LLVM API Documentation
00001 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains the SystemZ implementation of the TargetInstrInfo class. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "SystemZInstrInfo.h" 00015 #include "SystemZInstrBuilder.h" 00016 #include "SystemZTargetMachine.h" 00017 #include "llvm/CodeGen/LiveVariables.h" 00018 #include "llvm/CodeGen/MachineRegisterInfo.h" 00019 00020 using namespace llvm; 00021 00022 #define GET_INSTRINFO_CTOR_DTOR 00023 #define GET_INSTRMAP_INFO 00024 #include "SystemZGenInstrInfo.inc" 00025 00026 // Return a mask with Count low bits set. 00027 static uint64_t allOnes(unsigned int Count) { 00028 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 00029 } 00030 00031 // Reg should be a 32-bit GPR. Return true if it is a high register rather 00032 // than a low register. 00033 static bool isHighReg(unsigned int Reg) { 00034 if (SystemZ::GRH32BitRegClass.contains(Reg)) 00035 return true; 00036 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 00037 return false; 00038 } 00039 00040 // Pin the vtable to this file. 00041 void SystemZInstrInfo::anchor() {} 00042 00043 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 00044 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 00045 RI(), STI(sti) { 00046 } 00047 00048 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 00049 // each having the opcode given by NewOpcode. 00050 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 00051 unsigned NewOpcode) const { 00052 MachineBasicBlock *MBB = MI->getParent(); 00053 MachineFunction &MF = *MBB->getParent(); 00054 00055 // Get two load or store instructions. Use the original instruction for one 00056 // of them (arbitrarily the second here) and create a clone for the other. 00057 MachineInstr *EarlierMI = MF.CloneMachineInstr(MI); 00058 MBB->insert(MI, EarlierMI); 00059 00060 // Set up the two 64-bit registers. 00061 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 00062 MachineOperand &LowRegOp = MI->getOperand(0); 00063 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 00064 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 00065 00066 // The address in the first (high) instruction is already correct. 00067 // Adjust the offset in the second (low) instruction. 00068 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 00069 MachineOperand &LowOffsetOp = MI->getOperand(2); 00070 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 00071 00072 // Set the opcodes. 00073 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 00074 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 00075 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 00076 00077 EarlierMI->setDesc(get(HighOpcode)); 00078 MI->setDesc(get(LowOpcode)); 00079 } 00080 00081 // Split ADJDYNALLOC instruction MI. 00082 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 00083 MachineBasicBlock *MBB = MI->getParent(); 00084 MachineFunction &MF = *MBB->getParent(); 00085 MachineFrameInfo *MFFrame = MF.getFrameInfo(); 00086 MachineOperand &OffsetMO = MI->getOperand(2); 00087 00088 uint64_t Offset = (MFFrame->getMaxCallFrameSize() + 00089 SystemZMC::CallFrameSize + 00090 OffsetMO.getImm()); 00091 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 00092 assert(NewOpcode && "No support for huge argument lists yet"); 00093 MI->setDesc(get(NewOpcode)); 00094 OffsetMO.setImm(Offset); 00095 } 00096 00097 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 00098 // if the first operand is a low GR32 and HighOpcode if the first operand 00099 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 00100 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 00101 // MI has the same kind of operand as LowOpcode, so needs to be converted 00102 // if HighOpcode is used. 00103 void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode, 00104 unsigned HighOpcode, 00105 bool ConvertHigh) const { 00106 unsigned Reg = MI->getOperand(0).getReg(); 00107 bool IsHigh = isHighReg(Reg); 00108 MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 00109 if (IsHigh && ConvertHigh) 00110 MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm())); 00111 } 00112 00113 // MI is a three-operand RIE-style pseudo instruction. Replace it with 00114 // LowOpcode3 if the registers are both low GR32s, otherwise use a move 00115 // followed by HighOpcode or LowOpcode, depending on whether the target 00116 // is a high or low GR32. 00117 void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode, 00118 unsigned LowOpcodeK, 00119 unsigned HighOpcode) const { 00120 unsigned DestReg = MI->getOperand(0).getReg(); 00121 unsigned SrcReg = MI->getOperand(1).getReg(); 00122 bool DestIsHigh = isHighReg(DestReg); 00123 bool SrcIsHigh = isHighReg(SrcReg); 00124 if (!DestIsHigh && !SrcIsHigh) 00125 MI->setDesc(get(LowOpcodeK)); 00126 else { 00127 emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), 00128 DestReg, SrcReg, SystemZ::LR, 32, 00129 MI->getOperand(1).isKill()); 00130 MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 00131 MI->getOperand(1).setReg(DestReg); 00132 } 00133 } 00134 00135 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 00136 // if the first operand is a low GR32 and HighOpcode if the first operand 00137 // is a high GR32. 