#include "storage/standby.h"
#include "utils/snapshot.h"
Go to the source code of this file.
PGPROC* BackendPidGetProc | ( | int | pid | ) |
Definition at line 1893 of file procarray.c.
References LW_SHARED, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, PGPROC::pid, and ProcArrayLock.
Referenced by IsBackendPid(), pg_signal_backend(), and ProcSendSignal().
{ PGPROC *result = NULL; ProcArrayStruct *arrayP = procArray; int index; if (pid == 0) /* never match dummy PGPROCs */ return NULL; LWLockAcquire(ProcArrayLock, LW_SHARED); for (index = 0; index < arrayP->numProcs; index++) { PGPROC *proc = &allProcs[arrayP->pgprocnos[index]]; if (proc->pid == pid) { result = proc; break; } } LWLockRelease(ProcArrayLock); return result; }
int BackendXidGetPid | ( | TransactionId | xid | ) |
Definition at line 1934 of file procarray.c.
References InvalidTransactionId, LW_SHARED, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, PGPROC::pid, ProcArrayLock, and PGXACT::xid.
Referenced by pgrowlocks().
{ int result = 0; ProcArrayStruct *arrayP = procArray; int index; if (xid == InvalidTransactionId) /* never match invalid xid */ return 0; LWLockAcquire(ProcArrayLock, LW_SHARED); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; if (pgxact->xid == xid) { result = proc->pid; break; } } LWLockRelease(ProcArrayLock); return result; }
void CancelDBBackends | ( | Oid | databaseid, | |
ProcSignalReason | sigmode, | |||
bool | conflictPending | |||
) |
Definition at line 2294 of file procarray.c.
References VirtualTransactionId::backendId, PGPROC::databaseId, GET_VXID_FROM_PGPROC, InvalidOid, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, PGPROC::pid, ProcArrayLock, PGPROC::recoveryConflictPending, and SendProcSignal().
Referenced by ResolveRecoveryConflictWithDatabase(), and SendRecoveryConflictWithBufferPin().
{ ProcArrayStruct *arrayP = procArray; int index; pid_t pid = 0; /* tell all backends to die */ LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; if (databaseid == InvalidOid || proc->databaseId == databaseid) { VirtualTransactionId procvxid; GET_VXID_FROM_PGPROC(procvxid, *proc); proc->recoveryConflictPending = conflictPending; pid = proc->pid; if (pid != 0) { /* * Kill the pid if it's still here. If not, that's what we * wanted so ignore any errors. */ (void) SendProcSignal(pid, sigmode, procvxid.backendId); } } } LWLockRelease(ProcArrayLock); }
pid_t CancelVirtualTransaction | ( | VirtualTransactionId | vxid, | |
ProcSignalReason | sigmode | |||
) |
Definition at line 2162 of file procarray.c.
References VirtualTransactionId::backendId, GET_VXID_FROM_PGPROC, VirtualTransactionId::localTransactionId, LW_SHARED, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, PGPROC::pid, ProcArrayLock, PGPROC::recoveryConflictPending, and SendProcSignal().
Referenced by ResolveRecoveryConflictWithVirtualXIDs().
{ ProcArrayStruct *arrayP = procArray; int index; pid_t pid = 0; LWLockAcquire(ProcArrayLock, LW_SHARED); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; VirtualTransactionId procvxid; GET_VXID_FROM_PGPROC(procvxid, *proc); if (procvxid.backendId == vxid.backendId && procvxid.localTransactionId == vxid.localTransactionId) { proc->recoveryConflictPending = true; pid = proc->pid; if (pid != 0) { /* * Kill the pid if it's still here. If not, that's what we * wanted so ignore any errors. */ (void) SendProcSignal(pid, sigmode, vxid.backendId); } break; } } LWLockRelease(ProcArrayLock); return pid; }
int CountDBBackends | ( | Oid | databaseid | ) |
Definition at line 2265 of file procarray.c.
References PGPROC::databaseId, LW_SHARED, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::numProcs, OidIsValid, ProcArrayStruct::pgprocnos, PGPROC::pid, and ProcArrayLock.
Referenced by btree_xlog_delete_get_latestRemovedXid(), CheckMyDatabase(), and ResolveRecoveryConflictWithDatabase().
{ ProcArrayStruct *arrayP = procArray; int count = 0; int index; LWLockAcquire(ProcArrayLock, LW_SHARED); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; if (proc->pid == 0) continue; /* do not count prepared xacts */ if (!OidIsValid(databaseid) || proc->databaseId == databaseid) count++; } LWLockRelease(ProcArrayLock); return count; }
Definition at line 2382 of file procarray.c.
References CHECK_FOR_INTERRUPTS, PGPROC::databaseId, LW_SHARED, LWLockAcquire(), LWLockRelease(), MAXAUTOVACPIDS, MyProc, ProcArrayStruct::numProcs, pg_usleep(), ProcArrayStruct::pgprocnos, PGPROC::pid, PROC_IS_AUTOVACUUM, ProcArrayLock, and PGXACT::vacuumFlags.
Referenced by createdb(), dropdb(), movedb(), and RenameDatabase().
{ ProcArrayStruct *arrayP = procArray; #define MAXAUTOVACPIDS 10 /* max autovacs to SIGTERM per iteration */ int autovac_pids[MAXAUTOVACPIDS]; int tries; /* 50 tries with 100ms sleep between tries makes 5 sec total wait */ for (tries = 0; tries < 50; tries++) { int nautovacs = 0; bool found = false; int index; CHECK_FOR_INTERRUPTS(); *nbackends = *nprepared = 0; LWLockAcquire(ProcArrayLock, LW_SHARED); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; if (proc->databaseId != databaseId) continue; if (proc == MyProc) continue; found = true; if (proc->pid == 0) (*nprepared)++; else { (*nbackends)++; if ((pgxact->vacuumFlags & PROC_IS_AUTOVACUUM) && nautovacs < MAXAUTOVACPIDS) autovac_pids[nautovacs++] = proc->pid; } } LWLockRelease(ProcArrayLock); if (!found) return false; /* no conflicting backends, so done */ /* * Send SIGTERM to any conflicting autovacuums before sleeping. We * postpone this step until after the loop because we don't want to * hold ProcArrayLock while issuing kill(). We have no idea what might * block kill() inside the kernel... */ for (index = 0; index < nautovacs; index++) (void) kill(autovac_pids[index], SIGTERM); /* ignore any error */ /* sleep, then try again */ pg_usleep(100 * 1000L); /* 100ms */ } return true; /* timed out, still conflicts */ }
int CountUserBackends | ( | Oid | roleid | ) |
Definition at line 2334 of file procarray.c.
References LW_SHARED, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, PGPROC::pid, ProcArrayLock, and PGPROC::roleId.
Referenced by InitializeSessionUserId().
{ ProcArrayStruct *arrayP = procArray; int count = 0; int index; LWLockAcquire(ProcArrayLock, LW_SHARED); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; if (proc->pid == 0) continue; /* do not count prepared xacts */ if (proc->roleId == roleid) count++; } LWLockRelease(ProcArrayLock); return count; }
void CreateSharedProcArray | ( | void | ) |
Definition at line 212 of file procarray.c.
References add_size(), PROC_HDR::allPgXact, PROC_HDR::allProcs, EnableHotStandby, ProcArrayStruct::headKnownAssignedXids, ProcArrayStruct::known_assigned_xids_lck, KnownAssignedXids, KnownAssignedXidsValid, ProcArrayStruct::lastOverflowedXid, ProcArrayStruct::maxKnownAssignedXids, ProcArrayStruct::maxProcs, mul_size(), ProcArrayStruct::numKnownAssignedXids, ProcArrayStruct::numProcs, offsetof, PROCARRAY_MAXPROCS, ProcGlobal, ShmemInitStruct(), SpinLockInit, ProcArrayStruct::tailKnownAssignedXids, and TOTAL_MAX_CACHED_SUBXIDS.
Referenced by CreateSharedMemoryAndSemaphores().
{ bool found; /* Create or attach to the ProcArray shared structure */ procArray = (ProcArrayStruct *) ShmemInitStruct("Proc Array", add_size(offsetof(ProcArrayStruct, pgprocnos), mul_size(sizeof(int), PROCARRAY_MAXPROCS)), &found); if (!found) { /* * We're the first - initialize. */ procArray->numProcs = 0; procArray->maxProcs = PROCARRAY_MAXPROCS; procArray->maxKnownAssignedXids = TOTAL_MAX_CACHED_SUBXIDS; procArray->numKnownAssignedXids = 0; procArray->tailKnownAssignedXids = 0; procArray->headKnownAssignedXids = 0; SpinLockInit(&procArray->known_assigned_xids_lck); procArray->lastOverflowedXid = InvalidTransactionId; } allProcs = ProcGlobal->allProcs; allPgXact = ProcGlobal->allPgXact; /* Create or attach to the KnownAssignedXids arrays too, if needed */ if (EnableHotStandby) { KnownAssignedXids = (TransactionId *) ShmemInitStruct("KnownAssignedXids", mul_size(sizeof(TransactionId), TOTAL_MAX_CACHED_SUBXIDS), &found); KnownAssignedXidsValid = (bool *) ShmemInitStruct("KnownAssignedXidsValid", mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS), &found); } }
void ExpireAllKnownAssignedTransactionIds | ( | void | ) |
Definition at line 2714 of file procarray.c.
