 04059 break; 04060 } 04061 04062 return getUnknown(V); 04063 } 04064 04065 04066 04067 //===----------------------------------------------------------------------===// 04068 // Iteration Count Computation Code 04069 // 04070 04071 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 04072 /// normal unsigned value. Returns 0 if the trip count is unknown or not 04073 /// constant. Will also return 0 if the maximum trip count is very large (>= 04074 /// 2^32). 04075 /// 04076 /// This "trip count" assumes that control exits via ExitingBlock. More 04077 /// precisely, it is the number of times that control may reach ExitingBlock 04078 /// before taking the branch. For loops with multiple exits, it may not be the 04079 /// number times that the loop header executes because the loop may exit 04080 /// prematurely via another branch. 04081 /// 04082 /// FIXME: We conservatively call getBackedgeTakenCount(L) instead of 04083 /// getExitCount(L, ExitingBlock) to compute a safe trip count considering all 04084 /// loop exits. getExitCount() may return an exact count for this branch 04085 /// assuming no-signed-wrap. The number of well-defined iterations may actually 04086 /// be higher than this trip count if this exit test is skipped and the loop 04087 /// exits via a different branch. Ideally, getExitCount() would know whether it 04088 /// depends on a NSW assumption, and we would only fall back to a conservative 04089 /// trip count in that case. 04090 unsigned ScalarEvolution:: 04091 getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { 04092 const SCEVConstant *ExitCount = 04093 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L)); 04094 if (!ExitCount) 04095 return 0; 04096 04097 ConstantInt *ExitConst = ExitCount->getValue(); 04098 04099 // Guard against huge trip counts. 04100 if (ExitConst->getValue().getActiveBits() > 32) 04101 return 0; 04102 04103 // In case of integer overflow, this returns 0, which is correct. 04104 return ((unsigned)ExitConst->getZExtValue()) + 1; 04105 } 04106 04107 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 04108 /// trip count of this loop as a normal unsigned value, if possible. This 04109 /// means that the actual trip count is always a multiple of the returned 04110 /// value (don't forget the trip count could very well be zero as well!). 04111 /// 04112 /// Returns 1 if the trip count is unknown or not guaranteed to be the 04113 /// multiple of a constant (which is also the case if the trip count is simply 04114 /// constant, use getSmallConstantTripCount for that case), Will also return 1 04115 /// if the trip count is very large (>= 2^32). 04116 /// 04117 /// As explained in the comments for getSmallConstantTripCount, this assumes 04118 /// that control exits the loop via ExitingBlock. 04119 unsigned ScalarEvolution:: 04120 getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) { 04121 const SCEV *ExitCount = getBackedgeTakenCount(L); 04122 if (ExitCount == getCouldNotCompute()) 04123 return 1; 04124 04125 // Get the trip count from the BE count by adding 1. 04126 const SCEV *TCMul = getAddExpr(ExitCount, 04127 getConstant(ExitCount->getType(), 1)); 04128 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 04129 // to factor simple cases. 04130 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 04131 TCMul = Mul->getOperand(0); 04132 04133 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 04134 if (!MulC) 04135 return 1; 04136 04137 ConstantInt *Result = MulC->getValue(); 04138 04139 // Guard against huge trip counts (this requires checking 04140 // for zero to handle the case where the trip count == -1 and the 04141 // addition wraps). 04142 if (!Result || Result->getValue().getActiveBits() > 32 || 04143 Result->getValue().getActiveBits() == 0) 04144 return 1; 04145 04146 return (unsigned)Result->getZExtValue(); 04147 } 04148 04149 // getExitCount - Get the expression for the number of loop iterations for which 04150 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 04151 // SCEVCouldNotCompute. 04152 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 04153 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 04154 } 04155 04156 /// getBackedgeTakenCount - If the specified loop has a predictable 04157 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 04158 /// object. The backedge-taken count is the number of times the loop header 04159 /// will be branched to from within the loop. This is one less than the 04160 /// trip count of the loop, since it doesn't count the first iteration, 04161 /// when the header is branched to from outside the loop. 04162 /// 04163 /// Note that it is not valid to call this method on a loop without a 04164 /// loop-invariant backedge-taken count (see 04165 /// hasLoopInvariantBackedgeTakenCount). 04166 /// 04167 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 04168 return getBackedgeTakenInfo(L).getExact(this); 04169 } 04170 04171 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 04172 /// return the least SCEV value that is known never to be less than the 04173 /// actual backedge taken count. 04174 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 04175 return getBackedgeTakenInfo(L).getMax(this); 04176 } 04177 04178 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 04179 /// onto the given Worklist. 04180 static void 04181 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 04182 BasicBlock *Header = L->getHeader(); 04183 04184 // Push all Loop-header PHIs onto the Worklist stack. 04185 for (BasicBlock::iterator I = Header->begin(); 04186 PHINode *PN = dyn_cast<PHINode>(I); ++I) 04187 Worklist.push_back(PN); 04188 } 04189 04190 const ScalarEvolution::BackedgeTakenInfo & 04191 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 04192 // Initially insert an invalid entry for this loop. If the insertion 04193 // succeeds, proceed to actually compute a backedge-taken count and 04194 // update the value. The temporary CouldNotCompute value tells SCEV 04195 // code elsewhere that it shouldn't attempt to request a new 04196 // backedge-taken count, which could result in infinite recursion. 04197 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 04198 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 04199 if (!Pair.second) 04200 return Pair.first->second; 04201 04202 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 04203 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 04204 // must be cleared in this scope. 04205 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 04206 04207 if (Result.getExact(this) != getCouldNotCompute()) { 04208 assert(isLoopInvariant(Result.getExact(this), L) && 04209 isLoopInvariant(Result.getMax(this), L) && 04210 "Computed backedge-taken count isn't loop invariant for loop!"); 04211 ++NumTripCountsComputed; 04212 } 04213 else if (Result.getMax(this) == getCouldNotCompute() && 04214 isa<PHINode>(L->getHeader()->begin())) { 04215 // Only count loops that have phi nodes as not being computable. 04216 ++NumTripCountsNotComputed; 04217 } 04218 04219 // Now that we know more about the trip count for this loop, forget any 04220 // existing SCEV values for PHI nodes in this loop since they are only 04221 // conservative estimates made without the benefit of trip count 04222 // information. This is similar to the code in forgetLoop, except that 04223 // it handles SCEVUnknown PHI nodes specially. 04224 if (Result.hasAnyInfo()) { 04225 SmallVector<Instruction *, 16> Worklist; 04226 PushLoopPHIs(L, Worklist); 04227 04228 SmallPtrSet<Instruction *, 8> Visited; 04229 while (!Worklist.empty()) { 04230 Instruction *I = Worklist.pop_back_val(); 04231 if (!Visited.insert(I)) continue; 04232 04233 ValueExprMapType::iterator It = 04234 ValueExprMap.find_as(static_cast<Value *>(I)); 04235 if (It != ValueExprMap.end()) { 04236 const SCEV *Old = It->second; 04237 04238 // SCEVUnknown for a PHI either means that it has an unrecognized 04239 // structure, or it's a PHI that's in the progress of being computed 04240 // by createNodeForPHI. In the former case, additional loop trip 04241 // count information isn't going to change anything. In the later 04242 // case, createNodeForPHI will perform the necessary updates on its 04243 // own when it gets to that point. 04244 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 04245 forgetMemoizedResults(Old); 04246 ValueExprMap.erase(It); 04247 } 04248 if (PHINode *PN = dyn_cast<PHINode>(I)) 04249 ConstantEvolutionLoopExitValue.erase(PN); 04250 } 04251 04252 PushDefUseChildren(I, Worklist); 04253 } 04254 } 04255 04256 // Re-lookup the insert position, since the call to 04257 // ComputeBackedgeTakenCount above could result in a 04258 // recusive call to getBackedgeTakenInfo (on a different 04259 // loop), which would invalidate the iterator computed 04260 // earlier. 04261 return BackedgeTakenCounts.find(L)->second = Result; 04262 } 04263 04264 /// forgetLoop - This method should be called by the client when it has 04265 /// changed a loop in a way that may effect ScalarEvolution's ability to 04266 /// compute a trip count, or if the loop is deleted. 04267 void ScalarEvolution::forgetLoop(const Loop *L) { 04268 // Drop any stored trip count value. 04269 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 04270 BackedgeTakenCounts.find(L); 04271 if (BTCPos != BackedgeTakenCounts.end()) { 04272 BTCPos->second.clear(); 04273 BackedgeTakenCounts.erase(BTCPos); 04274 } 04275 04276 // Drop information about expressions based on loop-header PHIs. 04277 SmallVector<Instruction *, 16> Worklist; 04278 PushLoopPHIs(L, Worklist); 04279 04280 SmallPtrSet<Instruction *, 8> Visited; 04281 while (!Worklist.empty()) { 04282 Instruction *I = Worklist.pop_back_val(); 04283 if (!Visited.insert(I)) continue; 04284 04285 ValueExprMapType::iterator It = 04286 ValueExprMap.find_as(static_cast<Value *>(I)); 04287 if (It != ValueExprMap.end()) { 04288 forgetMemoizedResults(It->second); 04289 ValueExprMap.erase(It); 04290 if (PHINode *PN = dyn_cast<PHINode>(I)) 04291 ConstantEvolutionLoopExitValue.erase(PN); 04292 } 04293 04294 PushDefUseChildren(I, Worklist); 04295 } 04296 04297 // Forget all contained loops too, to avoid dangling entries in the 04298 // ValuesAtScopes map. 04299 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 04300 forgetLoop(*I); 04301 } 04302 04303 /// forgetValue - This method should be called by the client when it has 04304 /// changed a value in a way that may effect its value, or which may 04305 /// disconnect it from a def-use chain linking it to a loop. 04306 void ScalarEvolution::forgetValue(Value *V) { 04307 Instruction *I = dyn_cast<Instruction>(V); 04308 if (!I) return; 04309 04310 // Drop information about expressions based on loop-header PHIs. 04311 SmallVector<Instruction *, 16> Worklist; 04312 Worklist.push_back(I); 04313 04314 SmallPtrSet<Instruction *, 8> Visited; 04315 while (!Worklist.empty()) { 04316 I = Worklist.pop_back_val(); 04317 if (!Visited.insert(I)) continue; 04318 04319 ValueExprMapType::iterator It = 04320 ValueExprMap.find_as(static_cast<Value *>(I)); 04321 if (It != ValueExprMap.end()) { 04322 forgetMemoizedResults(It->second); 04323 ValueExprMap.erase(It); 04324 if (PHINode *PN = dyn_cast<PHINode>(I)) 04325 ConstantEvolutionLoopExitValue.erase(PN); 04326 } 04327 04328 PushDefUseChildren(I, Worklist); 04329 } 04330 } 04331 04332 /// getExact - Get the exact loop backedge taken count considering all loop 04333 /// exits. A computable result can only be return for loops with a single exit. 04334 /// Returning the minimum taken count among all exits is incorrect because one 04335 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 04336 /// the limit of each loop test is never skipped. This is a valid assumption as 04337 /// long as the loop exits via that test. For precise results, it is the 04338 /// caller's responsibility to specify the relevant loop exit using 04339 /// getExact(ExitingBlock, SE). 04340 const SCEV * 04341 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 04342 // If any exits were not computable, the loop is not computable. 04343 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 04344 04345 // We need exactly one computable exit. 04346 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 04347 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 04348 04349 const SCEV *BECount = nullptr; 04350 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 04351 ENT != nullptr; ENT = ENT->getNextExit()) { 04352 04353 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 04354 04355 if (!BECount) 04356 BECount = ENT->ExactNotTaken; 04357 else if (BECount != ENT->ExactNotTaken) 04358 return SE->getCouldNotCompute(); 04359 } 04360 assert(BECount && "Invalid not taken count for loop exit"); 04361 return BECount; 04362 } 04363 04364 /// getExact - Get the exact not taken count for this loop exit. 04365 const SCEV * 04366 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 04367 ScalarEvolution *SE) const { 04368 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 04369 ENT != nullptr; ENT = ENT->getNextExit()) { 04370 04371 if (ENT->ExitingBlock == ExitingBlock) 04372 return ENT->ExactNotTaken; 04373 } 04374 return SE->getCouldNotCompute(); 04375 } 04376 04377 /// getMax - Get the max backedge taken count for the loop. 04378 const SCEV * 04379 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 04380 return Max ? Max : SE->getCouldNotCompute(); 04381 } 04382 04383 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 04384 ScalarEvolution *SE) const { 04385 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 04386 return true; 04387 04388 if (!ExitNotTaken.ExitingBlock) 04389 return false; 04390 04391 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 04392 ENT != nullptr; ENT = ENT->getNextExit()) { 04393 04394 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 04395 && SE->hasOperand(ENT->ExactNotTaken, S)) { 04396 return true; 04397 } 04398 } 04399 return false; 04400 } 04401 04402 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 04403 /// computable exit into a persistent ExitNotTakenInfo array. 04404 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 04405 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 04406 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 04407 04408 if (!Complete) 04409 ExitNotTaken.setIncomplete(); 04410 04411 unsigned NumExits = ExitCounts.size(); 04412 if (NumExits == 0) return; 04413 04414 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 04415 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 04416 if (NumExits == 1) return; 04417 04418 // Handle the rare case of multiple computable exits. 04419 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 04420 04421 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 04422 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 04423 PrevENT->setNextExit(ENT); 04424 ENT->ExitingBlock = ExitCounts[i].first; 04425 ENT->ExactNotTaken = ExitCounts[i].second; 04426 } 04427 } 04428 04429 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 04430 void ScalarEvolution::BackedgeTakenInfo::clear() { 04431 ExitNotTaken.ExitingBlock = nullptr; 04432 ExitNotTaken.ExactNotTaken = nullptr; 04433 delete[] ExitNotTaken.getNextExit(); 04434 } 04435 04436 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 04437 /// of the specified loop will execute. 04438 ScalarEvolution::BackedgeTakenInfo 04439 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 04440 SmallVector<BasicBlock *, 8> ExitingBlocks; 04441 L->getExitingBlocks(ExitingBlocks); 04442 04443 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 04444 bool CouldComputeBECount = true; 04445 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 04446 const SCEV *MustExitMaxBECount = nullptr; 04447 const SCEV *MayExitMaxBECount = nullptr; 04448 04449 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 04450 // and compute maxBECount. 04451 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 04452 BasicBlock *ExitBB = ExitingBlocks[i]; 04453 ExitLimit EL = ComputeExitLimit(L, ExitBB); 04454 04455 // 1. For each exit that can be computed, add an entry to ExitCounts. 04456 // CouldComputeBECount is true only if all exits can be computed. 04457 if (EL.Exact == getCouldNotCompute()) 04458 // We couldn't compute an exact value for this exit, so 04459 // we won't be able to compute an exact value for the loop. 04460 CouldComputeBECount = false; 04461 else 04462 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 04463 04464 // 2. Derive the loop's MaxBECount from each exit's max number of 04465 // non-exiting iterations. Partition the loop exits into two kinds: 04466 // LoopMustExits and LoopMayExits. 04467 // 04468 // A LoopMustExit meets two requirements: 04469 // 04470 // (a) Its ExitLimit.MustExit flag must be set which indicates that the exit 04471 // test condition cannot be skipped (the tested variable has unit stride or 04472 // the test is less-than or greater-than, rather than a strict inequality). 04473 // 04474 // (b) It must dominate the loop latch, hence must be tested on every loop 04475 // iteration. 04476 // 04477 // If any computable LoopMustExit is found, then MaxBECount is the minimum 04478 // EL.Max of computable LoopMustExits. Otherwise, MaxBECount is 04479 // conservatively the maximum EL.Max, where CouldNotCompute is considered 04480 // greater than any computable EL.Max. 04481 if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch && 04482 DT->dominates(ExitBB, Latch)) { 04483 if (!MustExitMaxBECount) 04484 MustExitMaxBECount = EL.Max; 04485 else { 04486 MustExitMaxBECount = 04487 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 04488 } 04489 } else if (MayExitMaxBECount != getCouldNotCompute()) { 04490 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 04491 MayExitMaxBECount = EL.Max; 04492 else { 04493 MayExitMaxBECount = 04494 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 04495 } 04496 } 04497 } 04498 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 04499 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 04500 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 04501 } 04502 04503 /// ComputeExitLimit - Compute the number of times the backedge of the specified 04504 /// loop will execute if it exits via the specified block. 04505 ScalarEvolution::ExitLimit 04506 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 04507 04508 // Okay, we've chosen an exiting block. See what condition causes us to 04509 // exit at this block and remember the exit block and whether all other targets 04510 // lead to the loop header. 04511 bool MustExecuteLoopHeader = true; 04512 BasicBlock *Exit = nullptr; 04513 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 04514 SI != SE; ++SI) 04515 if (!L->contains(*SI)) { 04516 if (Exit) // Multiple exit successors. 