00138 void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode, 00139 unsigned HighOpcode) const { 00140 unsigned Reg = MI->getOperand(0).getReg(); 00141 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 00142 MI->getOperand(2).getImm()); 00143 MI->setDesc(get(Opcode)); 00144 } 00145 00146 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 00147 // of one GRX32 into another. Replace it with LowOpcode if both operands 00148 // are low registers, otherwise use RISB[LH]G. 00149 void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode, 00150 unsigned Size) const { 00151 emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), 00152 MI->getOperand(0).getReg(), MI->getOperand(1).getReg(), 00153 LowOpcode, Size, MI->getOperand(1).isKill()); 00154 MI->eraseFromParent(); 00155 } 00156 00157 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 00158 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 00159 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 00160 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 00161 // KillSrc is true if this move is the last use of SrcReg. 00162 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 00163 MachineBasicBlock::iterator MBBI, 00164 DebugLoc DL, unsigned DestReg, 00165 unsigned SrcReg, unsigned LowLowOpcode, 00166 unsigned Size, bool KillSrc) const { 00167 unsigned Opcode; 00168 bool DestIsHigh = isHighReg(DestReg); 00169 bool SrcIsHigh = isHighReg(SrcReg); 00170 if (DestIsHigh && SrcIsHigh) 00171 Opcode = SystemZ::RISBHH; 00172 else if (DestIsHigh && !SrcIsHigh) 00173 Opcode = SystemZ::RISBHL; 00174 else if (!DestIsHigh && SrcIsHigh) 00175 Opcode = SystemZ::RISBLH; 00176 else { 00177 BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 00178 .addReg(SrcReg, getKillRegState(KillSrc)); 00179 return; 00180 } 00181 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 00182 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 00183 .addReg(DestReg, RegState::Undef) 00184 .addReg(SrcReg, getKillRegState(KillSrc)) 00185 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 00186 } 00187 00188 // If MI is a simple load or store for a frame object, return the register 00189 // it loads or stores and set FrameIndex to the index of the frame object. 00190 // Return 0 otherwise. 00191 // 00192 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 00193 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, 00194 unsigned Flag) { 00195 const MCInstrDesc &MCID = MI->getDesc(); 00196 if ((MCID.TSFlags & Flag) && 00197 MI->getOperand(1).isFI() && 00198 MI->getOperand(2).getImm() == 0 && 00199 MI->getOperand(3).getReg() == 0) { 00200 FrameIndex = MI->getOperand(1).getIndex(); 00201 return MI->getOperand(0).getReg(); 00202 } 00203 return 0; 00204 } 00205 00206 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 00207 int &FrameIndex) const { 00208 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 00209 } 00210 00211 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 00212 int &FrameIndex) const { 00213 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 00214 } 00215 00216 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI, 00217 int &DestFrameIndex, 00218 int &SrcFrameIndex) const { 00219 // Check for MVC 0(Length,FI1),0(FI2) 00220 const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo(); 00221 if (MI->getOpcode() != SystemZ::MVC || 00222 !MI->getOperand(0).isFI() || 00223 MI->getOperand(1).getImm() != 0 || 00224 !MI->getOperand(3).isFI() || 00225 MI->getOperand(4).getImm() != 0) 00226 return false; 00227 00228 // Check that Length covers the full slots. 00229 int64_t Length = MI->getOperand(2).getImm(); 00230 unsigned FI1 = MI->getOperand(0).getIndex(); 00231 unsigned FI2 = MI->getOperand(3).getIndex(); 00232 if (MFI->getObjectSize(FI1) != Length || 00233 MFI->getObjectSize(FI2) != Length) 00234 return false; 00235 00236 DestFrameIndex = FI1; 00237 SrcFrameIndex = FI2; 00238 return true; 00239 } 00240 00241 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 00242 MachineBasicBlock *&TBB, 00243 MachineBasicBlock *&FBB, 00244 SmallVectorImpl<MachineOperand> &Cond, 00245 bool AllowModify) const { 00246 // Most of the code and comments here are boilerplate. 00247 00248 // Start from the bottom of the block and work up, examining the 00249 // terminator instructions. 00250 MachineBasicBlock::iterator I = MBB.end(); 00251 while (I != MBB.begin()) { 00252 --I; 00253 if (I->isDebugValue()) 00254 continue; 00255 00256 // Working from the bottom, when we see a non-terminator instruction, we're 00257 // done. 00258 if (!isUnpredicatedTerminator(I)) 00259 break; 00260 00261 // A terminator that isn't a branch can't easily be handled by this 00262 // analysis. 00263 if (!I->isBranch()) 00264 return true; 00265 00266 // Can't handle indirect branches. 00267 SystemZII::Branch Branch(getBranchInfo(I)); 00268 if (!Branch.Target->isMBB()) 00269 return true; 00270 00271 // Punt on compound branches. 00272 if (Branch.Type != SystemZII::BranchNormal) 00273 return true; 00274 00275 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 00276 // Handle unconditional branches. 00277 if (!AllowModify) { 00278 TBB = Branch.Target->getMBB(); 00279 continue; 00280 } 00281 00282 // If the block has any instructions after a JMP, delete them. 00283 while (std::next(I) != MBB.end()) 00284 std::next(I)->eraseFromParent(); 00285 00286 Cond.clear(); 00287 FBB = nullptr; 00288 00289 // Delete the JMP if it's equivalent to a fall-through. 00290 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 00291 TBB = nullptr; 00292 I->eraseFromParent(); 00293 I = MBB.end(); 00294 continue; 00295 } 00296 00297 // TBB is used to indicate the unconditinal destination. 00298 TBB = Branch.Target->getMBB(); 00299 continue; 00300 } 00301 00302 // Working from the bottom, handle the first conditional branch. 