References InvalidTransactionId, KnownAssignedXidsRemovePreceding(), LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), and ProcArrayLock.
Referenced by ShutdownRecoveryTransactionEnvironment().
void ExpireOldKnownAssignedTransactionIds | ( | TransactionId | xid | ) |
Definition at line 2726 of file procarray.c.
References KnownAssignedXidsRemovePreceding(), LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), and ProcArrayLock.
Referenced by ProcArrayApplyRecoveryInfo().
void ExpireTreeKnownAssignedTransactionIds | ( | TransactionId | xid, | |
int | nsubxids, | |||
TransactionId * | subxids, | |||
TransactionId | max_xid | |||
) |
Definition at line 2689 of file procarray.c.
References Assert, KnownAssignedXidsRemoveTree(), VariableCacheData::latestCompletedXid, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), ProcArrayLock, ShmemVariableCache, STANDBY_INITIALIZED, standbyState, and TransactionIdPrecedes().
Referenced by xact_redo_abort(), and xact_redo_commit_internal().
{ Assert(standbyState >= STANDBY_INITIALIZED); /* * Uses same locking as transaction commit */ LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); KnownAssignedXidsRemoveTree(xid, nsubxids, subxids); /* As in ProcArrayEndTransaction, advance latestCompletedXid */ if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid, max_xid)) ShmemVariableCache->latestCompletedXid = max_xid; LWLockRelease(ProcArrayLock); }
VirtualTransactionId* GetConflictingVirtualXIDs | ( | TransactionId | limitXmin, | |
Oid | dbOid | |||
) |
Definition at line 2090 of file procarray.c.
References VirtualTransactionId::backendId, PGPROC::databaseId, ereport, errcode(), errmsg(), ERROR, GET_VXID_FROM_PGPROC, VirtualTransactionId::localTransactionId, LW_SHARED, LWLockAcquire(), LWLockRelease(), malloc, ProcArrayStruct::maxProcs, NULL, ProcArrayStruct::numProcs, OidIsValid, ProcArrayStruct::pgprocnos, PGPROC::pid, ProcArrayLock, TransactionIdFollows(), TransactionIdIsValid, VirtualTransactionIdIsValid, and PGXACT::xmin.
Referenced by ResolveRecoveryConflictWithLock(), ResolveRecoveryConflictWithSnapshot(), and ResolveRecoveryConflictWithTablespace().
{ static VirtualTransactionId *vxids; ProcArrayStruct *arrayP = procArray; int count = 0; int index; /* * If first time through, get workspace to remember main XIDs in. We * malloc it permanently to avoid repeated palloc/pfree overhead. Allow * result space, remembering room for a terminator. */ if (vxids == NULL) { vxids = (VirtualTransactionId *) malloc(sizeof(VirtualTransactionId) * (arrayP->maxProcs + 1)); if (vxids == NULL) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); } LWLockAcquire(ProcArrayLock, LW_SHARED); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; /* Exclude prepared transactions */ if (proc->pid == 0) continue; if (!OidIsValid(dbOid) || proc->databaseId == dbOid) { /* Fetch xmin just once - can't change on us, but good coding */ TransactionId pxmin = pgxact->xmin; /* * We ignore an invalid pxmin because this means that backend has * no snapshot and cannot get another one while we hold exclusive * lock. */ if (!TransactionIdIsValid(limitXmin) || (TransactionIdIsValid(pxmin) && !TransactionIdFollows(pxmin, limitXmin))) { VirtualTransactionId vxid; GET_VXID_FROM_PGPROC(vxid, *proc); if (VirtualTransactionIdIsValid(vxid)) vxids[count++] = vxid; } } } LWLockRelease(ProcArrayLock); /* add the terminator */ vxids[count].backendId = InvalidBackendId; vxids[count].localTransactionId = InvalidLocalTransactionId; return vxids; }
VirtualTransactionId* GetCurrentVirtualXIDs | ( | TransactionId | limitXmin, | |
bool | excludeXmin0, | |||
bool | allDbs, | |||
int | excludeVacuum, | |||
int * | nvxids | |||
) |
Definition at line 2002 of file procarray.c.
References PGPROC::databaseId, GET_VXID_FROM_PGPROC, LW_SHARED, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::maxProcs, MyDatabaseId, MyProc, ProcArrayStruct::numProcs, palloc(), ProcArrayStruct::pgprocnos, ProcArrayLock, TransactionIdIsValid, TransactionIdPrecedesOrEquals(), PGXACT::vacuumFlags, VirtualTransactionIdIsValid, and PGXACT::xmin.
Referenced by DefineIndex().
{ VirtualTransactionId *vxids; ProcArrayStruct *arrayP = procArray; int count = 0; int index; /* allocate what's certainly enough result space */ vxids = (VirtualTransactionId *) palloc(sizeof(VirtualTransactionId) * arrayP->maxProcs); LWLockAcquire(ProcArrayLock, LW_SHARED); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; if (proc == MyProc) continue; if (excludeVacuum & pgxact->vacuumFlags) continue; if (allDbs || proc->databaseId == MyDatabaseId) { /* Fetch xmin just once - might change on us */ TransactionId pxmin = pgxact->xmin; if (excludeXmin0 && !TransactionIdIsValid(pxmin)) continue; /* * InvalidTransactionId precedes all other XIDs, so a proc that * hasn't set xmin yet will not be rejected by this test. */ if (!TransactionIdIsValid(limitXmin) || TransactionIdPrecedesOrEquals(pxmin, limitXmin)) { VirtualTransactionId vxid; GET_VXID_FROM_PGPROC(vxid, *proc); if (VirtualTransactionIdIsValid(vxid)) vxids[count++] = vxid; } } } LWLockRelease(ProcArrayLock); *nvxids = count; return vxids; }
int GetMaxSnapshotSubxidCount | ( | void | ) |
Definition at line 1219 of file procarray.c.
Referenced by ExportSnapshot(), GetSnapshotData(), ImportSnapshot(), and SetTransactionSnapshot().
{
return TOTAL_MAX_CACHED_SUBXIDS;
}
int GetMaxSnapshotXidCount | ( | void | ) |
Definition at line 1208 of file procarray.c.
References ProcArrayStruct::maxProcs.
Referenced by GetSnapshotData(), ImportSnapshot(), and SetTransactionSnapshot().
TransactionId GetOldestActiveTransactionId | ( | void | ) |
Definition at line 1731 of file procarray.c.
References Assert, LW_SHARED, LWLockAcquire(), LWLockRelease(), VariableCacheData::nextXid, ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, ProcArrayLock, RecoveryInProgress(), ShmemVariableCache, TransactionIdIsNormal, TransactionIdPrecedes(), and PGXACT::xid.
Referenced by CreateCheckPoint().
{ ProcArrayStruct *arrayP = procArray; TransactionId oldestRunningXid; int index; Assert(!RecoveryInProgress()); LWLockAcquire(ProcArrayLock, LW_SHARED); /* * It's okay to read nextXid without acquiring XidGenLock because (1) we * assume TransactionIds can be read atomically and (2) we don't care if * we get a slightly stale value. It can't be very stale anyway, because * the LWLockAcquire above will have done any necessary memory * interlocking. */ oldestRunningXid = ShmemVariableCache->nextXid; /* * Spin over procArray collecting all xids and subxids. */ for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; TransactionId xid; /* Fetch xid just once - see GetNewTransactionId */ xid = pgxact->xid; if (!TransactionIdIsNormal(xid)) continue; if (TransactionIdPrecedes(xid, oldestRunningXid)) oldestRunningXid = xid; /* * Top-level XID of a transaction is always less than any of its * subxids, so we don't need to check if any of the subxids are * smaller than oldestRunningXid */ } LWLockRelease(ProcArrayLock); return oldestRunningXid; }
TransactionId GetOldestXmin | ( | bool | allDbs, | |
bool | ignoreVacuum | |||
) |
Definition at line 1103 of file procarray.c.
References Assert, PGPROC::databaseId, KnownAssignedXidsGetOldestXmin(), VariableCacheData::latestCompletedXid, LW_SHARED, LWLockAcquire(), LWLockRelease(), MyDatabaseId, ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, PROC_IN_VACUUM, ProcArrayLock, RecoveryInProgress(), ShmemVariableCache, TransactionIdAdvance, TransactionIdIsNormal, TransactionIdPrecedes(), vacuum_defer_cleanup_age, PGXACT::vacuumFlags, PGXACT::xid, and PGXACT::xmin.