04517 return getCouldNotCompute(); 04518 Exit = *SI; 04519 } else if (*SI != L->getHeader()) { 04520 MustExecuteLoopHeader = false; 04521 } 04522 04523 // At this point, we know we have a conditional branch that determines whether 04524 // the loop is exited. However, we don't know if the branch is executed each 04525 // time through the loop. If not, then the execution count of the branch will 04526 // not be equal to the trip count of the loop. 04527 // 04528 // Currently we check for this by checking to see if the Exit branch goes to 04529 // the loop header. If so, we know it will always execute the same number of 04530 // times as the loop. We also handle the case where the exit block *is* the 04531 // loop header. This is common for un-rotated loops. 04532 // 04533 // If both of those tests fail, walk up the unique predecessor chain to the 04534 // header, stopping if there is an edge that doesn't exit the loop. If the 04535 // header is reached, the execution count of the branch will be equal to the 04536 // trip count of the loop. 04537 // 04538 // More extensive analysis could be done to handle more cases here. 04539 // 04540 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 04541 // The simple checks failed, try climbing the unique predecessor chain 04542 // up to the header. 04543 bool Ok = false; 04544 for (BasicBlock *BB = ExitingBlock; BB; ) { 04545 BasicBlock *Pred = BB->getUniquePredecessor(); 04546 if (!Pred) 04547 return getCouldNotCompute(); 04548 TerminatorInst *PredTerm = Pred->getTerminator(); 04549 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 04550 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 04551 if (PredSucc == BB) 04552 continue; 04553 // If the predecessor has a successor that isn't BB and isn't 04554 // outside the loop, assume the worst. 04555 if (L->contains(PredSucc)) 04556 return getCouldNotCompute(); 04557 } 04558 if (Pred == L->getHeader()) { 04559 Ok = true; 04560 break; 04561 } 04562 BB = Pred; 04563 } 04564 if (!Ok) 04565 return getCouldNotCompute(); 04566 } 04567 04568 TerminatorInst *Term = ExitingBlock->getTerminator(); 04569 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 04570 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 04571 // Proceed to the next level to examine the exit condition expression. 04572 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 04573 BI->getSuccessor(1), 04574 /*IsSubExpr=*/false); 04575 } 04576 04577 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 04578 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 04579 /*IsSubExpr=*/false); 04580 04581 return getCouldNotCompute(); 04582 } 04583 04584 /// ComputeExitLimitFromCond - Compute the number of times the 04585 /// backedge of the specified loop will execute if its exit condition 04586 /// were a conditional branch of ExitCond, TBB, and FBB. 04587 /// 04588 /// @param IsSubExpr is true if ExitCond does not directly control the exit 04589 /// branch. In this case, we cannot assume that the loop only exits when the 04590 /// condition is true and cannot infer that failing to meet the condition prior 04591 /// to integer wraparound results in undefined behavior. 04592 ScalarEvolution::ExitLimit 04593 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 04594 Value *ExitCond, 04595 BasicBlock *TBB, 04596 BasicBlock *FBB, 04597 bool IsSubExpr) { 04598 // Check if the controlling expression for this loop is an And or Or. 04599 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 04600 if (BO->getOpcode() == Instruction::And) { 04601 // Recurse on the operands of the and. 04602 bool EitherMayExit = L->contains(TBB); 04603 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 04604 IsSubExpr || EitherMayExit); 04605 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 04606 IsSubExpr || EitherMayExit); 04607 const SCEV *BECount = getCouldNotCompute(); 04608 const SCEV *MaxBECount = getCouldNotCompute(); 04609 bool MustExit = false; 04610 if (EitherMayExit) { 04611 // Both conditions must be true for the loop to continue executing. 04612 // Choose the less conservative count. 04613 if (EL0.Exact == getCouldNotCompute() || 04614 EL1.Exact == getCouldNotCompute()) 04615 BECount = getCouldNotCompute(); 04616 else 04617 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 04618 if (EL0.Max == getCouldNotCompute()) 04619 MaxBECount = EL1.Max; 04620 else if (EL1.Max == getCouldNotCompute()) 04621 MaxBECount = EL0.Max; 04622 else 04623 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 04624 MustExit = EL0.MustExit || EL1.MustExit; 04625 } else { 04626 // Both conditions must be true at the same time for the loop to exit. 04627 // For now, be conservative. 04628 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 04629 if (EL0.Max == EL1.Max) 04630 MaxBECount = EL0.Max; 04631 if (EL0.Exact == EL1.Exact) 04632 BECount = EL0.Exact; 04633 MustExit = EL0.MustExit && EL1.MustExit; 04634 } 04635 04636 return ExitLimit(BECount, MaxBECount, MustExit); 04637 } 04638 if (BO->getOpcode() == Instruction::Or) { 04639 // Recurse on the operands of the or. 04640 bool EitherMayExit = L->contains(FBB); 04641 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 04642 IsSubExpr || EitherMayExit); 04643 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 04644 IsSubExpr || EitherMayExit); 04645 const SCEV *BECount = getCouldNotCompute(); 04646 const SCEV *MaxBECount = getCouldNotCompute(); 04647 bool MustExit = false; 04648 if (EitherMayExit) { 04649 // Both conditions must be false for the loop to continue executing. 04650 // Choose the less conservative count. 04651 if (EL0.Exact == getCouldNotCompute() || 04652 EL1.Exact == getCouldNotCompute()) 04653 BECount = getCouldNotCompute(); 04654 else 04655 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 04656 if (EL0.Max == getCouldNotCompute()) 04657 MaxBECount = EL1.Max; 04658 else if (EL1.Max == getCouldNotCompute()) 04659 MaxBECount = EL0.Max; 04660 else 04661 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 04662 MustExit = EL0.MustExit || EL1.MustExit; 04663 } else { 04664 // Both conditions must be false at the same time for the loop to exit. 04665 // For now, be conservative. 04666 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 04667 if (EL0.Max == EL1.Max) 04668 MaxBECount = EL0.Max; 04669 if (EL0.Exact == EL1.Exact) 04670 BECount = EL0.Exact; 04671 MustExit = EL0.MustExit && EL1.MustExit; 04672 } 04673 04674 return ExitLimit(BECount, MaxBECount, MustExit); 04675 } 04676 } 04677 04678 // With an icmp, it may be feasible to compute an exact backedge-taken count. 04679 // Proceed to the next level to examine the icmp. 04680 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 04681 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr); 04682 04683 // Check for a constant condition. These are normally stripped out by 04684 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 04685 // preserve the CFG and is temporarily leaving constant conditions 04686 // in place. 04687 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 04688 if (L->contains(FBB) == !CI->getZExtValue()) 04689 // The backedge is always taken. 04690 return getCouldNotCompute(); 04691 else 04692 // The backedge is never taken. 04693 return getConstant(CI->getType(), 0); 04694 } 04695 04696 // If it's not an integer or pointer comparison then compute it the hard way. 04697 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 04698 } 04699 04700 /// ComputeExitLimitFromICmp - Compute the number of times the 04701 /// backedge of the specified loop will execute if its exit condition 04702 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 04703 ScalarEvolution::ExitLimit 04704 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 04705 ICmpInst *ExitCond, 04706 BasicBlock *TBB, 04707 BasicBlock *FBB, 04708 bool IsSubExpr) { 04709 04710 // If the condition was exit on true, convert the condition to exit on false 04711 ICmpInst::Predicate Cond; 04712 if (!L->contains(FBB)) 04713 Cond = ExitCond->getPredicate(); 04714 else 04715 Cond = ExitCond->getInversePredicate(); 04716 04717 // Handle common loops like: for (X = "string"; *X; ++X) 04718 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 04719 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 04720 ExitLimit ItCnt = 04721 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 04722 if (ItCnt.hasAnyInfo()) 04723 return ItCnt; 04724 } 04725 04726 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 04727 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 04728 04729 // Try to evaluate any dependencies out of the loop. 04730 LHS = getSCEVAtScope(LHS, L); 04731 RHS = getSCEVAtScope(RHS, L); 04732 04733 // At this point, we would like to compute how many iterations of the 04734 // loop the predicate will return true for these inputs. 04735 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 04736 // If there is a loop-invariant, force it into the RHS. 04737 std::swap(LHS, RHS); 04738 Cond = ICmpInst::getSwappedPredicate(Cond); 04739 } 04740 04741 // Simplify the operands before analyzing them. 04742 (void)SimplifyICmpOperands(Cond, LHS, RHS); 04743 04744 // If we have a comparison of a chrec against a constant, try to use value 04745 // ranges to answer this query. 04746 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 04747 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 04748 if (AddRec->getLoop() == L) { 04749 // Form the constant range. 04750 ConstantRange CompRange( 04751 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 04752 04753 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 04754 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 04755 } 04756 04757 switch (Cond) { 04758 case ICmpInst::ICMP_NE: { // while (X != Y) 04759 // Convert to: while (X-Y != 0) 04760 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 04761 if (EL.hasAnyInfo()) return EL; 04762 break; 04763 } 04764 case ICmpInst::ICMP_EQ: { // while (X == Y) 04765 // Convert to: while (X-Y == 0) 04766 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 04767 if (EL.hasAnyInfo()) return EL; 04768 break; 04769 } 04770 case ICmpInst::ICMP_SLT: 04771 case ICmpInst::ICMP_ULT: { // while (X < Y) 04772 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 04773 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr); 04774 if (EL.hasAnyInfo()) return EL; 04775 break; 04776 } 04777 case ICmpInst::ICMP_SGT: 04778 case ICmpInst::ICMP_UGT: { // while (X > Y) 04779 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 04780 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr); 04781 if (EL.hasAnyInfo()) return EL; 04782 break; 04783 } 04784 default: 04785 #if 0 04786 dbgs() << "ComputeBackedgeTakenCount "; 04787 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 04788 dbgs() << "[unsigned] "; 04789 dbgs() << *LHS << " " 04790 << Instruction::getOpcodeName(Instruction::ICmp) 04791 << " " << *RHS << "\n"; 04792 #endif 04793 break; 04794 } 04795 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 04796 } 04797 04798 ScalarEvolution::ExitLimit 04799 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 04800 SwitchInst *Switch, 04801 BasicBlock *ExitingBlock, 04802 bool IsSubExpr) { 04803 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 04804 04805 // Give up if the exit is the default dest of a switch. 04806 if (Switch->getDefaultDest() == ExitingBlock) 04807 return getCouldNotCompute(); 04808 04809 assert(L->contains(Switch->getDefaultDest()) && 04810 "Default case must not exit the loop!"); 04811 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 04812 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 04813 04814 // while (X != Y) --> while (X-Y != 0) 04815 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 04816 if (EL.hasAnyInfo()) 04817 return EL; 04818 04819 return getCouldNotCompute(); 04820 } 04821 04822 static ConstantInt * 04823 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 04824 ScalarEvolution &SE) { 04825 const SCEV *InVal = SE.getConstant(C); 04826 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 04827 assert(isa<SCEVConstant>(Val) && 04828 "Evaluation of SCEV at constant didn't fold correctly?"); 04829 return cast<SCEVConstant>(Val)->getValue(); 04830 } 04831 04832 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 04833 /// 'icmp op load X, cst', try to see if we can compute the backedge 04834 /// execution count. 04835 ScalarEvolution::ExitLimit 04836 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 04837 LoadInst *LI, 04838 Constant *RHS, 04839 const Loop *L, 04840 ICmpInst::Predicate predicate) { 04841 04842 if (LI->isVolatile()) return getCouldNotCompute(); 04843 04844 // Check to see if the loaded pointer is a getelementptr of a global. 04845 // TODO: Use SCEV instead of manually grubbing with GEPs. 04846 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 04847 if (!GEP) return getCouldNotCompute(); 04848 04849 // Make sure that it is really a constant global we are gepping, with an 04850 // initializer, and make sure the first IDX is really 0. 04851 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 04852 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 04853 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 04854 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 04855 return getCouldNotCompute(); 04856 04857 // Okay, we allow one non-constant index into the GEP instruction. 04858 Value *VarIdx = nullptr; 04859 std::vector<Constant*> Indexes; 04860 unsigned VarIdxNum = 0; 04861 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 04862 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 04863 Indexes.push_back(CI); 04864 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 04865 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 04866 VarIdx = GEP->getOperand(i); 04867 VarIdxNum = i-2; 04868 Indexes.push_back(nullptr); 04869 } 04870 04871 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 04872 if (!VarIdx) 04873 return getCouldNotCompute(); 04874 04875 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 04876 // Check to see if X is a loop variant variable value now. 04877 const SCEV *Idx = getSCEV(VarIdx); 04878 Idx = getSCEVAtScope(Idx, L); 04879 04880 // We can only recognize very limited forms of loop index expressions, in 04881 // particular, only affine AddRec's like {C1,+,C2}. 04882 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 04883 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 04884 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 04885 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 04886 return getCouldNotCompute(); 04887 04888 unsigned MaxSteps = MaxBruteForceIterations; 04889 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 04890 ConstantInt *ItCst = ConstantInt::get( 04891 cast<IntegerType>(IdxExpr->getType()), IterationNum); 04892 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 04893 04894 // Form the GEP offset. 04895 Indexes[VarIdxNum] = Val; 04896 04897 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 04898 Indexes); 04899 if (!Result) break; // Cannot compute! 04900 04901 // Evaluate the condition for this iteration. 04902 Result = ConstantExpr::getICmp(predicate, Result, RHS); 04903 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 04904 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 04905 #if 0 04906 dbgs() << "\n***\n*** Computed loop count " << *ItCst 04907 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 04908 << "***\n"; 04909 #endif 04910 ++NumArrayLenItCounts; 04911 return getConstant(ItCst); // Found terminating iteration! 04912 } 04913 } 04914 return getCouldNotCompute(); 04915 } 04916 04917 04918 /// CanConstantFold - Return true if we can constant fold an instruction of the 04919 /// specified type, assuming that all operands were constants. 04920 static bool CanConstantFold(const Instruction *I) { 04921 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 04922 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 04923 isa<LoadInst>(I)) 04924 return true; 04925 04926 if (const CallInst *CI = dyn_cast<CallInst>(I)) 04927 if (const Function *F = CI->getCalledFunction()) 04928 return canConstantFoldCallTo(F); 04929 return false; 04930 } 04931 04932 /// Determine whether this instruction can constant evolve within this loop 04933 /// assuming its operands can all constant evolve. 04934 static bool canConstantEvolve(Instruction *I, const Loop *L) { 04935 // An instruction outside of the loop can't be derived from a loop PHI. 04936 if (!L->contains(I)) return false; 04937 04938 if (isa<PHINode>(I)) { 04939 if (L->getHeader() == I->getParent()) 04940 return true; 04941 else 04942 // We don't currently keep track of the control flow needed to evaluate 04943 // PHIs, so we cannot handle PHIs inside of loops. 04944 return false; 04945 } 04946 04947 // If we won't be able to constant fold this expression even if the operands 04948 // are constants, bail early. 04949 return CanConstantFold(I); 04950 } 04951 04952 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 04953 /// recursing through each instruction operand until reaching a loop header phi. 04954 static PHINode * 04955 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 04956 DenseMap<Instruction *, PHINode *> &PHIMap) { 04957 04958 // Otherwise, we can evaluate this instruction if all of its operands are 04959 // constant or derived from a PHI node themselves. 04960 PHINode *PHI = nullptr; 04961 for (Instruction::op_iterator OpI = UseInst->op_begin(), 04962 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 04963 04964 if (isa<Constant>(*OpI)) continue; 04965 04966 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 04967 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 04968 04969 PHINode *P = dyn_cast<PHINode>(OpInst); 04970 if (!P) 04971 // If this operand is already visited, reuse the prior result. 04972 // We may have P != PHI if this is the deepest point at which the 04973 // inconsistent paths meet. 04974 P = PHIMap.lookup(OpInst); 04975 if (!P) { 04976 // Recurse and memoize the results, whether a phi is found or not. 04977 // This recursive call invalidates pointers into PHIMap. 