00303 if (Cond.empty()) { 00304 // FIXME: add X86-style branch swap 00305 FBB = TBB; 00306 TBB = Branch.Target->getMBB(); 00307 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 00308 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 00309 continue; 00310 } 00311 00312 // Handle subsequent conditional branches. 00313 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 00314 00315 // Only handle the case where all conditional branches branch to the same 00316 // destination. 00317 if (TBB != Branch.Target->getMBB()) 00318 return true; 00319 00320 // If the conditions are the same, we can leave them alone. 00321 unsigned OldCCValid = Cond[0].getImm(); 00322 unsigned OldCCMask = Cond[1].getImm(); 00323 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 00324 continue; 00325 00326 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 00327 return false; 00328 } 00329 00330 return false; 00331 } 00332 00333 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 00334 // Most of the code and comments here are boilerplate. 00335 MachineBasicBlock::iterator I = MBB.end(); 00336 unsigned Count = 0; 00337 00338 while (I != MBB.begin()) { 00339 --I; 00340 if (I->isDebugValue()) 00341 continue; 00342 if (!I->isBranch()) 00343 break; 00344 if (!getBranchInfo(I).Target->isMBB()) 00345 break; 00346 // Remove the branch. 00347 I->eraseFromParent(); 00348 I = MBB.end(); 00349 ++Count; 00350 } 00351 00352 return Count; 00353 } 00354 00355 bool SystemZInstrInfo:: 00356 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 00357 assert(Cond.size() == 2 && "Invalid condition"); 00358 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 00359 return false; 00360 } 00361 00362 unsigned 00363 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 00364 MachineBasicBlock *FBB, 00365 const SmallVectorImpl<MachineOperand> &Cond, 00366 DebugLoc DL) const { 00367 // In this function we output 32-bit branches, which should always 00368 // have enough range. They can be shortened and relaxed by later code 00369 // in the pipeline, if desired. 00370 00371 // Shouldn't be a fall through. 00372 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 00373 assert((Cond.size() == 2 || Cond.size() == 0) && 00374 "SystemZ branch conditions have one component!"); 00375 00376 if (Cond.empty()) { 00377 // Unconditional branch? 00378 assert(!FBB && "Unconditional branch with multiple successors!"); 00379 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 00380 return 1; 00381 } 00382 00383 // Conditional branch. 00384 unsigned Count = 0; 00385 unsigned CCValid = Cond[0].getImm(); 00386 unsigned CCMask = Cond[1].getImm(); 00387 BuildMI(&MBB, DL, get(SystemZ::BRC)) 00388 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 00389 ++Count; 00390 00391 if (FBB) { 00392 // Two-way Conditional branch. Insert the second branch. 00393 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 00394 ++Count; 00395 } 00396 return Count; 00397 } 00398 00399 bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI, 00400 unsigned &SrcReg, unsigned &SrcReg2, 00401 int &Mask, int &Value) const { 00402 assert(MI->isCompare() && "Caller should have checked for a comparison"); 00403 00404 if (MI->getNumExplicitOperands() == 2 && 00405 MI->getOperand(0).isReg() && 00406 MI->getOperand(1).isImm()) { 00407 SrcReg = MI->getOperand(0).getReg(); 00408 SrcReg2 = 0; 00409 Value = MI->getOperand(1).getImm(); 00410 Mask = ~0; 00411 return true; 00412 } 00413 00414 return false; 00415 } 00416 00417 // If Reg is a virtual register, return its definition, otherwise return null. 00418 static MachineInstr *getDef(unsigned Reg, 00419 const MachineRegisterInfo *MRI) { 00420 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 00421 return nullptr; 00422 return MRI->getUniqueVRegDef(Reg); 00423 } 00424 00425 // Return true if MI is a shift of type Opcode by Imm bits. 00426 static bool isShift(MachineInstr *MI, int Opcode, int64_t Imm) { 00427 return (MI->getOpcode() == Opcode && 00428 !MI->getOperand(2).getReg() && 00429 MI->getOperand(3).getImm() == Imm); 00430 } 00431 00432 // If the destination of MI has no uses, delete it as dead. 00433 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 00434 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 00435 MI->eraseFromParent(); 00436 } 00437 00438 // Compare compares SrcReg against zero. Check whether SrcReg contains 00439 // the result of an IPM sequence whose input CC survives until Compare, 00440 // and whether Compare is therefore redundant. Delete it and return 00441 // true if so. 00442 static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg, 00443 const MachineRegisterInfo *MRI, 00444 const TargetRegisterInfo *TRI) { 00445 MachineInstr *LGFR = nullptr; 00446 MachineInstr *RLL = getDef(SrcReg, MRI); 00447 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 00448 LGFR = RLL; 00449 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 00450 } 00451 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 00452 return false; 00453 00454 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 00455 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 00456 return false; 00457 00458 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 00459 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 00460 return false; 00461 00462 // Check that there are no assignments to CC between the IPM and Compare, 00463 if (IPM->getParent() != Compare->getParent()) 00464 return false; 00465 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare; 