ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftidt2 Unicode version

Theorem shftidt2 9720
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftidt2  |-  ( F 
shift  0 )  =  ( F  |`  CC )

Proof of Theorem shftidt2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subid1 7328 . . . . 5  |-  ( x  e.  CC  ->  (
x  -  0 )  =  x )
21breq1d 3795 . . . 4  |-  ( x  e.  CC  ->  (
( x  -  0 ) F y  <->  x F
y ) )
32pm5.32i 441 . . 3  |-  ( ( x  e.  CC  /\  ( x  -  0
) F y )  <-> 
( x  e.  CC  /\  x F y ) )
43opabbii 3845 . 2  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  0
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  x F y ) }
5 0cn 7111 . . 3  |-  0  e.  CC
6 shftfval.1 . . . 4  |-  F  e. 
_V
76shftfval 9709 . . 3  |-  ( 0  e.  CC  ->  ( F  shift  0 )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  0 ) F y ) } )
85, 7ax-mp 7 . 2  |-  ( F 
shift  0 )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  0 ) F y ) }
9 dfres2 4678 . 2  |-  ( F  |`  CC )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  x F y ) }
104, 8, 93eqtr4i 2111 1  |-  ( F 
shift  0 )  =  ( F  |`  CC )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601   class class class wbr 3785   {copab 3838    |` cres 4365  (class class class)co 5532   CCcc 6979   0cc0 6981    - cmin 7279    shift cshi 9702
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281  df-shft 9703
This theorem is referenced by:  shftidt  9721
  Copyright terms: Public domain W3C validator