04978 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 04979 PHIMap[OpInst] = P; 04980 } 04981 if (!P) 04982 return nullptr; // Not evolving from PHI 04983 if (PHI && PHI != P) 04984 return nullptr; // Evolving from multiple different PHIs. 04985 PHI = P; 04986 } 04987 // This is a expression evolving from a constant PHI! 04988 return PHI; 04989 } 04990 04991 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 04992 /// in the loop that V is derived from. We allow arbitrary operations along the 04993 /// way, but the operands of an operation must either be constants or a value 04994 /// derived from a constant PHI. If this expression does not fit with these 04995 /// constraints, return null. 04996 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 04997 Instruction *I = dyn_cast<Instruction>(V); 04998 if (!I || !canConstantEvolve(I, L)) return nullptr; 04999 05000 if (PHINode *PN = dyn_cast<PHINode>(I)) { 05001 return PN; 05002 } 05003 05004 // Record non-constant instructions contained by the loop. 05005 DenseMap<Instruction *, PHINode *> PHIMap; 05006 return getConstantEvolvingPHIOperands(I, L, PHIMap); 05007 } 05008 05009 /// EvaluateExpression - Given an expression that passes the 05010 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 05011 /// in the loop has the value PHIVal. If we can't fold this expression for some 05012 /// reason, return null. 05013 static Constant *EvaluateExpression(Value *V, const Loop *L, 05014 DenseMap<Instruction *, Constant *> &Vals, 05015 const DataLayout *DL, 05016 const TargetLibraryInfo *TLI) { 05017 // Convenient constant check, but redundant for recursive calls. 05018 if (Constant *C = dyn_cast<Constant>(V)) return C; 05019 Instruction *I = dyn_cast<Instruction>(V); 05020 if (!I) return nullptr; 05021 05022 if (Constant *C = Vals.lookup(I)) return C; 05023 05024 // An instruction inside the loop depends on a value outside the loop that we 05025 // weren't given a mapping for, or a value such as a call inside the loop. 05026 if (!canConstantEvolve(I, L)) return nullptr; 05027 05028 // An unmapped PHI can be due to a branch or another loop inside this loop, 05029 // or due to this not being the initial iteration through a loop where we 05030 // couldn't compute the evolution of this particular PHI last time. 05031 if (isa<PHINode>(I)) return nullptr; 05032 05033 std::vector<Constant*> Operands(I->getNumOperands()); 05034 05035 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 05036 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 05037 if (!Operand) { 05038 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 05039 if (!Operands[i]) return nullptr; 05040 continue; 05041 } 05042 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 05043 Vals[Operand] = C; 05044 if (!C) return nullptr; 05045 Operands[i] = C; 05046 } 05047 05048 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 05049 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 05050 Operands[1], DL, TLI); 05051 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 05052 if (!LI->isVolatile()) 05053 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 05054 } 05055 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 05056 TLI); 05057 } 05058 05059 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 05060 /// in the header of its containing loop, we know the loop executes a 05061 /// constant number of times, and the PHI node is just a recurrence 05062 /// involving constants, fold it. 05063 Constant * 05064 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 05065 const APInt &BEs, 05066 const Loop *L) { 05067 DenseMap<PHINode*, Constant*>::const_iterator I = 05068 ConstantEvolutionLoopExitValue.find(PN); 05069 if (I != ConstantEvolutionLoopExitValue.end()) 05070 return I->second; 05071 05072 if (BEs.ugt(MaxBruteForceIterations)) 05073 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 05074 05075 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 05076 05077 DenseMap<Instruction *, Constant *> CurrentIterVals; 05078 BasicBlock *Header = L->getHeader(); 05079 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 05080 05081 // Since the loop is canonicalized, the PHI node must have two entries. One 05082 // entry must be a constant (coming in from outside of the loop), and the 05083 // second must be derived from the same PHI. 05084 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 05085 PHINode *PHI = nullptr; 05086 for (BasicBlock::iterator I = Header->begin(); 05087 (PHI = dyn_cast<PHINode>(I)); ++I) { 05088 Constant *StartCST = 05089 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 05090 if (!StartCST) continue; 05091 CurrentIterVals[PHI] = StartCST; 05092 } 05093 if (!CurrentIterVals.count(PN)) 05094 return RetVal = nullptr; 05095 05096 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 05097 05098 // Execute the loop symbolically to determine the exit value. 05099 if (BEs.getActiveBits() >= 32) 05100 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 05101 05102 unsigned NumIterations = BEs.getZExtValue(); // must be in range 05103 unsigned IterationNum = 0; 05104 for (; ; ++IterationNum) { 05105 if (IterationNum == NumIterations) 05106 return RetVal = CurrentIterVals[PN]; // Got exit value! 05107 05108 // Compute the value of the PHIs for the next iteration. 05109 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 05110 DenseMap<Instruction *, Constant *> NextIterVals; 05111 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, 05112 TLI); 05113 if (!NextPHI) 05114 return nullptr; // Couldn't evaluate! 05115 NextIterVals[PN] = NextPHI; 05116 05117 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 05118 05119 // Also evaluate the other PHI nodes. However, we don't get to stop if we 05120 // cease to be able to evaluate one of them or if they stop evolving, 05121 // because that doesn't necessarily prevent us from computing PN. 05122 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 05123 for (DenseMap<Instruction *, Constant *>::const_iterator 05124 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 05125 PHINode *PHI = dyn_cast<PHINode>(I->first); 05126 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 05127 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 05128 } 05129 // We use two distinct loops because EvaluateExpression may invalidate any 05130 // iterators into CurrentIterVals. 05131 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 05132 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 05133 PHINode *PHI = I->first; 05134 Constant *&NextPHI = NextIterVals[PHI]; 05135 if (!NextPHI) { // Not already computed. 05136 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 05137 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 05138 } 05139 if (NextPHI != I->second) 05140 StoppedEvolving = false; 05141 } 05142 05143 // If all entries in CurrentIterVals == NextIterVals then we can stop 05144 // iterating, the loop can't continue to change. 05145 if (StoppedEvolving) 05146 return RetVal = CurrentIterVals[PN]; 05147 05148 CurrentIterVals.swap(NextIterVals); 05149 } 05150 } 05151 05152 /// ComputeExitCountExhaustively - If the loop is known to execute a 05153 /// constant number of times (the condition evolves only from constants), 05154 /// try to evaluate a few iterations of the loop until we get the exit 05155 /// condition gets a value of ExitWhen (true or false). If we cannot 05156 /// evaluate the trip count of the loop, return getCouldNotCompute(). 05157 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 05158 Value *Cond, 05159 bool ExitWhen) { 05160 PHINode *PN = getConstantEvolvingPHI(Cond, L); 05161 if (!PN) return getCouldNotCompute(); 05162 05163 // If the loop is canonicalized, the PHI will have exactly two entries. 05164 // That's the only form we support here. 05165 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 05166 05167 DenseMap<Instruction *, Constant *> CurrentIterVals; 05168 BasicBlock *Header = L->getHeader(); 05169 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 05170 05171 // One entry must be a constant (coming in from outside of the loop), and the 05172 // second must be derived from the same PHI. 05173 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 05174 PHINode *PHI = nullptr; 05175 for (BasicBlock::iterator I = Header->begin(); 05176 (PHI = dyn_cast<PHINode>(I)); ++I) { 05177 Constant *StartCST = 05178 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 05179 if (!StartCST) continue; 05180 CurrentIterVals[PHI] = StartCST; 05181 } 05182 if (!CurrentIterVals.count(PN)) 05183 return getCouldNotCompute(); 05184 05185 // Okay, we find a PHI node that defines the trip count of this loop. Execute 05186 // the loop symbolically to determine when the condition gets a value of 05187 // "ExitWhen". 05188 05189 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 05190 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 05191 ConstantInt *CondVal = 05192 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 05193 DL, TLI)); 05194 05195 // Couldn't symbolically evaluate. 05196 if (!CondVal) return getCouldNotCompute(); 05197 05198 if (CondVal->getValue() == uint64_t(ExitWhen)) { 05199 ++NumBruteForceTripCountsComputed; 05200 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 05201 } 05202 05203 // Update all the PHI nodes for the next iteration. 05204 DenseMap<Instruction *, Constant *> NextIterVals; 05205 05206 // Create a list of which PHIs we need to compute. We want to do this before 05207 // calling EvaluateExpression on them because that may invalidate iterators 05208 // into CurrentIterVals. 05209 SmallVector<PHINode *, 8> PHIsToCompute; 05210 for (DenseMap<Instruction *, Constant *>::const_iterator 05211 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 05212 PHINode *PHI = dyn_cast<PHINode>(I->first); 05213 if (!PHI || PHI->getParent() != Header) continue; 05214 PHIsToCompute.push_back(PHI); 05215 } 05216 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 05217 E = PHIsToCompute.end(); I != E; ++I) { 05218 PHINode *PHI = *I; 05219 Constant *&NextPHI = NextIterVals[PHI]; 05220 if (NextPHI) continue; // Already computed! 05221 05222 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 05223 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 05224 } 05225 CurrentIterVals.swap(NextIterVals); 05226 } 05227 05228 // Too many iterations were needed to evaluate. 05229 return getCouldNotCompute(); 05230 } 05231 05232 /// getSCEVAtScope - Return a SCEV expression for the specified value 05233 /// at the specified scope in the program. The L value specifies a loop 05234 /// nest to evaluate the expression at, where null is the top-level or a 05235 /// specified loop is immediately inside of the loop. 05236 /// 05237 /// This method can be used to compute the exit value for a variable defined 05238 /// in a loop by querying what the value will hold in the parent loop. 05239 /// 05240 /// In the case that a relevant loop exit value cannot be computed, the 05241 /// original value V is returned. 05242 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 05243 // Check to see if we've folded this expression at this loop before. 05244 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 05245 for (unsigned u = 0; u < Values.size(); u++) { 05246 if (Values[u].first == L) 05247 return Values[u].second ? Values[u].second : V; 05248 } 05249 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 05250 // Otherwise compute it. 05251 const SCEV *C = computeSCEVAtScope(V, L); 05252 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 05253 for (unsigned u = Values2.size(); u > 0; u--) { 05254 if (Values2[u - 1].first == L) { 05255 Values2[u - 1].second = C; 05256 break; 05257 } 05258 } 05259 return C; 05260 } 05261 05262 /// This builds up a Constant using the ConstantExpr interface. That way, we 05263 /// will return Constants for objects which aren't represented by a 05264 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 05265 /// Returns NULL if the SCEV isn't representable as a Constant. 05266 static Constant *BuildConstantFromSCEV(const SCEV *V) { 05267 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 05268 case scCouldNotCompute: 05269 case scAddRecExpr: 05270 break; 05271 case scConstant: 05272 return cast<SCEVConstant>(V)->getValue(); 05273 case scUnknown: 05274 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 05275 case scSignExtend: { 05276 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 05277 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 05278 return ConstantExpr::getSExt(CastOp, SS->getType()); 05279 break; 05280 } 05281 case scZeroExtend: { 05282 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 05283 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 05284 return ConstantExpr::getZExt(CastOp, SZ->getType()); 05285 break; 05286 } 05287 case scTruncate: { 05288 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 05289 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 05290 return ConstantExpr::getTrunc(CastOp, ST->getType()); 05291 break; 05292 } 05293 case scAddExpr: { 05294 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 05295 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 05296 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 05297 unsigned AS = PTy->getAddressSpace(); 05298 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 05299 C = ConstantExpr::getBitCast(C, DestPtrTy); 05300 } 05301 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 05302 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 05303 if (!C2) return nullptr; 05304 05305 // First pointer! 05306 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 05307 unsigned AS = C2->getType()->getPointerAddressSpace(); 05308 std::swap(C, C2); 05309 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 05310 // The offsets have been converted to bytes. We can add bytes to an 05311 // i8* by GEP with the byte count in the first index. 05312 C = ConstantExpr::getBitCast(C, DestPtrTy); 05313 } 05314 05315 // Don't bother trying to sum two pointers. We probably can't 05316 // statically compute a load that results from it anyway. 05317 if (C2->getType()->isPointerTy()) 05318 return nullptr; 05319 05320 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 05321 if (PTy->getElementType()->isStructTy()) 05322 C2 = ConstantExpr::getIntegerCast( 05323 C2, Type::getInt32Ty(C->getContext()), true); 05324 C = ConstantExpr::getGetElementPtr(C, C2); 05325 } else 05326 C = ConstantExpr::getAdd(C, C2); 05327 } 05328 return C; 05329 } 05330 break; 05331 } 05332 case scMulExpr: { 05333 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 05334 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 05335 // Don't bother with pointers at all. 05336 if (C->getType()->isPointerTy()) return nullptr; 05337 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 05338 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 05339 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 05340 C = ConstantExpr::getMul(C, C2); 05341 } 05342 return C; 05343 } 05344 break; 05345 } 05346 case scUDivExpr: { 05347 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 05348 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 05349 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 05350 if (LHS->getType() == RHS->getType()) 05351 return ConstantExpr::getUDiv(LHS, RHS); 05352 break; 05353 } 05354 case scSMaxExpr: 05355 case scUMaxExpr: 05356 break; // TODO: smax, umax. 05357 } 05358 return nullptr; 05359 } 05360 05361 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 05362 if (isa<SCEVConstant>(V)) return V; 05363 05364 // If this instruction is evolved from a constant-evolving PHI, compute the 05365 // exit value from the loop without using SCEVs. 05366 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 05367 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 05368 const Loop *LI = (*this->LI)[I->getParent()]; 05369 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 05370 if (PHINode *PN = dyn_cast<PHINode>(I)) 05371 if (PN->getParent() == LI->getHeader()) { 05372 // Okay, there is no closed form solution for the PHI node. Check 05373 // to see if the loop that contains it has a known backedge-taken 05374 // count. If so, we may be able to force computation of the exit 05375 // value. 05376 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 05377 if (const SCEVConstant *BTCC = 05378 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 05379 // Okay, we know how many times the containing loop executes. If 05380 // this is a constant evolving PHI node, get the final value at 05381 // the specified iteration number. 05382 Constant *RV = getConstantEvolutionLoopExitValue(PN, 05383 BTCC->getValue()->getValue(), 05384 LI); 05385 if (RV) return getSCEV(RV); 05386 } 05387 } 05388 05389 // Okay, this is an expression that we cannot symbolically evaluate 05390 // into a SCEV. Check to see if it's possible to symbolically evaluate 05391 // the arguments into constants, and if so, try to constant propagate the 05392 // result. This is particularly useful for computing loop exit values. 05393 if (CanConstantFold(I)) { 05394 SmallVector<Constant *, 4> Operands; 05395 bool MadeImprovement = false; 05396 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 05397 Value *Op = I->getOperand(i); 05398 if (Constant *C = dyn_cast<Constant>(Op)) { 05399 Operands.push_back(C); 05400 continue; 05401 } 05402 05403 // If any of the operands is non-constant and if they are 05404 // non-integer and non-pointer, don't even try to analyze them 05405 // with scev techniques. 05406 if (!isSCEVable(Op->getType())) 05407 return V; 05408 05409 const SCEV *OrigV = getSCEV(Op); 05410 const SCEV *OpV = getSCEVAtScope(OrigV, L); 05411 MadeImprovement |= OrigV != OpV; 05412 05413 Constant *C = BuildConstantFromSCEV(OpV); 05414 if (!C) return V; 05415 if (C->getType() != Op->getType()) 05416 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 05417 Op->getType(), 05418 false), 05419 C, Op->getType()); 05420 Operands.push_back(C); 05421 } 05422 05423 // Check to see if getSCEVAtScope actually made an improvement. 05424 if (MadeImprovement) { 05425 Constant *C = nullptr; 05426 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 05427 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 05428 Operands[0], Operands[1], DL, 05429 TLI); 05430 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 05431 if (!LI->isVolatile()) 05432 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 05433 } else 05434 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 05435 Operands, DL, TLI); 05436 if (!C) return V; 05437 return getSCEV(C); 05438 } 05439 } 05440 } 05441 05442 // This is some other type of SCEVUnknown, just return it. 05443 return V; 05444 } 05445 05446 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 05447 // Avoid performing the look-up in the common case where the specified 05448 // expression has no loop-variant portions. 05449 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 05450 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 05451 if (OpAtScope != Comm->getOperand(i)) { 05452 // Okay, at least one of these operands is loop variant but might be 05453 // foldable. Build a new instance of the folded commutative expression. 