00466 for (++MBBI; MBBI != MBBE; ++MBBI) { 00467 MachineInstr *MI = MBBI; 00468 if (MI->modifiesRegister(SystemZ::CC, TRI)) 00469 return false; 00470 } 00471 00472 Compare->eraseFromParent(); 00473 if (LGFR) 00474 eraseIfDead(LGFR, MRI); 00475 eraseIfDead(RLL, MRI); 00476 eraseIfDead(SRL, MRI); 00477 eraseIfDead(IPM, MRI); 00478 00479 return true; 00480 } 00481 00482 bool 00483 SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare, 00484 unsigned SrcReg, unsigned SrcReg2, 00485 int Mask, int Value, 00486 const MachineRegisterInfo *MRI) const { 00487 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 00488 bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0; 00489 if (Value == 0 && 00490 !IsLogical && 00491 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI)) 00492 return true; 00493 return false; 00494 } 00495 00496 // If Opcode is a move that has a conditional variant, return that variant, 00497 // otherwise return 0. 00498 static unsigned getConditionalMove(unsigned Opcode) { 00499 switch (Opcode) { 00500 case SystemZ::LR: return SystemZ::LOCR; 00501 case SystemZ::LGR: return SystemZ::LOCGR; 00502 default: return 0; 00503 } 00504 } 00505 00506 bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const { 00507 unsigned Opcode = MI->getOpcode(); 00508 if (STI.hasLoadStoreOnCond() && 00509 getConditionalMove(Opcode)) 00510 return true; 00511 return false; 00512 } 00513 00514 bool SystemZInstrInfo:: 00515 isProfitableToIfCvt(MachineBasicBlock &MBB, 00516 unsigned NumCycles, unsigned ExtraPredCycles, 00517 const BranchProbability &Probability) const { 00518 // For now only convert single instructions. 00519 return NumCycles == 1; 00520 } 00521 00522 bool SystemZInstrInfo:: 00523 isProfitableToIfCvt(MachineBasicBlock &TMBB, 00524 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 00525 MachineBasicBlock &FMBB, 00526 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 00527 const BranchProbability &Probability) const { 00528 // For now avoid converting mutually-exclusive cases. 00529 return false; 00530 } 00531 00532 bool SystemZInstrInfo:: 00533 PredicateInstruction(MachineInstr *MI, 00534 const SmallVectorImpl<MachineOperand> &Pred) const { 00535 assert(Pred.size() == 2 && "Invalid condition"); 00536 unsigned CCValid = Pred[0].getImm(); 00537 unsigned CCMask = Pred[1].getImm(); 00538 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 00539 unsigned Opcode = MI->getOpcode(); 00540 if (STI.hasLoadStoreOnCond()) { 00541 if (unsigned CondOpcode = getConditionalMove(Opcode)) { 00542 MI->setDesc(get(CondOpcode)); 00543 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 00544 .addImm(CCValid).addImm(CCMask) 00545 .addReg(SystemZ::CC, RegState::Implicit); 00546 return true; 00547 } 00548 } 00549 return false; 00550 } 00551 00552 void 00553 SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 00554 MachineBasicBlock::iterator MBBI, DebugLoc DL, 00555 unsigned DestReg, unsigned SrcReg, 00556 bool KillSrc) const { 00557 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 00558 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 00559 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 00560 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 00561 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 00562 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 00563 return; 00564 } 00565 00566 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 00567 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc); 00568 return; 00569 } 00570 00571 // Everything else needs only one instruction. 00572 unsigned Opcode; 00573 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 00574 Opcode = SystemZ::LGR; 00575 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 00576 Opcode = SystemZ::LER; 00577 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 00578 Opcode = SystemZ::LDR; 00579 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 00580 Opcode = SystemZ::LXR; 00581 else 00582 llvm_unreachable("Impossible reg-to-reg copy"); 00583 00584 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 00585 .addReg(SrcReg, getKillRegState(KillSrc)); 00586 } 00587 00588 void 00589 SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 00590 MachineBasicBlock::iterator MBBI, 00591 unsigned SrcReg, bool isKill, 00592 int FrameIdx, 00593 const TargetRegisterClass *RC, 00594 const TargetRegisterInfo *TRI) const { 00595 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 00596 00597 // Callers may expect a single instruction, so keep 128-bit moves 00598 // together for now and lower them after register allocation. 00599 unsigned LoadOpcode, StoreOpcode; 00600 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 00601 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 00602 .addReg(SrcReg, getKillRegState(isKill)), FrameIdx); 00603 } 00604 00605 void 00606 SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 00607 MachineBasicBlock::iterator MBBI, 00608 unsigned DestReg, int FrameIdx, 00609 const TargetRegisterClass *RC, 00610 const TargetRegisterInfo *TRI) const { 00611 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 00612 00613 // Callers may expect a single instruction, so keep 128-bit moves 00614 // together for now and lower them after register allocation. 