LLVM API Documentation
00001 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the TargetRegisterInfo interface. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/Target/TargetRegisterInfo.h" 00015 #include "llvm/ADT/BitVector.h" 00016 #include "llvm/CodeGen/MachineFunction.h" 00017 #include "llvm/CodeGen/MachineRegisterInfo.h" 00018 #include "llvm/CodeGen/VirtRegMap.h" 00019 #include "llvm/Support/raw_ostream.h" 00020 00021 using namespace llvm; 00022 00023 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 00024 regclass_iterator RCB, regclass_iterator RCE, 00025 const char *const *SRINames, 00026 const unsigned *SRILaneMasks, 00027 unsigned SRICoveringLanes) 00028 : InfoDesc(ID), SubRegIndexNames(SRINames), 00029 SubRegIndexLaneMasks(SRILaneMasks), 00030 RegClassBegin(RCB), RegClassEnd(RCE), 00031 CoveringLanes(SRICoveringLanes) { 00032 } 00033 00034 TargetRegisterInfo::~TargetRegisterInfo() {} 00035 00036 void PrintReg::print(raw_ostream &OS) const { 00037 if (!Reg) 00038 OS << "%noreg"; 00039 else if (TargetRegisterInfo::isStackSlot(Reg)) 00040 OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg); 00041 else if (TargetRegisterInfo::isVirtualRegister(Reg)) 00042 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg); 00043 else if (TRI && Reg < TRI->getNumRegs()) 00044 OS << '%' << TRI->getName(Reg); 00045 else 00046 OS << "%physreg" << Reg; 00047 if (SubIdx) { 00048 if (TRI) 00049 OS << ':' << TRI->getSubRegIndexName(SubIdx); 00050 else 00051 OS << ":sub(" << SubIdx << ')'; 00052 } 00053 } 00054 00055 void PrintRegUnit::print(raw_ostream &OS) const { 00056 // Generic printout when TRI is missing. 00057 if (!TRI) { 00058 OS << "Unit~" << Unit; 00059 return; 00060 } 00061 00062 // Check for invalid register units. 00063 if (Unit >= TRI->getNumRegUnits()) { 00064 OS << "BadUnit~" << Unit; 00065 return; 00066 } 00067 00068 // Normal units have at least one root. 00069 MCRegUnitRootIterator Roots(Unit, TRI); 00070 assert(Roots.isValid() && "Unit has no roots."); 00071 OS << TRI->getName(*Roots); 00072 for (++Roots; Roots.isValid(); ++Roots) 00073 OS << '~' << TRI->getName(*Roots); 00074 } 00075 00076 void PrintVRegOrUnit::print(raw_ostream &OS) const { 00077 if (TRI && TRI->isVirtualRegister(Unit)) { 00078 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit); 00079 return; 00080 } 00081 PrintRegUnit::print(OS); 00082 } 00083 00084 /// getAllocatableClass - Return the maximal subclass of the given register 00085 /// class that is alloctable, or NULL. 00086 const TargetRegisterClass * 00087 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const { 00088 if (!RC || RC->isAllocatable()) 00089 return RC; 00090 00091 const unsigned *SubClass = RC->getSubClassMask(); 00092 for (unsigned Base = 0, BaseE = getNumRegClasses(); 00093 Base < BaseE; Base += 32) { 00094 unsigned Idx = Base; 00095 for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) { 00096 unsigned Offset = countTrailingZeros(Mask); 00097 const TargetRegisterClass *SubRC = getRegClass(Idx + Offset); 00098 if (SubRC->isAllocatable()) 00099 return SubRC; 00100 Mask >>= Offset; 00101 Idx += Offset + 1; 00102 } 00103 } 00104 return nullptr; 00105 } 00106 00107 /// getMinimalPhysRegClass - Returns the Register Class of a physical 00108 /// register of the given type, picking the most sub register class of 00109 /// the right type that contains this physreg. 00110 const TargetRegisterClass * 00111 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const { 00112 assert(isPhysicalRegister(reg) && "reg must be a physical register"); 00113 00114 // Pick the most sub register class of the right type that contains 00115 // this physreg. 00116 const TargetRegisterClass* BestRC = nullptr; 00117 for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){ 00118 const TargetRegisterClass* RC = *I; 00119 if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) && 00120 (!BestRC || BestRC->hasSubClass(RC))) 00121 BestRC = RC; 00122 } 00123 00124 assert(BestRC && "Couldn't find the register class"); 00125 return BestRC; 00126 } 00127 00128 /// getAllocatableSetForRC - Toggle the bits that represent allocatable 00129 /// registers for the specific register class. 00130 static void getAllocatableSetForRC(const MachineFunction &MF, 00131 const TargetRegisterClass *RC, BitVector &R){ 00132 assert(RC->isAllocatable() && "invalid for nonallocatable sets"); 00133 ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF); 00134 for (unsigned i = 0; i != Order.size(); ++i) 00135 R.set(Order[i]); 00136 } 00137 00138 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF, 00139 const TargetRegisterClass *RC) const { 00140 BitVector Allocatable(getNumRegs()); 00141 if (RC) { 00142 // A register class with no allocatable subclass returns an empty set. 00143 const TargetRegisterClass *SubClass = getAllocatableClass(RC); 00144 if (SubClass) 00145 getAllocatableSetForRC(MF, SubClass, Allocatable); 00146 } else { 00147 for (TargetRegisterInfo::regclass_iterator I = regclass_begin(), 00148 E = regclass_end(); I != E; ++I) 00149 if ((*I)->isAllocatable()) 00150 getAllocatableSetForRC(MF, *I, Allocatable); 00151 } 00152 00153 // Mask out the reserved registers 00154 BitVector Reserved = getReservedRegs(MF); 00155 Allocatable &= Reserved.flip(); 00156 00157 return Allocatable; 00158 } 00159 00160 static inline 00161 const TargetRegisterClass *firstCommonClass(const uint32_t *A, 00162 const uint32_t *B, 00163 const TargetRegisterInfo *TRI) { 00164 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32) 00165 if (unsigned Common = *A++ & *B++) 00166 return TRI->getRegClass(I + countTrailingZeros(Common)); 00167 return nullptr; 00168 } 00169 00170 const TargetRegisterClass * 00171 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A, 00172 const TargetRegisterClass *B) const { 00173 // First take care of the trivial cases. 