Referenced by acquire_sample_rows(), CreateCheckPoint(), CreateRestartPoint(), IndexBuildHeapScan(), vac_update_datfrozenxid(), vacuum_set_xid_limits(), and XLogWalRcvSendHSFeedback().
{ ProcArrayStruct *arrayP = procArray; TransactionId result; int index; /* Cannot look for individual databases during recovery */ Assert(allDbs || !RecoveryInProgress()); LWLockAcquire(ProcArrayLock, LW_SHARED); /* * We initialize the MIN() calculation with latestCompletedXid + 1. This * is a lower bound for the XIDs that might appear in the ProcArray later, * and so protects us against overestimating the result due to future * additions. */ result = ShmemVariableCache->latestCompletedXid; Assert(TransactionIdIsNormal(result)); TransactionIdAdvance(result); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; if (ignoreVacuum && (pgxact->vacuumFlags & PROC_IN_VACUUM)) continue; if (allDbs || proc->databaseId == MyDatabaseId || proc->databaseId == 0) /* always include WalSender */ { /* Fetch xid just once - see GetNewTransactionId */ TransactionId xid = pgxact->xid; /* First consider the transaction's own Xid, if any */ if (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, result)) result = xid; /* * Also consider the transaction's Xmin, if set. * * We must check both Xid and Xmin because a transaction might * have an Xmin but not (yet) an Xid; conversely, if it has an * Xid, that could determine some not-yet-set Xmin. */ xid = pgxact->xmin; /* Fetch just once */ if (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, result)) result = xid; } } if (RecoveryInProgress()) { /* * Check to see whether KnownAssignedXids contains an xid value older * than the main procarray. */ TransactionId kaxmin = KnownAssignedXidsGetOldestXmin(); LWLockRelease(ProcArrayLock); if (TransactionIdIsNormal(kaxmin) && TransactionIdPrecedes(kaxmin, result)) result = kaxmin; } else { /* * No other information needed, so release the lock immediately. */ LWLockRelease(ProcArrayLock); /* * Compute the cutoff XID by subtracting vacuum_defer_cleanup_age, * being careful not to generate a "permanent" XID. * * vacuum_defer_cleanup_age provides some additional "slop" for the * benefit of hot standby queries on slave servers. This is quick and * dirty, and perhaps not all that useful unless the master has a * predictable transaction rate, but it offers some protection when * there's no walsender connection. Note that we are assuming * vacuum_defer_cleanup_age isn't large enough to cause wraparound --- * so guc.c should limit it to no more than the xidStopLimit threshold * in varsup.c. Also note that we intentionally don't apply * vacuum_defer_cleanup_age on standby servers. */ result -= vacuum_defer_cleanup_age; if (!TransactionIdIsNormal(result)) result = FirstNormalTransactionId; } return result; }
RunningTransactions GetRunningTransactionData | ( | void | ) |
Definition at line 1581 of file procarray.c.
References Assert, ereport, errcode(), errmsg(), ERROR, RunningTransactionsData::latestCompletedXid, VariableCacheData::latestCompletedXid, LW_SHARED, LWLockAcquire(), LWLockRelease(), malloc, RunningTransactionsData::nextXid, VariableCacheData::nextXid, NULL, ProcArrayStruct::numProcs, PGXACT::nxids, RunningTransactionsData::oldestRunningXid, PGXACT::overflowed, ProcArrayStruct::pgprocnos, ProcArrayLock, RecoveryInProgress(), ShmemVariableCache, RunningTransactionsData::subxcnt, RunningTransactionsData::subxid_overflow, PGPROC::subxids, TOTAL_MAX_CACHED_SUBXIDS, TransactionIdIsNormal, TransactionIdIsValid, TransactionIdPrecedes(), RunningTransactionsData::xcnt, PGXACT::xid, XidGenLock, XidCache::xids, and RunningTransactionsData::xids.
Referenced by LogStandbySnapshot().
{ /* result workspace */ static RunningTransactionsData CurrentRunningXactsData; ProcArrayStruct *arrayP = procArray; RunningTransactions CurrentRunningXacts = &CurrentRunningXactsData; TransactionId latestCompletedXid; TransactionId oldestRunningXid; TransactionId *xids; int index; int count; int subcount; bool suboverflowed; Assert(!RecoveryInProgress()); /* * Allocating space for maxProcs xids is usually overkill; numProcs would * be sufficient. But it seems better to do the malloc while not holding * the lock, so we can't look at numProcs. Likewise, we allocate much * more subxip storage than is probably needed. * * Should only be allocated in bgwriter, since only ever executed during * checkpoints. */ if (CurrentRunningXacts->xids == NULL) { /* * First call */ CurrentRunningXacts->xids = (TransactionId *) malloc(TOTAL_MAX_CACHED_SUBXIDS * sizeof(TransactionId)); if (CurrentRunningXacts->xids == NULL) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); } xids = CurrentRunningXacts->xids; count = subcount = 0; suboverflowed = false; /* * Ensure that no xids enter or leave the procarray while we obtain * snapshot. */ LWLockAcquire(ProcArrayLock, LW_SHARED); LWLockAcquire(XidGenLock, LW_SHARED); latestCompletedXid = ShmemVariableCache->latestCompletedXid; oldestRunningXid = ShmemVariableCache->nextXid; /* * Spin over procArray collecting all xids */ for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; TransactionId xid; /* Fetch xid just once - see GetNewTransactionId */ xid = pgxact->xid; /* * We don't need to store transactions that don't have a TransactionId * yet because they will not show as running on a standby server. */ if (!TransactionIdIsValid(xid)) continue; xids[count++] = xid; if (TransactionIdPrecedes(xid, oldestRunningXid)) oldestRunningXid = xid; if (pgxact->overflowed) suboverflowed = true; } /* * Spin over procArray collecting all subxids, but only if there hasn't * been a suboverflow. */ if (!suboverflowed) { for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; int nxids; /* * Save subtransaction XIDs. Other backends can't add or remove * entries while we're holding XidGenLock. */ nxids = pgxact->nxids; if (nxids > 0) { memcpy(&xids[count], (void *) proc->subxids.xids, nxids * sizeof(TransactionId)); count += nxids; subcount += nxids; /* * Top-level XID of a transaction is always less than any of * its subxids, so we don't need to check if any of the subxids * are smaller than oldestRunningXid */ } } } CurrentRunningXacts->xcnt = count - subcount; CurrentRunningXacts->subxcnt = subcount; CurrentRunningXacts->subxid_overflow = suboverflowed; CurrentRunningXacts->nextXid = ShmemVariableCache->nextXid; CurrentRunningXacts->oldestRunningXid = oldestRunningXid; CurrentRunningXacts->latestCompletedXid = latestCompletedXid; /* We don't release XidGenLock here, the caller is responsible for that */ LWLockRelease(ProcArrayLock); Assert(TransactionIdIsValid(CurrentRunningXacts->nextXid)); Assert(TransactionIdIsValid(CurrentRunningXacts->oldestRunningXid)); Assert(TransactionIdIsNormal(CurrentRunningXacts->latestCompletedXid)); return CurrentRunningXacts; }
Definition at line 1258 of file procarray.c.
References SnapshotData::active_count, Assert, SnapshotData::copied, SnapshotData::curcid, ereport, errcode(), errmsg(), ERROR, GetCurrentCommandId(), GetMaxSnapshotSubxidCount(), GetMaxSnapshotXidCount(), KnownAssignedXidsGetAndSetXmin(), ProcArrayStruct::lastOverflowedXid, VariableCacheData::latestCompletedXid, LW_SHARED, LWLockAcquire(), LWLockRelease(), malloc, MyPgXact, NormalTransactionIdPrecedes, NULL, ProcArrayStruct::numProcs, PGXACT::nxids, PGXACT::overflowed, ProcArrayStruct::pgprocnos, PROC_IN_VACUUM, ProcArrayLock, RecentGlobalXmin, RecentXmin, RecoveryInProgress(), SnapshotData::regd_count, ShmemVariableCache, SnapshotData::suboverflowed, SnapshotData::subxcnt, PGPROC::subxids, SnapshotData::subxip, SnapshotData::takenDuringRecovery, TransactionIdAdvance, TransactionIdIsNormal, TransactionIdIsValid, TransactionIdPrecedes(), TransactionIdPrecedesOrEquals(), TransactionXmin, vacuum_defer_cleanup_age, PGXACT::vacuumFlags, SnapshotData::xcnt, PGXACT::xid, XidCache::xids, SnapshotData::xip, SnapshotData::xmax, SnapshotData::xmin, and PGXACT::xmin.