00615 unsigned LoadOpcode, StoreOpcode; 00616 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 00617 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 00618 FrameIdx); 00619 } 00620 00621 // Return true if MI is a simple load or store with a 12-bit displacement 00622 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 00623 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 00624 const MCInstrDesc &MCID = MI->getDesc(); 00625 return ((MCID.TSFlags & Flag) && 00626 isUInt<12>(MI->getOperand(2).getImm()) && 00627 MI->getOperand(3).getReg() == 0); 00628 } 00629 00630 namespace { 00631 struct LogicOp { 00632 LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} 00633 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 00634 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 00635 00636 operator bool() const { return RegSize; } 00637 00638 unsigned RegSize, ImmLSB, ImmSize; 00639 }; 00640 } // end anonymous namespace 00641 00642 static LogicOp interpretAndImmediate(unsigned Opcode) { 00643 switch (Opcode) { 00644 case SystemZ::NILMux: return LogicOp(32, 0, 16); 00645 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 00646 case SystemZ::NILL64: return LogicOp(64, 0, 16); 00647 case SystemZ::NILH64: return LogicOp(64, 16, 16); 00648 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 00649 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 00650 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 00651 case SystemZ::NILF64: return LogicOp(64, 0, 32); 00652 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 00653 default: return LogicOp(); 00654 } 00655 } 00656 00657 // Used to return from convertToThreeAddress after replacing two-address 00658 // instruction OldMI with three-address instruction NewMI. 00659 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 00660 MachineInstr *NewMI, 00661 LiveVariables *LV) { 00662 if (LV) { 00663 unsigned NumOps = OldMI->getNumOperands(); 00664 for (unsigned I = 1; I < NumOps; ++I) { 00665 MachineOperand &Op = OldMI->getOperand(I); 00666 if (Op.isReg() && Op.isKill()) 00667 LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI); 00668 } 00669 } 00670 return NewMI; 00671 } 00672 00673 MachineInstr * 00674 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 00675 MachineBasicBlock::iterator &MBBI, 00676 LiveVariables *LV) const { 00677 MachineInstr *MI = MBBI; 00678 MachineBasicBlock *MBB = MI->getParent(); 00679 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 00680 00681 unsigned Opcode = MI->getOpcode(); 00682 unsigned NumOps = MI->getNumOperands(); 00683 00684 // Try to convert something like SLL into SLLK, if supported. 00685 // We prefer to keep the two-operand form where possible both 00686 // because it tends to be shorter and because some instructions 00687 // have memory forms that can be used during spilling. 00688 if (STI.hasDistinctOps()) { 00689 MachineOperand &Dest = MI->getOperand(0); 00690 MachineOperand &Src = MI->getOperand(1); 00691 unsigned DestReg = Dest.getReg(); 00692 unsigned SrcReg = Src.getReg(); 00693 // AHIMux is only really a three-operand instruction when both operands 00694 // are low registers. Try to constrain both operands to be low if 00695 // possible. 00696 if (Opcode == SystemZ::AHIMux && 00697 TargetRegisterInfo::isVirtualRegister(DestReg) && 00698 TargetRegisterInfo::isVirtualRegister(SrcReg) && 00699 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 00700 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 00701 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 00702 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 00703 } 00704 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 00705 if (ThreeOperandOpcode >= 0) { 00706 MachineInstrBuilder MIB = 00707 BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode)) 00708 .addOperand(Dest); 00709 // Keep the kill state, but drop the tied flag. 00710 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 00711 // Keep the remaining operands as-is. 00712 for (unsigned I = 2; I < NumOps; ++I) 00713 MIB.addOperand(MI->getOperand(I)); 00714 return finishConvertToThreeAddress(MI, MIB, LV); 00715 } 00716 } 00717 00718 // Try to convert an AND into an RISBG-type instruction. 00719 if (LogicOp And = interpretAndImmediate(Opcode)) { 00720 uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB; 00721 // AND IMMEDIATE leaves the other bits of the register unchanged. 00722 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 00723 unsigned Start, End; 00724 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 00725 unsigned NewOpcode; 00726 if (And.RegSize == 64) 00727 NewOpcode = SystemZ::RISBG; 00728 else { 00729 NewOpcode = SystemZ::RISBMux; 00730 Start &= 31; 00731 End &= 31; 00732 } 00733 MachineOperand &Dest = MI->getOperand(0); 00734 MachineOperand &Src = MI->getOperand(1); 00735 MachineInstrBuilder MIB = 00736 BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode)) 00737 .addOperand(Dest).addReg(0) 00738 .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) 00739 .addImm(Start).addImm(End + 128).addImm(0); 00740 return finishConvertToThreeAddress(MI, MIB, LV); 00741 } 00742 } 00743 return nullptr; 00744 } 00745 00746 MachineInstr * 00747 SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 00748 MachineInstr *MI, 00749 const SmallVectorImpl<unsigned> &Ops, 00750 int FrameIndex) const { 00751 const MachineFrameInfo *MFI = MF.getFrameInfo(); 00752 unsigned Size = MFI->getObjectSize(FrameIndex); 00753 unsigned Opcode = MI->getOpcode(); 00754 00755 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 00756 if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 00757 isInt<8>(MI->getOperand(2).getImm()) && 00758 !MI->getOperand(3).getReg()) { 00759 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 00760 return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::AGSI)) 00761 .addFrameIndex(FrameIndex).addImm(0) 00762 .addImm(MI->getOperand(2).getImm()); 00763 } 00764 return nullptr; 00765 } 00766 00767 // All other cases require a single operand. 