ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2shfti Unicode version

Theorem 2shfti 9719
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
2shfti  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  ( F  shift  ( A  +  B ) ) )

Proof of Theorem 2shfti
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . . . 9  |-  F  e. 
_V
21shftfval 9709 . . . . . . . 8  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A ) F w ) } )
32breqd 3796 . . . . . . 7  |-  ( A  e.  CC  ->  (
( x  -  B
) ( F  shift  A ) y  <->  ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y ) )
43ad2antrr 471 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y ) )
5 simpr 108 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  x  e.  CC )
6 simplr 496 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  B  e.  CC )
75, 6subcld 7419 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( x  -  B )  e.  CC )
8 vex 2604 . . . . . . 7  |-  y  e. 
_V
9 eleq1 2141 . . . . . . . . 9  |-  ( z  =  ( x  -  B )  ->  (
z  e.  CC  <->  ( x  -  B )  e.  CC ) )
10 oveq1 5539 . . . . . . . . . 10  |-  ( z  =  ( x  -  B )  ->  (
z  -  A )  =  ( ( x  -  B )  -  A ) )
1110breq1d 3795 . . . . . . . . 9  |-  ( z  =  ( x  -  B )  ->  (
( z  -  A
) F w  <->  ( (
x  -  B )  -  A ) F w ) )
129, 11anbi12d 456 . . . . . . . 8  |-  ( z  =  ( x  -  B )  ->  (
( z  e.  CC  /\  ( z  -  A
) F w )  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F w ) ) )
13 breq2 3789 . . . . . . . . 9  |-  ( w  =  y  ->  (
( ( x  -  B )  -  A
) F w  <->  ( (
x  -  B )  -  A ) F y ) )
1413anbi2d 451 . . . . . . . 8  |-  ( w  =  y  ->  (
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F w )  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
15 eqid 2081 . . . . . . . 8  |-  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) }  =  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) }
1612, 14, 15brabg 4024 . . . . . . 7  |-  ( ( ( x  -  B
)  e.  CC  /\  y  e.  _V )  ->  ( ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y  <->  ( (
x  -  B )  e.  CC  /\  (
( x  -  B
)  -  A ) F y ) ) )
177, 8, 16sylancl 404 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) {
<. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y  <->  ( (
x  -  B )  e.  CC  /\  (
( x  -  B
)  -  A ) F y ) ) )
184, 17bitrd 186 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A ) F y ) ) )
19 subcl 7307 . . . . . . . 8  |-  ( ( x  e.  CC  /\  B  e.  CC )  ->  ( x  -  B
)  e.  CC )
2019biantrurd 299 . . . . . . 7  |-  ( ( x  e.  CC  /\  B  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
2120ancoms 264 . . . . . 6  |-  ( ( B  e.  CC  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
2221adantll 459 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <->  ( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A ) F y ) ) )
23 sub32 7342 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  A
)  -  B )  =  ( ( x  -  B )  -  A ) )
24 subsub4 7341 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  A
)  -  B )  =  ( x  -  ( A  +  B
) ) )
2523, 24eqtr3d 2115 . . . . . . . 8  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  B
)  -  A )  =  ( x  -  ( A  +  B
) ) )
26253expb 1139 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  ( (
x  -  B )  -  A )  =  ( x  -  ( A  +  B )
) )
2726ancoms 264 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B )  -  A )  =  ( x  -  ( A  +  B ) ) )
2827breq1d 3795 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <->  ( x  -  ( A  +  B
) ) F y ) )
2918, 22, 283bitr2d 214 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( x  -  ( A  +  B
) ) F y ) )
3029pm5.32da 439 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y )  <->  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) ) )
3130opabbidv 3844 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) }  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) } )
32 ovshftex 9707 . . . . 5  |-  ( ( F  e.  _V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
331, 32mpan 414 . . . 4  |-  ( A  e.  CC  ->  ( F  shift  A )  e. 
_V )
34 shftfvalg 9706 . . . 4  |-  ( ( B  e.  CC  /\  ( F  shift  A )  e.  _V )  -> 
( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
3533, 34sylan2 280 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
3635ancoms 264 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
37 addcl 7098 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
381shftfval 9709 . . 3  |-  ( ( A  +  B )  e.  CC  ->  ( F  shift  ( A  +  B ) )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) } )
3937, 38syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( F  shift  ( A  +  B ) )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B )
) F y ) } )
4031, 36, 393eqtr4d 2123 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  ( F  shift  ( A  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   _Vcvv 2601   class class class wbr 3785   {copab 3838  (class class class)co 5532   CCcc 6979    + caddc 6984    - cmin 7279    shift cshi 9702
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281  df-shft 9703
This theorem is referenced by:  shftcan1  9722
  Copyright terms: Public domain W3C validator