Referenced by GetLatestSnapshot(), GetSerializableTransactionSnapshotInt(), GetTransactionSnapshot(), and SetTransactionSnapshot().
{ ProcArrayStruct *arrayP = procArray; TransactionId xmin; TransactionId xmax; TransactionId globalxmin; int index; int count = 0; int subcount = 0; bool suboverflowed = false; Assert(snapshot != NULL); /* * Allocating space for maxProcs xids is usually overkill; numProcs would * be sufficient. But it seems better to do the malloc while not holding * the lock, so we can't look at numProcs. Likewise, we allocate much * more subxip storage than is probably needed. * * This does open a possibility for avoiding repeated malloc/free: since * maxProcs does not change at runtime, we can simply reuse the previous * xip arrays if any. (This relies on the fact that all callers pass * static SnapshotData structs.) */ if (snapshot->xip == NULL) { /* * First call for this snapshot. Snapshot is same size whether or not * we are in recovery, see later comments. */ snapshot->xip = (TransactionId *) malloc(GetMaxSnapshotXidCount() * sizeof(TransactionId)); if (snapshot->xip == NULL) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); Assert(snapshot->subxip == NULL); snapshot->subxip = (TransactionId *) malloc(GetMaxSnapshotSubxidCount() * sizeof(TransactionId)); if (snapshot->subxip == NULL) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); } /* * It is sufficient to get shared lock on ProcArrayLock, even if we are * going to set MyPgXact->xmin. */ LWLockAcquire(ProcArrayLock, LW_SHARED); /* xmax is always latestCompletedXid + 1 */ xmax = ShmemVariableCache->latestCompletedXid; Assert(TransactionIdIsNormal(xmax)); TransactionIdAdvance(xmax); /* initialize xmin calculation with xmax */ globalxmin = xmin = xmax; snapshot->takenDuringRecovery = RecoveryInProgress(); if (!snapshot->takenDuringRecovery) { int *pgprocnos = arrayP->pgprocnos; int numProcs; /* * Spin over procArray checking xid, xmin, and subxids. The goal is * to gather all active xids, find the lowest xmin, and try to record * subxids. */ numProcs = arrayP->numProcs; for (index = 0; index < numProcs; index++) { int pgprocno = pgprocnos[index]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; TransactionId xid; /* Ignore procs running LAZY VACUUM */ if (pgxact->vacuumFlags & PROC_IN_VACUUM) continue; /* Update globalxmin to be the smallest valid xmin */ xid = pgxact->xmin; /* fetch just once */ if (TransactionIdIsNormal(xid) && NormalTransactionIdPrecedes(xid, globalxmin)) globalxmin = xid; /* Fetch xid just once - see GetNewTransactionId */ xid = pgxact->xid; /* * If the transaction has no XID assigned, we can skip it; it * won't have sub-XIDs either. If the XID is >= xmax, we can also * skip it; such transactions will be treated as running anyway * (and any sub-XIDs will also be >= xmax). */ if (!TransactionIdIsNormal(xid) || !NormalTransactionIdPrecedes(xid, xmax)) continue; /* * We don't include our own XIDs (if any) in the snapshot, but we * must include them in xmin. */ if (NormalTransactionIdPrecedes(xid, xmin)) xmin = xid; if (pgxact == MyPgXact) continue; /* Add XID to snapshot. */ snapshot->xip[count++] = xid; /* * Save subtransaction XIDs if possible (if we've already * overflowed, there's no point). Note that the subxact XIDs must * be later than their parent, so no need to check them against * xmin. We could filter against xmax, but it seems better not to * do that much work while holding the ProcArrayLock. * * The other backend can add more subxids concurrently, but cannot * remove any. Hence it's important to fetch nxids just once. * Should be safe to use memcpy, though. (We needn't worry about * missing any xids added concurrently, because they must postdate * xmax.) * * Again, our own XIDs are not included in the snapshot. */ if (!suboverflowed) { if (pgxact->overflowed) suboverflowed = true; else { int nxids = pgxact->nxids; if (nxids > 0) { volatile PGPROC *proc = &allProcs[pgprocno]; memcpy(snapshot->subxip + subcount, (void *) proc->subxids.xids, nxids * sizeof(TransactionId)); subcount += nxids; } } } } } else { /* * We're in hot standby, so get XIDs from KnownAssignedXids. * * We store all xids directly into subxip[]. Here's why: * * In recovery we don't know which xids are top-level and which are * subxacts, a design choice that greatly simplifies xid processing. * * It seems like we would want to try to put xids into xip[] only, but * that is fairly small. We would either need to make that bigger or * to increase the rate at which we WAL-log xid assignment; neither is * an appealing choice. * * We could try to store xids into xip[] first and then into subxip[] * if there are too many xids. That only works if the snapshot doesn't * overflow because we do not search subxip[] in that case. A simpler * way is to just store all xids in the subxact array because this is * by far the bigger array. We just leave the xip array empty. * * Either way we need to change the way XidInMVCCSnapshot() works * depending upon when the snapshot was taken, or change normal * snapshot processing so it matches. * * Note: It is possible for recovery to end before we finish taking the * snapshot, and for newly assigned transaction ids to be added to the * ProcArray. xmax cannot change while we hold ProcArrayLock, so those * newly added transaction ids would be filtered away, so we need not * be concerned about them. */ subcount = KnownAssignedXidsGetAndSetXmin(snapshot->subxip, &xmin, xmax); if (TransactionIdPrecedesOrEquals(xmin, procArray->lastOverflowedXid)) suboverflowed = true; } if (!TransactionIdIsValid(MyPgXact->xmin)) MyPgXact->xmin = TransactionXmin = xmin; LWLockRelease(ProcArrayLock); /* * Update globalxmin to include actual process xids. This is a slightly * different way of computing it than GetOldestXmin uses, but should give * the same result. */ if (TransactionIdPrecedes(xmin, globalxmin)) globalxmin = xmin; /* Update global variables too */ RecentGlobalXmin = globalxmin - vacuum_defer_cleanup_age; if (!TransactionIdIsNormal(RecentGlobalXmin)) RecentGlobalXmin = FirstNormalTransactionId; RecentXmin = xmin; snapshot->xmin = xmin; snapshot->xmax = xmax; snapshot->xcnt = count; snapshot->subxcnt = subcount; snapshot->suboverflowed = suboverflowed; snapshot->curcid = GetCurrentCommandId(false); /* * This is a new snapshot, so set both refcounts are zero, and mark it as * not copied in persistent memory. */ snapshot->active_count = 0; snapshot->regd_count = 0; snapshot->copied = false; return snapshot; }
VirtualTransactionId* GetVirtualXIDsDelayingChkpt | ( | int * | nvxids | ) |
Definition at line 1799 of file procarray.c.
References PGXACT::delayChkpt, GET_VXID_FROM_PGPROC, LW_SHARED, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::maxProcs, ProcArrayStruct::numProcs, palloc(), ProcArrayStruct::pgprocnos, ProcArrayLock, and VirtualTransactionIdIsValid.
Referenced by CreateCheckPoint().
{ VirtualTransactionId *vxids; ProcArrayStruct *arrayP = procArray; int count = 0; int index; /* allocate what's certainly enough result space */ vxids = (VirtualTransactionId *) palloc(sizeof(VirtualTransactionId) * arrayP->maxProcs); LWLockAcquire(ProcArrayLock, LW_SHARED); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; if (pgxact->delayChkpt) { VirtualTransactionId vxid; GET_VXID_FROM_PGPROC(vxid, *proc); if (VirtualTransactionIdIsValid(vxid)) vxids[count++] = vxid; } } LWLockRelease(ProcArrayLock); *nvxids = count; return vxids; }
bool HaveVirtualXIDsDelayingChkpt | ( | VirtualTransactionId * | vxids, | |
int | nvxids | |||
) |
Definition at line 1844 of file procarray.c.
References PGXACT::delayChkpt, GET_VXID_FROM_PGPROC, LW_SHARED, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, ProcArrayLock, VirtualTransactionIdEquals, and VirtualTransactionIdIsValid.
Referenced by CreateCheckPoint().
{ bool result = false; ProcArrayStruct *arrayP = procArray; int index; LWLockAcquire(ProcArrayLock, LW_SHARED); while (VirtualTransactionIdIsValid(*vxids)) { for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; VirtualTransactionId vxid; GET_VXID_FROM_PGPROC(vxid, *proc); if (VirtualTransactionIdIsValid(vxid)) { if (VirtualTransactionIdEquals(vxid, *vxids) && pgxact->delayChkpt) { result = true; break; } } } if (result) break; /* The virtual transaction is gone now, wait for the next one */ vxids++; } LWLockRelease(ProcArrayLock); return result; }
bool IsBackendPid | ( | int | pid | ) |
Definition at line 1969 of file procarray.c.
References BackendPidGetProc(), and NULL.