00768 if (Ops.size() != 1) 00769 return nullptr; 00770 00771 unsigned OpNum = Ops[0]; 00772 assert(Size == MF.getRegInfo() 00773 .getRegClass(MI->getOperand(OpNum).getReg())->getSize() && 00774 "Invalid size combination"); 00775 00776 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && 00777 OpNum == 0 && 00778 isInt<8>(MI->getOperand(2).getImm())) { 00779 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 00780 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 00781 return BuildMI(MF, MI->getDebugLoc(), get(Opcode)) 00782 .addFrameIndex(FrameIndex).addImm(0) 00783 .addImm(MI->getOperand(2).getImm()); 00784 } 00785 00786 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 00787 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 00788 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 00789 // If we're spilling the destination of an LDGR or LGDR, store the 00790 // source register instead. 00791 if (OpNum == 0) { 00792 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 00793 return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode)) 00794 .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex) 00795 .addImm(0).addReg(0); 00796 } 00797 // If we're spilling the source of an LDGR or LGDR, load the 00798 // destination register instead. 00799 if (OpNum == 1) { 00800 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 00801 unsigned Dest = MI->getOperand(0).getReg(); 00802 return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest) 00803 .addFrameIndex(FrameIndex).addImm(0).addReg(0); 00804 } 00805 } 00806 00807 // Look for cases where the source of a simple store or the destination 00808 // of a simple load is being spilled. Try to use MVC instead. 00809 // 00810 // Although MVC is in practice a fast choice in these cases, it is still 00811 // logically a bytewise copy. This means that we cannot use it if the 00812 // load or store is volatile. We also wouldn't be able to use MVC if 00813 // the two memories partially overlap, but that case cannot occur here, 00814 // because we know that one of the memories is a full frame index. 00815 // 00816 // For performance reasons, we also want to avoid using MVC if the addresses 00817 // might be equal. We don't worry about that case here, because spill slot 00818 // coloring happens later, and because we have special code to remove 00819 // MVCs that turn out to be redundant. 00820 if (OpNum == 0 && MI->hasOneMemOperand()) { 00821 MachineMemOperand *MMO = *MI->memoperands_begin(); 00822 if (MMO->getSize() == Size && !MMO->isVolatile()) { 00823 // Handle conversion of loads. 00824 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) { 00825 return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC)) 00826 .addFrameIndex(FrameIndex).addImm(0).addImm(Size) 00827 .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm()) 00828 .addMemOperand(MMO); 00829 } 00830 // Handle conversion of stores. 00831 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) { 00832 return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC)) 00833 .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm()) 00834 .addImm(Size).addFrameIndex(FrameIndex).addImm(0) 00835 .addMemOperand(MMO); 00836 } 00837 } 00838 } 00839 00840 // If the spilled operand is the final one, try to change <INSN>R 00841 // into <INSN>. 00842 int MemOpcode = SystemZ::getMemOpcode(Opcode); 00843 if (MemOpcode >= 0) { 00844 unsigned NumOps = MI->getNumExplicitOperands(); 00845 if (OpNum == NumOps - 1) { 00846 const MCInstrDesc &MemDesc = get(MemOpcode); 00847 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 00848 assert(AccessBytes != 0 && "Size of access should be known"); 00849 assert(AccessBytes <= Size && "Access outside the frame index"); 00850 uint64_t Offset = Size - AccessBytes; 00851 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode)); 00852 for (unsigned I = 0; I < OpNum; ++I) 00853 MIB.addOperand(MI->getOperand(I)); 00854 MIB.addFrameIndex(FrameIndex).addImm(Offset); 00855 if (MemDesc.TSFlags & SystemZII::HasIndex) 00856 MIB.addReg(0); 00857 return MIB; 00858 } 00859 } 00860 00861 return nullptr; 00862 } 00863 00864 MachineInstr * 00865 SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, 00866 const SmallVectorImpl<unsigned> &Ops, 00867 MachineInstr* LoadMI) const { 00868 return nullptr; 00869 } 00870 00871 bool 00872 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 00873 switch (MI->getOpcode()) { 00874 case SystemZ::L128: 00875 splitMove(MI, SystemZ::LG); 00876 return true; 00877 00878 case SystemZ::ST128: 00879 splitMove(MI, SystemZ::STG); 00880 return true; 00881 00882 case SystemZ::LX: 00883 splitMove(MI, SystemZ::LD); 00884 return true; 00885 00886 case SystemZ::STX: 00887 splitMove(MI, SystemZ::STD); 00888 return true; 00889 00890 case SystemZ::LBMux: 00891 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 00892 return true; 00893 00894 case SystemZ::LHMux: 00895 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 00896 return true; 00897 00898 case SystemZ::LLCRMux: 00899 expandZExtPseudo(MI, SystemZ::LLCR, 8); 00900 return true; 00901 00902 case SystemZ::LLHRMux: 00903 expandZExtPseudo(MI, SystemZ::LLHR, 16); 00904 return true; 00905 00906 case SystemZ::LLCMux: 00907 