05454 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 05455 Comm->op_begin()+i); 05456 NewOps.push_back(OpAtScope); 05457 05458 for (++i; i != e; ++i) { 05459 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 05460 NewOps.push_back(OpAtScope); 05461 } 05462 if (isa<SCEVAddExpr>(Comm)) 05463 return getAddExpr(NewOps); 05464 if (isa<SCEVMulExpr>(Comm)) 05465 return getMulExpr(NewOps); 05466 if (isa<SCEVSMaxExpr>(Comm)) 05467 return getSMaxExpr(NewOps); 05468 if (isa<SCEVUMaxExpr>(Comm)) 05469 return getUMaxExpr(NewOps); 05470 llvm_unreachable("Unknown commutative SCEV type!"); 05471 } 05472 } 05473 // If we got here, all operands are loop invariant. 05474 return Comm; 05475 } 05476 05477 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 05478 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 05479 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 05480 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 05481 return Div; // must be loop invariant 05482 return getUDivExpr(LHS, RHS); 05483 } 05484 05485 // If this is a loop recurrence for a loop that does not contain L, then we 05486 // are dealing with the final value computed by the loop. 05487 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 05488 // First, attempt to evaluate each operand. 05489 // Avoid performing the look-up in the common case where the specified 05490 // expression has no loop-variant portions. 05491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 05492 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 05493 if (OpAtScope == AddRec->getOperand(i)) 05494 continue; 05495 05496 // Okay, at least one of these operands is loop variant but might be 05497 // foldable. Build a new instance of the folded commutative expression. 05498 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 05499 AddRec->op_begin()+i); 05500 NewOps.push_back(OpAtScope); 05501 for (++i; i != e; ++i) 05502 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 05503 05504 const SCEV *FoldedRec = 05505 getAddRecExpr(NewOps, AddRec->getLoop(), 05506 AddRec->getNoWrapFlags(SCEV::FlagNW)); 05507 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 05508 // The addrec may be folded to a nonrecurrence, for example, if the 05509 // induction variable is multiplied by zero after constant folding. Go 05510 // ahead and return the folded value. 05511 if (!AddRec) 05512 return FoldedRec; 05513 break; 05514 } 05515 05516 // If the scope is outside the addrec's loop, evaluate it by using the 05517 // loop exit value of the addrec. 05518 if (!AddRec->getLoop()->contains(L)) { 05519 // To evaluate this recurrence, we need to know how many times the AddRec 05520 // loop iterates. Compute this now. 05521 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 05522 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 05523 05524 // Then, evaluate the AddRec. 05525 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 05526 } 05527 05528 return AddRec; 05529 } 05530 05531 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 05532 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 05533 if (Op == Cast->getOperand()) 05534 return Cast; // must be loop invariant 05535 return getZeroExtendExpr(Op, Cast->getType()); 05536 } 05537 05538 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 05539 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 05540 if (Op == Cast->getOperand()) 05541 return Cast; // must be loop invariant 05542 return getSignExtendExpr(Op, Cast->getType()); 05543 } 05544 05545 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 05546 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 05547 if (Op == Cast->getOperand()) 05548 return Cast; // must be loop invariant 05549 return getTruncateExpr(Op, Cast->getType()); 05550 } 05551 05552 llvm_unreachable("Unknown SCEV type!"); 05553 } 05554 05555 /// getSCEVAtScope - This is a convenience function which does 05556 /// getSCEVAtScope(getSCEV(V), L). 05557 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 05558 return getSCEVAtScope(getSCEV(V), L); 05559 } 05560 05561 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 05562 /// following equation: 05563 /// 05564 /// A * X = B (mod N) 05565 /// 05566 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 05567 /// A and B isn't important. 05568 /// 05569 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 05570 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 05571 ScalarEvolution &SE) { 05572 uint32_t BW = A.getBitWidth(); 05573 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 05574 assert(A != 0 && "A must be non-zero."); 05575 05576 // 1. D = gcd(A, N) 05577 // 05578 // The gcd of A and N may have only one prime factor: 2. The number of 05579 // trailing zeros in A is its multiplicity 05580 uint32_t Mult2 = A.countTrailingZeros(); 05581 // D = 2^Mult2 05582 05583 // 2. Check if B is divisible by D. 05584 // 05585 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 05586 // is not less than multiplicity of this prime factor for D. 05587 if (B.countTrailingZeros() < Mult2) 05588 return SE.getCouldNotCompute(); 05589 05590 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 05591 // modulo (N / D). 05592 // 05593 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 05594 // bit width during computations. 05595 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 05596 APInt Mod(BW + 1, 0); 05597 Mod.setBit(BW - Mult2); // Mod = N / D 05598 APInt I = AD.multiplicativeInverse(Mod); 05599 05600 // 4. Compute the minimum unsigned root of the equation: 05601 // I * (B / D) mod (N / D) 05602 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 05603 05604 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 05605 // bits. 05606 return SE.getConstant(Result.trunc(BW)); 05607 } 05608 05609 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 05610 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 05611 /// might be the same) or two SCEVCouldNotCompute objects. 05612 /// 05613 static std::pair<const SCEV *,const SCEV *> 05614 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 05615 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 05616 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 05617 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 05618 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 05619 05620 // We currently can only solve this if the coefficients are constants. 05621 if (!LC || !MC || !NC) { 05622 const SCEV *CNC = SE.getCouldNotCompute(); 05623 return std::make_pair(CNC, CNC); 05624 } 05625 05626 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 05627 const APInt &L = LC->getValue()->getValue(); 05628 const APInt &M = MC->getValue()->getValue(); 05629 const APInt &N = NC->getValue()->getValue(); 05630 APInt Two(BitWidth, 2); 05631 APInt Four(BitWidth, 4); 05632 05633 { 05634 using namespace APIntOps; 05635 const APInt& C = L; 05636 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 05637 // The B coefficient is M-N/2 05638 APInt B(M); 05639 B -= sdiv(N,Two); 05640 05641 // The A coefficient is N/2 05642 APInt A(N.sdiv(Two)); 05643 05644 // Compute the B^2-4ac term. 05645 APInt SqrtTerm(B); 05646 SqrtTerm *= B; 05647 SqrtTerm -= Four * (A * C); 05648 05649 if (SqrtTerm.isNegative()) { 05650 // The loop is provably infinite. 05651 const SCEV *CNC = SE.getCouldNotCompute(); 05652 return std::make_pair(CNC, CNC); 05653 } 05654 05655 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 05656 // integer value or else APInt::sqrt() will assert. 05657 APInt SqrtVal(SqrtTerm.sqrt()); 05658 05659 // Compute the two solutions for the quadratic formula. 05660 // The divisions must be performed as signed divisions. 05661 APInt NegB(-B); 05662 APInt TwoA(A << 1); 05663 if (TwoA.isMinValue()) { 05664 const SCEV *CNC = SE.getCouldNotCompute(); 05665 return std::make_pair(CNC, CNC); 05666 } 05667 05668 LLVMContext &Context = SE.getContext(); 05669 05670 ConstantInt *Solution1 = 05671 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 05672 ConstantInt *Solution2 = 05673 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 05674 05675 return std::make_pair(SE.getConstant(Solution1), 05676 SE.getConstant(Solution2)); 05677 } // end APIntOps namespace 05678 } 05679 05680 /// HowFarToZero - Return the number of times a backedge comparing the specified 05681 /// value to zero will execute. If not computable, return CouldNotCompute. 05682 /// 05683 /// This is only used for loops with a "x != y" exit test. The exit condition is 05684 /// now expressed as a single expression, V = x-y. So the exit test is 05685 /// effectively V != 0. We know and take advantage of the fact that this 05686 /// expression only being used in a comparison by zero context. 05687 ScalarEvolution::ExitLimit 05688 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { 05689 // If the value is a constant 05690 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 05691 // If the value is already zero, the branch will execute zero times. 05692 if (C->getValue()->isZero()) return C; 05693 return getCouldNotCompute(); // Otherwise it will loop infinitely. 05694 } 05695 05696 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 05697 if (!AddRec || AddRec->getLoop() != L) 05698 return getCouldNotCompute(); 05699 05700 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 05701 // the quadratic equation to solve it. 05702 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 05703 std::pair<const SCEV *,const SCEV *> Roots = 05704 SolveQuadraticEquation(AddRec, *this); 05705 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 05706 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 05707 if (R1 && R2) { 05708 #if 0 05709 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 05710 << " sol#2: " << *R2 << "\n"; 05711 #endif 05712 // Pick the smallest positive root value. 05713 if (ConstantInt *CB = 05714 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 05715 R1->getValue(), 05716 R2->getValue()))) { 05717 if (CB->getZExtValue() == false) 05718 std::swap(R1, R2); // R1 is the minimum root now. 05719 05720 // We can only use this value if the chrec ends up with an exact zero 05721 // value at this index. When solving for "X*X != 5", for example, we 05722 // should not accept a root of 2. 05723 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 05724 if (Val->isZero()) 05725 return R1; // We found a quadratic root! 05726 } 05727 } 05728 return getCouldNotCompute(); 05729 } 05730 05731 // Otherwise we can only handle this if it is affine. 05732 if (!AddRec->isAffine()) 05733 return getCouldNotCompute(); 05734 05735 // If this is an affine expression, the execution count of this branch is 05736 // the minimum unsigned root of the following equation: 05737 // 05738 // Start + Step*N = 0 (mod 2^BW) 05739 // 05740 // equivalent to: 05741 // 05742 // Step*N = -Start (mod 2^BW) 05743 // 05744 // where BW is the common bit width of Start and Step. 05745 05746 // Get the initial value for the loop. 05747 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 05748 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 05749 05750 // For now we handle only constant steps. 05751 // 05752 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 05753 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 05754 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 05755 // We have not yet seen any such cases. 05756 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 05757 if (!StepC || StepC->getValue()->equalsInt(0)) 05758 return getCouldNotCompute(); 05759 05760 // For positive steps (counting up until unsigned overflow): 05761 // N = -Start/Step (as unsigned) 05762 // For negative steps (counting down to zero): 05763 // N = Start/-Step 05764 // First compute the unsigned distance from zero in the direction of Step. 05765 bool CountDown = StepC->getValue()->getValue().isNegative(); 05766 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 05767 05768 // Handle unitary steps, which cannot wraparound. 05769 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 05770 // N = Distance (as unsigned) 05771 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 05772 ConstantRange CR = getUnsignedRange(Start); 05773 const SCEV *MaxBECount; 05774 if (!CountDown && CR.getUnsignedMin().isMinValue()) 05775 // When counting up, the worst starting value is 1, not 0. 05776 MaxBECount = CR.getUnsignedMax().isMinValue() 05777 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 05778 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 05779 else 05780 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 05781 : -CR.getUnsignedMin()); 05782 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true); 05783 } 05784 05785 // If the recurrence is known not to wraparound, unsigned divide computes the 05786 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know 05787 // that the value will either become zero (and thus the loop terminates), that 05788 // the loop will terminate through some other exit condition first, or that 05789 // the loop has undefined behavior. This means we can't "miss" the exit 05790 // value, even with nonunit stride, and exit later via the same branch. Note 05791 // that we can skip this exit if loop later exits via a different 05792 // branch. Hence MustExit=false. 05793 // 05794 // This is only valid for expressions that directly compute the loop exit. It 05795 // is invalid for subexpressions in which the loop may exit through this 05796 // branch even if this subexpression is false. In that case, the trip count 05797 // computed by this udiv could be smaller than the number of well-defined 05798 // iterations. 05799 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 05800 const SCEV *Exact = 05801 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 05802 return ExitLimit(Exact, Exact, /*MustExit=*/false); 05803 } 05804 05805 // If Step is a power of two that evenly divides Start we know that the loop 05806 // will always terminate. Start may not be a constant so we just have the 05807 // number of trailing zeros available. This is safe even in presence of 05808 // overflow as the recurrence will overflow to exactly 0. 05809 const APInt &StepV = StepC->getValue()->getValue(); 05810 if (StepV.isPowerOf2() && 05811 GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros()) 05812 return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 05813 05814 // Then, try to solve the above equation provided that Start is constant. 05815 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 05816 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 05817 -StartC->getValue()->getValue(), 05818 *this); 05819 return getCouldNotCompute(); 05820 } 05821 05822 /// HowFarToNonZero - Return the number of times a backedge checking the 05823 /// specified value for nonzero will execute. If not computable, return 05824 /// CouldNotCompute 05825 ScalarEvolution::ExitLimit 05826 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 05827 // Loops that look like: while (X == 0) are very strange indeed. We don't 05828 // handle them yet except for the trivial case. This could be expanded in the 05829 // future as needed. 05830 05831 // If the value is a constant, check to see if it is known to be non-zero 05832 // already. If so, the backedge will execute zero times. 05833 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 05834 if (!C->getValue()->isNullValue()) 05835 return getConstant(C->getType(), 0); 05836 return getCouldNotCompute(); // Otherwise it will loop infinitely. 05837 } 05838 05839 // We could implement others, but I really doubt anyone writes loops like 05840 // this, and if they did, they would already be constant folded. 05841 return getCouldNotCompute(); 05842 } 05843 05844 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 05845 /// (which may not be an immediate predecessor) which has exactly one 05846 /// successor from which BB is reachable, or null if no such block is 05847 /// found. 05848 /// 05849 std::pair<BasicBlock *, BasicBlock *> 05850 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 05851 // If the block has a unique predecessor, then there is no path from the 05852 // predecessor to the block that does not go through the direct edge 05853 // from the predecessor to the block. 05854 if (BasicBlock *Pred = BB->getSinglePredecessor()) 05855 return std::make_pair(Pred, BB); 05856 05857 // A loop's header is defined to be a block that dominates the loop. 05858 // If the header has a unique predecessor outside the loop, it must be 05859 // a block that has exactly one successor that can reach the loop. 05860 if (Loop *L = LI->getLoopFor(BB)) 05861 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 05862 05863 return std::pair<BasicBlock *, BasicBlock *>(); 05864 } 05865 05866 /// HasSameValue - SCEV structural equivalence is usually sufficient for 05867 /// testing whether two expressions are equal, however for the purposes of 05868 /// looking for a condition guarding a loop, it can be useful to be a little 05869 /// more general, since a front-end may have replicated the controlling 05870 /// expression. 05871 /// 05872 static bool HasSameValue(const SCEV *A, const SCEV *B) { 05873 // Quick check to see if they are the same SCEV. 05874 if (A == B) return true; 05875 05876 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 05877 // two different instructions with the same value. Check for this case. 05878 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 05879 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 05880 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 05881 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 05882 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 05883 return true; 05884 05885 // Otherwise assume they may have a different value. 05886 return false; 05887 } 05888 05889 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 05890 /// predicate Pred. Return true iff any changes were made. 05891 /// 05892 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 05893 const SCEV *&LHS, const SCEV *&RHS, 05894 unsigned Depth) { 05895 bool Changed = false; 05896 05897 // If we hit the max recursion limit bail out. 05898 if (Depth >= 3) 05899 return false; 05900 05901 // Canonicalize a constant to the right side. 05902 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 05903 // Check for both operands constant. 05904 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 05905 if (ConstantExpr::getICmp(Pred, 05906 LHSC->getValue(), 05907 RHSC->getValue())->isNullValue()) 05908 goto trivially_false; 05909 else 05910 goto trivially_true; 05911 } 05912 // Otherwise swap the operands to put the constant on the right. 