| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrri | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitri.1 |
|
| 3bitri.2 |
|
| 3bitri.3 |
|
| Ref | Expression |
|---|---|
| 3bitrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.3 |
. 2
| |
| 2 | 3bitri.1 |
. . 3
| |
| 3 | 3bitri.2 |
. . 3
| |
| 4 | 2, 3 | bitr2i 183 |
. 2
|
| 5 | 1, 4 | bitr3i 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: reu8 2788 unass 3129 ssin 3188 difab 3233 iunss 3719 poirr 4062 cnvuni 4539 dfco2 4840 dff1o6 5436 elznn0 8366 bj-ssom 10731 |
| Copyright terms: Public domain | W3C validator |