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 00908 return true; 00909 00910 case SystemZ::LLHMux: 00911 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 00912 return true; 00913 00914 case SystemZ::LMux: 00915 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 00916 return true; 00917 00918 case SystemZ::STCMux: 00919 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 00920 return true; 00921 00922 case SystemZ::STHMux: 00923 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 00924 return true; 00925 00926 case SystemZ::STMux: 00927 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 00928 return true; 00929 00930 case SystemZ::LHIMux: 00931 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 00932 return true; 00933 00934 case SystemZ::IIFMux: 00935 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 00936 return true; 00937 00938 case SystemZ::IILMux: 00939 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 00940 return true; 00941 00942 case SystemZ::IIHMux: 00943 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 00944 return true; 00945 00946 case SystemZ::NIFMux: 00947 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 00948 return true; 00949 00950 case SystemZ::NILMux: 00951 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 00952 return true; 00953 00954 case SystemZ::NIHMux: 00955 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 00956 return true; 00957 00958 case SystemZ::OIFMux: 00959 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 00960 return true; 00961 00962 case SystemZ::OILMux: 00963 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 00964 return true; 00965 00966 case SystemZ::OIHMux: 00967 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 00968 return true; 00969 00970 case SystemZ::XIFMux: 00971 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 00972 return true; 00973 00974 case SystemZ::TMLMux: 00975 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 00976 return true; 00977 00978 case SystemZ::TMHMux: 00979 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 00980 return true; 00981 00982 case SystemZ::AHIMux: 00983 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 00984 return true; 00985 00986 case SystemZ::AHIMuxK: 00987 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 00988 return true; 00989 00990 case SystemZ::AFIMux: 00991 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 00992 return true; 00993 00994 case SystemZ::CFIMux: 00995 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 00996 return true; 00997 00998 case SystemZ::CLFIMux: 00999 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 01000 return true; 01001 01002 case SystemZ::CMux: 01003 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 01004 return true; 01005 01006 case SystemZ::CLMux: 01007 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 01008 return true; 01009 01010 case SystemZ::RISBMux: { 01011 bool DestIsHigh = isHighReg(MI->getOperand(0).getReg()); 01012 bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg()); 01013 if (SrcIsHigh == DestIsHigh) 01014 MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 01015 else { 01016 MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 01017 MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32); 01018 } 01019 return true; 01020 } 01021 01022 case SystemZ::ADJDYNALLOC: 01023 splitAdjDynAlloc(MI); 01024 return true; 01025 01026 default: 01027 return false; 01028 } 01029 } 01030 01031 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const { 01032 if (MI->getOpcode() == TargetOpcode::INLINEASM) { 01033 const MachineFunction *MF = MI->getParent()->getParent(); 01034 const char *AsmStr = MI->getOperand(0).getSymbolName(); 01035 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 01036 } 01037 return MI->getDesc().getSize(); 01038 } 01039 01040 SystemZII::Branch 01041 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const { 01042 switch (MI->getOpcode()) { 01043 case SystemZ::BR: 01044 case SystemZ::J: 01045 case SystemZ::JG: 01046 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 01047 SystemZ::CCMASK_ANY, &MI->getOperand(0)); 01048 01049 case SystemZ::BRC: 01050 case SystemZ::BRCL: 01051 return SystemZII::Branch(SystemZII::BranchNormal, 01052 MI->getOperand(0).getImm(), 01053 MI->getOperand(1).getImm(), &MI->getOperand(2)); 01054 01055 case SystemZ::BRCT: 01056 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 01057 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 01058 01059 case SystemZ::BRCTG: 01060 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 01061 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 01062 01063 case SystemZ::CIJ: 01064 case SystemZ::CRJ: 01065 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 01066 MI->getOperand(2).getImm(), &MI->getOperand(3)); 01067 01068 case SystemZ::CLIJ: 01069 case SystemZ::CLRJ: 01070 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 01071 MI->getOperand(2).getImm(), &MI->getOperand(3)); 01072 01073 case SystemZ::CGIJ: 01074 case SystemZ::CGRJ: 01075 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 01076 MI->getOperand(2).getImm(), &MI->getOperand(3)); 01077 01078 case SystemZ::CLGIJ: 01079 case SystemZ::CLGRJ: 01080 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 01081 MI->getOperand(2).getImm(), &MI->getOperand(3)); 01082 01083 default: 01084 llvm_unreachable("Unrecognized branch opcode"); 01085 } 01086 } 01087 01088 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 01089 unsigned &LoadOpcode, 01090 unsigned &StoreOpcode) const { 01091 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 01092 LoadOpcode = SystemZ::L; 01093 StoreOpcode = SystemZ::ST; 01094 } else if (RC == &SystemZ::GRH32BitRegClass) { 01095 LoadOpcode = SystemZ::LFH; 01096 StoreOpcode = SystemZ::STFH; 01097 } else if (RC == &SystemZ::GRX32BitRegClass) { 01098 LoadOpcode = SystemZ::LMux; 01099 StoreOpcode = SystemZ::STMux; 01100 } else if (RC == &SystemZ::GR64BitRegClass || 01101 RC == &SystemZ::ADDR64BitRegClass) { 01102 LoadOpcode = SystemZ::LG; 01103 StoreOpcode = SystemZ::STG; 01104 } else if (RC == &SystemZ::GR128BitRegClass || 01105 RC == &SystemZ::ADDR128BitRegClass) { 01106 LoadOpcode = SystemZ::L128; 01107 StoreOpcode = SystemZ::ST128; 01108 } else if (RC == &SystemZ::FP32BitRegClass) { 01109 LoadOpcode = SystemZ::LE; 01110 StoreOpcode = SystemZ::STE; 01111 } else if (RC == &SystemZ::FP64BitRegClass) { 01112 LoadOpcode = SystemZ::LD; 01113 StoreOpcode = SystemZ::STD; 01114 } else if (RC == &SystemZ::FP128BitRegClass) { 01115 LoadOpcode = SystemZ::LX; 01116 StoreOpcode = SystemZ::STX; 01117 } else 01118 llvm_unreachable("Unsupported regclass to load or store"); 01119 } 01120 01121 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 01122 int64_t Offset) const { 01123 const MCInstrDesc &MCID = get(Opcode); 01124 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 01125 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 01126 // Get the instruction to use for unsigned 12-bit displacements. 01127 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 01128 if (Disp12Opcode >= 0) 01129 return Disp12Opcode; 01130 01131 // All address-related instructions can use unsigned 12-bit 01132 // displacements. 01133 return Opcode; 01134 } 01135 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 01136 // Get the instruction to use for signed 20-bit displacements. 01137 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 01138 if (Disp20Opcode >= 0) 01139 return Disp20Opcode; 01140 01141 // Check whether Opcode allows signed 20-bit displacements. 01142 if (MCID.TSFlags & SystemZII::Has20BitOffset) 01143 return Opcode; 01144 } 01145 return 0; 01146 } 01147 01148 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 01149 switch (Opcode) { 01150 case SystemZ::L: return SystemZ::LT; 01151 case SystemZ::LY: return SystemZ::LT; 01152 case SystemZ::LG: return SystemZ::LTG; 01153 case SystemZ::LGF: return SystemZ::LTGF; 01154 case SystemZ::LR: return SystemZ::LTR; 01155 case SystemZ::LGFR: return SystemZ::LTGFR; 01156 case SystemZ::LGR: return SystemZ::LTGR; 01157 case SystemZ::LER: return SystemZ::LTEBR; 01158 case SystemZ::LDR: return SystemZ::LTDBR; 01159 case SystemZ::LXR: return SystemZ::LTXBR; 01160 default: return 0; 01161 } 01162 } 01163 01164 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 01165 // have already been filtered out. Store the first set bit in LSB and 01166 // the number of set bits in Length if so. 01167 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 01168 unsigned First = findFirstSet(Mask); 01169 uint64_t Top = (Mask >> First) + 1; 01170 if ((Top & -Top) == Top) { 01171 LSB = First; 01172 Length = findFirstSet(Top); 01173 return true; 01174 } 01175 return false; 01176 } 01177 01178 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 01179 unsigned &Start, unsigned &End) const { 01180 // Reject trivial all-zero masks. 01181 if (Mask == 0) 01182 return false; 01183 01184 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 01185 // the msb and End specifies the index of the lsb. 01186 unsigned LSB, Length; 01187 if (isStringOfOnes(Mask, LSB, Length)) { 01188 Start = 63 - (LSB + Length - 1); 01189 End = 63 - LSB; 01190 return true; 01191 } 01192 01193 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 01194 // of the low 1s and End specifies the lsb of the high 1s. 01195 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 01196 assert(LSB > 0 && "Bottom bit must be set"); 01197 assert(LSB + Length < BitSize && "Top bit must be set"); 01198 Start = 63 - (LSB - 1); 01199 End = 63 - (LSB + Length); 01200 return true; 01201 } 01202 01203 return false; 01204 } 01205 01206 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode, 01207 const MachineInstr *MI) const { 01208 switch (Opcode) { 01209 case SystemZ::CR: 01210 return SystemZ::CRJ; 01211 case SystemZ::CGR: 01212 return SystemZ::CGRJ; 01213 case SystemZ::CHI: 01214 return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0; 01215 case SystemZ::CGHI: 01216 return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0; 01217 case SystemZ::CLR: 01218 return SystemZ::CLRJ; 01219 case SystemZ::CLGR: 01220 return SystemZ::CLGRJ; 01221 case SystemZ::CLFI: 01222 return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0; 01223 case SystemZ::CLGFI: 01224 return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0; 01225 default: 01226 return 0; 01227 } 01228 } 01229 01230 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 01231 MachineBasicBlock::iterator MBBI, 01232 unsigned Reg, uint64_t Value) const { 01233 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 01234 unsigned Opcode; 01235 if (isInt<16>(Value)) 01236 Opcode = SystemZ::LGHI; 01237 else if (SystemZ::isImmLL(Value)) 01238 Opcode = SystemZ::LLILL; 01239 else if (SystemZ::isImmLH(Value)) { 01240 Opcode = SystemZ::LLILH; 01241 Value >>= 16; 01242 } else { 01243 assert(isInt<32>(Value) && "Huge values not handled yet"); 01244 Opcode = SystemZ::LGFI; 01245 } 01246 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 01247 }