LibraryToggle FramesPrintFeedback

The jdbc component enables you to access databases through JDBC, where SQL queries and operations are sent in the message body. This component uses the standard JDBC API, unlike the SQL Component component, which uses spring-jdbc.

[Warning]Warning

This component can only be used to define producer endpoints, which means that you cannot use the JDBC component in a from() statement.

[Important]Important

This component can not be used as a Transactional Client. If you need transaction support in your route, you should use the SQL component instead.

Name Default Value Description
readSize 0 / 2000 The default maximum number of rows that can be read by a polling query. The default value is 2000 for Fuse Mediation Router 1.5.0 or older. In newer releases the default value is 0.
statement.<xxx> null Fuse Mediation Router 2.1: Sets additional options on the java.sql.Statement that is used behind the scenes to execute the queries. For instance, statement.maxRows=10. For detailed documentation, see the java.sql.Statement javadoc documentation.
useJDBC4ColumnNameAndLabelSemantics true Fuse Mediation Router 1.6.3/2.2: Sets whether to use JDBC 4/3 column label/name semantics. You can use this option to turn it false in case you have issues with your JDBC driver to select data. This only applies when using SQL SELECT using aliases (e.g. SQL SELECT id as identifier, name as given_name from persons).
Header Description
CamelJdbcRowCount If the query is a SELECT, the row count is returned in this OUT header.
CamelJdbcUpdateCount If the query is an UPDATE, the update count is returned in this OUT header.

In the following example, we fetch the rows from the customer table.

First we register our datasource in the Fuse Mediation Router registry as testdb:

JndiRegistry reg = super.createRegistry();
reg.bind("testdb", ds);
return reg;

Then we configure a route that routes to the JDBC component, so the SQL will be executed. Note how we refer to the testdb datasource that was bound in the previous step:

// lets add simple route
public void configure() throws Exception {
    from("direct:hello").to("jdbc:testdb?readSize=100");
}

Or you can create a DataSource in Spring like this:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
  <route>
     <from uri="timer://kickoff?period=10000"/>
     <setBody>
       <constant>select * from customer</constant>
     </setBody>
     <to uri="jdbc:testdb"/>
     <to uri="mock:result"/>
  </route>
</camelContext>
<!-- Just add a demo to show how to bind a date source for camel in Spring-->
<bean id="testdb" class="org.springframework.jdbc.datasource.DriverManagerDataSource">
	<property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
	<property name="url" value="jdbc:hsqldb:mem:camel_jdbc" />
	<property name="username" value="sa" />
  <property name="password" value="" />
</bean>	

We create an endpoint, add the SQL query to the body of the IN message, and then send the exchange. The result of the query is returned in the OUT body:

// first we create our exchange using the endpoint
Endpoint endpoint = context.getEndpoint("direct:hello");
Exchange exchange = endpoint.createExchange();
// then we set the SQL on the in body
exchange.getIn().setBody("select * from customer order by ID");

// now we send the exchange to the endpoint, and receives the response from Camel
Exchange out = template.send(endpoint, exchange);

// assertions of the response
assertNotNull(out);
assertNotNull(out.getOut());
ArrayList<HashMap<String, Object>> data = out.getOut().getBody(ArrayList.class);
assertNotNull("out body could not be converted to an ArrayList - was: "
    + out.getOut().getBody(), data);
assertEquals(2, data.size());
HashMap<String, Object> row = data.get(0);
assertEquals("cust1", row.get("ID"));
assertEquals("jstrachan", row.get("NAME"));
row = data.get(1);
assertEquals("cust2", row.get("ID"));
assertEquals("nsandhu", row.get("NAME"));

If you want to work on the rows one by one instead of the entire ResultSet at once you need to use the Splitter EIP such as:

from("direct:hello")
        // here we split the data from the testdb into new messages one by one
        // so the mock endpoint will receive a message per row in the table
    .to("jdbc:testdb").split(body()).to("mock:result");

If we want to poll a database using the JDBC component, we need to combine it with a polling scheduler such as the Timer or Quartz etc. In the following example, we retrieve data from the database every 60 seconds:

from("timer://foo?period=60000").setBody(constant("select * from customer")).to("jdbc:testdb").to("activemq:queue:customers");

See also:

Comments powered by Disqus