05913 std::swap(LHS, RHS); 05914 Pred = ICmpInst::getSwappedPredicate(Pred); 05915 Changed = true; 05916 } 05917 05918 // If we're comparing an addrec with a value which is loop-invariant in the 05919 // addrec's loop, put the addrec on the left. Also make a dominance check, 05920 // as both operands could be addrecs loop-invariant in each other's loop. 05921 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 05922 const Loop *L = AR->getLoop(); 05923 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 05924 std::swap(LHS, RHS); 05925 Pred = ICmpInst::getSwappedPredicate(Pred); 05926 Changed = true; 05927 } 05928 } 05929 05930 // If there's a constant operand, canonicalize comparisons with boundary 05931 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 05932 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 05933 const APInt &RA = RC->getValue()->getValue(); 05934 switch (Pred) { 05935 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 05936 case ICmpInst::ICMP_EQ: 05937 case ICmpInst::ICMP_NE: 05938 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 05939 if (!RA) 05940 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 05941 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 05942 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 05943 ME->getOperand(0)->isAllOnesValue()) { 05944 RHS = AE->getOperand(1); 05945 LHS = ME->getOperand(1); 05946 Changed = true; 05947 } 05948 break; 05949 case ICmpInst::ICMP_UGE: 05950 if ((RA - 1).isMinValue()) { 05951 Pred = ICmpInst::ICMP_NE; 05952 RHS = getConstant(RA - 1); 05953 Changed = true; 05954 break; 05955 } 05956 if (RA.isMaxValue()) { 05957 Pred = ICmpInst::ICMP_EQ; 05958 Changed = true; 05959 break; 05960 } 05961 if (RA.isMinValue()) goto trivially_true; 05962 05963 Pred = ICmpInst::ICMP_UGT; 05964 RHS = getConstant(RA - 1); 05965 Changed = true; 05966 break; 05967 case ICmpInst::ICMP_ULE: 05968 if ((RA + 1).isMaxValue()) { 05969 Pred = ICmpInst::ICMP_NE; 05970 RHS = getConstant(RA + 1); 05971 Changed = true; 05972 break; 05973 } 05974 if (RA.isMinValue()) { 05975 Pred = ICmpInst::ICMP_EQ; 05976 Changed = true; 05977 break; 05978 } 05979 if (RA.isMaxValue()) goto trivially_true; 05980 05981 Pred = ICmpInst::ICMP_ULT; 05982 RHS = getConstant(RA + 1); 05983 Changed = true; 05984 break; 05985 case ICmpInst::ICMP_SGE: 05986 if ((RA - 1).isMinSignedValue()) { 05987 Pred = ICmpInst::ICMP_NE; 05988 RHS = getConstant(RA - 1); 05989 Changed = true; 05990 break; 05991 } 05992 if (RA.isMaxSignedValue()) { 05993 Pred = ICmpInst::ICMP_EQ; 05994 Changed = true; 05995 break; 05996 } 05997 if (RA.isMinSignedValue()) goto trivially_true; 05998 05999 Pred = ICmpInst::ICMP_SGT; 06000 RHS = getConstant(RA - 1); 06001 Changed = true; 06002 break; 06003 case ICmpInst::ICMP_SLE: 06004 if ((RA + 1).isMaxSignedValue()) { 06005 Pred = ICmpInst::ICMP_NE; 06006 RHS = getConstant(RA + 1); 06007 Changed = true; 06008 break; 06009 } 06010 if (RA.isMinSignedValue()) { 06011 Pred = ICmpInst::ICMP_EQ; 06012 Changed = true; 06013 break; 06014 } 06015 if (RA.isMaxSignedValue()) goto trivially_true; 06016 06017 Pred = ICmpInst::ICMP_SLT; 06018 RHS = getConstant(RA + 1); 06019 Changed = true; 06020 break; 06021 case ICmpInst::ICMP_UGT: 06022 if (RA.isMinValue()) { 06023 Pred = ICmpInst::ICMP_NE; 06024 Changed = true; 06025 break; 06026 } 06027 if ((RA + 1).isMaxValue()) { 06028 Pred = ICmpInst::ICMP_EQ; 06029 RHS = getConstant(RA + 1); 06030 Changed = true; 06031 break; 06032 } 06033 if (RA.isMaxValue()) goto trivially_false; 06034 break; 06035 case ICmpInst::ICMP_ULT: 06036 if (RA.isMaxValue()) { 06037 Pred = ICmpInst::ICMP_NE; 06038 Changed = true; 06039 break; 06040 } 06041 if ((RA - 1).isMinValue()) { 06042 Pred = ICmpInst::ICMP_EQ; 06043 RHS = getConstant(RA - 1); 06044 Changed = true; 06045 break; 06046 } 06047 if (RA.isMinValue()) goto trivially_false; 06048 break; 06049 case ICmpInst::ICMP_SGT: 06050 if (RA.isMinSignedValue()) { 06051 Pred = ICmpInst::ICMP_NE; 06052 Changed = true; 06053 break; 06054 } 06055 if ((RA + 1).isMaxSignedValue()) { 06056 Pred = ICmpInst::ICMP_EQ; 06057 RHS = getConstant(RA + 1); 06058 Changed = true; 06059 break; 06060 } 06061 if (RA.isMaxSignedValue()) goto trivially_false; 06062 break; 06063 case ICmpInst::ICMP_SLT: 06064 if (RA.isMaxSignedValue()) { 06065 Pred = ICmpInst::ICMP_NE; 06066 Changed = true; 06067 break; 06068 } 06069 if ((RA - 1).isMinSignedValue()) { 06070 Pred = ICmpInst::ICMP_EQ; 06071 RHS = getConstant(RA - 1); 06072 Changed = true; 06073 break; 06074 } 06075 if (RA.isMinSignedValue()) goto trivially_false; 06076 break; 06077 } 06078 } 06079 06080 // Check for obvious equality. 06081 if (HasSameValue(LHS, RHS)) { 06082 if (ICmpInst::isTrueWhenEqual(Pred)) 06083 goto trivially_true; 06084 if (ICmpInst::isFalseWhenEqual(Pred)) 06085 goto trivially_false; 06086 } 06087 06088 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 06089 // adding or subtracting 1 from one of the operands. 06090 switch (Pred) { 06091 case ICmpInst::ICMP_SLE: 06092 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 06093 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 06094 SCEV::FlagNSW); 06095 Pred = ICmpInst::ICMP_SLT; 06096 Changed = true; 06097 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 06098 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 06099 SCEV::FlagNSW); 06100 Pred = ICmpInst::ICMP_SLT; 06101 Changed = true; 06102 } 06103 break; 06104 case ICmpInst::ICMP_SGE: 06105 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 06106 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 06107 SCEV::FlagNSW); 06108 Pred = ICmpInst::ICMP_SGT; 06109 Changed = true; 06110 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 06111 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 06112 SCEV::FlagNSW); 06113 Pred = ICmpInst::ICMP_SGT; 06114 Changed = true; 06115 } 06116 break; 06117 case ICmpInst::ICMP_ULE: 06118 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 06119 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 06120 SCEV::FlagNUW); 06121 Pred = ICmpInst::ICMP_ULT; 06122 Changed = true; 06123 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 06124 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 06125 SCEV::FlagNUW); 06126 Pred = ICmpInst::ICMP_ULT; 06127 Changed = true; 06128 } 06129 break; 06130 case ICmpInst::ICMP_UGE: 06131 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 06132 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 06133 SCEV::FlagNUW); 06134 Pred = ICmpInst::ICMP_UGT; 06135 Changed = true; 06136 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 06137 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 06138 SCEV::FlagNUW); 06139 Pred = ICmpInst::ICMP_UGT; 06140 Changed = true; 06141 } 06142 break; 06143 default: 06144 break; 06145 } 06146 06147 // TODO: More simplifications are possible here. 06148 06149 // Recursively simplify until we either hit a recursion limit or nothing 06150 // changes. 06151 if (Changed) 06152 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 06153 06154 return Changed; 06155 06156 trivially_true: 06157 // Return 0 == 0. 06158 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 06159 Pred = ICmpInst::ICMP_EQ; 06160 return true; 06161 06162 trivially_false: 06163 // Return 0 != 0. 06164 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 06165 Pred = ICmpInst::ICMP_NE; 06166 return true; 06167 } 06168 06169 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 06170 return getSignedRange(S).getSignedMax().isNegative(); 06171 } 06172 06173 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 06174 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 06175 } 06176 06177 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 06178 return !getSignedRange(S).getSignedMin().isNegative(); 06179 } 06180 06181 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 06182 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 06183 } 06184 06185 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 06186 return isKnownNegative(S) || isKnownPositive(S); 06187 } 06188 06189 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 06190 const SCEV *LHS, const SCEV *RHS) { 06191 // Canonicalize the inputs first. 06192 (void)SimplifyICmpOperands(Pred, LHS, RHS); 06193 06194 // If LHS or RHS is an addrec, check to see if the condition is true in 06195 // every iteration of the loop. 06196 // If LHS and RHS are both addrec, both conditions must be true in 06197 // every iteration of the loop. 06198 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 06199 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 06200 bool LeftGuarded = false; 06201 bool RightGuarded = false; 06202 if (LAR) { 06203 const Loop *L = LAR->getLoop(); 06204 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 06205 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 06206 if (!RAR) return true; 06207 LeftGuarded = true; 06208 } 06209 } 06210 if (RAR) { 06211 const Loop *L = RAR->getLoop(); 06212 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 06213 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 06214 if (!LAR) return true; 06215 RightGuarded = true; 06216 } 06217 } 06218 if (LeftGuarded && RightGuarded) 06219 return true; 06220 06221 // Otherwise see what can be done with known constant ranges. 06222 return isKnownPredicateWithRanges(Pred, LHS, RHS); 06223 } 06224 06225 bool 06226 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 06227 const SCEV *LHS, const SCEV *RHS) { 06228 if (HasSameValue(LHS, RHS)) 06229 return ICmpInst::isTrueWhenEqual(Pred); 06230 06231 // This code is split out from isKnownPredicate because it is called from 06232 // within isLoopEntryGuardedByCond. 06233 switch (Pred) { 06234 default: 06235 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 06236 case ICmpInst::ICMP_SGT: 06237 std::swap(LHS, RHS); 06238 case ICmpInst::ICMP_SLT: { 06239 ConstantRange LHSRange = getSignedRange(LHS); 06240 ConstantRange RHSRange = getSignedRange(RHS); 06241 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 06242 return true; 06243 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 06244 return false; 06245 break; 06246 } 06247 case ICmpInst::ICMP_SGE: 06248 std::swap(LHS, RHS); 06249 case ICmpInst::ICMP_SLE: { 06250 ConstantRange LHSRange = getSignedRange(LHS); 06251 ConstantRange RHSRange = getSignedRange(RHS); 06252 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 06253 return true; 06254 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 06255 return false; 06256 break; 06257 } 06258 case ICmpInst::ICMP_UGT: 06259 std::swap(LHS, RHS); 06260 case ICmpInst::ICMP_ULT: { 06261 ConstantRange LHSRange = getUnsignedRange(LHS); 06262 ConstantRange RHSRange = getUnsignedRange(RHS); 06263 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 06264 return true; 06265 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 06266 return false; 06267 break; 06268 } 06269 case ICmpInst::ICMP_UGE: 06270 std::swap(LHS, RHS); 06271 case ICmpInst::ICMP_ULE: { 06272 ConstantRange LHSRange = getUnsignedRange(LHS); 06273 ConstantRange RHSRange = getUnsignedRange(RHS); 06274 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 06275 return true; 06276 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 06277 return false; 06278 break; 06279 } 06280 case ICmpInst::ICMP_NE: { 06281 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 06282 return true; 06283 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 06284 return true; 06285 06286 const SCEV *Diff = getMinusSCEV(LHS, RHS); 06287 if (isKnownNonZero(Diff)) 06288 return true; 06289 break; 06290 } 06291 case ICmpInst::ICMP_EQ: 06292 // The check at the top of the function catches the case where 06293 // the values are known to be equal. 06294 break; 06295 } 06296 return false; 06297 } 06298 06299 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 06300 /// protected by a conditional between LHS and RHS. This is used to 06301 /// to eliminate casts. 06302 bool 06303 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 06304 ICmpInst::Predicate Pred, 06305 const SCEV *LHS, const SCEV *RHS) { 06306 // Interpret a null as meaning no loop, where there is obviously no guard 06307 // (interprocedural conditions notwithstanding). 06308 if (!L) return true; 06309 06310 BasicBlock *Latch = L->getLoopLatch(); 06311 if (!Latch) 06312 return false; 06313 06314 BranchInst *LoopContinuePredicate = 06315 dyn_cast<BranchInst>(Latch->getTerminator()); 06316 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 06317 isImpliedCond(Pred, LHS, RHS, 06318 LoopContinuePredicate->getCondition(), 06319 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 06320 return true; 06321 06322 // Check conditions due to any @llvm.assume intrinsics. 06323 for (auto &CI : AT->assumptions(F)) { 06324 if (!DT->dominates(CI, Latch->getTerminator())) 06325 continue; 06326 06327 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 06328 return true; 06329 } 06330 06331 return false; 06332 } 06333 06334 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 06335 /// by a conditional between LHS and RHS. This is used to help avoid max 06336 /// expressions in loop trip counts, and to eliminate casts. 06337 bool 06338 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 06339 ICmpInst::Predicate Pred, 06340 const SCEV *LHS, const SCEV *RHS) { 06341 // Interpret a null as meaning no loop, where there is obviously no guard 06342 // (interprocedural conditions notwithstanding). 06343 if (!L) return false; 06344 06345 // Starting at the loop predecessor, climb up the predecessor chain, as long 06346 // as there are predecessors that can be found that have unique successors 06347 // leading to the original header. 06348 for (std::pair<BasicBlock *, BasicBlock *> 06349 Pair(L->getLoopPredecessor(), L->getHeader()); 06350 Pair.first; 06351 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 06352 06353 BranchInst *LoopEntryPredicate = 06354 dyn_cast<BranchInst>(Pair.first->getTerminator()); 06355 if (!LoopEntryPredicate || 06356 LoopEntryPredicate->isUnconditional()) 06357 continue; 06358 06359 if (isImpliedCond(Pred, LHS, RHS, 06360 LoopEntryPredicate->getCondition(), 06361 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 06362 return true; 06363 } 06364 06365 // Check conditions due to any @llvm.assume intrinsics. 06366 for (auto &CI : AT->assumptions(F)) { 06367 if (!DT->dominates(CI, L->getHeader())) 06368 continue; 06369 06370 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 06371 return true; 06372 } 06373 06374 return false; 06375 } 06376 06377 /// RAII wrapper to prevent recursive application of isImpliedCond. 06378 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 06379 /// currently evaluating isImpliedCond. 06380 struct MarkPendingLoopPredicate { 06381 Value *Cond; 06382 DenseSet<Value*> &LoopPreds; 06383 bool Pending; 06384 06385 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 06386 : Cond(C), LoopPreds(LP) { 06387 Pending = !LoopPreds.insert(Cond).second; 06388 } 06389 ~MarkPendingLoopPredicate() { 06390 if (!Pending) 06391 LoopPreds.erase(Cond); 06392 } 06393 }; 06394 06395 /// isImpliedCond - Test whether the condition described by Pred, LHS, 06396 /// and RHS is true whenever the given Cond value evaluates to true. 06397 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 06398 const SCEV *LHS, const SCEV *RHS, 06399 Value *FoundCondValue, 06400 bool Inverse) { 06401 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 06402 if (Mark.Pending) 06403 return false; 06404 06405 // Recursively handle And and Or conditions. 06406 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 06407 if (BO->getOpcode() == Instruction::And) { 06408 if (!Inverse) 06409 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 06410 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 06411 } else if (BO->getOpcode() == Instruction::Or) { 06412 if (Inverse) 06413 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 06414 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 06415 } 06416 } 06417 06418 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 06419 if (!ICI) return false; 06420 06421 // Bail if the ICmp's operands' types are wider than the needed type 06422 // before attempting to call getSCEV on them. This avoids infinite 06423 // recursion, since the analysis of widening casts can require loop 06424 // exit condition information for overflow checking, which would 06425 // lead back here. 06426 if (getTypeSizeInBits(LHS->getType()) < 06427 getTypeSizeInBits(ICI->getOperand(0)->getType())) 06428 return false; 06429 06430 // Now that we found a conditional branch that dominates the loop or controls 06431 // the loop latch. Check to see if it is the comparison we are looking for. 06432 ICmpInst::Predicate FoundPred; 06433 if (Inverse) 06434 FoundPred = ICI->getInversePredicate(); 06435 else 06436 FoundPred = ICI->getPredicate(); 06437 06438 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 06439 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 06440 06441 // Balance the types. The case where FoundLHS' type is wider than 06442 // LHS' type is checked for above. 06443 if (getTypeSizeInBits(LHS->getType()) > 06444 getTypeSizeInBits(FoundLHS->getType())) { 06445 if (CmpInst::isSigned(FoundPred)) { 06446 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 06447 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 06448 } else { 06449 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 06450 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 06451 } 06452 } 06453 06454 // Canonicalize the query to match the way instcombine will have 06455 // canonicalized the comparison. 06456 if (SimplifyICmpOperands(Pred, LHS, RHS)) 06457 if (LHS == RHS) 06458 return CmpInst::isTrueWhenEqual(Pred); 06459 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 06460 if (FoundLHS == FoundRHS) 06461 return CmpInst::isFalseWhenEqual(FoundPred); 06462 06463 // Check to see if we can make the LHS or RHS match. 06464 if (LHS == FoundRHS || RHS == FoundLHS) { 06465 if (isa<SCEVConstant>(RHS)) { 06466 std::swap(FoundLHS, FoundRHS); 06467 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 06468 } else { 06469 std::swap(LHS, RHS); 06470 Pred = ICmpInst::getSwappedPredicate(Pred); 06471 } 06472 } 06473 06474 // Check whether the found predicate is the same as the desired predicate. 06475 if (FoundPred == Pred) 06476 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 06477 06478 // Check whether swapping the found predicate makes it the same as the 06479 // desired predicate. 