{ return (BackendPidGetProc(pid) != NULL); }
bool MinimumActiveBackends | ( | int | min | ) |
Definition at line 2210 of file procarray.c.
References InvalidTransactionId, MyProc, NULL, ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, PGPROC::pid, PGPROC::waitLock, and PGXACT::xid.
Referenced by XLogFlush().
{ ProcArrayStruct *arrayP = procArray; int count = 0; int index; /* Quick short-circuit if no minimum is specified */ if (min == 0) return true; /* * Note: for speed, we don't acquire ProcArrayLock. This is a little bit * bogus, but since we are only testing fields for zero or nonzero, it * should be OK. The result is only used for heuristic purposes anyway... */ for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; /* * Since we're not holding a lock, need to check that the pointer is * valid. Someone holding the lock could have incremented numProcs * already, but not yet inserted a valid pointer to the array. * * If someone just decremented numProcs, 'proc' could also point to a * PGPROC entry that's no longer in the array. It still points to a * PGPROC struct, though, because freed PGPROC entries just go to the * free list and are recycled. Its contents are nonsense in that case, * but that's acceptable for this function. */ if (proc == NULL) continue; if (proc == MyProc) continue; /* do not count myself */ if (pgxact->xid == InvalidTransactionId) continue; /* do not count if no XID assigned */ if (proc->pid == 0) continue; /* do not count prepared xacts */ if (proc->waitLock != NULL) continue; /* do not count if blocked on a lock */ count++; if (count >= min) break; } return count >= min; }
void ProcArrayAdd | ( | PGPROC * | proc | ) |
Definition at line 261 of file procarray.c.
References ereport, errcode(), errmsg(), FATAL, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::maxProcs, memmove, ProcArrayStruct::numProcs, PGPROC::pgprocno, ProcArrayStruct::pgprocnos, and ProcArrayLock.
Referenced by InitProcessPhase2(), and MarkAsPrepared().
{ ProcArrayStruct *arrayP = procArray; int index; LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); if (arrayP->numProcs >= arrayP->maxProcs) { /* * Ooops, no room. (This really shouldn't happen, since there is a * fixed supply of PGPROC structs too, and so we should have failed * earlier.) */ LWLockRelease(ProcArrayLock); ereport(FATAL, (errcode(ERRCODE_TOO_MANY_CONNECTIONS), errmsg("sorry, too many clients already"))); } /* * Keep the procs array sorted by (PGPROC *) so that we can utilize * locality of references much better. This is useful while traversing the * ProcArray because there is a increased likelihood of finding the next * PGPROC structure in the cache. * * Since the occurrence of adding/removing a proc is much lower than the * access to the ProcArray itself, the overhead should be marginal */ for (index = 0; index < arrayP->numProcs; index++) { /* * If we are the first PGPROC or if we have found our right position * in the array, break */ if ((arrayP->pgprocnos[index] == -1) || (arrayP->pgprocnos[index] > proc->pgprocno)) break; } memmove(&arrayP->pgprocnos[index + 1], &arrayP->pgprocnos[index], (arrayP->numProcs - index) * sizeof(int)); arrayP->pgprocnos[index] = proc->pgprocno; arrayP->numProcs++; LWLockRelease(ProcArrayLock); }
void ProcArrayApplyRecoveryInfo | ( | RunningTransactions | running | ) |
Definition at line 488 of file procarray.c.
References Assert, DEBUG1, DEBUG3, elog, ERROR, ExpireOldKnownAssignedTransactionIds(), i, KnownAssignedXidsAdd(), KnownAssignedXidsDisplay(), KnownAssignedXidsReset(), ProcArrayStruct::lastOverflowedXid, VariableCacheData::latestCompletedXid, RunningTransactionsData::latestCompletedXid, latestObservedXid, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), VariableCacheData::nextXid, RunningTransactionsData::nextXid, ProcArrayStruct::numKnownAssignedXids, RunningTransactionsData::oldestRunningXid, palloc(), pfree(), ProcArrayLock, qsort, ShmemVariableCache, STANDBY_INITIALIZED, STANDBY_SNAPSHOT_PENDING, STANDBY_SNAPSHOT_READY, StandbyReleaseOldLocks(), standbySnapshotPendingXmin, standbyState, RunningTransactionsData::subxcnt, RunningTransactionsData::subxid_overflow, trace_recovery(), TransactionIdAdvance, TransactionIdDidAbort(), TransactionIdDidCommit(), TransactionIdFollows(), TransactionIdIsNormal, TransactionIdIsValid, TransactionIdPrecedes(), TransactionIdRetreat, RunningTransactionsData::xcnt, xidComparator(), XidGenLock, and RunningTransactionsData::xids.
Referenced by standby_redo(), StartupXLOG(), and xlog_redo().
{ TransactionId *xids; int nxids; TransactionId nextXid; int i; Assert(standbyState >= STANDBY_INITIALIZED); Assert(TransactionIdIsValid(running->nextXid)); Assert(TransactionIdIsValid(running->oldestRunningXid)); Assert(TransactionIdIsNormal(running->latestCompletedXid)); /* * Remove stale transactions, if any. */ ExpireOldKnownAssignedTransactionIds(running->oldestRunningXid); /* * Remove stale locks, if any. * * Locks are always assigned to the toplevel xid so we don't need to care * about subxcnt/subxids (and by extension not about ->suboverflowed). */ StandbyReleaseOldLocks(running->xcnt, running->xids); /* * If our snapshot is already valid, nothing else to do... */ if (standbyState == STANDBY_SNAPSHOT_READY) return; /* * If our initial RunningTransactionsData had an overflowed snapshot then * we knew we were missing some subxids from our snapshot. If we continue * to see overflowed snapshots then we might never be able to start up, so * we make another test to see if our snapshot is now valid. We know that * the missing subxids are equal to or earlier than nextXid. After we * initialise we continue to apply changes during recovery, so once the * oldestRunningXid is later than the nextXid from the initial snapshot we * know that we no longer have missing information and can mark the * snapshot as valid. */ if (standbyState == STANDBY_SNAPSHOT_PENDING) { /* * If the snapshot isn't overflowed or if its empty we can reset our * pending state and use this snapshot instead. */ if (!running->subxid_overflow || running->xcnt == 0) { /* * If we have already collected known assigned xids, we need to * throw them away before we apply the recovery snapshot. */ KnownAssignedXidsReset(); standbyState = STANDBY_INITIALIZED; } else { if (TransactionIdPrecedes(standbySnapshotPendingXmin, running->oldestRunningXid)) { standbyState = STANDBY_SNAPSHOT_READY; elog(trace_recovery(DEBUG1), "recovery snapshots are now enabled"); } else elog(trace_recovery(DEBUG1), "recovery snapshot waiting for non-overflowed snapshot or " "until oldest active xid on standby is at least %u (now %u)", standbySnapshotPendingXmin, running->oldestRunningXid); return; } } Assert(standbyState == STANDBY_INITIALIZED); /* * OK, we need to initialise from the RunningTransactionsData record */ /* * Nobody else is running yet, but take locks anyhow */ LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); /* * KnownAssignedXids is sorted so we cannot just add the xids, we have to * sort them first. * * Some of the new xids are top-level xids and some are subtransactions. * We don't call SubtransSetParent because it doesn't matter yet. If we * aren't overflowed then all xids will fit in snapshot and so we don't * need subtrans. If we later overflow, an xid assignment record will add * xids to subtrans. If RunningXacts is overflowed then we don't have * enough information to correctly update subtrans anyway. */ /* * Allocate a temporary array to avoid modifying the array passed as * argument. */ xids = palloc(sizeof(TransactionId) * (running->xcnt + running->subxcnt)); /* * Add to the temp array any xids which have not already completed. */ nxids = 0; for (i = 0; i < running->xcnt + running->subxcnt; i++) { TransactionId xid = running->xids[i]; /* * The running-xacts snapshot can contain xids that were still visible * in the procarray when the snapshot was taken, but were already * WAL-logged as completed. They're not running anymore, so ignore * them. */ if (TransactionIdDidCommit(xid) || TransactionIdDidAbort(xid)) continue; xids[nxids++] = xid; } if (nxids > 0) { if (procArray->numKnownAssignedXids != 0) { LWLockRelease(ProcArrayLock); elog(ERROR, "KnownAssignedXids is not empty"); } /* * Sort the array so that we can add them safely into * KnownAssignedXids. */ qsort(xids, nxids, sizeof(TransactionId), xidComparator); /* * Add the sorted snapshot into KnownAssignedXids */ for (i = 0; i < nxids; i++) KnownAssignedXidsAdd(xids[i], xids[i], true); KnownAssignedXidsDisplay(trace_recovery(DEBUG3)); } pfree(xids); /* * Now we've got the running xids we need to set the global values that * are used to track snapshots as they evolve further. * * - latestCompletedXid which will be the xmax for snapshots - * lastOverflowedXid which shows whether snapshots overflow - nextXid * * If the snapshot overflowed, then we still initialise with what we know, * but the recovery snapshot isn't fully valid yet because we know there * are some subxids missing. We don't know the specific subxids that are * missing, so conservatively assume the last one is latestObservedXid. */ latestObservedXid = running->nextXid; TransactionIdRetreat(latestObservedXid); if (running->subxid_overflow) { standbyState = STANDBY_SNAPSHOT_PENDING; standbySnapshotPendingXmin = latestObservedXid; procArray->lastOverflowedXid = latestObservedXid; } else { standbyState = STANDBY_SNAPSHOT_READY; standbySnapshotPendingXmin = InvalidTransactionId; } /* * If a transaction wrote a commit record in the gap between taking and * logging the snapshot then latestCompletedXid may already be higher than * the value from the snapshot, so check before we use the incoming value. */ if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid, running->latestCompletedXid)) ShmemVariableCache->latestCompletedXid = running->latestCompletedXid; Assert(TransactionIdIsNormal(ShmemVariableCache->latestCompletedXid)); LWLockRelease(ProcArrayLock); /* * ShmemVariableCache->nextXid must be beyond any observed xid. * * We don't expect anyone else to modify nextXid, hence we don't need to * hold a lock while examining it. We still acquire the lock to modify * it, though. */ nextXid = latestObservedXid; TransactionIdAdvance(nextXid); if (TransactionIdFollows(nextXid, ShmemVariableCache->nextXid)) { LWLockAcquire(XidGenLock, LW_EXCLUSIVE); ShmemVariableCache->nextXid = nextXid; LWLockRelease(XidGenLock); } Assert(TransactionIdIsValid(ShmemVariableCache->nextXid)); KnownAssignedXidsDisplay(trace_recovery(DEBUG3)); if (standbyState == STANDBY_SNAPSHOT_READY) elog(trace_recovery(DEBUG1), "recovery snapshots are now enabled"); else elog(trace_recovery(DEBUG1), "recovery snapshot waiting for non-overflowed snapshot or " "until oldest active xid on standby is at least %u (now %u)", standbySnapshotPendingXmin, running->oldestRunningXid); }
void ProcArrayApplyXidAssignment | ( | TransactionId | topxid, | |
int | nsubxids, | |||
TransactionId * | subxids | |||
) |
Definition at line 714 of file procarray.c.