00174 if (A == B) 00175 return A; 00176 if (!A || !B) 00177 return nullptr; 00178 00179 // Register classes are ordered topologically, so the largest common 00180 // sub-class it the common sub-class with the smallest ID. 00181 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this); 00182 } 00183 00184 const TargetRegisterClass * 00185 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, 00186 const TargetRegisterClass *B, 00187 unsigned Idx) const { 00188 assert(A && B && "Missing register class"); 00189 assert(Idx && "Bad sub-register index"); 00190 00191 // Find Idx in the list of super-register indices. 00192 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI) 00193 if (RCI.getSubReg() == Idx) 00194 // The bit mask contains all register classes that are projected into B 00195 // by Idx. Find a class that is also a sub-class of A. 00196 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this); 00197 return nullptr; 00198 } 00199 00200 const TargetRegisterClass *TargetRegisterInfo:: 00201 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 00202 const TargetRegisterClass *RCB, unsigned SubB, 00203 unsigned &PreA, unsigned &PreB) const { 00204 assert(RCA && SubA && RCB && SubB && "Invalid arguments"); 00205 00206 // Search all pairs of sub-register indices that project into RCA and RCB 00207 // respectively. This is quadratic, but usually the sets are very small. On 00208 // most targets like X86, there will only be a single sub-register index 00209 // (e.g., sub_16bit projecting into GR16). 00210 // 00211 // The worst case is a register class like DPR on ARM. 00212 // We have indices dsub_0..dsub_7 projecting into that class. 00213 // 00214 // It is very common that one register class is a sub-register of the other. 00215 // Arrange for RCA to be the larger register so the answer will be found in 00216 // the first iteration. This makes the search linear for the most common 00217 // case. 00218 const TargetRegisterClass *BestRC = nullptr; 00219 unsigned *BestPreA = &PreA; 00220 unsigned *BestPreB = &PreB; 00221 if (RCA->getSize() < RCB->getSize()) { 00222 std::swap(RCA, RCB); 00223 std::swap(SubA, SubB); 00224 std::swap(BestPreA, BestPreB); 00225 } 00226 00227 // Also terminate the search one we have found a register class as small as 00228 // RCA. 00229 unsigned MinSize = RCA->getSize(); 00230 00231 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) { 00232 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA); 00233 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) { 00234 // Check if a common super-register class exists for this index pair. 00235 const TargetRegisterClass *RC = 00236 firstCommonClass(IA.getMask(), IB.getMask(), this); 00237 if (!RC || RC->getSize() < MinSize) 00238 continue; 00239 00240 // The indexes must compose identically: PreA+SubA == PreB+SubB. 00241 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB); 00242 if (FinalA != FinalB) 00243 continue; 00244 00245 // Is RC a better candidate than BestRC? 00246 if (BestRC && RC->getSize() >= BestRC->getSize()) 00247 continue; 00248 00249 // Yes, RC is the smallest super-register seen so far. 00250 BestRC = RC; 00251 *BestPreA = IA.getSubReg(); 00252 *BestPreB = IB.getSubReg(); 00253 00254 // Bail early if we reached MinSize. We won't find a better candidate. 00255 if (BestRC->getSize() == MinSize) 00256 return BestRC; 00257 } 00258 } 00259 return BestRC; 00260 } 00261 00262 // Compute target-independent register allocator hints to help eliminate copies. 00263 void 00264 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg, 00265 ArrayRef<MCPhysReg> Order, 00266 SmallVectorImpl<MCPhysReg> &Hints, 00267 const MachineFunction &MF, 00268 const VirtRegMap *VRM) const { 00269 const MachineRegisterInfo &MRI = MF.getRegInfo(); 00270 std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg); 00271 00272 // Hints with HintType != 0 were set by target-dependent code. 00273 // Such targets must provide their own implementation of 00274 // TRI::getRegAllocationHints to interpret those hint types. 00275 assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints"); 00276 00277 // Target-independent hints are either a physical or a virtual register. 00278 unsigned Phys = Hint.second; 00279 if (VRM && isVirtualRegister(Phys)) 00280 Phys = VRM->getPhys(Phys); 00281 00282 // Check that Phys is a valid hint in VirtReg's register class. 00283 if (!isPhysicalRegister(Phys)) 00284 return; 00285 if (MRI.isReserved(Phys)) 00286 return; 00287 // Check that Phys is in the allocation order. We shouldn't heed hints 00288 // from VirtReg's register class if they aren't in the allocation order. The 00289 // target probably has a reason for removing the register. 00290 if (std::find(Order.begin(), Order.end(), Phys) == Order.end()) 00291 return; 00292 00293 // All clear, tell the register allocator to prefer this register. 00294 Hints.push_back(Phys); 00295 }