06480 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 06481 if (isa<SCEVConstant>(RHS)) 06482 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 06483 else 06484 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 06485 RHS, LHS, FoundLHS, FoundRHS); 06486 } 06487 06488 // Check whether the actual condition is beyond sufficient. 06489 if (FoundPred == ICmpInst::ICMP_EQ) 06490 if (ICmpInst::isTrueWhenEqual(Pred)) 06491 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 06492 return true; 06493 if (Pred == ICmpInst::ICMP_NE) 06494 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 06495 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 06496 return true; 06497 06498 // Otherwise assume the worst. 06499 return false; 06500 } 06501 06502 /// isImpliedCondOperands - Test whether the condition described by Pred, 06503 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 06504 /// and FoundRHS is true. 06505 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 06506 const SCEV *LHS, const SCEV *RHS, 06507 const SCEV *FoundLHS, 06508 const SCEV *FoundRHS) { 06509 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 06510 FoundLHS, FoundRHS) || 06511 // ~x < ~y --> x > y 06512 isImpliedCondOperandsHelper(Pred, LHS, RHS, 06513 getNotSCEV(FoundRHS), 06514 getNotSCEV(FoundLHS)); 06515 } 06516 06517 /// isImpliedCondOperandsHelper - Test whether the condition described by 06518 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 06519 /// FoundLHS, and FoundRHS is true. 06520 bool 06521 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 06522 const SCEV *LHS, const SCEV *RHS, 06523 const SCEV *FoundLHS, 06524 const SCEV *FoundRHS) { 06525 switch (Pred) { 06526 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 06527 case ICmpInst::ICMP_EQ: 06528 case ICmpInst::ICMP_NE: 06529 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 06530 return true; 06531 break; 06532 case ICmpInst::ICMP_SLT: 06533 case ICmpInst::ICMP_SLE: 06534 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 06535 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 06536 return true; 06537 break; 06538 case ICmpInst::ICMP_SGT: 06539 case ICmpInst::ICMP_SGE: 06540 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 06541 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 06542 return true; 06543 break; 06544 case ICmpInst::ICMP_ULT: 06545 case ICmpInst::ICMP_ULE: 06546 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 06547 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 06548 return true; 06549 break; 06550 case ICmpInst::ICMP_UGT: 06551 case ICmpInst::ICMP_UGE: 06552 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 06553 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 06554 return true; 06555 break; 06556 } 06557 06558 return false; 06559 } 06560 06561 // Verify if an linear IV with positive stride can overflow when in a 06562 // less-than comparison, knowing the invariant term of the comparison, the 06563 // stride and the knowledge of NSW/NUW flags on the recurrence. 06564 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 06565 bool IsSigned, bool NoWrap) { 06566 if (NoWrap) return false; 06567 06568 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 06569 const SCEV *One = getConstant(Stride->getType(), 1); 06570 06571 if (IsSigned) { 06572 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 06573 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 06574 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 06575 .getSignedMax(); 06576 06577 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 06578 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 06579 } 06580 06581 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 06582 APInt MaxValue = APInt::getMaxValue(BitWidth); 06583 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 06584 .getUnsignedMax(); 06585 06586 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 06587 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 06588 } 06589 06590 // Verify if an linear IV with negative stride can overflow when in a 06591 // greater-than comparison, knowing the invariant term of the comparison, 06592 // the stride and the knowledge of NSW/NUW flags on the recurrence. 06593 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 06594 bool IsSigned, bool NoWrap) { 06595 if (NoWrap) return false; 06596 06597 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 06598 const SCEV *One = getConstant(Stride->getType(), 1); 06599 06600 if (IsSigned) { 06601 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 06602 APInt MinValue = APInt::getSignedMinValue(BitWidth); 06603 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 06604 .getSignedMax(); 06605 06606 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 06607 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 06608 } 06609 06610 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 06611 APInt MinValue = APInt::getMinValue(BitWidth); 06612 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 06613 .getUnsignedMax(); 06614 06615 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 06616 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 06617 } 06618 06619 // Compute the backedge taken count knowing the interval difference, the 06620 // stride and presence of the equality in the comparison. 06621 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 06622 bool Equality) { 06623 const SCEV *One = getConstant(Step->getType(), 1); 06624 Delta = Equality ? getAddExpr(Delta, Step) 06625 : getAddExpr(Delta, getMinusSCEV(Step, One)); 06626 return getUDivExpr(Delta, Step); 06627 } 06628 06629 /// HowManyLessThans - Return the number of times a backedge containing the 06630 /// specified less-than comparison will execute. If not computable, return 06631 /// CouldNotCompute. 06632 /// 06633 /// @param IsSubExpr is true when the LHS < RHS condition does not directly 06634 /// control the branch. In this case, we can only compute an iteration count for 06635 /// a subexpression that cannot overflow before evaluating true. 06636 ScalarEvolution::ExitLimit 06637 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 06638 const Loop *L, bool IsSigned, 06639 bool IsSubExpr) { 06640 // We handle only IV < Invariant 06641 if (!isLoopInvariant(RHS, L)) 06642 return getCouldNotCompute(); 06643 06644 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 06645 06646 // Avoid weird loops 06647 if (!IV || IV->getLoop() != L || !IV->isAffine()) 06648 return getCouldNotCompute(); 06649 06650 bool NoWrap = !IsSubExpr && 06651 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 06652 06653 const SCEV *Stride = IV->getStepRecurrence(*this); 06654 06655 // Avoid negative or zero stride values 06656 if (!isKnownPositive(Stride)) 06657 return getCouldNotCompute(); 06658 06659 // Avoid proven overflow cases: this will ensure that the backedge taken count 06660 // will not generate any unsigned overflow. Relaxed no-overflow conditions 06661 // exploit NoWrapFlags, allowing to optimize in presence of undefined 06662 // behaviors like the case of C language. 06663 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 06664 return getCouldNotCompute(); 06665 06666 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 06667 : ICmpInst::ICMP_ULT; 06668 const SCEV *Start = IV->getStart(); 06669 const SCEV *End = RHS; 06670 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 06671 End = IsSigned ? getSMaxExpr(RHS, Start) 06672 : getUMaxExpr(RHS, Start); 06673 06674 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 06675 06676 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 06677 : getUnsignedRange(Start).getUnsignedMin(); 06678 06679 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 06680 : getUnsignedRange(Stride).getUnsignedMin(); 06681 06682 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 06683 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 06684 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 06685 06686 // Although End can be a MAX expression we estimate MaxEnd considering only 06687 // the case End = RHS. This is safe because in the other case (End - Start) 06688 // is zero, leading to a zero maximum backedge taken count. 06689 APInt MaxEnd = 06690 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 06691 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 06692 06693 const SCEV *MaxBECount; 06694 if (isa<SCEVConstant>(BECount)) 06695 MaxBECount = BECount; 06696 else 06697 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 06698 getConstant(MinStride), false); 06699 06700 if (isa<SCEVCouldNotCompute>(MaxBECount)) 06701 MaxBECount = BECount; 06702 06703 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 06704 } 06705 06706 ScalarEvolution::ExitLimit 06707 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 06708 const Loop *L, bool IsSigned, 06709 bool IsSubExpr) { 06710 // We handle only IV > Invariant 06711 if (!isLoopInvariant(RHS, L)) 06712 return getCouldNotCompute(); 06713 06714 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 06715 06716 // Avoid weird loops 06717 if (!IV || IV->getLoop() != L || !IV->isAffine()) 06718 return getCouldNotCompute(); 06719 06720 bool NoWrap = !IsSubExpr && 06721 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 06722 06723 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 06724 06725 // Avoid negative or zero stride values 06726 if (!isKnownPositive(Stride)) 06727 return getCouldNotCompute(); 06728 06729 // Avoid proven overflow cases: this will ensure that the backedge taken count 06730 // will not generate any unsigned overflow. Relaxed no-overflow conditions 06731 // exploit NoWrapFlags, allowing to optimize in presence of undefined 06732 // behaviors like the case of C language. 06733 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 06734 return getCouldNotCompute(); 06735 06736 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 06737 : ICmpInst::ICMP_UGT; 06738 06739 const SCEV *Start = IV->getStart(); 06740 const SCEV *End = RHS; 06741 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 06742 End = IsSigned ? getSMinExpr(RHS, Start) 06743 : getUMinExpr(RHS, Start); 06744 06745 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 06746 06747 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 06748 : getUnsignedRange(Start).getUnsignedMax(); 06749 06750 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 06751 : getUnsignedRange(Stride).getUnsignedMin(); 06752 06753 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 06754 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 06755 : APInt::getMinValue(BitWidth) + (MinStride - 1); 06756 06757 // Although End can be a MIN expression we estimate MinEnd considering only 06758 // the case End = RHS. This is safe because in the other case (Start - End) 06759 // is zero, leading to a zero maximum backedge taken count. 06760 APInt MinEnd = 06761 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 06762 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 06763 06764 06765 const SCEV *MaxBECount = getCouldNotCompute(); 06766 if (isa<SCEVConstant>(BECount)) 06767 MaxBECount = BECount; 06768 else 06769 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 06770 getConstant(MinStride), false); 06771 06772 if (isa<SCEVCouldNotCompute>(MaxBECount)) 06773 MaxBECount = BECount; 06774 06775 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 06776 } 06777 06778 /// getNumIterationsInRange - Return the number of iterations of this loop that 06779 /// produce values in the specified constant range. Another way of looking at 06780 /// this is that it returns the first iteration number where the value is not in 06781 /// the condition, thus computing the exit count. If the iteration count can't 06782 /// be computed, an instance of SCEVCouldNotCompute is returned. 06783 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 06784 ScalarEvolution &SE) const { 06785 if (Range.isFullSet()) // Infinite loop. 06786 return SE.getCouldNotCompute(); 06787 06788 // If the start is a non-zero constant, shift the range to simplify things. 06789 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 06790 if (!SC->getValue()->isZero()) { 06791 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 06792 Operands[0] = SE.getConstant(SC->getType(), 0); 06793 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 06794 getNoWrapFlags(FlagNW)); 06795 if (const SCEVAddRecExpr *ShiftedAddRec = 06796 dyn_cast<SCEVAddRecExpr>(Shifted)) 06797 return ShiftedAddRec->getNumIterationsInRange( 06798 Range.subtract(SC->getValue()->getValue()), SE); 06799 // This is strange and shouldn't happen. 06800 return SE.getCouldNotCompute(); 06801 } 06802 06803 // The only time we can solve this is when we have all constant indices. 06804 // Otherwise, we cannot determine the overflow conditions. 06805 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 06806 if (!isa<SCEVConstant>(getOperand(i))) 06807 return SE.getCouldNotCompute(); 06808 06809 06810 // Okay at this point we know that all elements of the chrec are constants and 06811 // that the start element is zero. 06812 06813 // First check to see if the range contains zero. If not, the first 06814 // iteration exits. 06815 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 06816 if (!Range.contains(APInt(BitWidth, 0))) 06817 return SE.getConstant(getType(), 0); 06818 06819 if (isAffine()) { 06820 // If this is an affine expression then we have this situation: 06821 // Solve {0,+,A} in Range === Ax in Range 06822 06823 // We know that zero is in the range. If A is positive then we know that 06824 // the upper value of the range must be the first possible exit value. 06825 // If A is negative then the lower of the range is the last possible loop 06826 // value. Also note that we already checked for a full range. 06827 APInt One(BitWidth,1); 06828 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 06829 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 06830 06831 // The exit value should be (End+A)/A. 06832 APInt ExitVal = (End + A).udiv(A); 06833 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 06834 06835 // Evaluate at the exit value. If we really did fall out of the valid 06836 // range, then we computed our trip count, otherwise wrap around or other 06837 // things must have happened. 06838 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 06839 if (Range.contains(Val->getValue())) 06840 return SE.getCouldNotCompute(); // Something strange happened 06841 06842 // Ensure that the previous value is in the range. This is a sanity check. 06843 assert(Range.contains( 06844 EvaluateConstantChrecAtConstant(this, 06845 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 06846 "Linear scev computation is off in a bad way!"); 06847 return SE.getConstant(ExitValue); 06848 } else if (isQuadratic()) { 06849 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 06850 // quadratic equation to solve it. To do this, we must frame our problem in 06851 // terms of figuring out when zero is crossed, instead of when 06852 // Range.getUpper() is crossed. 06853 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 06854 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 06855 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 06856 // getNoWrapFlags(FlagNW) 06857 FlagAnyWrap); 06858 06859 // Next, solve the constructed addrec 06860 std::pair<const SCEV *,const SCEV *> Roots = 06861 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 06862 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 06863 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 06864 if (R1) { 06865 // Pick the smallest positive root value. 06866 if (ConstantInt *CB = 06867 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 06868 R1->getValue(), R2->getValue()))) { 06869 if (CB->getZExtValue() == false) 06870 std::swap(R1, R2); // R1 is the minimum root now. 06871 06872 // Make sure the root is not off by one. The returned iteration should 06873 // not be in the range, but the previous one should be. When solving 06874 // for "X*X < 5", for example, we should not return a root of 2. 06875 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 06876 R1->getValue(), 06877 SE); 06878 if (Range.contains(R1Val->getValue())) { 06879 // The next iteration must be out of the range... 06880 ConstantInt *NextVal = 06881 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 06882 06883 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 06884 if (!Range.contains(R1Val->getValue())) 06885 return SE.getConstant(NextVal); 06886 return SE.getCouldNotCompute(); // Something strange happened 06887 } 06888 06889 // If R1 was not in the range, then it is a good return value. Make 06890 // sure that R1-1 WAS in the range though, just in case. 06891 ConstantInt *NextVal = 06892 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 06893 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 06894 if (Range.contains(R1Val->getValue())) 06895 return R1; 06896 return SE.getCouldNotCompute(); // Something strange happened 06897 } 06898 } 06899 } 06900 06901 return SE.getCouldNotCompute(); 06902 } 06903 06904 namespace { 06905 struct FindUndefs { 06906 bool Found; 06907 FindUndefs() : Found(false) {} 06908 06909 bool follow(const SCEV *S) { 06910 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 06911 if (isa<UndefValue>(C->getValue())) 06912 Found = true; 06913 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 06914 if (isa<UndefValue>(C->getValue())) 06915 Found = true; 06916 } 06917 06918 // Keep looking if we haven't found it yet. 06919 return !Found; 06920 } 06921 bool isDone() const { 06922 // Stop recursion if we have found an undef. 06923 return Found; 06924 } 06925 }; 06926 } 06927 06928 // Return true when S contains at least an undef value. 06929 static inline bool 06930 containsUndefs(const SCEV *S) { 06931 FindUndefs F; 06932 SCEVTraversal<FindUndefs> ST(F); 06933 ST.visitAll(S); 06934 06935 return F.Found; 06936 } 06937 06938 namespace { 06939 // Collect all steps of SCEV expressions. 06940 struct SCEVCollectStrides { 06941 ScalarEvolution &SE; 06942 SmallVectorImpl<const SCEV *> &Strides; 06943 06944 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 06945 : SE(SE), Strides(S) {} 06946 06947 bool follow(const SCEV *S) { 06948 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 06949 Strides.push_back(AR->getStepRecurrence(SE)); 06950 return true; 06951 } 06952 bool isDone() const { return false; } 06953 }; 06954 06955 // Collect all SCEVUnknown and SCEVMulExpr expressions. 06956 struct SCEVCollectTerms { 06957 SmallVectorImpl<const SCEV *> &Terms; 06958 06959 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 06960 : Terms(T) {} 06961 06962 bool follow(const SCEV *S) { 06963 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 06964 if (!containsUndefs(S)) 06965 Terms.push_back(S); 06966 06967 // Stop recursion: once we collected a term, do not walk its operands. 