References Assert, i, InvalidTransactionId, KnownAssignedXidsRemoveTree(), ProcArrayStruct::lastOverflowedXid, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), ProcArrayLock, RecordKnownAssignedTransactionIds(), STANDBY_INITIALIZED, standbyState, SubTransSetParent(), TransactionIdLatest(), and TransactionIdPrecedes().
Referenced by xact_redo().
{ TransactionId max_xid; int i; Assert(standbyState >= STANDBY_INITIALIZED); max_xid = TransactionIdLatest(topxid, nsubxids, subxids); /* * Mark all the subtransactions as observed. * * NOTE: This will fail if the subxid contains too many previously * unobserved xids to fit into known-assigned-xids. That shouldn't happen * as the code stands, because xid-assignment records should never contain * more than PGPROC_MAX_CACHED_SUBXIDS entries. */ RecordKnownAssignedTransactionIds(max_xid); /* * Notice that we update pg_subtrans with the top-level xid, rather than * the parent xid. This is a difference between normal processing and * recovery, yet is still correct in all cases. The reason is that * subtransaction commit is not marked in clog until commit processing, so * all aborted subtransactions have already been clearly marked in clog. * As a result we are able to refer directly to the top-level * transaction's state rather than skipping through all the intermediate * states in the subtransaction tree. This should be the first time we * have attempted to SubTransSetParent(). */ for (i = 0; i < nsubxids; i++) SubTransSetParent(subxids[i], topxid, false); /* * Uses same locking as transaction commit */ LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); /* * Remove subxids from known-assigned-xacts. */ KnownAssignedXidsRemoveTree(InvalidTransactionId, nsubxids, subxids); /* * Advance lastOverflowedXid to be at least the last of these subxids. */ if (TransactionIdPrecedes(procArray->lastOverflowedXid, max_xid)) procArray->lastOverflowedXid = max_xid; LWLockRelease(ProcArrayLock); }
void ProcArrayClearTransaction | ( | PGPROC * | proc | ) |
Definition at line 448 of file procarray.c.
References PGXACT::delayChkpt, PGPROC::lxid, PGXACT::nxids, PGXACT::overflowed, PGPROC::pgprocno, PGPROC::recoveryConflictPending, PGXACT::vacuumFlags, PGXACT::xid, and PGXACT::xmin.
Referenced by PrepareTransaction().
{ PGXACT *pgxact = &allPgXact[proc->pgprocno]; /* * We can skip locking ProcArrayLock here, because this action does not * actually change anyone's view of the set of running XIDs: our entry is * duplicate with the gxact that has already been inserted into the * ProcArray. */ pgxact->xid = InvalidTransactionId; proc->lxid = InvalidLocalTransactionId; pgxact->xmin = InvalidTransactionId; proc->recoveryConflictPending = false; /* redundant, but just in case */ pgxact->vacuumFlags &= ~PROC_VACUUM_STATE_MASK; pgxact->delayChkpt = false; /* Clear the subtransaction-XID cache too */ pgxact->nxids = 0; pgxact->overflowed = false; }
void ProcArrayEndTransaction | ( | PGPROC * | proc, | |
TransactionId | latestXid | |||
) |
Definition at line 382 of file procarray.c.
References Assert, PGXACT::delayChkpt, VariableCacheData::latestCompletedXid, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), PGPROC::lxid, PGXACT::nxids, PGXACT::overflowed, PGPROC::pgprocno, ProcArrayLock, PGPROC::recoveryConflictPending, ShmemVariableCache, TransactionIdIsValid, TransactionIdPrecedes(), PGXACT::vacuumFlags, PGXACT::xid, and PGXACT::xmin.
Referenced by AbortTransaction(), and CommitTransaction().
{ PGXACT *pgxact = &allPgXact[proc->pgprocno]; if (TransactionIdIsValid(latestXid)) { /* * We must lock ProcArrayLock while clearing our advertised XID, so * that we do not exit the set of "running" transactions while someone * else is taking a snapshot. See discussion in * src/backend/access/transam/README. */ Assert(TransactionIdIsValid(allPgXact[proc->pgprocno].xid)); LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); pgxact->xid = InvalidTransactionId; proc->lxid = InvalidLocalTransactionId; pgxact->xmin = InvalidTransactionId; /* must be cleared with xid/xmin: */ pgxact->vacuumFlags &= ~PROC_VACUUM_STATE_MASK; pgxact->delayChkpt = false; /* be sure this is cleared in abort */ proc->recoveryConflictPending = false; /* Clear the subtransaction-XID cache too while holding the lock */ pgxact->nxids = 0; pgxact->overflowed = false; /* Also advance global latestCompletedXid while holding the lock */ if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid, latestXid)) ShmemVariableCache->latestCompletedXid = latestXid; LWLockRelease(ProcArrayLock); } else { /* * If we have no XID, we don't need to lock, since we won't affect * anyone else's calculation of a snapshot. We might change their * estimate of global xmin, but that's OK. */ Assert(!TransactionIdIsValid(allPgXact[proc->pgprocno].xid)); proc->lxid = InvalidLocalTransactionId; pgxact->xmin = InvalidTransactionId; /* must be cleared with xid/xmin: */ pgxact->vacuumFlags &= ~PROC_VACUUM_STATE_MASK; pgxact->delayChkpt = false; /* be sure this is cleared in abort */ proc->recoveryConflictPending = false; Assert(pgxact->nxids == 0); Assert(pgxact->overflowed == false); } }
bool ProcArrayInstallImportedXmin | ( | TransactionId | xmin, | |
TransactionId | sourcexid | |||
) |
Definition at line 1493 of file procarray.c.
References Assert, PGPROC::databaseId, LW_SHARED, LWLockAcquire(), LWLockRelease(), MyDatabaseId, MyPgXact, ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, PROC_IN_VACUUM, ProcArrayLock, TransactionIdIsNormal, TransactionIdPrecedesOrEquals(), TransactionXmin, PGXACT::vacuumFlags, PGXACT::xid, and PGXACT::xmin.
Referenced by GetSerializableTransactionSnapshotInt(), and SetTransactionSnapshot().
{ bool result = false; ProcArrayStruct *arrayP = procArray; int index; Assert(TransactionIdIsNormal(xmin)); if (!TransactionIdIsNormal(sourcexid)) return false; /* Get lock so source xact can't end while we're doing this */ LWLockAcquire(ProcArrayLock, LW_SHARED); for (index = 0; index < arrayP->numProcs; index++) { int pgprocno = arrayP->pgprocnos[index]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; TransactionId xid; /* Ignore procs running LAZY VACUUM */ if (pgxact->vacuumFlags & PROC_IN_VACUUM) continue; xid = pgxact->xid; /* fetch just once */ if (xid != sourcexid) continue; /* * We check the transaction's database ID for paranoia's sake: if it's * in another DB then its xmin does not cover us. Caller should have * detected this already, so we just treat any funny cases as * "transaction not found". */ if (proc->databaseId != MyDatabaseId) continue; /* * Likewise, let's just make real sure its xmin does cover us. */ xid = pgxact->xmin; /* fetch just once */ if (!TransactionIdIsNormal(xid) || !TransactionIdPrecedesOrEquals(xid, xmin)) continue; /* * We're good. Install the new xmin. As in GetSnapshotData, set * TransactionXmin too. (Note that because snapmgr.c called * GetSnapshotData first, we'll be overwriting a valid xmin here, so * we don't check that.) */ MyPgXact->xmin = TransactionXmin = xmin; result = true; break; } LWLockRelease(ProcArrayLock); return result; }
void ProcArrayRemove | ( | PGPROC * | proc, | |
TransactionId | latestXid | |||
) |
Definition at line 319 of file procarray.c.
References Assert, elog, VariableCacheData::latestCompletedXid, LOG, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), memmove, ProcArrayStruct::numProcs, PGPROC::pgprocno, ProcArrayStruct::pgprocnos, PGPROC::pid, ProcArrayLock, ShmemVariableCache, TransactionIdIsValid, TransactionIdPrecedes(), and PGXACT::xid.
Referenced by FinishPreparedTransaction(), and RemoveProcFromArray().
{ ProcArrayStruct *arrayP = procArray; int index; #ifdef XIDCACHE_DEBUG /* dump stats at backend shutdown, but not prepared-xact end */ if (proc->pid != 0) DisplayXidCache(); #endif LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); if (TransactionIdIsValid(latestXid)) { Assert(TransactionIdIsValid(allPgXact[proc->pgprocno].xid)); /* Advance global latestCompletedXid while holding the lock */ if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid, latestXid)) ShmemVariableCache->latestCompletedXid = latestXid; } else { /* Shouldn't be trying to remove a live transaction here */ Assert(!TransactionIdIsValid(allPgXact[proc->pgprocno].xid)); } for (index = 0; index < arrayP->numProcs; index++) { if (arrayP->pgprocnos[index] == proc->pgprocno) { /* Keep the PGPROC array sorted. See notes above */ memmove(&arrayP->pgprocnos[index], &arrayP->pgprocnos[index + 1], (arrayP->numProcs - index - 1) * sizeof(int)); arrayP->pgprocnos[arrayP->numProcs - 1] = -1; /* for debugging */ arrayP->numProcs--; LWLockRelease(ProcArrayLock); return; } } /* Ooops */ LWLockRelease(ProcArrayLock); elog(LOG, "failed to find proc %p in ProcArray", proc); }
Size ProcArrayShmemSize | ( | void | ) |
Definition at line 170 of file procarray.c.
References add_size(), EnableHotStandby, mul_size(), offsetof, PROCARRAY_MAXPROCS, and TOTAL_MAX_CACHED_SUBXIDS.
Referenced by CreateSharedMemoryAndSemaphores().
{ Size size; /* Size of the ProcArray structure itself */ #define PROCARRAY_MAXPROCS (MaxBackends + max_prepared_xacts) size = offsetof(ProcArrayStruct, pgprocnos); size = add_size(size, mul_size(sizeof(int), PROCARRAY_MAXPROCS)); /* * During Hot Standby processing we have a data structure called * KnownAssignedXids, created in shared memory. Local data structures are * also created in various backends during GetSnapshotData(), * TransactionIdIsInProgress() and GetRunningTransactionData(). All of the * main structures created in those functions must be identically sized, * since we may at times copy the whole of the data structures around. We * refer to this size as TOTAL_MAX_CACHED_SUBXIDS. * * Ideally we'd only create this structure if we were actually doing hot * standby in the current run, but we don't know that yet at the time * shared memory is being set up. */ #define TOTAL_MAX_CACHED_SUBXIDS \ ((PGPROC_MAX_CACHED_SUBXIDS + 1) * PROCARRAY_MAXPROCS) if (EnableHotStandby) { size = add_size(size, mul_size(sizeof(TransactionId), TOTAL_MAX_CACHED_SUBXIDS)); size = add_size(size, mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS)); } return size; }
void RecordKnownAssignedTransactionIds | ( | TransactionId | xid | ) |
Definition at line 2621 of file procarray.c.
References Assert, DEBUG4, elog, ExtendCLOG(), ExtendSUBTRANS(), KnownAssignedXidsAdd(), latestObservedXid, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), VariableCacheData::nextXid, ShmemVariableCache, STANDBY_INITIALIZED, standbyState, trace_recovery(), TransactionIdAdvance, TransactionIdFollows(), TransactionIdIsValid, TransactionIdPrecedesOrEquals(), and XidGenLock.
Referenced by ProcArrayApplyXidAssignment(), StartupXLOG(), xact_redo_abort(), and xact_redo_commit_internal().
{ Assert(standbyState >= STANDBY_INITIALIZED); Assert(TransactionIdIsValid(xid)); elog(trace_recovery(DEBUG4), "record known xact %u latestObservedXid %u", xid, latestObservedXid); /* * If the KnownAssignedXids machinery isn't up yet, do nothing. */ if (standbyState <= STANDBY_INITIALIZED) return; Assert(TransactionIdIsValid(latestObservedXid)); /* * When a newly observed xid arrives, it is frequently the case that it is * *not* the next xid in sequence. When this occurs, we must treat the * intervening xids as running also. */ if (TransactionIdFollows(xid, latestObservedXid)) { TransactionId next_expected_xid; /* * Extend clog and subtrans like we do in GetNewTransactionId() during * normal operation using individual extend steps. Typical case * requires almost no activity. */ next_expected_xid = latestObservedXid; TransactionIdAdvance(next_expected_xid); while (TransactionIdPrecedesOrEquals(next_expected_xid, xid)) { ExtendCLOG(next_expected_xid); ExtendSUBTRANS(next_expected_xid); TransactionIdAdvance(next_expected_xid); } /* * Add the new xids onto the KnownAssignedXids array. */ next_expected_xid = latestObservedXid; TransactionIdAdvance(next_expected_xid); KnownAssignedXidsAdd(next_expected_xid, xid, false); /* * Now we can advance latestObservedXid */ latestObservedXid = xid; /* ShmemVariableCache->nextXid must be beyond any observed xid */ next_expected_xid = latestObservedXid; TransactionIdAdvance(next_expected_xid); LWLockAcquire(XidGenLock, LW_EXCLUSIVE); ShmemVariableCache->nextXid = next_expected_xid; LWLockRelease(XidGenLock); } }
bool TransactionIdIsActive | ( | TransactionId | xid | ) |
Definition at line 1011 of file procarray.c.
References i, LW_SHARED, LWLockAcquire(), LWLockRelease(), ProcArrayStruct::numProcs, ProcArrayStruct::pgprocnos, PGPROC::pid, ProcArrayLock, RecentXmin, TransactionIdEquals, TransactionIdIsValid, TransactionIdPrecedes(), and PGXACT::xid.
Referenced by LockGXact(), and MarkAsPreparing().
{ bool result = false; ProcArrayStruct *arrayP = procArray; int i; /* * Don't bother checking a transaction older than RecentXmin; it could not * possibly still be running. */ if (TransactionIdPrecedes(xid, RecentXmin)) return false; LWLockAcquire(ProcArrayLock, LW_SHARED); for (i = 0; i < arrayP->numProcs; i++) { int pgprocno = arrayP->pgprocnos[i]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; TransactionId pxid; /* Fetch xid just once - see GetNewTransactionId */ pxid = pgxact->xid; if (!TransactionIdIsValid(pxid)) continue; if (proc->pid == 0) continue; /* ignore prepared transactions */ if (TransactionIdEquals(pxid, xid)) { result = true; break; } } LWLockRelease(ProcArrayLock); return result; }
bool TransactionIdIsInProgress | ( | TransactionId | xid | ) |
Definition at line 794 of file procarray.c.