06968 return false; 06969 } 06970 06971 // Keep looking. 06972 return true; 06973 } 06974 bool isDone() const { return false; } 06975 }; 06976 } 06977 06978 /// Find parametric terms in this SCEVAddRecExpr. 06979 void SCEVAddRecExpr::collectParametricTerms( 06980 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const { 06981 SmallVector<const SCEV *, 4> Strides; 06982 SCEVCollectStrides StrideCollector(SE, Strides); 06983 visitAll(this, StrideCollector); 06984 06985 DEBUG({ 06986 dbgs() << "Strides:\n"; 06987 for (const SCEV *S : Strides) 06988 dbgs() << *S << "\n"; 06989 }); 06990 06991 for (const SCEV *S : Strides) { 06992 SCEVCollectTerms TermCollector(Terms); 06993 visitAll(S, TermCollector); 06994 } 06995 06996 DEBUG({ 06997 dbgs() << "Terms:\n"; 06998 for (const SCEV *T : Terms) 06999 dbgs() << *T << "\n"; 07000 }); 07001 } 07002 07003 static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) { 07004 APInt A = C1->getValue()->getValue(); 07005 APInt B = C2->getValue()->getValue(); 07006 uint32_t ABW = A.getBitWidth(); 07007 uint32_t BBW = B.getBitWidth(); 07008 07009 if (ABW > BBW) 07010 B = B.sext(ABW); 07011 else if (ABW < BBW) 07012 A = A.sext(BBW); 07013 07014 return APIntOps::srem(A, B); 07015 } 07016 07017 static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) { 07018 APInt A = C1->getValue()->getValue(); 07019 APInt B = C2->getValue()->getValue(); 07020 uint32_t ABW = A.getBitWidth(); 07021 uint32_t BBW = B.getBitWidth(); 07022 07023 if (ABW > BBW) 07024 B = B.sext(ABW); 07025 else if (ABW < BBW) 07026 A = A.sext(BBW); 07027 07028 return APIntOps::sdiv(A, B); 07029 } 07030 07031 namespace { 07032 struct FindSCEVSize { 07033 int Size; 07034 FindSCEVSize() : Size(0) {} 07035 07036 bool follow(const SCEV *S) { 07037 ++Size; 07038 // Keep looking at all operands of S. 07039 return true; 07040 } 07041 bool isDone() const { 07042 return false; 07043 } 07044 }; 07045 } 07046 07047 // Returns the size of the SCEV S. 07048 static inline int sizeOfSCEV(const SCEV *S) { 07049 FindSCEVSize F; 07050 SCEVTraversal<FindSCEVSize> ST(F); 07051 ST.visitAll(S); 07052 return F.Size; 07053 } 07054 07055 namespace { 07056 07057 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 07058 public: 07059 // Computes the Quotient and Remainder of the division of Numerator by 07060 // Denominator. 07061 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 07062 const SCEV *Denominator, const SCEV **Quotient, 07063 const SCEV **Remainder) { 07064 assert(Numerator && Denominator && "Uninitialized SCEV"); 07065 07066 SCEVDivision D(SE, Numerator, Denominator); 07067 07068 // Check for the trivial case here to avoid having to check for it in the 07069 // rest of the code. 07070 if (Numerator == Denominator) { 07071 *Quotient = D.One; 07072 *Remainder = D.Zero; 07073 return; 07074 } 07075 07076 if (Numerator->isZero()) { 07077 *Quotient = D.Zero; 07078 *Remainder = D.Zero; 07079 return; 07080 } 07081 07082 // Split the Denominator when it is a product. 07083 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 07084 const SCEV *Q, *R; 07085 *Quotient = Numerator; 07086 for (const SCEV *Op : T->operands()) { 07087 divide(SE, *Quotient, Op, &Q, &R); 07088 *Quotient = Q; 07089 07090 // Bail out when the Numerator is not divisible by one of the terms of 07091 // the Denominator. 07092 if (!R->isZero()) { 07093 *Quotient = D.Zero; 07094 *Remainder = Numerator; 07095 return; 07096 } 07097 } 07098 *Remainder = D.Zero; 07099 return; 07100 } 07101 07102 D.visit(Numerator); 07103 *Quotient = D.Quotient; 07104 *Remainder = D.Remainder; 07105 } 07106 07107 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator) 07108 : SE(S), Denominator(Denominator) { 07109 Zero = SE.getConstant(Denominator->getType(), 0); 07110 One = SE.getConstant(Denominator->getType(), 1); 07111 07112 // By default, we don't know how to divide Expr by Denominator. 07113 // Providing the default here simplifies the rest of the code. 07114 Quotient = Zero; 07115 Remainder = Numerator; 07116 } 07117 07118 // Except in the trivial case described above, we do not know how to divide 07119 // Expr by Denominator for the following functions with empty implementation. 07120 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 07121 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 07122 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 07123 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 07124 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 07125 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 07126 void visitUnknown(const SCEVUnknown *Numerator) {} 07127 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 07128 07129 void visitConstant(const SCEVConstant *Numerator) { 07130 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 07131 Quotient = SE.getConstant(sdiv(Numerator, D)); 07132 Remainder = SE.getConstant(srem(Numerator, D)); 07133 return; 07134 } 07135 } 07136 07137 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 07138 const SCEV *StartQ, *StartR, *StepQ, *StepR; 07139 assert(Numerator->isAffine() && "Numerator should be affine"); 07140 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 07141 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 07142 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 07143 Numerator->getNoWrapFlags()); 07144 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 07145 Numerator->getNoWrapFlags()); 07146 } 07147 07148 void visitAddExpr(const SCEVAddExpr *Numerator) { 07149 SmallVector<const SCEV *, 2> Qs, Rs; 07150 Type *Ty = Denominator->getType(); 07151 07152 for (const SCEV *Op : Numerator->operands()) { 07153 const SCEV *Q, *R; 07154 divide(SE, Op, Denominator, &Q, &R); 07155 07156 // Bail out if types do not match. 07157 if (Ty != Q->getType() || Ty != R->getType()) { 07158 Quotient = Zero; 07159 Remainder = Numerator; 07160 return; 07161 } 07162 07163 Qs.push_back(Q); 07164 Rs.push_back(R); 07165 } 07166 07167 if (Qs.size() == 1) { 07168 Quotient = Qs[0]; 07169 Remainder = Rs[0]; 07170 return; 07171 } 07172 07173 Quotient = SE.getAddExpr(Qs); 07174 Remainder = SE.getAddExpr(Rs); 07175 } 07176 07177 void visitMulExpr(const SCEVMulExpr *Numerator) { 07178 SmallVector<const SCEV *, 2> Qs; 07179 Type *Ty = Denominator->getType(); 07180 07181 bool FoundDenominatorTerm = false; 07182 for (const SCEV *Op : Numerator->operands()) { 07183 // Bail out if types do not match. 07184 if (Ty != Op->getType()) { 07185 Quotient = Zero; 07186 Remainder = Numerator; 07187 return; 07188 } 07189 07190 if (FoundDenominatorTerm) { 07191 Qs.push_back(Op); 07192 continue; 07193 } 07194 07195 // Check whether Denominator divides one of the product operands. 07196 const SCEV *Q, *R; 07197 divide(SE, Op, Denominator, &Q, &R); 07198 if (!R->isZero()) { 07199 Qs.push_back(Op); 07200 continue; 07201 } 07202 07203 // Bail out if types do not match. 07204 if (Ty != Q->getType()) { 07205 Quotient = Zero; 07206 Remainder = Numerator; 07207 return; 07208 } 07209 07210 FoundDenominatorTerm = true; 07211 Qs.push_back(Q); 07212 } 07213 07214 if (FoundDenominatorTerm) { 07215 Remainder = Zero; 07216 if (Qs.size() == 1) 07217 Quotient = Qs[0]; 07218 else 07219 Quotient = SE.getMulExpr(Qs); 07220 return; 07221 } 07222 07223 if (!isa<SCEVUnknown>(Denominator)) { 07224 Quotient = Zero; 07225 Remainder = Numerator; 07226 return; 07227 } 07228 07229 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 07230 ValueToValueMap RewriteMap; 07231 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 07232 cast<SCEVConstant>(Zero)->getValue(); 07233 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 07234 07235 if (Remainder->isZero()) { 07236 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 07237 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 07238 cast<SCEVConstant>(One)->getValue(); 07239 Quotient = 07240 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 07241 return; 07242 } 07243 07244 // Quotient is (Numerator - Remainder) divided by Denominator. 07245 const SCEV *Q, *R; 07246 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 07247 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { 07248 // This SCEV does not seem to simplify: fail the division here. 07249 Quotient = Zero; 07250 Remainder = Numerator; 07251 return; 07252 } 07253 divide(SE, Diff, Denominator, &Q, &R); 07254 assert(R == Zero && 07255 "(Numerator - Remainder) should evenly divide Denominator"); 07256 Quotient = Q; 07257 } 07258 07259 private: 07260 ScalarEvolution &SE; 07261 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 07262 }; 07263 } 07264 07265 static bool findArrayDimensionsRec(ScalarEvolution &SE, 07266 SmallVectorImpl<const SCEV *> &Terms, 07267 SmallVectorImpl<const SCEV *> &Sizes) { 07268 int Last = Terms.size() - 1; 07269 const SCEV *Step = Terms[Last]; 07270 07271 // End of recursion. 07272 if (Last == 0) { 07273 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 07274 SmallVector<const SCEV *, 2> Qs; 07275 for (const SCEV *Op : M->operands()) 07276 if (!isa<SCEVConstant>(Op)) 07277 Qs.push_back(Op); 07278 07279 Step = SE.getMulExpr(Qs); 07280 } 07281 07282 Sizes.push_back(Step); 07283 return true; 07284 } 07285 07286 for (const SCEV *&Term : Terms) { 07287 // Normalize the terms before the next call to findArrayDimensionsRec. 07288 const SCEV *Q, *R; 07289 SCEVDivision::divide(SE, Term, Step, &Q, &R); 07290 07291 // Bail out when GCD does not evenly divide one of the terms. 07292 if (!R->isZero()) 07293 return false; 07294 07295 Term = Q; 07296 } 07297 07298 // Remove all SCEVConstants. 07299 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 07300 return isa<SCEVConstant>(E); 07301 }), 07302 Terms.end()); 07303 07304 if (Terms.size() > 0) 07305 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 07306 return false; 07307 07308 Sizes.push_back(Step); 07309 return true; 07310 } 07311 07312 namespace { 07313 struct FindParameter { 07314 bool FoundParameter; 07315 FindParameter() : FoundParameter(false) {} 07316 07317 bool follow(const SCEV *S) { 07318 if (isa<SCEVUnknown>(S)) { 07319 FoundParameter = true; 07320 // Stop recursion: we found a parameter. 07321 return false; 07322 } 07323 // Keep looking. 07324 return true; 07325 } 07326 bool isDone() const { 07327 // Stop recursion if we have found a parameter. 07328 return FoundParameter; 07329 } 07330 }; 07331 } 07332 07333 // Returns true when S contains at least a SCEVUnknown parameter. 07334 static inline bool 07335 containsParameters(const SCEV *S) { 07336 FindParameter F; 07337 SCEVTraversal<FindParameter> ST(F); 07338 ST.visitAll(S); 07339 07340 return F.FoundParameter; 07341 } 07342 07343 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 07344 static inline bool 07345 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 07346 for (const SCEV *T : Terms) 07347 if (containsParameters(T)) 07348 return true; 07349 return false; 07350 } 07351 07352 // Return the number of product terms in S. 07353 static inline int numberOfTerms(const SCEV *S) { 07354 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 07355 return Expr->getNumOperands(); 07356 return 1; 07357 } 07358 07359 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 07360 if (isa<SCEVConstant>(T)) 07361 return nullptr; 07362 07363 if (isa<SCEVUnknown>(T)) 07364 return T; 07365 07366 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 07367 SmallVector<const SCEV *, 2> Factors; 07368 for (const SCEV *Op : M->operands()) 07369 if (!isa<SCEVConstant>(Op)) 07370 Factors.push_back(Op); 07371 07372 return SE.getMulExpr(Factors); 07373 } 07374 07375 return T; 07376 } 07377 07378 /// Return the size of an element read or written by Inst. 07379 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 07380 Type *Ty; 07381 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 07382 Ty = Store->getValueOperand()->getType(); 07383 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 07384 Ty = Load->getType(); 07385 else 07386 return nullptr; 07387 07388 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 07389 return getSizeOfExpr(ETy, Ty); 07390 } 07391 07392 /// Second step of delinearization: compute the array dimensions Sizes from the 07393 /// set of Terms extracted from the memory access function of this SCEVAddRec. 07394 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 07395 SmallVectorImpl<const SCEV *> &Sizes, 07396 const SCEV *ElementSize) const { 07397 07398 if (Terms.size() < 1 || !ElementSize) 07399 return; 07400 07401 // Early return when Terms do not contain parameters: we do not delinearize 07402 // non parametric SCEVs. 07403 if (!containsParameters(Terms)) 07404 return; 07405 07406 DEBUG({ 07407 dbgs() << "Terms:\n"; 07408 for (const SCEV *T : Terms) 07409 dbgs() << *T << "\n"; 07410 }); 07411 07412 // Remove duplicates. 07413 std::sort(Terms.begin(), Terms.end()); 07414 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 07415 07416 // Put larger terms first. 07417 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 07418 return numberOfTerms(LHS) > numberOfTerms(RHS); 07419 }); 07420 07421 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 07422 07423 // Divide all terms by the element size. 07424 for (const SCEV *&Term : Terms) { 07425 const SCEV *Q, *R; 07426 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 07427 Term = Q; 07428 } 07429 07430 SmallVector<const SCEV *, 4> NewTerms; 07431 07432 // Remove constant factors. 07433 for (const SCEV *T : Terms) 07434 if (const SCEV *NewT = removeConstantFactors(SE, T)) 07435 NewTerms.push_back(NewT); 07436 07437 DEBUG({ 07438 dbgs() << "Terms after sorting:\n"; 07439 for (const SCEV *T : NewTerms) 07440 dbgs() << *T << "\n"; 07441 }); 07442 07443 if (NewTerms.empty() || 07444 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 07445 Sizes.clear(); 07446 return; 07447 } 07448 07449 // The last element to be pushed into Sizes is the size of an element. 07450 Sizes.push_back(ElementSize); 07451 07452 DEBUG({ 07453 dbgs() << "Sizes:\n"; 07454 for (const SCEV *S : Sizes) 07455 dbgs() << *S << "\n"; 07456 }); 07457 } 07458 07459 /// Third step of delinearization: compute the access functions for the 07460 /// Subscripts based on the dimensions in Sizes. 07461 void SCEVAddRecExpr::computeAccessFunctions( 07462 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts, 07463 SmallVectorImpl<const SCEV *> &Sizes) const { 07464 07465 // Early exit in case this SCEV is not an affine multivariate function. 07466 if (Sizes.empty() || !this->isAffine()) 07467 return; 07468 07469 const SCEV *Res = this; 07470 int Last = Sizes.size() - 1; 07471 for (int i = Last; i >= 0; i--) { 07472 const SCEV *Q, *R; 07473 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R); 07474 07475 DEBUG({ 07476 dbgs() << "Res: " << *Res << "\n"; 07477 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 07478 dbgs() << "Res divided by Sizes[i]:\n"; 07479 dbgs() << "Quotient: " << *Q << "\n"; 07480 dbgs() << "Remainder: " << *R << "\n"; 07481 }); 07482 07483 Res = Q; 07484 07485 // Do not record the last subscript corresponding to the size of elements in 07486 // the array. 07487 if (i == Last) { 07488 07489 // Bail out if the remainder is too complex. 07490 if (isa<SCEVAddRecExpr>(R)) { 07491 Subscripts.clear(); 07492 Sizes.clear(); 07493 return; 07494 } 07495 07496 continue; 07497 } 07498 07499 // Record the access function for the current subscript. 07500 Subscripts.push_back(R); 07501 } 07502 07503 // Also push in last position the remainder of the last division: it will be 07504 // the access function of the innermost dimension. 07505 Subscripts.push_back(Res); 07506 07507 std::reverse(Subscripts.begin(), Subscripts.end()); 07508 07509 DEBUG({ 07510 dbgs() << "Subscripts:\n"; 07511 for (const SCEV *S : Subscripts) 07512 dbgs() << *S << "\n"; 07513 }); 07514 } 07515 07516 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 07517 /// sizes of an array access. Returns the remainder of the delinearization that 07518 /// is the offset start of the array. The SCEV->delinearize algorithm computes 07519 /// the multiples of SCEV coefficients: that is a pattern matching of sub 07520 /// expressions in the stride and base of a SCEV corresponding to the 07521 /// computation of a GCD (greatest common divisor) of base and stride. When 07522 /// SCEV->delinearize fails, it returns the SCEV unchanged. 07523 /// 07524 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 07525 /// 07526 /// void foo(long n, long m, long o, double A[n][m][o]) { 07527 /// 07528 /// for (long i = 0; i < n; i++) 07529 /// for (long j = 0; j < m; j++) 07530 /// for (long k = 0; k < o; k++) 07531 /// A[i][j][k] = 1.0; 07532 /// } 07533 /// 07534 /// the delinearization input is the following AddRec SCEV: 07535 /// 07536 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 07537 /// 07538 /// From this SCEV, we are able to say that the base offset of the access is %A 07539 /// because it appears as an offset that does not divide any of the strides in 07540 /// the loops: 07541 /// 07542 /// CHECK: Base offset: %A 07543 /// 07544 /// and then SCEV->delinearize determines the size of some of the dimensions of 07545 /// the array as these are the multiples by which the strides are happening: 07546 /// 07547 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 07548 /// 07549 /// Note that the outermost dimension remains of UnknownSize because there are 07550 /// no strides that would help identifying the size of the last dimension: when 07551 /// the array has been statically allocated, one could compute the size of that 07552 /// dimension by dividing the overall size of the array by the size of the known 07553 /// dimensions: %m * %o * 8. 07554 /// 07555 /// Finally delinearize provides the access functions for the array reference 07556 /// that does correspond to A[i][j][k] of the above C testcase: 07557 /// 07558 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 07559 /// 07560 /// The testcases are checking the output of a function pass: 07561 /// DelinearizationPass that walks through all loads and stores of a function 07562 /// asking for the SCEV of the memory access with respect to all enclosing 07563 /// loops, calling SCEV->delinearize on that and printing the results. 07564 07565 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 07566 SmallVectorImpl<const SCEV *> &Subscripts, 07567 SmallVectorImpl<const SCEV *> &Sizes, 07568 const SCEV *ElementSize) const { 07569 // First step: collect parametric terms. 07570 SmallVector<const SCEV *, 4> Terms; 07571 collectParametricTerms(SE, Terms); 07572 07573 if (Terms.empty()) 07574 return; 07575 07576 // Second step: find subscript sizes. 