References Assert, ereport, errcode(), errmsg(), ERROR, i, KnownAssignedXidExists(), KnownAssignedXidsGet(), ProcArrayStruct::lastOverflowedXid, VariableCacheData::latestCompletedXid, LW_SHARED, LWLockAcquire(), LWLockRelease(), malloc, ProcArrayStruct::maxProcs, MyProc, NULL, ProcArrayStruct::numProcs, PGXACT::nxids, PGXACT::overflowed, ProcArrayStruct::pgprocnos, ProcArrayLock, RecentXmin, RecoveryInProgress(), ShmemVariableCache, SubTransGetTopmostTransaction(), PGPROC::subxids, TOTAL_MAX_CACHED_SUBXIDS, TransactionIdDidAbort(), TransactionIdEquals, TransactionIdIsCurrentTransactionId(), TransactionIdIsKnownCompleted(), TransactionIdIsValid, TransactionIdPrecedes(), TransactionIdPrecedesOrEquals(), xc_by_child_xid_inc, xc_by_known_assigned_inc, xc_by_known_xact_inc, xc_by_latest_xid_inc, xc_by_main_xid_inc, xc_by_my_xact_inc, xc_by_recent_xmin_inc, xc_no_overflow_inc, xc_slow_answer_inc, PGXACT::xid, and XidCache::xids.
Referenced by compute_new_xmax_infomask(), ConditionalXactLockTableWait(), Do_MultiXactIdWait(), heap_lock_updated_tuple_rec(), HeapTupleHeaderIsOnlyLocked(), HeapTupleSatisfiesDirty(), HeapTupleSatisfiesMVCC(), HeapTupleSatisfiesNow(), HeapTupleSatisfiesSelf(), HeapTupleSatisfiesToast(), HeapTupleSatisfiesUpdate(), HeapTupleSatisfiesVacuum(), MultiXactIdExpand(), MultiXactIdIsRunning(), and XactLockTableWait().
{ static TransactionId *xids = NULL; int nxids = 0; ProcArrayStruct *arrayP = procArray; TransactionId topxid; int i, j; /* * Don't bother checking a transaction older than RecentXmin; it could not * possibly still be running. (Note: in particular, this guarantees that * we reject InvalidTransactionId, FrozenTransactionId, etc as not * running.) */ if (TransactionIdPrecedes(xid, RecentXmin)) { xc_by_recent_xmin_inc(); return false; } /* * We may have just checked the status of this transaction, so if it is * already known to be completed, we can fall out without any access to * shared memory. */ if (TransactionIdIsKnownCompleted(xid)) { xc_by_known_xact_inc(); return false; } /* * Also, we can handle our own transaction (and subtransactions) without * any access to shared memory. */ if (TransactionIdIsCurrentTransactionId(xid)) { xc_by_my_xact_inc(); return true; } /* * If first time through, get workspace to remember main XIDs in. We * malloc it permanently to avoid repeated palloc/pfree overhead. */ if (xids == NULL) { /* * In hot standby mode, reserve enough space to hold all xids in the * known-assigned list. If we later finish recovery, we no longer need * the bigger array, but we don't bother to shrink it. */ int maxxids = RecoveryInProgress() ? TOTAL_MAX_CACHED_SUBXIDS : arrayP->maxProcs; xids = (TransactionId *) malloc(maxxids * sizeof(TransactionId)); if (xids == NULL) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); } LWLockAcquire(ProcArrayLock, LW_SHARED); /* * Now that we have the lock, we can check latestCompletedXid; if the * target Xid is after that, it's surely still running. */ if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid, xid)) { LWLockRelease(ProcArrayLock); xc_by_latest_xid_inc(); return true; } /* No shortcuts, gotta grovel through the array */ for (i = 0; i < arrayP->numProcs; i++) { int pgprocno = arrayP->pgprocnos[i]; volatile PGPROC *proc = &allProcs[pgprocno]; volatile PGXACT *pgxact = &allPgXact[pgprocno]; TransactionId pxid; /* Ignore my own proc --- dealt with it above */ if (proc == MyProc) continue; /* Fetch xid just once - see GetNewTransactionId */ pxid = pgxact->xid; if (!TransactionIdIsValid(pxid)) continue; /* * Step 1: check the main Xid */ if (TransactionIdEquals(pxid, xid)) { LWLockRelease(ProcArrayLock); xc_by_main_xid_inc(); return true; } /* * We can ignore main Xids that are younger than the target Xid, since * the target could not possibly be their child. */ if (TransactionIdPrecedes(xid, pxid)) continue; /* * Step 2: check the cached child-Xids arrays */ for (j = pgxact->nxids - 1; j >= 0; j--) { /* Fetch xid just once - see GetNewTransactionId */ TransactionId cxid = proc->subxids.xids[j]; if (TransactionIdEquals(cxid, xid)) { LWLockRelease(ProcArrayLock); xc_by_child_xid_inc(); return true; } } /* * Save the main Xid for step 4. We only need to remember main Xids * that have uncached children. (Note: there is no race condition * here because the overflowed flag cannot be cleared, only set, while * we hold ProcArrayLock. So we can't miss an Xid that we need to * worry about.) */ if (pgxact->overflowed) xids[nxids++] = pxid; } /* * Step 3: in hot standby mode, check the known-assigned-xids list. XIDs * in the list must be treated as running. */ if (RecoveryInProgress()) { /* none of the PGXACT entries should have XIDs in hot standby mode */ Assert(nxids == 0); if (KnownAssignedXidExists(xid)) { LWLockRelease(ProcArrayLock); xc_by_known_assigned_inc(); return true; } /* * If the KnownAssignedXids overflowed, we have to check pg_subtrans * too. Fetch all xids from KnownAssignedXids that are lower than * xid, since if xid is a subtransaction its parent will always have a * lower value. Note we will collect both main and subXIDs here, but * there's no help for it. */ if (TransactionIdPrecedesOrEquals(xid, procArray->lastOverflowedXid)) nxids = KnownAssignedXidsGet(xids, xid); } LWLockRelease(ProcArrayLock); /* * If none of the relevant caches overflowed, we know the Xid is not * running without even looking at pg_subtrans. */ if (nxids == 0) { xc_no_overflow_inc(); return false; } /* * Step 4: have to check pg_subtrans. * * At this point, we know it's either a subtransaction of one of the Xids * in xids[], or it's not running. If it's an already-failed * subtransaction, we want to say "not running" even though its parent may * still be running. So first, check pg_clog to see if it's been aborted. */ xc_slow_answer_inc(); if (TransactionIdDidAbort(xid)) return false; /* * It isn't aborted, so check whether the transaction tree it belongs to * is still running (or, more precisely, whether it was running when we * held ProcArrayLock). */ topxid = SubTransGetTopmostTransaction(xid); Assert(TransactionIdIsValid(topxid)); if (!TransactionIdEquals(topxid, xid)) { for (i = 0; i < nxids; i++) { if (TransactionIdEquals(xids[i], topxid)) return true; } } return false; }
void XidCacheRemoveRunningXids | ( | TransactionId | xid, | |
int | nxids, | |||
const TransactionId * | xids, | |||
TransactionId | latestXid | |||
) |
Definition at line 2464 of file procarray.c.
References Assert, elog, i, VariableCacheData::latestCompletedXid, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), MyPgXact, MyProc, PGXACT::nxids, ProcArrayLock, ShmemVariableCache, PGPROC::subxids, TransactionIdEquals, TransactionIdIsValid, TransactionIdPrecedes(), WARNING, XidCacheRemove, and XidCache::xids.
Referenced by RecordTransactionAbort().
{ int i, j; Assert(TransactionIdIsValid(xid)); /* * We must hold ProcArrayLock exclusively in order to remove transactions * from the PGPROC array. (See src/backend/access/transam/README.) It's * possible this could be relaxed since we know this routine is only used * to abort subtransactions, but pending closer analysis we'd best be * conservative. */ LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); /* * Under normal circumstances xid and xids[] will be in increasing order, * as will be the entries in subxids. Scan backwards to avoid O(N^2) * behavior when removing a lot of xids. */ for (i = nxids - 1; i >= 0; i--) { TransactionId anxid = xids[i]; for (j = MyPgXact->nxids - 1; j >= 0; j--) { if (TransactionIdEquals(MyProc->subxids.xids[j], anxid)) { XidCacheRemove(j); break; } } /* * Ordinarily we should have found it, unless the cache has * overflowed. However it's also possible for this routine to be * invoked multiple times for the same subtransaction, in case of an * error during AbortSubTransaction. So instead of Assert, emit a * debug warning. */ if (j < 0 && !MyPgXact->overflowed) elog(WARNING, "did not find subXID %u in MyProc", anxid); } for (j = MyPgXact->nxids - 1; j >= 0; j--) { if (TransactionIdEquals(MyProc->subxids.xids[j], xid)) { XidCacheRemove(j); break; } } /* Ordinarily we should have found it, unless the cache has overflowed */ if (j < 0 && !MyPgXact->overflowed) elog(WARNING, "did not find subXID %u in MyProc", xid); /* Also advance global latestCompletedXid while holding the lock */ if (TransactionIdPrecedes(ShmemVariableCache->latestCompletedXid, latestXid)) ShmemVariableCache->latestCompletedXid = latestXid; LWLockRelease(ProcArrayLock); }