07577 SE.findArrayDimensions(Terms, Sizes, ElementSize); 07578 07579 if (Sizes.empty()) 07580 return; 07581 07582 // Third step: compute the access functions for each subscript. 07583 computeAccessFunctions(SE, Subscripts, Sizes); 07584 07585 if (Subscripts.empty()) 07586 return; 07587 07588 DEBUG({ 07589 dbgs() << "succeeded to delinearize " << *this << "\n"; 07590 dbgs() << "ArrayDecl[UnknownSize]"; 07591 for (const SCEV *S : Sizes) 07592 dbgs() << "[" << *S << "]"; 07593 07594 dbgs() << "\nArrayRef"; 07595 for (const SCEV *S : Subscripts) 07596 dbgs() << "[" << *S << "]"; 07597 dbgs() << "\n"; 07598 }); 07599 } 07600 07601 //===----------------------------------------------------------------------===// 07602 // SCEVCallbackVH Class Implementation 07603 //===----------------------------------------------------------------------===// 07604 07605 void ScalarEvolution::SCEVCallbackVH::deleted() { 07606 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 07607 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 07608 SE->ConstantEvolutionLoopExitValue.erase(PN); 07609 SE->ValueExprMap.erase(getValPtr()); 07610 // this now dangles! 07611 } 07612 07613 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 07614 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 07615 07616 // Forget all the expressions associated with users of the old value, 07617 // so that future queries will recompute the expressions using the new 07618 // value. 07619 Value *Old = getValPtr(); 07620 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 07621 SmallPtrSet<User *, 8> Visited; 07622 while (!Worklist.empty()) { 07623 User *U = Worklist.pop_back_val(); 07624 // Deleting the Old value will cause this to dangle. Postpone 07625 // that until everything else is done. 07626 if (U == Old) 07627 continue; 07628 if (!Visited.insert(U)) 07629 continue; 07630 if (PHINode *PN = dyn_cast<PHINode>(U)) 07631 SE->ConstantEvolutionLoopExitValue.erase(PN); 07632 SE->ValueExprMap.erase(U); 07633 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 07634 } 07635 // Delete the Old value. 07636 if (PHINode *PN = dyn_cast<PHINode>(Old)) 07637 SE->ConstantEvolutionLoopExitValue.erase(PN); 07638 SE->ValueExprMap.erase(Old); 07639 // this now dangles! 07640 } 07641 07642 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 07643 : CallbackVH(V), SE(se) {} 07644 07645 //===----------------------------------------------------------------------===// 07646 // ScalarEvolution Class Implementation 07647 //===----------------------------------------------------------------------===// 07648 07649 ScalarEvolution::ScalarEvolution() 07650 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), 07651 BlockDispositions(64), FirstUnknown(nullptr) { 07652 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 07653 } 07654 07655 bool ScalarEvolution::runOnFunction(Function &F) { 07656 this->F = &F; 07657 AT = &getAnalysis<AssumptionTracker>(); 07658 LI = &getAnalysis<LoopInfo>(); 07659 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 07660 DL = DLP ? &DLP->getDataLayout() : nullptr; 07661 TLI = &getAnalysis<TargetLibraryInfo>(); 07662 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 07663 return false; 07664 } 07665 07666 void ScalarEvolution::releaseMemory() { 07667 // Iterate through all the SCEVUnknown instances and call their 07668 // destructors, so that they release their references to their values. 07669 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 07670 U->~SCEVUnknown(); 07671 FirstUnknown = nullptr; 07672 07673 ValueExprMap.clear(); 07674 07675 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 07676 // that a loop had multiple computable exits. 07677 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 07678 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 07679 I != E; ++I) { 07680 I->second.clear(); 07681 } 07682 07683 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 07684 07685 BackedgeTakenCounts.clear(); 07686 ConstantEvolutionLoopExitValue.clear(); 07687 ValuesAtScopes.clear(); 07688 LoopDispositions.clear(); 07689 BlockDispositions.clear(); 07690 UnsignedRanges.clear(); 07691 SignedRanges.clear(); 07692 UniqueSCEVs.clear(); 07693 SCEVAllocator.Reset(); 07694 } 07695 07696 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 07697 AU.setPreservesAll(); 07698 AU.addRequired<AssumptionTracker>(); 07699 AU.addRequiredTransitive<LoopInfo>(); 07700 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 07701 AU.addRequired<TargetLibraryInfo>(); 07702 } 07703 07704 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 07705 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 07706 } 07707 07708 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 07709 const Loop *L) { 07710 // Print all inner loops first 07711 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 07712 PrintLoopInfo(OS, SE, *I); 07713 07714 OS << "Loop "; 07715 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 07716 OS << ": "; 07717 07718 SmallVector<BasicBlock *, 8> ExitBlocks; 07719 L->getExitBlocks(ExitBlocks); 07720 if (ExitBlocks.size() != 1) 07721 OS << "<multiple exits> "; 07722 07723 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 07724 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 07725 } else { 07726 OS << "Unpredictable backedge-taken count. "; 07727 } 07728 07729 OS << "\n" 07730 "Loop "; 07731 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 07732 OS << ": "; 07733 07734 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 07735 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 07736 } else { 07737 OS << "Unpredictable max backedge-taken count. "; 07738 } 07739 07740 OS << "\n"; 07741 } 07742 07743 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 07744 // ScalarEvolution's implementation of the print method is to print 07745 // out SCEV values of all instructions that are interesting. Doing 07746 // this potentially causes it to create new SCEV objects though, 07747 // which technically conflicts with the const qualifier. This isn't 07748 // observable from outside the class though, so casting away the 07749 // const isn't dangerous. 07750 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 07751 07752 OS << "Classifying expressions for: "; 07753 F->printAsOperand(OS, /*PrintType=*/false); 07754 OS << "\n"; 07755 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 07756 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 07757 OS << *I << '\n'; 07758 OS << " --> "; 07759 const SCEV *SV = SE.getSCEV(&*I); 07760 SV->print(OS); 07761 07762 const Loop *L = LI->getLoopFor((*I).getParent()); 07763 07764 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 07765 if (AtUse != SV) { 07766 OS << " --> "; 07767 AtUse->print(OS); 07768 } 07769 07770 if (L) { 07771 OS << "\t\t" "Exits: "; 07772 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 07773 if (!SE.isLoopInvariant(ExitValue, L)) { 07774 OS << "<<Unknown>>"; 07775 } else { 07776 OS << *ExitValue; 07777 } 07778 } 07779 07780 OS << "\n"; 07781 } 07782 07783 OS << "Determining loop execution counts for: "; 07784 F->printAsOperand(OS, /*PrintType=*/false); 07785 OS << "\n"; 07786 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 07787 PrintLoopInfo(OS, &SE, *I); 07788 } 07789 07790 ScalarEvolution::LoopDisposition 07791 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 07792 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S]; 07793 for (unsigned u = 0; u < Values.size(); u++) { 07794 if (Values[u].first == L) 07795 return Values[u].second; 07796 } 07797 Values.push_back(std::make_pair(L, LoopVariant)); 07798 LoopDisposition D = computeLoopDisposition(S, L); 07799 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S]; 07800 for (unsigned u = Values2.size(); u > 0; u--) { 07801 if (Values2[u - 1].first == L) { 07802 Values2[u - 1].second = D; 07803 break; 07804 } 07805 } 07806 return D; 07807 } 07808 07809 ScalarEvolution::LoopDisposition 07810 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 07811 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 07812 case scConstant: 07813 return LoopInvariant; 07814 case scTruncate: 07815 case scZeroExtend: 07816 case scSignExtend: 07817 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 07818 case scAddRecExpr: { 07819 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 07820 07821 // If L is the addrec's loop, it's computable. 07822 if (AR->getLoop() == L) 07823 return LoopComputable; 07824 07825 // Add recurrences are never invariant in the function-body (null loop). 07826 if (!L) 07827 return LoopVariant; 07828 07829 // This recurrence is variant w.r.t. L if L contains AR's loop. 07830 if (L->contains(AR->getLoop())) 07831 return LoopVariant; 07832 07833 // This recurrence is invariant w.r.t. L if AR's loop contains L. 07834 if (AR->getLoop()->contains(L)) 07835 return LoopInvariant; 07836 07837 // This recurrence is variant w.r.t. L if any of its operands 07838 // are variant. 07839 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 07840 I != E; ++I) 07841 if (!isLoopInvariant(*I, L)) 07842 return LoopVariant; 07843 07844 // Otherwise it's loop-invariant. 07845 return LoopInvariant; 07846 } 07847 case scAddExpr: 07848 case scMulExpr: 07849 case scUMaxExpr: 07850 case scSMaxExpr: { 07851 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 07852 bool HasVarying = false; 07853 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 07854 I != E; ++I) { 07855 LoopDisposition D = getLoopDisposition(*I, L); 07856 if (D == LoopVariant) 07857 return LoopVariant; 07858 if (D == LoopComputable) 07859 HasVarying = true; 07860 } 07861 return HasVarying ? LoopComputable : LoopInvariant; 07862 } 07863 case scUDivExpr: { 07864 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 07865 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 07866 if (LD == LoopVariant) 07867 return LoopVariant; 07868 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 07869 if (RD == LoopVariant) 07870 return LoopVariant; 07871 return (LD == LoopInvariant && RD == LoopInvariant) ? 07872 LoopInvariant : LoopComputable; 07873 } 07874 case scUnknown: 07875 // All non-instruction values are loop invariant. All instructions are loop 07876 // invariant if they are not contained in the specified loop. 07877 // Instructions are never considered invariant in the function body 07878 // (null loop) because they are defined within the "loop". 07879 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 07880 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 07881 return LoopInvariant; 07882 case scCouldNotCompute: 07883 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 07884 } 07885 llvm_unreachable("Unknown SCEV kind!"); 07886 } 07887 07888 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 07889 return getLoopDisposition(S, L) == LoopInvariant; 07890 } 07891 07892 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 07893 return getLoopDisposition(S, L) == LoopComputable; 07894 } 07895 07896 ScalarEvolution::BlockDisposition 07897 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 07898 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S]; 07899 for (unsigned u = 0; u < Values.size(); u++) { 07900 if (Values[u].first == BB) 07901 return Values[u].second; 07902 } 07903 Values.push_back(std::make_pair(BB, DoesNotDominateBlock)); 07904 BlockDisposition D = computeBlockDisposition(S, BB); 07905 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S]; 07906 for (unsigned u = Values2.size(); u > 0; u--) { 07907 if (Values2[u - 1].first == BB) { 07908 Values2[u - 1].second = D; 07909 break; 07910 } 07911 } 07912 return D; 07913 } 07914 07915 ScalarEvolution::BlockDisposition 07916 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 07917 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 07918 case scConstant: 07919 return ProperlyDominatesBlock; 07920 case scTruncate: 07921 case scZeroExtend: 07922 case scSignExtend: 07923 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 07924 case scAddRecExpr: { 07925 // This uses a "dominates" query instead of "properly dominates" query 07926 // to test for proper dominance too, because the instruction which 07927 // produces the addrec's value is a PHI, and a PHI effectively properly 07928 // dominates its entire containing block. 07929 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 07930 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 07931 return DoesNotDominateBlock; 07932 } 07933 // FALL THROUGH into SCEVNAryExpr handling. 07934 case scAddExpr: 07935 case scMulExpr: 07936 case scUMaxExpr: 07937 case scSMaxExpr: { 07938 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 07939 bool Proper = true; 07940 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 07941 I != E; ++I) { 07942 BlockDisposition D = getBlockDisposition(*I, BB); 07943 if (D == DoesNotDominateBlock) 07944 return DoesNotDominateBlock; 07945 if (D == DominatesBlock) 07946 Proper = false; 07947 } 07948 return Proper ? ProperlyDominatesBlock : DominatesBlock; 07949 } 07950 case scUDivExpr: { 07951 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 07952 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 07953 BlockDisposition LD = getBlockDisposition(LHS, BB); 07954 if (LD == DoesNotDominateBlock) 07955 return DoesNotDominateBlock; 07956 BlockDisposition RD = getBlockDisposition(RHS, BB); 07957 if (RD == DoesNotDominateBlock) 07958 return DoesNotDominateBlock; 07959 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 07960 ProperlyDominatesBlock : DominatesBlock; 07961 } 07962 case scUnknown: 07963 if (Instruction *I = 07964 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 07965 if (I->getParent() == BB) 07966 return DominatesBlock; 07967 if (DT->properlyDominates(I->getParent(), BB)) 07968 return ProperlyDominatesBlock; 07969 return DoesNotDominateBlock; 07970 } 07971 return ProperlyDominatesBlock; 07972 case scCouldNotCompute: 07973 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 07974 } 07975 llvm_unreachable("Unknown SCEV kind!"); 07976 } 07977 07978 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 07979 return getBlockDisposition(S, BB) >= DominatesBlock; 07980 } 07981 07982 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 07983 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 07984 } 07985 07986 namespace { 07987 // Search for a SCEV expression node within an expression tree. 07988 // Implements SCEVTraversal::Visitor. 07989 struct SCEVSearch { 07990 const SCEV *Node; 07991 bool IsFound; 07992 07993 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 07994 07995 bool follow(const SCEV *S) { 07996 IsFound |= (S == Node); 07997 return !IsFound; 07998 } 07999 bool isDone() const { return IsFound; } 08000 }; 08001 } 08002 08003 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 08004 SCEVSearch Search(Op); 08005 visitAll(S, Search); 08006 return Search.IsFound; 08007 } 08008 08009 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 08010 ValuesAtScopes.erase(S); 08011 LoopDispositions.erase(S); 08012 BlockDispositions.erase(S); 08013 UnsignedRanges.erase(S); 08014 SignedRanges.erase(S); 08015 08016 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 08017 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 08018 BackedgeTakenInfo &BEInfo = I->second; 08019 if (BEInfo.hasOperand(S, this)) { 08020 BEInfo.clear(); 08021 BackedgeTakenCounts.erase(I++); 08022 } 08023 else 08024 ++I; 08025 } 08026 } 08027 08028 typedef DenseMap<const Loop *, std::string> VerifyMap; 08029 08030 /// replaceSubString - Replaces all occurrences of From in Str with To. 08031 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 08032 size_t Pos = 0; 08033 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 08034 Str.replace(Pos, From.size(), To.data(), To.size()); 08035 Pos += To.size(); 08036 } 08037 } 08038 08039 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 08040 static void 08041 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 08042 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 08043 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 08044 08045 std::string &S = Map[L]; 08046 if (S.empty()) { 08047 raw_string_ostream OS(S); 08048 SE.getBackedgeTakenCount(L)->print(OS); 08049 08050 // false and 0 are semantically equivalent. This can happen in dead loops. 08051 replaceSubString(OS.str(), "false", "0"); 08052 // Remove wrap flags, their use in SCEV is highly fragile. 08053 // FIXME: Remove this when SCEV gets smarter about them. 08054 replaceSubString(OS.str(), "<nw>", ""); 08055 replaceSubString(OS.str(), "<nsw>", ""); 08056 replaceSubString(OS.str(), "<nuw>", ""); 08057 } 08058 } 08059 } 08060 08061 void ScalarEvolution::verifyAnalysis() const { 08062 if (!VerifySCEV) 08063 return; 08064 08065 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 08066 08067 // Gather stringified backedge taken counts for all loops using SCEV's caches. 08068 // FIXME: It would be much better to store actual values instead of strings, 08069 // but SCEV pointers will change if we drop the caches. 08070 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 08071 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 08072 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 08073 08074 // Gather stringified backedge taken counts for all loops without using 08075 // SCEV's caches. 08076 SE.releaseMemory(); 08077 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 08078 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 08079 08080 // Now compare whether they're the same with and without caches. This allows 08081 // verifying that no pass changed the cache. 08082 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 08083 "New loops suddenly appeared!"); 08084 08085 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 08086 OldE = BackedgeDumpsOld.end(), 08087 NewI = BackedgeDumpsNew.begin(); 08088 OldI != OldE; ++OldI, ++NewI) { 08089 assert(OldI->first == NewI->first && "Loop order changed!"); 08090 08091 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 08092 // changes. 08093 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 08094 // means that a pass is buggy or SCEV has to learn a new pattern but is 08095 // usually not harmful. 08096 if (OldI->second != NewI->second && 08097 OldI->second.find("undef") == std::string::npos && 08098 NewI->second.find("undef") == std::string::npos && 08099 OldI->second != "***COULDNOTCOMPUTE***" && 08100 NewI->second != "***COULDNOTCOMPUTE***") { 08101 dbgs() << "SCEVValidator: SCEV for loop '" 08102 << OldI->first->getHeader()->getName() 08103 << "' changed from '" << OldI->second 08104 << "' to '" << NewI->second << "'!\n"; 08105 std::abort(); 08106 } 08107 } 08108 08109 // TODO: Verify more things. 08110 }